JP2001052695A - Manufacture of positive electrode active material for alkaline storage battery - Google Patents

Manufacture of positive electrode active material for alkaline storage battery

Info

Publication number
JP2001052695A
JP2001052695A JP11225957A JP22595799A JP2001052695A JP 2001052695 A JP2001052695 A JP 2001052695A JP 11225957 A JP11225957 A JP 11225957A JP 22595799 A JP22595799 A JP 22595799A JP 2001052695 A JP2001052695 A JP 2001052695A
Authority
JP
Japan
Prior art keywords
cobalt
hydroxide
nickel hydroxide
positive electrode
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11225957A
Other languages
Japanese (ja)
Inventor
Takaaki Tanaka
孝明 田中
Junichi Imaizumi
純一 今泉
Tokuyoshi Iida
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP11225957A priority Critical patent/JP2001052695A/en
Publication of JP2001052695A publication Critical patent/JP2001052695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To manufacture an alkaline storage battery having a good utilization factor of positive electrode and good cyclic characteristic by forming the positive electrode from a hydroxide covered with a higher order alkali oxide heat treated by cobalt manufactured in one storage by a mixer/stirror. SOLUTION: Nickel hydroxide and cobalt hydroxide are mixed in a mixer/ stirror and heated, whereto an alkali solution is added, and the cobalt hydroxide is oxidated while it is melted under co-existence of oxygen. Particles of nickel hydroxide are formed with the surfaces covered by a higher order cobalt oxide, while coagulation of the particles is suppressed, and surface-modified nickel hydroxide is established covered with higher order oxidated cobalt having good electroconductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
ニッケル正極活物質の製造方法に関するものである。
The present invention relates to a method for producing a nickel positive electrode active material for an alkaline storage battery.

【0002】[0002]

【従来の技術】 従来、 高性能化の為に、下記のよう
な提案がされている。
2. Description of the Related Art Conventionally, the following proposals have been made for higher performance.

【0003】特開平8−148145においては、粒状
水酸化ニッケル活物質内に存在する全細孔の空間総和体
積を1とするとき、前記空間総和体積の0.2以上が、
直径60Å以上の細孔を有する粒状水酸化ニッケルで、
前記粒状水酸化ニッケルと溶解したコバルト化合物とを
含む懸濁液に対し、撹拌下にアルカリを徐々に加え、粒
状水酸化ニッケルの表面に水酸化コバルトが偏在形成し
た水酸化ニッケルを作り、水洗、乾燥して、コバルト偏
在水酸化ニッケルを製造し、この水酸化ニッケルをアル
カリ金属の水酸化物と酸素の存在下で、流動又は分散し
ながら加熱し、前記粒子中のコバルト化合物を高次酸化
物に換える。斯くすることにより、コバルト化合物を結
晶構造の乱れた2価より大きい高次コバルト化合物を表
面に持った粒状水酸化ニッケルが出来る。従来の製法に
よる活物質に比べ、粒子塊の生成が抑制され、利用率や
過放電特性の好い正極材料が出来る。しかし、問題点と
して、水酸化ニッケルの表面にあらかじめ水酸化コバル
ト層を形成することは、新たな製造装置が必要となり、
工程も増加し、管理が複雑になる。また、水酸化コバル
トを高次化処理する際にコバルトの溶解析出反応を伴う
ため水酸化ニッケル粒子の凝集が発生する。さらに高次
化処理の前段階での保管中に水酸化ニッケル表面の水酸
化コバルトの空気酸化の恐れがある。この空気酸化が発
生すると高次化処理が起こりにくくなる。
In Japanese Patent Application Laid-Open No. 8-148145, when the total space volume of all the pores present in a granular nickel hydroxide active material is set to 1, 0.2 or more of the total space volume is:
A granular nickel hydroxide having pores with a diameter of 60 ° or more,
An alkali is gradually added to the suspension containing the granular nickel hydroxide and the dissolved cobalt compound under stirring to form nickel hydroxide in which cobalt hydroxide is unevenly formed on the surface of the granular nickel hydroxide, and washed with water. Drying to produce cobalt unevenly distributed nickel hydroxide, and heating this nickel hydroxide in the presence of alkali metal hydroxide and oxygen while flowing or dispersing, to reduce the cobalt compound in the particles to a higher oxide Replace with By doing so, a granular nickel hydroxide having a cobalt compound having a higher-ordered cobalt compound than the divalent compound having a disordered crystal structure on the surface can be obtained. As compared with an active material obtained by a conventional manufacturing method, generation of particle agglomerates is suppressed, and a positive electrode material having favorable utilization and overdischarge characteristics can be obtained. However, as a problem, forming a cobalt hydroxide layer on the surface of nickel hydroxide in advance requires a new manufacturing apparatus,
The number of processes increases, and management becomes complicated. In addition, the higher order treatment of cobalt hydroxide involves a dissolution and precipitation reaction of cobalt, which causes agglomeration of nickel hydroxide particles. Furthermore, there is a possibility that cobalt hydroxide on the surface of nickel hydroxide may be oxidized by air during storage at a stage prior to the higher order treatment. When this air oxidation occurs, the higher order treatment becomes difficult to occur.

