JP7261547B2 - 積層フィルム - Google Patents

積層フィルム Download PDF

Info

Publication number
JP7261547B2
JP7261547B2 JP2018151573A JP2018151573A JP7261547B2 JP 7261547 B2 JP7261547 B2 JP 7261547B2 JP 2018151573 A JP2018151573 A JP 2018151573A JP 2018151573 A JP2018151573 A JP 2018151573A JP 7261547 B2 JP7261547 B2 JP 7261547B2
Authority
JP
Japan
Prior art keywords
thin film
film layer
gas
carbon atom
distribution curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151573A
Other languages
English (en)
Other versions
JP2019038261A (ja
Inventor
雅巳 牧寺
孝 有村
恭弘 山下
秀典 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2019038261A publication Critical patent/JP2019038261A/ja
Application granted granted Critical
Publication of JP7261547B2 publication Critical patent/JP7261547B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、画像表示装置等に用いられる積層フィルムに関する。
ガスバリア性フィルムは、飲食品、化粧品、洗剤等の物品の充填包装に適する包装用容器として好適に用いられる。近年、プラスチックフィルム等を基材とし、基材の一方の表面に酸化ケイ素、窒化ケイ素、酸窒化ケイ素、酸化アルミニウム等の物質を形成材料とする薄膜を積層してなる、ガスバリア性を有する積層フィルムが提案され、有機エレクトロルミネッセンス(EL)素子、液晶(LCD)素子等の電子デバイスへの展開が要望され、多くの検討がなされている。このような無機物の薄膜をプラスチック基材の表面上に成膜する方法としては、真空蒸着法、スパッタ法、イオンプレーティング法等の物理気相成長法(PVD)、減圧化学気相成長法、プラズマ化学気相成長法等の化学気相成長法(CVD)が知られている。例えば、特許文献1には、珪素原子、酸素原子及び炭素原子を含有する薄膜層(ガスバリアー層)を備え、炭素分布曲線が実質的に連続的に変化する屈曲性の高い積層フィルムが開示されている。
国際公開第2013/146964号
しかしながら、従来の積層フィルムは、薄膜層表面の濡れ性が十分でない場合があり、薄膜層表面上に形成される機能層等の膜厚が不均一となり、積層フィルムを表示素子等に適用した場合に、素子の特性が低下するなどの不具合が生じることがある。
従って、本発明の課題は、薄膜層表面の濡れ性に優れた積層フィルムを提供することにある。
本発明者は、上記課題を解決するために鋭意検討した結果、薄膜層を有する積層フィルムにおいて、薄膜層に所定の不連続領域を設ければ、薄膜層表面の濡れ性が改善されることを見出し、本発明を完成するに至った。すなわち、本発明には、以下のものが含まれる。
[1]基材と、該基材の少なくとも一方の面に積層された薄膜層とを有し、該薄膜層は珪素原子、酸素原子及び炭素原子を含有し、該薄膜層の膜厚方向における薄膜層の表面からの距離と、該距離に位置する点の薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線において、少なくとも3つの極値を有し、極大値の最大値と極大値の最小値との差は14at%以下であり、かつ式(1)~(3):
3at%≦a-b (1)
3at%≦b-c (2)
0.5<(a-c)/dx (3)
[式(1)~式(3)中、炭素分布曲線において、該薄膜層の膜厚方向における基材側からの互いに隣接する極値を順に、極大値A、極小値C、極大値Bとしたとき、aは極大値Aの炭素原子比率(at%)を示し、bは極大値Bの炭素原子比率(at%)を示し、cは極小値Cの炭素原子比率(at%)を示し、dxは極大値Aと極小値Cとの距離(nm)を示す]
の関係を満たす少なくとも1つの不連続領域を有する、積層フィルム。
[2]前記炭素分布曲線における最小値は、1at%より大きく、5at%以下である、[1]に記載の積層フィルム。
[3]前記炭素分布曲線において、極小値の最大値と極小値の最小値との差は14~19at%である、[1]又は[2]に記載の積層フィルム。
[4]前記炭素分布曲線において、前記薄膜層の表面から、不連続領域における極小値Cまでの距離X(nm)と、前記薄膜層の表面から、該薄膜層と前記基材との界面までの距離Y(nm)とが、式(4):
X<Y/2 (4)
の関係を満たし、ここで、不連続領域が2つ以上ある場合、前記極小値Cは2つ以上の不連続領域の中で、最も炭素原子比率の小さい極小値を示す、[1]~[3]のいずれかに記載の積層フィルム。
[5]前記式(1)は、3at%≦a-b≦10at%であり、
前記式(2)は、3at%≦b-c≦10at%であり、
前記式(3)は、0.5<(a-c)/dx<0.8である、[1]~[4]のいずれかに記載の積層フィルム。
[6]少なくとも2つの不連続領域を有し、前記炭素分布曲線における最小値が1at%より大きく、5at%以下であり、前記炭素分布曲線における最大値が23at%~33at%である、[1]~[5]のいずれかに記載の積層フィルム。
本発明の積層フィルムは、薄膜層表面の優れた濡れ性を有する。
図1は、本発明の積層フィルムの層構成の一例を示す模式図である。 図2は、図1に示す積層フィルムの薄膜層の炭素分布曲線において、不連続領域を説明するための模式図である。 図3は、図2に示す不連続領域の拡大模式図である。 図4は、本発明の積層フィルムの層構成の一例を示す模式図である。 図5は、図4に示す積層フィルムの薄膜層の炭素分布曲線において、不連続領域を説明するための模式図である。 図6は、本発明の積層フィルムの製造装置の一例を示す概略図である。 図7は、実施例1で得られた積層フィルムの薄膜層の炭素分布曲線を示すグラフである。 図8は、実施例2で得られた積層フィルムの薄膜層の炭素分布曲線を示すグラフである。 図9は、実施例3で得られた積層フィルムの薄膜層の炭素分布曲線を示すグラフである。 図10は、比較例1で得られた積層フィルムの薄膜層の炭素分布曲線を示すグラフである。
本発明の積層フィルムは、基材と、該基材の少なくとも一方の面に積層された薄膜層とを有する。薄膜層は基材の片面又は両面に積層することができる。以下に、本発明の積層フィルムの実施態様を示し、本発明を具体的に説明するが、本発明はこれらの態様に限定されるものではない。
[積層フィルム1]
図1は、1つの不連続領域を有する本発明の積層フィルム1の層構成の一例を示す模式図である。積層フィルム1は、基材2の片面に、珪素原子、酸素原子及び炭素原子を含有する薄膜層3を有し、薄膜層3は基材2上に積層された薄膜層3aと、該薄膜層3a上に不連続領域4を介して積層された薄膜層3bとから構成される。
(基材2)
基材2は、可撓性を有し高分子材料を形成材料とするフィルムである。基材2の形成材料は、積層フィルムが光透過性を有する場合、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂が挙げられる。これらの樹脂の中でも、耐熱性が高く、線膨張率が小さいという観点から、ポリエステル系樹脂又はポリオレフィン系樹脂が好ましく、ポリエステル系樹脂であるPET又はPENがより好ましい。また、これらの樹脂は、単独で又は2種以上を組合せて使用することができる。
また、積層フィルム1の光透過性が重要視されない場合には、基材2として、例えば上記樹脂にフィラーや添加剤を加えた複合材料を用いることも可能である。
基材2の厚みは、積層フィルムを製造する際の安定性等を考慮して適宜設定されるが、真空中においても基材2の搬送が容易であることから、5~500μmであることが好ましい。さらに、プラズマ化学気相成長法(プラズマCVD法)を用いて薄膜層を形成する場合には、基材2を通して放電を行うことから、基材2の厚みは50~200μmであることがより好ましく、50~100μmであることが特に好ましい。なお、基材2は、形成する薄膜層との密着力を高めるために、表面を清浄するための表面活性処理を施してもよい。このような表面活性処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理が挙げられる。
(薄膜層3)
薄膜層3において、薄膜層3a及び3bはそれぞれ珪素原子、酸素原子及び炭素原子を含有し、さらに窒素原子、アルミニウム原子等を含有することができる。好適には薄膜層3a及び3bは、珪素原子、酸素原子及び炭素原子を主成分として含有することが好ましい。主成分とは、珪素原子、酸素原子及び炭素原子の合計量が、薄膜層に含まれる原子の合計量(100at%)に対して、90at%以上であることを意味し、好ましくは100at%である。
図2は、薄膜層3の膜厚方向における薄膜層3(薄膜層3b)の表面からの距離(距離xという場合がある)と、該距離に位置する点の薄膜層3に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線において、不連続領域を説明するための模式図である。図2は、理解しやすくするために、薄膜層3a及び3bに対応する部分において、それぞれ所定の極大値及び極小値を規則的に繰り返す曲線となっているが、実際の炭素分布曲線は図7(実施例1)や図8(実施例2)に示されるような曲線となる。
図2において、薄膜層3bは薄膜層3aよりも炭素原子比率の平均値が相対的に低く、薄膜層3aと薄膜層3bとの間に不連続領域4が存在する。すなわち、該炭素分布曲線を基材2側から薄膜層3b側に向けて説明すると、基材2は炭素原子比率が極めて高いため、基材2と薄膜層3aとの界面において炭素原子比率が極度に減少する。そして、薄膜層3aにおいて、炭素原子比率が薄膜層3bよりも相対的に高い範囲で実質的に連続的に変化し、不連続領域4で炭素原子比率の平均値が減少する。さらに、薄膜層3bにおいて、炭素原子比率が薄膜層3aよりも相対的に低い範囲で実質的に連続的に変化する。なお、本明細書において、炭素分布曲線が実質的に連続的に変化するとは、炭素分布曲線における炭素原子比率が連続的に増加又は減少することを示し、不連続に変化する部分、すなわち上記不連続領域を含まないことを意味する。具体的には、前記距離(x、単位nm)と、炭素原子比率(C、at%)との関係において、式(A):
|dC/dx|≦ 0.5 (A)
で表される条件を満たすことを意味する。
図3は、図2に示す不連続領域4の拡大模式図である。不連続領域4とは、図3に示すように、前記炭素分布曲線において、式(1)~(3):
3at%≦a-b (1)
3at%≦b-c (2)
0.5<(a-c)/dx (3)
[式(1)~式(3)中、炭素分布曲線において、該薄膜層の膜厚方向における基材側からの互いに隣接する極値を順に、極大値A、極小値C、極大値Bとしたとき、aは極大値Aの炭素原子比率(at%)を示し、bは極大値Bの炭素原子比率(at%)を示し、cは極小値Cの炭素原子比率(at%)を示し、dxは極大値Aと極小値Cとの距離(nm)を示す]
の関係を満たす領域を意味する。不連続領域4は、極大値A(点Aとする)と極大値B(点Bとする)との間の領域である。不連続領域4の膜厚は好ましくは0nmを超え、50nm以下、より好ましくは5~50nm、さらに好ましくは10~45nm、特に好ましくは20~45nm、とりわけ30~45nmである。
炭素分布曲線において、薄膜層3aの領域は、基材2側から薄膜層3(薄膜層3b)表面側に向けて説明すると、炭素原子比率が急激に減少する領域の直後の極小値(極小値D、点Dとする)と点Aの間の領域である。薄膜層3aの炭素原子比率の平均値はこの領域の炭素分布曲線における炭素原子比率を平均した値である。また、薄膜層3bの領域は、点Bと、炭素分布曲線と縦軸との接点との間の領域である。