【0004】特開平10−261414においては、別
に合成した粒状水酸化ニッケルを主成分とした粒子表面
にコバルト化合物を被覆した表面コバルト含有水酸化ニ
ッケルに対し、アルカリ水溶液を混合するアルカリ混合
ステップとアルカリ水溶液を混合した粒状物を酸素存在
下で40〜90℃以上の熱風で流動しながら加熱する昇温ス
テップを加えている。本昇温ステップで、含浸アルカリ
により、コバルトの酸化を促進させる共に、アルカリカ
チオンをコバルトに固着することができ、同時に粒子間
の凝集の発生を抑制できる。その結果、活物質の利用率
が向上し、且つ、極板の保存性に優れた活物質を製造す
ることが可能となる。しかし、あらかじめ表面に水酸化
コバルト層を形成した水酸化ニッケルを使用すると入っ
た点には変化がない。
In Japanese Patent Application Laid-Open No. 10-261414, an alkali mixing step of mixing an alkali aqueous solution with a surface-cobalt-containing nickel hydroxide, which is obtained by coating a cobalt compound on the surface of particles mainly composed of granular nickel hydroxide, is performed. A heating step is added in which the particulate matter mixed with the aqueous solution is heated while flowing with hot air of 40 to 90 ° C. or more in the presence of oxygen. In this temperature raising step, the oxidation of cobalt can be promoted by the impregnated alkali, and the alkali cation can be fixed to the cobalt, and at the same time, the occurrence of aggregation between particles can be suppressed. As a result, the utilization rate of the active material is improved, and an active material having excellent electrode plate preservability can be manufactured. However, when nickel hydroxide having a cobalt hydroxide layer formed on the surface in advance is used, there is no change in the entry point.

【0005】特開平10−270037においては、水
酸化ニッケル表面にナトリウム含有コバルト化合物を被
覆した複合体粒子に、更に希土類元素などを添加した正
極活物質である。ナトリウム含有被覆層は、前記引用特
許と同じく、水酸化ナトリウム水溶液を加え、酸化性雰
囲気下、50〜200℃で加熱して作製する。アルカリ
加熱処理コバルト化合物を被覆した水酸化ニッケルだけ
では、過放電をしたとき、、被覆層のナトリウム含有コ
バルト化合物が還元されて、還元生成物の一部が水酸化
ニッケル粒子内部に拡散し、活物質粒子表面の電子伝導
度が低下し、過放電後の活物質の利用率が低下する。こ
れに対し、希土類元素を添加したナトリウム含有コバル
ト化合物は還元され難く、過放電後でも、活物質表面の
電子伝導度は低下し難い。即ち、過放電後でも利用率の
低下しにくい活物質が得られるが、前2件の引用特許と
同様に、あらかじめ表面にコバルト化合物層を形成した
水酸化ニッケルを使用する点には変わりがない。そのた
め、非常に工程が複雑で、品質をコントロールすること
が難しい。
[0005] Japanese Patent Application Laid-Open No. Hei 10-270037 discloses a positive electrode active material obtained by further adding a rare earth element or the like to composite particles in which a sodium-containing cobalt compound is coated on the surface of nickel hydroxide. The sodium-containing coating layer is prepared by adding an aqueous solution of sodium hydroxide and heating at 50 to 200 ° C. in an oxidizing atmosphere, as in the cited patent. With only nickel hydroxide coated with the alkali heat-treated cobalt compound, when overdischarge occurs, the sodium-containing cobalt compound in the coating layer is reduced, and some of the reduction products diffuse into the nickel hydroxide particles, and The electron conductivity on the surface of the material particles decreases, and the utilization rate of the active material after overdischarge decreases. On the other hand, the sodium-containing cobalt compound to which the rare earth element is added is hardly reduced, and even after overdischarge, the electron conductivity on the active material surface is hardly reduced. That is, an active material whose utilization rate is hardly reduced even after overdischarge is obtained, but there is no change in the point that nickel hydroxide having a cobalt compound layer formed on the surface in advance is used, as in the above two cited patents. . Therefore, the process is very complicated, and it is difficult to control the quality.