なお、薄膜層3aにおいて、基材2側から炭素原子比率が急激に減少する領域の直後の極小値がない場合、該領域の近傍であって、薄膜層3の表面からの距離を変化させた場合に炭素原子比率の値が増加している領域において、ある点(第1点)と、当該点から薄膜層3の膜厚方向における薄膜層3の表面からの距離を更に20nm変化させた点(第2点)との炭素原子比率の値の差の絶対値が5at%以下となるときの第1点を基準とし、該第1点から、前記点Aとの間の領域を薄膜層3aの領域とする。炭素分布曲線において、極小値D又は第1点が薄膜層3aと基材2との界面となる。
薄膜層3aにおける炭素原子比率の平均値(at%)は、好ましくは10~30at%、より好ましくは13~25at%、さらに好ましくは15~17at%である。薄膜層3aにおける炭素原子比率の平均値が上記範囲であると、ガスバリア性と耐屈曲性の観点から有利である。また、薄膜層3bにおける炭素原子比率の平均値は、好ましくは1at%を超え、20at%以下、より好ましくは3~15at%、さらに好ましくは5~14at%、特に好ましくは7~12at%である。薄膜層3bにおける炭素原子比率の平均値が上記範囲であると、薄膜層表面の濡れ性の観点から有利である。
積層フィルム1が透明性を有している場合、積層フィルム1の基材2の屈折率と、薄膜層3の屈折率との差が大きいと、基材2と薄膜層3との界面で反射、散乱が生じ、透明性が低下するおそれがある。この場合、薄膜層3の炭素原子比率を上記数値範囲内で調整し、基材2と薄膜層3との屈折率差を小さくすることにより、積層フィルム1の透明性を改善することが可能である。
本明細書において、「極値」とは、前記炭素分布曲線において、薄膜層3の膜厚方向における薄膜層3の表面からの距離に対する炭素原子比率の極大値又は極小値のことをいう。また、「極大値」とは、薄膜層3の表面からの距離を変化させた場合に炭素原子比率の値が増加から減少に変わる点のことをいう。さらに「極小値」とは、薄膜層3の表面からの距離を変化させた場合に炭素原子比率の値が減少から増加に変わる点のことをいう。
前記炭素分布曲線において、極値の数は少なくとも3であり、好ましくは3~40、より好ましくは10~35、さらに好ましくは15~35、特に好ましくは24~34である。また、極大値の数は好ましくは3~25、より好ましくは7~20、特に好ましくは12~17であり、極小値の数は好ましくは3~25、より好ましくは7~20、特に好ましくは12~17である。極値、極大値及び極小値の数が上記範囲であると、ガスバリア性を向上できる。また、ガスバリア性の観点から、前記炭素分布曲線における連続する3つの極値において、隣接する極値の間の距離が、いずれも50nm以下であることが好ましい。
前記式(1)は、好ましくは3at%≦a-b≦10at%であり、より好ましくは4at%≦a-b≦8at%である。前記式(2)は、好ましくは3at%≦b-c≦10at%であり、より好ましくは4at%≦a-b≦8at%である。前記式(3)は、好ましくは0.5<(a-c)/dx<0.8であり、より好ましくは0.5<(a-c)/dx<0.7である。このような範囲の不連続領域4を有すると、薄膜層表面の濡れ性及び/又はガスバリア性を向上できる場合がある。
本発明の積層フィルム1は、不連続領域4を有するため、薄膜層表面の濡れ性を向上することができる。このため、薄膜層表面上に均一な膜厚の機能層等を形成することができ、表示素子等に適用した場合に、素子の特性の低下等を有効に抑制することができる。このような濡れ性の向上は、薄膜層3が薄膜層3aのみで構成されているのではなく、積層フィルム1が不連続領域4を有することにより、炭素原子比率の平均値が薄膜層3aよりも相対的に低い薄膜層3bが薄膜層の表面側に存在することに起因すると推定される。なお、本明細書において、薄膜層表面の「濡れ性」とは水に対する親和性を意味し、濡れ性が向上するとは薄膜層表面がより親水性になるという意味である。「濡れ性」は、例えば薄膜層表面における接触角により評価することができ、接触角は、例えば実施例の方法により求めることができる。
また、本発明の積層フィルムは、不連続領域4を有するため、炭素原子比率の平均値が異なる2つの薄膜層3a及び3bを備える。このため、ガスバリア性が高く、屈曲させた後においても高いガスバリア性を維持可能である。
薄膜層3において、炭素分布曲線における最小値は、1at%より大きく、5at%以下であることが好ましい。該最小値の下限値は1.5at%、2at%、3at%、又は4at%であってもよく、該最小値の上限値は4.5at%、4at%、3at%、又は2at%であってもよい。炭素分布曲線における最小値が上記範囲であると、薄膜層表面の濡れ性を向上することができる。炭素分布曲線における最小値とは、炭素分布曲線の炭素原子比率が最も小さい値を意味し、積層フィルム1においては薄膜層3bの最も炭素原子比率の小さい極小値を意味する。
前記炭素分布曲線において、薄膜層3(薄膜層3b)の表面から、不連続領域4における極小値C(点Cとする)までの距離X(nm)と、前記薄膜層3の表面から、該薄膜層3(薄膜層3a)と基材2との界面までの距離Y(nm)とが、式(4):
X<Y/2 (4)
の関係を満たすことが好ましい。前記式(4)は基材2よりも、薄膜層3の表面に近い位置に不連続領域4の極小値Cが存在することを示す。前記式(4)は、より好ましくはY/10≦X<Y/2、さらに好ましくはY/5≦X<Y/2であり、このような位置に不連続領域4の極小値Cが存在することが、薄膜層表面の濡れ性の観点から有利である。
薄膜層3において、炭素分布曲線における極小値の最大値と極小値の最小値との差は好ましくは14~19at%である。この差が上記範囲であると、薄膜層3表面の優れた濡れ性を有する。極小値の最大値とは、炭素分布曲線における極小値のうち、炭素原子比率が最も高い値を示し、極小値の最小値とは、炭素分布曲線における極小値のうち、炭素原子比率が最も小さい値を示す。
薄膜層3において、炭素分布曲線における極大値の最大値と極大値の最小値との差は、好ましくは5at%以上、より好ましくは7at%以上、さらに好ましくは9at%以上であり、好ましくは14at%以下であり、より好ましくは12at%以下、さらに好ましくは11at%以下である。この差が上記範囲であると、ガスバリア性と耐屈曲性の観点で有利である。極大値の最大値とは、炭素分布曲線における極大値のうち、炭素原子比率が最も高い値を示し、極大値の最小値とは、炭素分布曲線における極大値のうち、炭素原子比率が最も小さい値を示す。
本発明の積層フィルムは薄膜層3表面の濡れ性に優れている。このような薄膜層3表面の水に対する接触角は、好ましくは40~73°、より好ましくは50~70°、さらに好ましくは55~66°である。接触角は、例えば実施例の方法により測定することができる。