【0006】[0006]

【発明が解決しようとする課題】しかし引用特許のよう
な処理方法の場合、流動状態などで、アルカリ水溶液を
噴霧添加するために、高次化処理の際の凝集粒子塊を無
くし、この粒子塊粉砕によるコバルト化合物の剥がれを
防止できるが、粒状水酸化ニッケルに水酸化コバルトな
どを被覆する工程と、アルカリ噴霧、加熱処理工程が必
要がありその結果、製造工程が煩雑化し、品質管理が困
難となる。依って、工程の合理化簡略化が必要である。
However, in the case of a treatment method such as that of the cited patent, in order to spray and add an alkaline aqueous solution in a fluidized state or the like, the agglomerated particles at the time of the higher-order treatment are eliminated. Although peeling of the cobalt compound due to pulverization can be prevented, a step of coating granular nickel hydroxide with cobalt hydroxide and the like, and an alkali spraying and heat treatment step are required.As a result, the manufacturing process becomes complicated and quality control becomes difficult. Become. Therefore, it is necessary to simplify the process.

【0007】[0007]

【課題を解決するための手段】本発明の表面修飾水酸化
ニッケルは、同一混合撹拌機内で水酸化ニッケルに水酸
化コバルトを混合し、次に加熱しながらアルカリ水溶液
を加えることにより、水酸化コバルトが溶解し、空気中
の酸素による酸化を受け、水酸化ニッケルの表面に高次
酸化コバルトの形態で析出し、水酸化ニッケルの表面を
被覆する。次に、このアルカリ加熱処理高次コバルト酸
化物被覆粒状水酸ニッケルを混合撹拌機より取り出し、
残存したアルカリを水洗、脱水、乾燥して除去し、アル
カリ加熱処理高次酸化コバルト被覆水酸化ニッケルを製
造する。
The surface-modified nickel hydroxide of the present invention is obtained by mixing cobalt hydroxide with nickel hydroxide in the same mixing stirrer and then adding an aqueous alkali solution while heating. Is dissolved, oxidized by oxygen in the air, and deposited on the surface of the nickel hydroxide in the form of higher-order cobalt oxide, covering the surface of the nickel hydroxide. Next, the alkali heat-treated high-order cobalt oxide-coated granular nickel hydroxide was taken out from the mixing stirrer,
The remaining alkali is washed with water, dehydrated, and dried to remove, thereby producing an alkali heat-treated high-order cobalt oxide-coated nickel hydroxide.

【0008】使用する各原料は次のような化合物を使用
する。水酸化ニッケルはタッピング密度が2.0(g/c
m3)以上で、(101)面の半値幅が0.85(゜)
以上、BET比表面積が20(m2/g)以下であるこ
とが望ましい。また、水酸化ニッケル中に固溶元素して
亜鉛及びコバルトをそれぞれ0.5%以上固溶している
ことが望ましい。水酸化コバルトはα型とβ型が存在す
るがこれはどちらでも良い。しかし、平均粒径は20μm
以下が望ましい。
The following compounds are used for each raw material used. Nickel hydroxide has a tapping density of 2.0 (g / c
m3) or more and the half width of the (101) plane is 0.85 (0)
As described above, the BET specific surface area is desirably 20 (m2 / g) or less. Further, it is desirable that zinc and cobalt are each dissolved in nickel hydroxide by 0.5% or more as solid solution elements. There are α-type and β-type of cobalt hydroxide, which may be either. However, the average particle size is 20μm
The following is desirable.

【0009】水酸化コバルトをアルカリに溶解させ、酸
素共存化で加熱することによりアルカリ加熱処理高次酸
化コバルト被覆水酸化ニッケルを得る。一定量の水酸化
ニッケルと水酸化コバルトを混合撹拌機内に投入し、均
一に分散するまで攪拌する。この後、粉体を加熱しなが
ら所定量のアルカリ水溶液を噴霧し、水酸化ニッケルの
表面を高次コバルト酸化物で被覆する。この時、アルカ
リ水溶液を滴下しても良い。また、アルカリ水溶液を噴
霧する際、空気などを流しながら、酸化性雰囲気下50
〜200℃、出来れば、100℃〜150℃で反応させ
る。アルカリ水溶液の濃度は25%〜60%が良いがよ
り高い方が望ましい。これはアルカリ濃度が高いほど水
酸化コバルトの溶解度が高いためである。加熱方式は温
水、蒸気等熱媒循環によるジャケット加熱、遠赤外線加
熱、電磁誘導加熱、マイクロウェーブ加熱等がある。
By dissolving cobalt hydroxide in an alkali and heating in the coexistence of oxygen, an alkali heat-treated high-order cobalt oxide-coated nickel hydroxide is obtained. A certain amount of nickel hydroxide and cobalt hydroxide are put into a mixing stirrer and stirred until they are uniformly dispersed. Thereafter, a predetermined amount of an alkaline aqueous solution is sprayed while heating the powder, and the surface of the nickel hydroxide is coated with a higher cobalt oxide. At this time, an alkaline aqueous solution may be dropped. Also, when spraying an aqueous alkali solution, while flowing air or the like, the oxidizing atmosphere 50
The reaction is carried out at -200 ° C, preferably 100-150 ° C. The concentration of the aqueous alkali solution is preferably 25% to 60%, but is preferably higher. This is because the higher the alkali concentration, the higher the solubility of cobalt hydroxide. The heating method includes jacket heating by circulation of a heating medium such as hot water or steam, far-infrared heating, electromagnetic induction heating, and microwave heating.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0010】[0010]

【作用】工程簡略化:本発明の表面修飾水酸化ニッケル
は、その装置が攪拌混合ができる一つの装置のみで得ら
れる。水酸化ニッケルの表面にあらかじめ水酸化コバル
ト層を形成する際の新たな製造装置が不要であり、工程
が軽減できる。即ち、アルカリ酸化処理装置へ輸送する
際に、特性劣化の原因となる水酸化コバルト層の剥がれ
がなくなる。また、その輸送及び保管中の表面酸化がな
く、効率の良いアルカリ酸化処理ができる。さらに、水
洗で使用された排水の処理も軽減できる。2)一旦溶解
したコバルトが水酸化ニッケル表面に高次酸化コバルト
化合物として析出するが、撹拌により水酸化ニッケル粒
子表面に塗り付ける作用が生じる。このため、より強固
に水酸化ニッケル表面を被覆することができる。この結
果としてタップ密度の及び利用率の向上が得られる。
3)原料として湿式中和法で作製し、乾燥処理を施して
ない水酸化コバルトを使用することにより乾燥に関わる
工数を削減することができる。また、乾燥処理を施さな
いことにより、水酸化コバルト表面の空気酸化を抑制で
きるので反応がよりスムーズに進行する。
Function simplification: The surface-modified nickel hydroxide of the present invention can be obtained with only one device capable of stirring and mixing. A new manufacturing apparatus for forming a cobalt hydroxide layer on the surface of nickel hydroxide in advance is unnecessary, and the number of steps can be reduced. That is, when transported to the alkali oxidation treatment device, the peeling of the cobalt hydroxide layer which causes deterioration of the characteristics is eliminated. In addition, there is no surface oxidation during transportation and storage, and an efficient alkali oxidation treatment can be performed. Further, the treatment of wastewater used in washing can be reduced. 2) The cobalt once dissolved precipitates on the surface of the nickel hydroxide as a high-order cobalt oxide compound. Therefore, the nickel hydroxide surface can be more firmly coated. As a result, the tap density and the utilization factor are improved.
3) Man-hours related to drying can be reduced by using cobalt hydroxide produced by a wet neutralization method and not subjected to a drying treatment as a raw material. In addition, by not performing the drying treatment, air oxidation on the surface of the cobalt hydroxide can be suppressed, so that the reaction proceeds more smoothly.

【実施例】【Example】

【0011】[0011]

【実施例1】 攪拌混合機(深江パウテック製:型式F
S−GS−25J)にタッピング密度2.1g/cm3の
高密度水酸化ニッケル9.0Kg、未乾燥水酸化コバル
ト0.9Kg(含水率10wt%)を入れ、主攪拌軸を回
転数200rpmで、造粒軸を2000rpmで回転さ
せた後、攪拌混合機のジャケットを加熱し、粉体温度を
100℃に上昇させ、48%水酸化ナトリウム溶液を2
00ml/minで900ml噴霧する。噴霧終了後、
110℃で30分保持し、冷却後、取り出す。水洗、脱
水、乾燥を経て、表面修飾水酸化ニッケルを得た。得ら
れた表面修飾水酸化ニッケルの密度は、2.35g/c
m3であった。
Example 1 Stirring Mixer (Fukae Powtech: Model F)
S-GS-25J) was charged with 9.0 kg of high-density nickel hydroxide having a tapping density of 2.1 g / cm3 and 0.9 kg of undried cobalt hydroxide (water content: 10 wt%), and the main stirring shaft was rotated at 200 rpm. After rotating the granulating shaft at 2000 rpm, the jacket of the agitating mixer was heated, the powder temperature was raised to 100 ° C., and 48% sodium hydroxide solution was added for 2 hours.
Spray 900ml at 00ml / min. After spraying,
Hold at 110 ° C. for 30 minutes, take out after cooling. After washing with water, dehydration and drying, surface-modified nickel hydroxide was obtained. The density of the obtained surface-modified nickel hydroxide is 2.35 g / c.
m3.