積層フィルム1において、薄膜層3の膜厚は、5nm~3μmの範囲であることが好ましく、10nm~2μmの範囲であることがより好ましく、100nm~1μmであることが特に好ましい。薄膜層3の膜厚が上記の下限以上であることで、例えば酸素ガスや水蒸気等のガスバリア性を一層向上することができ、薄膜層3の膜厚が上記の上限以下であることで、屈曲させた場合のガスバリア性の低下を抑制する一層高い効果が得られる。薄膜層3の膜厚が定まれば、薄膜層3a及び3bの膜厚は不連続領域4の位置により必然的に定まる。
(炭素分布曲線の作成方法)
炭素分布曲線は、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定を行うことで作成することができる。XPSデプスプロファイル測定により得られる分布曲線は、縦軸が炭素原子数の比率(炭素原子比率)(単位:at%)、横軸がエッチング時間として求められる。このようなXPSデプスプロファイル測定に際しては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、エッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。ただし、薄膜層3のようなSiO(0<x<2、0<y<2)は、SiO熱酸化膜よりも速くエッチングされるため、SiO熱酸化膜のエッチング速度である0.05nm/secはエッチング条件の目安として用いる。すなわち、エッチング速度である0.05nm/secと、基材2までのエッチング時間との積は、厳密には薄膜層3の表面から基材2までの距離を表さない。そこで、薄膜層3の膜厚を別途測定して求め、求めた膜厚と、薄膜層3の表面から基材2までのエッチング時間とから、エッチング時間に「薄膜層3の膜厚方向における薄膜層3の表面からの距離」を対応させる。これにより、縦軸を炭素原子比率(単位:at%)とし、横軸を薄膜層3の膜厚方向における薄膜層3の表面からの距離(単位:nm)とする炭素分布曲線を作成することができる。
まず、薄膜層3の膜厚は、FIB(Focused Ion Beam)加工して作製した薄膜層3の切片の断面をTEM観察することにより求める。次いで、求めた膜厚と、薄膜層3の表面から基材2までのエッチング時間とから、エッチング時間に「薄膜層3の膜厚方向における薄膜層3の表面からの距離」を対応させる。XPSデプスプロファイル測定においては、SiOやSiOを形成材料とする薄膜層3から、高分子材料を形成材料とする基材2にエッチング領域が移る際に、測定される炭素原子比率が急激に増加する。そこで、本発明においては、XPSデプスプロファイルの上記「炭素原子比率が急激に増加する」領域において、傾きが最大となる時間を、XPSデプスプロファイル測定における薄膜層3と基材2との境界に対応するエッチング時間とする。XPSデプスプロファイル測定が、エッチング時間に対して離散的に行われる場合には、隣接する2点の測定時間における炭素原子比率の測定値の差が最大となる時間を抽出し、当該2点の中点を、薄膜層3と基材2との境界に対応するエッチング時間とする。また、XPSデプスプロファイル測定が、膜厚方向に対して連続的に行われる場合には、上記「炭素原子比率が急激に増加する」領域において、エッチング時間に対する炭素原子比率のグラフの時間微分値が最大となる点を、薄膜層3と基材2との境界に対応するエッチング時間とする。すなわち、薄膜層3の切片の断面をTEM観察から求めた薄膜層の膜厚を、上記XPSデプスプロファイルにおける「薄膜層3と基材2との境界に対応するエッチング時間」に対応させることで、縦軸を炭素原子比率、横軸を薄膜層3の膜厚方向における薄膜層3の表面からの距離とする、炭素分布曲線を作成することができる。
積層フィルム1においては、膜面全体において均一で且つ優れた薄膜層表面の濡れ性及びガスバリア性を有する薄膜層3を形成するという観点から、薄膜層3が膜面方向(薄膜層3の表面に平行な方向)において実質的に一様であることが好ましい。薄膜層3が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により薄膜層3の膜面の任意の2箇所の測定箇所について炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか、若しくは5at%以内の差であることをいう。
[積層フィルム5]
図4は、2つの不連続領域を有する本発明の積層フィルム5の層構成の一例を示す模式図である。積層フィルム5は、基材2の片面に、珪素原子、酸素原子及び炭素原子を含有する薄膜層6を有し、薄膜層6は基材2上に積層された薄膜層6aと、該薄膜層6a上に不連続領域7を介して積層された薄膜層6bと、該薄膜層6b上に不連続領域8を介して積層された薄膜層6cとから構成される。
(薄膜層6)
薄膜層6において、薄膜層6a~6cはそれぞれ珪素原子、酸素原子及び炭素原子を含有し、さらに窒素原子、アルミニウム原子等を含有していてもよい。好適には薄膜層6a~6cは、珪素原子、酸素原子及び炭素原子を主成分として含有することが好ましい。主成分とは、珪素原子、酸素原子及び炭素原子の合計量が、薄膜層に含まれる原子の合計量(100at%)に対して、90at%以上であることを意味し、好ましくは100at%である。
図5は、薄膜層6の膜厚方向における薄膜層6(薄膜層6c)の表面からの距離(距離xという場合がある)と、該距離に位置する点の薄膜層6に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線において、不連続領域7及び8を説明するための模式図である。図5は、理解しやすくするために、薄膜層6a~6cにそれぞれ対応する部分において、所定の極大値及び極小値を規則的に繰り返す曲線となっているが、実際の炭素分布曲線は図9(実施例3)に示されるような曲線となる。薄膜層6bは薄膜層6aよりも炭素原子比率の平均値が相対的に低く、薄膜層6aと薄膜層6bとの間に不連続領域7が存在する。また、薄膜層6cは薄膜層6bよりも炭素原子比率の平均値が相対的に低く、薄膜層6bと薄膜層6cとの間に不連続領域8が存在する。すなわち、該炭素分布曲線を基材2側から薄膜層6c側に向けて説明すると、基材2は炭素原子比率が極めて高いため、基材2と薄膜層6aとの界面において炭素原子比率が極度に減少する。