【実施例2】 攪拌混合機(奈良機械製作所製:型式N
MG−10L)にタッピング密度2.2g/cm3の高密
度水酸化ニッケル 3.0Kg、未乾燥水酸化コバルト
0.45Kg(含水率12wt%)を入れ、主攪拌軸を
回転数300rpmで、造粒軸を1500rpmで回転
させながら、攪拌混合機のジャケットを加熱し、粉体温
度を110℃に上昇させ、42wt%水酸化ナトリウム
溶液を150ml/minで300ml噴霧する。噴霧
終了後、100℃で1時間保持し、冷却後、取り出す。
水洗、脱水、乾燥を経て、表面修飾水酸化ニッケルを得
た。得られた表面修飾水酸化ニッケルの密度は、2.4
5g/cm3であった。
Example 2 Stirring Mixer (Nara Machinery Works: Model N)
MG-10L), 3.0 kg of high-density nickel hydroxide having a tapping density of 2.2 g / cm3 and 0.45 kg of undried cobalt hydroxide (water content: 12 wt%) were granulated at a rotation speed of the main stirring shaft of 300 rpm. While rotating the shaft at 1500 rpm, the jacket of the stirring mixer is heated, the powder temperature is raised to 110 ° C., and 300 ml of a 42 wt% sodium hydroxide solution is sprayed at 150 ml / min. After the spraying is completed, the temperature is kept at 100 ° C. for 1 hour, and after cooling, it is taken out.
After washing with water, dehydration and drying, surface-modified nickel hydroxide was obtained. The density of the obtained surface-modified nickel hydroxide is 2.4.
It was 5 g / cm3.

【実施例3】 攪拌混合機(株式会社カワタ:型式SM
V−20L)にタッピング密度2.1g/cm3の高密度
水酸化ニッケル 5.0Kg、未乾燥水酸化コバルト
0.60Kg(含水率12wt%)を入れ、主攪拌軸を
回転数250rpmで回転させる。その後、攪拌混合機
のジャケットを加熱し、粉体温度を100℃に上昇さ
せ、48%水酸化ナトリウム溶液を 100ml/mi
nで500ml噴霧する。噴霧終了後、100℃で30
分保持し、冷却後、取り出す。水洗、脱水、乾燥を経
て、表面修飾水酸化ニッケルを得た。得られた表面修飾
水酸化ニッケルの密度は、2.30g/cm3 であっ
た。
Example 3 Stirring Mixer (Kawata Corporation: Model SM
V-20L), 5.0 kg of high-density nickel hydroxide having a tapping density of 2.1 g / cm3, and 0.60 kg of undried cobalt hydroxide (water content: 12 wt%), and the main stirring shaft is rotated at a rotation speed of 250 rpm. Then, the jacket of the stirring mixer was heated, the powder temperature was raised to 100 ° C., and a 48% sodium hydroxide solution was added at 100 ml / mi.
Spray 500 ml with n. After spraying, 30
After cooling, take out after cooling. After washing with water, dehydration and drying, surface-modified nickel hydroxide was obtained. The density of the obtained surface-modified nickel hydroxide was 2.30 g / cm3.

【比較例1】 攪拌機付反応槽に、タッピング密度2.
15g/cm3の高密度水酸化ニッケル9.0Kgと水1
0Lを入れ、30%水酸化ナトリウム溶液を加えて、3
0℃、pH9に調整した。そして、pH9を維持するよ
うに、90g/l硫酸コバルト溶液4400ml及び3
2%水酸化ナトリウム溶液を添加し、30分保持した。
その後、32%水酸化ナトリウム溶液を添加し、pH1
2に調整し、30分保持した。水洗、脱水、乾燥を経
て、水酸化コバルトコ−ティング水酸化ニッケルを得
た。次に、攪拌混合機(深江パウテック製:型式FS−
GS−25J)にこの水酸化コバルトコ−ティング水酸
化ニッケル 9.0Kgを入れ、主攪拌軸を回転数20
0rpmで、造粒軸を2000rpmで回転させた後、
攪拌混合機のジャケットを加熱し、粉体温度を100℃
に上昇させ、48%水酸化ナトリウム溶液を200ml
/minで900ml噴霧する。噴霧終了後、110℃
で30分保持し、冷却後、取り出す。水洗、脱水、乾燥
を経て、表面修飾水酸化ニッケルを得た。得られた表面
修飾水酸化ニッケルの密度は、2.35g/cm3であ
った。
Comparative Example 1 A tapping density of 2.
9.0 kg of high-density nickel hydroxide of 15 g / cm3 and water 1
0 L, add 30% sodium hydroxide solution and add
The temperature was adjusted to 0 ° C. and pH 9. Then, to maintain pH 9, 4400 ml of 90 g / l cobalt sulfate solution and 3
A 2% sodium hydroxide solution was added and held for 30 minutes.
Thereafter, a 32% sodium hydroxide solution was added, and a pH of 1
Adjusted to 2 and held for 30 minutes. After washing with water, dehydration and drying, a cobalt hydroxide coated nickel hydroxide was obtained. Next, a stirring mixer (Fukae Powtech: Model FS-
GS-25J) was charged with 9.0 kg of this cobalt hydroxide-coated nickel hydroxide, and the main stirring shaft was rotated at 20 rpm.
After rotating the granulation axis at 2000 rpm at 0 rpm,
Heat the jacket of the agitating mixer and raise the powder temperature to 100 ° C.
And add 48 ml of sodium hydroxide solution to 200 ml
Spray 900 ml at / min. After spraying, 110 ° C
For 30 minutes and take out after cooling. After washing with water, dehydration and drying, surface-modified nickel hydroxide was obtained. The density of the obtained surface-modified nickel hydroxide was 2.35 g / cm3.

【比較例2】 攪拌混合機(株式会社カワタ:型式SM
V−20L)にタッピング密度2.1g/cm3の高密度
水酸化ニッケル 5.0Kg、乾燥水酸化コバルト0.
55Kg(含水率0.3wt%)を入れ、主攪拌軸を回
転数250rpmで回転させる。その後、攪拌混合機の
ジャケットを加熱し、粉体温度を100℃に上昇させ、
48%水酸化ナトリウム溶液を 100ml/minで
500ml噴霧する。噴霧終了後、100℃で30分保
持し、冷却後、取り出す。水洗、脱水、乾燥を経て、表
面修飾水酸化ニッケルを得た。得られた表面修飾水酸化
ニッケルの密度は、2.25g/cm3 であった。
Comparative Example 2 Stirring Mixer (Kawata Corporation: Model SM
V-20L), 5.0 kg of high-density nickel hydroxide having a tapping density of 2.1 g / cm3, and dry cobalt hydroxide of 0.1 kg / cm3.
55 kg (water content: 0.3 wt%) is charged, and the main stirring shaft is rotated at a rotation speed of 250 rpm. Thereafter, the jacket of the stirring mixer was heated, and the powder temperature was increased to 100 ° C.
Spray 500 ml of 48% sodium hydroxide solution at 100 ml / min. After the spraying is completed, the temperature is kept at 100 ° C. for 30 minutes, and after cooling, it is taken out. After washing with water, dehydration and drying, surface-modified nickel hydroxide was obtained. The density of the obtained surface-modified nickel hydroxide was 2.25 g / cm3.

【0012】[0012]

【評価】正極作製:水酸化ニッケルに水及びテフロンデ
ィスパージョンを加えて混合したペーストをセルメット
に充填、乾燥、プレスし、正極を作製した。試験用セル
は上記ニッケル電極を正極とし、Cd極を負極とし、セ
パレータを介在させて、開放型セルを構成した。電解液
は6.2MKOH水溶液を用いた。また、参照極はHg
O/Hg電極を用いた。
[Evaluation] Preparation of positive electrode: A paste obtained by adding water and Teflon dispersion to nickel hydroxide was filled in Celmet, dried and pressed to prepare a positive electrode. The test cell constituted an open cell with the nickel electrode as a positive electrode, the Cd electrode as a negative electrode, and a separator interposed. As the electrolyte, a 6.2 M KOH aqueous solution was used. The reference electrode is Hg
An O / Hg electrode was used.