次いで、薄膜層6aにおいて、炭素原子比率が薄膜層6bよりも相対的に高い範囲で実質的に連続的に変化し、不連続領域7で炭素原子比率の平均値が減少する。次いで、薄膜層6bにおいて、炭素原子比率が薄膜層6aよりも相対的に低い範囲で実質的に連続的に変化し、不連続領域8で炭素原子比率の平均値が減少する。次いで、薄膜層6cにおいて、炭素原子比率が薄膜層6bよりも相対的に低い範囲で実質的に連続的に変化する。不連続領域7の領域は、不連続領域7における極大値A(点Aとする)と極大値B(点Bとする)との間の領域である。また、不連続領域8の領域は、不連続領域8における極大値A(点Aとする)と極大値B(点Bとする)との間の領域である。なお、不連続領域7及び8の膜厚は、それぞれ好ましくは0を超え、50nm以下、より好ましくは5~50nm、さらに好ましくは10~45nm、特に好ましくは20~45nm、とりわけ好ましくは30~45nmである。
図5に示す炭素分布曲線において、薄膜層6aの領域は、基材2側から薄膜層6表面側に向けて説明すると、炭素原子比率が急激に減少する領域の直後の極小値(極小値D、点Dとする)と不連続領域7における点Aとの間の領域である。薄膜層6bの領域は、不連続領域7における点Bと不連続領域8における点Aとの間の領域である。薄膜層6cの領域は、不連続領域8における点Bと、炭素分布曲線と縦軸との接点、との間の領域である。なお、該直後の極小値が存在しない場合における、薄膜層6aの領域の規定方法は、上記薄膜層3aに示した規定方法と同様である。
薄膜層6aにおける炭素原子比率の平均値(at%)は、好ましくは15~30at%、より好ましくは17~27at%、さらに好ましくは18~25at%である。薄膜層6aにおける炭素原子比率が上記範囲であると、基材と薄膜層との密着性の観点から有利である。また、薄膜層6bにおける炭素原子比率の平均値(at%)は、好ましくは10~25at%、より好ましくは13~20at%、さらに好ましくは15~17at%である。薄膜層6bにおける炭素原子比率が上記範囲であると、ガスバリア性と耐屈曲性の観点から有利である。また、薄膜層6cにおける炭素原子比率の平均値(at%)は、好ましくは1at%を超え20at%以下、より好ましくは3~15at%、さらに好ましくは5~14at%、特に好ましくは7~12at%である。薄膜層6cにおける炭素原子比率の平均値が上記範囲であると、薄膜層表面の濡れ性の観点から有利である。
積層フィルム5が透明性を有している場合、積層フィルム5の基材2の屈折率と、薄膜層6の屈折率との差が大きいと、基材2と薄膜層6との界面で反射、散乱が生じ、透明性が低下するおそれがある。この場合、薄膜層6a~6cの炭素原子比率を上記数値範囲内で調整し、基材2と薄膜層6との屈折率差を小さくすることにより、積層フィルム5の透明性を改善することが可能である。
図5に示す炭素分布曲線において、極値の数は少なくとも6つであり、好ましくは6~40、より好ましくは15~35、さらに好ましくは24~32である。また、極大値の数は好ましくは3~20、より好ましくは7~18、さらに好ましくは12~16であり、極小値の数は好ましくは3~20、より好ましくは7~18、さらに好ましくは12~16である。極値、極大値及び極小値の数が上記範囲であると、ガスバリア性を向上できる。また、ガスバリア性の観点から、前記炭素分布曲線における連続する3つの極値において、隣接する極値の間の距離が、いずれも50nm以下であることが好ましい。
本発明の積層フィルム5は、不連続領域7及び8を有するため、薄膜層6(薄膜層6c)表面の濡れ性に優れるとともに、薄膜層6(薄膜層6a)と基材2との密着性にも優れる。このため、薄膜層表面上に均一な膜厚の機能層等を形成することができ、表示素子等に適用した場合に、素子の特性の低下等を有効に抑制することができるとともに、高温高湿環境下において、クラック等の発生を有効に抑制することもできる。これは、薄膜層6bを基準とすると、不連続領域8を介して、炭素原子比率の平均値が相対的に低い薄膜層6cを薄膜層の表面側に有するため、薄膜層表面の濡れ性が向上されるためであり、また、不連続領域7を介して、炭素原子比率の平均値が相対的に高い薄膜層6aを有するため、薄膜層6aと基材2との密着性が向上されるためであると推定される。さらに、炭素原子比率の平均値が異なる3つの薄膜層6a~6cを備えるため、ガスバリア性が高く、屈曲させた後においても高いガスバリア性を維持することもできる。
薄膜層6において、炭素分布曲線における最大値は、好ましくは23~33at%である。該最大値の下限値は24at%、25at%、又は26at%であってもよく、該最大値の上限値は33at%、31at%、又は29at%であってもよい。炭素分布曲線における最大値が上記範囲であると、基材2と薄膜層6(薄膜層6a)との密着性を向上できる。炭素分布曲線における最大値とは、炭素分布曲線の炭素原子比率が最も大きい値を意味し、積層フィルム5においては薄膜層6aの最も炭素原子比率の高い極大値を意味する。
図5の炭素分布曲線において、薄膜層6(薄膜層6c)の表面から、不連続領域8における極小値C(点Cとする)までの距離X(nm)と、前記薄膜層6の表面から、該薄膜層6(薄膜層6a)と基材2との界面までの距離Y(nm)とが、下記式(4):
X<Y/2 (4)
の関係を満たすことが好ましい。前記式(4)は基材2よりも、薄膜層6の表面に近い位置に不連続領域8の極小値Cが存在することを示す。前記式(4)は、より好ましくはY/10≦X<Y/2、さらに好ましくはY/5≦X<Y/3であり、このような位置に不連続領域8の極小値Cが存在することが、薄膜層表面の濡れ性の観点から有利である。なお、前記式(4)における極小値Cを不連続領域8の極小値Cとしているのは、前記式(4)における極小値Cは、不連続領域が2つ以上ある場合、不連続領域の中で、炭素原子比率が最も小さい極小値を示すからである。
図5の炭素分布曲線において、不連続領域7における極大値Aから、薄膜層6(薄膜層6a)と基材2との界面までの距離Q(nm)と、薄膜層6(薄膜層6c)の表面から、該薄膜層6(薄膜層6a)と基材2との界面までの距離Y(nm)とが、
式(5):Q<Y/2 (5)