【充放電試験】 上記開放型セルを活性化処理後、20
℃において、0.1Cで150%充電、0.2Cで終止電
圧がHgO/Hg電極に対し、0Vになるまでの放電を
繰り返し行った。
[Charge / Discharge test] After activating the above open cell, 20
At 150C, the battery was repeatedly charged at 0.1 C with 150% charge and discharged at 0.2 C until the final voltage of the HgO / Hg electrode reached 0 V.

【活物質利用率】 ニッケル電極の水酸化ニッケル活物
質の利用率は、水酸化ニッケルの一電子反応時の理論容
量を100%とした。10回充電後の値を表1に示す。
[Active Material Utilization Rate] The utilization rate of the nickel hydroxide active material of the nickel electrode was defined as 100% of the theoretical capacity at the time of one-electron reaction of nickel hydroxide. Table 1 shows the values after 10 times of charging.

【活物質明度】 活物質の明度(L値)はミノルタ社製
カラーリーダーCR10型を使用して測定した。
[Lightness of Active Material] The lightness (L value) of the active material was measured using a color reader CR10 type manufactured by Minolta.

【0013】[0013]

【表1】 [Table 1]

【0014】 表1から解るように、本発明のように混
合撹拌機に粒状水酸化ニッケルと未乾燥水酸化コバルト
を投入し、撹拌及び加熱を行いながらアルカリ水溶液を
噴霧する事によりアルカリ加熱処理高次酸化コバルト被
覆水酸化ニッケルを得ることができる。この方法で得ら
れた活物質は、従来技術の水酸化ニッケル粒子を撹拌機
付き反応槽に入れ、アルカリ水溶液を加えて、水酸化コ
バルトを被覆し、其の後、濾過、水洗、乾燥して、水酸
化コバルト被覆水酸化ニッケルを製造する第1工程と、
此の水酸化コバルト被覆水酸化ニッケルを撹拌混合機に
入れ、撹拌しながら、アルカリ水溶液を噴霧して、アル
カリ加熱処理水酸化コバルトを製造する第2工程を経て
製造される従来法アルカリ加熱処理コバルト酸化物被覆
水酸化ニッケルより高い活物質利用率を得ることができ
る。また、水酸化コバルト原料として未乾燥のものを使
用することによりより高い利用率を得ることができる。
また、得られたアルカリ加熱処理高次酸化コバルト被覆
水酸化ニッケルはその明度が40以上という特徴があっ
た。
[0014] As can be seen from Table 1, as in the present invention, granular nickel hydroxide and undried cobalt hydroxide are charged into a mixing stirrer, and an alkali aqueous solution is sprayed while stirring and heating. Thus, nickel hydroxide coated with cobalt suboxide can be obtained. The active material obtained by this method, nickel hydroxide particles of the prior art was placed in a reaction vessel with a stirrer, an aqueous alkali solution was added, coated with cobalt hydroxide, then filtered, washed with water and dried. A first step of producing cobalt hydroxide-coated nickel hydroxide;
This cobalt hydroxide-coated nickel hydroxide is put into a stirring mixer, and an alkali aqueous solution is sprayed while stirring, to produce an alkali heat-treated cobalt hydroxide. An active material utilization rate higher than that of oxide-coated nickel hydroxide can be obtained. Further, by using an undried material as the cobalt hydroxide raw material, a higher utilization factor can be obtained.
Further, the obtained alkali heat-treated high-order cobalt oxide-coated nickel hydroxide was characterized in that its brightness was 40 or more.

【0015】[0015]

【発明の効果】本発明の混合撹拌機により一段で製造し
たアルカリ加熱処理コバルト高次酸化物被覆水酸化物を
アルカリ蓄電池用正極として使用することにより、高い
正極利用率と、サイクル特性の好いアルカリ蓄電池を製
造することが出来た。
By using the alkali-heat-treated cobalt high oxide coated hydroxide produced in one step by the mixing stirrer of the present invention as a positive electrode for an alkaline storage battery, a high positive electrode utilization rate and an alkali having favorable cycle characteristics can be obtained. A storage battery could be manufactured.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月23日(2000.6.2
3)
[Submission date] June 23, 2000 (2000.6.2)
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

フロントページの続き (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 Fターム(参考) 4G048 AA03 AB01 AB04 AC06 AD02 AE05 5H003 BA00 BA01 BA03 BA07 BB04 BC05 BD00 Continuation of the front page (72) Inventor Tokushi Iida 45-10, Shirahama-cho, Fukui-shi, Fukui Prefecture 5-10, Sunahawari F-term in Tanaka Chemical Laboratory Co., Ltd. 4G048 AA03 AB01 AB04 AC06 AD02 AE05 5H003 BA00 BA01 BA03 BA07 BB04 BC05 BD00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ蓄電池用正極活物質において、
水酸化ニッケルに水酸化コバルトを混合し、次に加熱し
ながらアルカリ水溶液を加えて、水酸化ニッケルの表面
をコバルト酸化物で被覆し、かつその明度(L値)が40
以上であることを特徴とする表面修飾水酸化ニッケルの
製造方法。
1. A positive electrode active material for an alkaline storage battery,
Cobalt hydroxide is mixed with nickel hydroxide, and then an alkaline aqueous solution is added while heating to coat the surface of the nickel hydroxide with cobalt oxide and have a lightness (L value) of 40.
A method for producing surface-modified nickel hydroxide, characterized by the above.
【請求項2】 原料として湿式中和法で作製し、乾燥処
理を施してない水酸化コバルトを使用することを特徴と
する表面修飾水酸化ニッケルの製造方法。
2. A method for producing surface-modified nickel hydroxide, comprising using cobalt hydroxide produced by a wet neutralization method and not subjected to a drying treatment as a raw material.
JP11225957A 1999-08-10 1999-08-10 Manufacture of positive electrode active material for alkaline storage battery Pending JP2001052695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11225957A JP2001052695A (en) 1999-08-10 1999-08-10 Manufacture of positive electrode active material for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11225957A JP2001052695A (en) 1999-08-10 1999-08-10 Manufacture of positive electrode active material for alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2001052695A true JP2001052695A (en) 2001-02-23

Family

ID=16837549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11225957A Pending JP2001052695A (en) 1999-08-10 1999-08-10 Manufacture of positive electrode active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2001052695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255562A (en) * 2001-02-26 2002-09-11 Tanaka Chemical Corp Method for manufacturing positive electrode active material for alkali secondary battery
KR20200133347A (en) 2018-03-20 2020-11-27 가부시끼가이샤 다나까 가가꾸 겡뀨쇼 Anode compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255562A (en) * 2001-02-26 2002-09-11 Tanaka Chemical Corp Method for manufacturing positive electrode active material for alkali secondary battery
JP4737849B2 (en) * 2001-02-26 2011-08-03 株式会社田中化学研究所 Method for producing positive electrode active material for alkaline secondary battery
KR20200133347A (en) 2018-03-20 2020-11-27 가부시끼가이샤 다나까 가가꾸 겡뀨쇼 Anode compound

Similar Documents

Publication Publication Date Title
JP5384468B2 (en) Electrode active material powder having particle size-dependent composition and method for producing the same
JP3181296B2 (en) Positive electrode active material and non-aqueous secondary battery containing the same
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
US5702762A (en) Manufacturing method of an active material suitable for non-sintered nickel electrodes for use in alkaline storage cells
JP2001143703A (en) Positive electrode active substance for use in lithium secondary battery
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
CN111547742B (en) Sodium-ion battery positive electrode material, preparation method thereof and sodium-ion battery
CN110817978A (en) Positive electrode material precursor for lithium battery and preparation method thereof
JPS6345428B2 (en)
JPH01200555A (en) Manufacture of positive pole plate for alkaline storage battery
CN100488882C (en) Preparation method for secondary crystal lithium cobalt acid of positive electrode material of lithium ion cell
JP2001052695A (en) Manufacture of positive electrode active material for alkaline storage battery
JP7403289B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7315887B2 (en) A method for producing a positive electrode active material precursor for lithium ion secondary batteries, a method for producing a positive electrode active material intermediate for lithium ion secondary batteries, and a method for producing a positive electrode active material for lithium ion secondary batteries combining them
JP2000268820A (en) Manufacture of positive electrode active material for alkaline storage battery
JP4737849B2 (en) Method for producing positive electrode active material for alkaline secondary battery
JP2005029424A (en) Manufacturing method of lithium-manganese multiple oxide granular body
CN115028208A (en) Cobaltosic oxide material, preparation method, positive electrode and lithium battery
JPS5916271A (en) Manufacture of positive active material for alkaline battery
JP2003249215A (en) Manufacturing method of positive active material for alkaline storage battery and alkaline storage battery using the positive active material obtained by the manufacturing method
JP5188089B2 (en) Nickel positive electrode active material and method for producing the same
JP3066021B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
JP3040760B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
JPH11185748A (en) Preparation of powder for battery material
JPH09320583A (en) Nickel electrode