の関係を満たすことが好ましい。前記式(5)は薄膜層6の表面よりも、基材2に近い位置に不連続領域7の極大値Aが存在することを示す。前記式(5)は、より好ましくはY/10≦Q<Y/2、さらに好ましくはY/5≦Q<Y/3であり、このような位置に不連続領域7の極大値Aが存在することが、薄膜層6と基材2との密着性の観点から有利である。なお、前記式(5)における極大値Aを不連続領域7の極大値Aとしているのは、前記式(5)における極大値Aは、不連続領域が2つ以上ある場合、不連続領域の中で、炭素原子比率が最も大きい極大値を示すからである。
積層フィルム5においては、薄膜層6cの領域に炭素分布曲線における最小値を有する。薄膜層6において、炭素分布曲線における最小値の範囲、極小値の最大値と極小値の最小値の差の範囲、及び極大値の最大値と極大値の最小値の差の範囲、薄膜層6の膜厚の範囲は薄膜層3と同様である。
[他の態様]
1つの不連続領域を有する積層フィルム1、及び2つの不連続領域を有する積層フィルム5を例に挙げて、本発明の積層フィルムを説明したが、本発明はこれらの態様に限定されない。
不連続領域の数や位置は、目的とする積層フィルムに応じて適宜選択できるが、好ましくは不連続領域の数は少なくとも1つであり、より好ましくは1~5、さらに好ましくは1~3、特に好ましくは1又は2である。積層フィルム1を例に挙げて説明した通り、少なくとも1つの不連続領域を有すれば、薄膜層表面の濡れ性が向上される。また、積層フィルム5を例に挙げて説明した通り、少なくとも2つの不連続領域を所定位置に有すれば、薄膜層表面の濡れ性及び基材と薄膜層との密着性の両方を向上でき、両特性に優れた積層フィルムが形成される。また、図2及び図5は膜組成に分布があることを模式的に示したものであるため、不連続領域が膜厚方向に対して垂直な面上に位置する図となっているが、不連続領域は曲面状であってもよい。
薄膜層は、基材上に1層又は2層以上備えていてもよい。薄膜層を2層以上備える場合、複数の薄膜層における炭素分布曲線は同一又は異なっていてもよい。また、本発明における不連続領域を有する薄膜層と、不連続領域を有さない薄膜層とを備える積層フィルムであってもよい。本発明の積層フィルムが薄膜層を2層以上有する場合、薄膜層の膜厚の合計は、100nmより大きく、3μm以下であることが好ましい。薄膜層の1層あたりの膜厚は50nmより大きいことが好ましい。
本発明の積層フィルムは、基材及び薄膜層を備えるものであるが、必要に応じて、さらにプライマーコート層、ヒートシール性樹脂層、接着剤層等を備えていてもよい。このようなプライマーコート層は、積層フィルムとの接着性を向上させることが可能な公知のプライマーコート剤を用いて形成することができる。また、このようなヒートシール性樹脂層は、適宜公知のヒートシール性樹脂を用いて形成することができる。さらに、このような接着剤層は、適宜公知の接着剤を用いて形成することができ、このような接着剤層により複数の積層フィルム同士を接着させてもよい。
[積層フィルムの製造方法]
本発明の積層フィルムの製造方法を以下に説明する。
図6は、本発明の積層フィルムの製造装置の一例を示す概略図であり、プラズマ化学気相成長法(プラズマCVD法)により薄膜層を形成する装置である。なお、図6においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
図6に示す製造装置10は、送り出しロール11、巻き取りロール12、搬送ロール13~16、第1成膜ロール17、第2成膜ロール18、ガス供給管19、プラズマ発生用電源20、電極21、電極22、第1成膜ロール17の内部に設置された磁場形成装置23、及び第2成膜ロール18の内部に設置された磁場形成装置24を備えている。
製造装置10の構成要素のうち、第1成膜ロール17、第2成膜ロール18、ガス供給管19、磁場形成装置23、及び磁場形成装置24は、積層フィルムを製造するときに、図示略の真空チャンバー内に配置される。この真空チャンバーは、図示略の真空ポンプに接続される。真空チャンバーの内部の圧力は、真空ポンプの動作により調整される。この装置を用いると、プラズマ発生用電源20を制御することにより、第1成膜ロール17と第2成膜ロール18との間の空間に、ガス供給管19から供給される成膜ガスの放電プラズマを発生させることができ、発生する放電プラズマを用いて連続的な成膜プロセスでプラズマCVD成膜を行うことができる。
送り出しロール11には、成膜前の基材2が巻き取られた状態で設置され、基材2を長尺方向に巻き出しながら送り出しする。また、基材2の端部側には巻取りロール12が設けられ、成膜が行われた後の基材2を牽引しながら巻き取り、ロール状に収容する。第1成膜ロール17及び第2成膜ロール18は、平行に延在して対向配置されている。両ロールは導電性材料で形成され、それぞれ回転しながら基材2を搬送する。第1成膜ロール17及び第2成膜ロール18は、直径が同じものを用いることが好ましく、例えば、5cm以上100cm以下のものを用いることが好ましい。
また、第1成膜ロール17と第2成膜ロール18とは、相互に絶縁されていると共に、共通するプラズマ発生用電源20に接続されている。プラズマ発生用電源20から交流電圧を印加すると、第1成膜ロール17と第2成膜ロール18との間の空間SPに電場が形成される。プラズマ発生用電源20は、印加電力を100W~10kWとすることができ、且つ交流の周波数を50Hz~500kHzとすることが可能なものであると好ましい。
磁場形成装置23及び磁場形成装置24は、空間SPに磁場を形成する部材であり、第1成膜ロール17及び第2成膜ロール18の内部に格納されている。磁場形成装置23及び磁場形成装置24は、第1成膜ロール17及び第2成膜ロール18と共には回転しないように(すなわち、真空チャンバーに対する相対的な姿勢が変化しないように)固定されている。
磁場形成装置23及び磁場形成装置24は、第1成膜ロール17及び第2成膜ロール18の延在方向と同方向に延在する中心磁石23a,24aと、中心磁石23a,24aの周囲を囲みながら、第1成膜ロール17及び第2成膜ロール18の延在方向と同方向に延在して配置される円環状の外部磁石23b,24bとを有している。磁場形成装置23では、中心磁石23aと外部磁石23bとを結ぶ磁力線(磁界)が、無終端のトンネルを形成している。磁場形成装置24においても同様に、中心磁石24aと外部磁石24bとを結ぶ磁力線が、無終端のトンネルを形成している。この磁力線と、第1成膜ロール17と第2成膜ロール18との間に形成される電界とが交叉するマグネトロン放電によって、成膜ガスの放電プラズマが生成される。すなわち、詳しくは後述するように、空間SPは、プラズマCVD成膜を行う成膜空間として用いられ、基材2において第1成膜ロール17、第2成膜ロール18に接しない面(成膜面)には、成膜ガスがプラズマ状態を経由して堆積した薄膜層が形成される。空間SPの近傍には、空間SPにプラズマCVDの原料ガスなどの成膜ガスGを供給するガス供給管19が設けられている。ガス供給管19は、第1成膜ロール17及び第2成膜ロール18の延在方向と同一方向に延在する管状の形状を有しており、複数箇所に設けられた開口部から空間SPに成膜ガスGを供給する。図では、ガス供給管19から空間SPに向けて成膜ガスGを供給する様子を矢印で示している。
原料ガスは、形成する薄膜層の材質に応じて適宜選択して使用することができる。原料ガスとしては、例えば珪素を含有する有機ケイ素化合物を用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性や得られる薄膜層の濡れ性やガスバリア性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、単独で又は二種以上を組合せて使用することができる。さらに、原料ガスとして、上述の有機ケイ素化合物の他にモノシランを含有させ、形成する薄膜層の珪素源として使用することとしてもよい。
成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独で又は2種以上を組合せて使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組合せて使用することができる。
成膜ガスには、原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを含むこととしてもよい。さらに、成膜ガスとしては、放電プラズマを発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、空間SPの圧力が0.1~50Paであることが好ましい。気相反応を抑制する目的により、プラズマCVD法を低圧プラズマCVD法とする場合、通常0.1~10Paである。また、プラズマ発生装置の電極ドラムの電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.1~10kWであることが好ましい。
基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.1~100m/minであることが好ましく、0.5~20m/minであることがより好ましい。ライン速度が下限未満では、基材2に熱に起因する皺の発生しやすくなる傾向にあり、他方、ライン速度が上限を超えると、形成される薄膜層の膜厚が薄くなる傾向にある。
以上のような製造装置10においては、以下のようにして基材2に対し成膜が行われる。まず、成膜前に、基材2から発生するアウトガスが十分に少なくなるように事前の処理を行うとよい。基材2からのアウトガスの発生量は、基材2を製造装置に装着し、装置内(チャンバー内)を減圧したときの圧力を用いて判断することができる。例えば、製造装置のチャンバー内の圧力が、1×10-3Pa以下であれば、基材2からのアウトガスの発生量が十分に少なくなっているものと判断することができる。基材2からのアウトガスの発生量を少なくする方法としては、真空乾燥、加熱乾燥、及びこれらの組合せによる乾燥、ならびに自然乾燥による乾燥方法が挙げられる。いずれの乾燥方法であっても、ロール状に巻き取った基材2の内部の乾燥を促進するために、乾燥中にロールの巻き替え(巻き出し及び巻き取り)を繰り返し行い、基材2全体を乾燥環境下に曝すことが好ましい。
真空乾燥は、耐圧性の真空容器に基材2を入れ、真空ポンプのような減圧機を用いて真空容器内を排気して真空にすることにより行う。真空乾燥時の真空容器内の圧力は、1,000Pa以下が好ましく、100Pa以下がより好ましく、10Pa以下がさらに好ましい。真空容器内の排気は、減圧機を連続的に運転することで連続的に行うこととしてもよく、内圧が一定以上にならないように管理しながら、減圧機を断続的に運転することで断続的に行うことしてもよい。乾燥時間は、8時間以上であることが好ましく、1週間以上であることがより好ましく、1ヶ月以上であることがさらに好ましい。
加熱乾燥は、基材2を50℃以上の環境下に曝すことにより行う。加熱温度は、50~200℃が好ましく、70~150℃がさらに好ましい。200℃を超える温度では、基材2が変形するおそれがある。また、基材2からオリゴマー成分が溶出し表面に析出することにより、欠陥が生じるおそれがある。乾燥時間は、加熱温度や用いる加熱手段により適宜選択することができる。加熱手段としては、常圧下で基材2を50~200℃に加熱できるものであれば、特に限られない。通常知られる装置の中では、赤外線加熱装置、マイクロ波加熱装置や、加熱ドラムが好ましく用いられる。
赤外線加熱装置とは、赤外線発生手段から赤外線を放射することにより対象物を加熱する装置である。マイクロ波加熱装置とは、マイクロ波発生手段からマイクロ波を照射することにより対象物を加熱する装置である。加熱ドラムとは、ドラム表面を加熱し、対象物をドラム表面に接触させることにより、接触部分から熱伝導により加熱する装置である。
自然乾燥は、基材2を低湿度の雰囲気中に配置し、乾燥ガス(乾燥空気、乾燥窒素)を通風させることで低湿度の雰囲気を維持することにより行う。自然乾燥を行う際には、基材2を配置する低湿度環境にシリカゲルなどの乾燥剤を一緒に配置することが好ましい。
乾燥時間は、8時間以上であることが好ましく、1週間以上であることがより好ましく、1ヶ月以上であることがさらに好ましい。これらの乾燥は、基材2を製造装置に装着する前に別途行ってもよく、基材2を製造装置に装着した後に、製造装置内で行ってもよい。
基材2を製造装置に装着した後に乾燥させる方法としては、送り出しロールから基材2を送り出し搬送しながら、チャンバー内を減圧することが挙げられる。また、通過させるロールがヒーターを備えるものとし、ロールを加熱することで該ロールを上述の加熱ドラムとして用いて加熱することとしてもよい。
基材2からのアウトガスを少なくする別の方法として、予め基材2の表面に無機膜を成膜しておくことが挙げられる。無機膜の成膜方法としては、真空蒸着(加熱蒸着)、電子ビーム(Electron Beam、EB)蒸着、スパッタ、イオンプレーティングなどの物理的成膜方法が挙げられる。また、熱CVD、プラズマCVD、大気圧CVDなどの化学的堆積法により無機膜を成膜することとしてもよい。さらに、表面に無機膜を成膜した基材2を、上述の乾燥方法による乾燥処理を施すことにより、さらにアウトガスの影響を少なくしてもよい。
次いで、不図示の真空チャンバー内を減圧環境とし、第1成膜ロール17、第2成膜ロール18に印加して空間SPに電界を生じさせる。この際、磁場形成装置23及び磁場形成装置24では上述した無終端のトンネル状の磁場を形成しているため、成膜ガスを導入することにより、該磁場と空間SPに放出される電子とによって、該トンネルに沿ったドーナツ状の成膜ガスの放電プラズマが形成される。この放電プラズマは、数Pa近傍の低圧力で発生可能であるため、真空チャンバー内の温度を室温近傍とすることが可能になる。
一方、磁場形成装置23及び磁場形成装置24が形成する磁場に高密度で捉えられている電子の温度は高いので、当該電子と成膜ガスとの衝突により生じる放電プラズマが生じる。すなわち、空間SPに形成される磁場と電場により電子が空間SPに閉じ込められることにより、空間SPに高密度の放電プラズマが形成される。より詳しくは、無終端のトンネル状の磁場と重なる空間においては、高密度の(高強度の)放電プラズマが形成され、無終端のトンネル状の磁場とは重ならない空間においては低密度の(低強度の)放電プラズマが形成される。これら放電プラズマの強度は、連続的に変化するものである。放電プラズマが生じると、ラジカルやイオンを多く生成してプラズマ反応が進行し、成膜ガスに含まれる原料ガスと反応ガスとの反応が生じる。例えば、原料ガスである有機ケイ素化合物と、反応ガスである酸素とが反応し、有機ケイ素化合物の酸化反応が生じる。ここで、高強度の放電プラズマが形成されている空間では、酸化反応に与えられるエネルギーが多いため反応が進行しやすく、主として有機ケイ素化合物の完全酸化反応を生じさせやすい。一方、低強度の放電プラズマが形成されている空間では、酸化反応に与えられるエネルギーが少ないため反応が進行しにくく、主として有機ケイ素化合物の不完全酸化反応を生じさせやすい。なお、本明細書において「有機ケイ素化合物の完全酸化反応」とは、有機ケイ素化合物と酸素との反応が進行し、有機ケイ素化合物が二酸化ケイ素(SiO)と水と二酸化炭素にまで酸化分解されることを指す。
例えば、成膜ガスが、原料ガスであるヘキサメチルジシロキサン(HMDSO:(CHSiO)と、反応ガスである酸素(O)とを含有する場合、「完全酸化反応」であれば下記反応式(6)に記載のような反応が起こり、二酸化ケイ素が製造される。
(CHSiO+12O→6CO+9HO+2SiO (6)
また、本明細書において「有機ケイ素化合物の不完全酸化反応」とは、有機ケイ素化合物が完全酸化反応をせず、SiOではなく構造中に炭素を含むSiO(0<x<2,0<y<2)が生じる反応となることを指す。
上述のように製造装置10では、放電プラズマが第1成膜ロール17、第2成膜ロール18の表面にドーナツ状に形成されるため、第1成膜ロール17、第2成膜ロール18の表面を搬送される基材2は、高強度の放電プラズマが形成されている空間と、低強度の放電プラズマが形成されている空間とを交互に通過することとなる。そのため、第1成膜ロール17、第2成膜ロール18の表面を通過する基材2の表面には、完全酸化反応によって生じるSiOを多く含む部分と不完全酸化反応によって生じるSiOを多く含む部分とが交互に生じる。すなわち、完全酸化反応が進行しやすく、炭素原子含有量が少ない部分と、不完全酸化反応が進行しやすく、炭素原子含有量が多い部分とを交互に有する薄膜層が形成される。このため、薄膜層における炭素分布曲線は極値(極大値及び極小値)を有することとなる。
炭素分布曲線において、極小値、極大値、最小値、及び最大値(まとめてX値という場合がある)は、供給される反応ガスと原料ガスとの比率を変えることにより、調整することができる。例えば、原料ガスに対する反応ガスの比率を増加させると、炭素原子比率の平均値が減少するため、X値を減らすことができる。これは、相対的に原料ガスの量が減少するため、原料ガスが完全酸化を起こしやすい反応条件に近づくためである。一方、原料ガスに対する反応ガスの比率を減少させると、炭素原子比率の平均値が増加するため、X値を増やすことができる。これは、相対的に原料ガスの量が増えるため、原料ガスが不完全酸化を起こしやすい反応条件となるためである。また、原料ガスに対する反応ガスの比率は変えずに、成膜ガスの全体量を増加させると、炭素原子比率の平均値が増加するため、X値を増やすことができる。これは、成膜ガスの全体量が多いと、原料ガスが放電プラズマから得るエネルギーが相対的に低減するため、原料ガスが不完全酸化を起こしやすい反応条件となるためである。ここで、原料ガスに対する反応ガスの比率を増やす方法としては、原料ガスの量のみを減らす方法、又は原料ガスの量を減らし、かつ反応ガスの量を増やす方法、若しくは反応ガスの量のみを増やす方法が挙げられるが、生産性の観点から、反応ガスの量のみを増やす方法が好ましい。このように、反応ガスと原料ガスの比率を適宜調整し、炭素分布曲線における極小値、極大値、最大値、最小値を所定範囲に調整することができる。
積層フィルム1(図1及び図2)の製造方法の一例を説明する。
積層フィルム1は、図6に示す装置を用いて、好ましくは上述のプラズマCVD法により製造することができる。まず、プラズマCVD法により炭素原子比率の平均値が薄膜層3bよりも相対的に高い薄膜層3aを基材2上に形成する。薄膜層3aにおいては、炭素原子比率の平均値が相対的に高いため、一対の成膜ロール19及び20の空間SPに供給される原料ガスと反応ガスとの比率は、原料ガスと反応ガスとを完全に反応させる(原料ガスを完全酸化させる)ために理論上必要となる反応ガス比率よりも過剰にしないことが好ましい。これは、原料ガスが完全酸化されると、SiO層を生成し、SiO層が形成されない、すなわち、原料ガス中の酸化されなかった炭素原子が薄膜層中に取り込まれなくなるためである。このため、一対の成膜ロール19及び20の空間SPに供給される反応ガスの体積流量Vと原料ガスの体積流量Vとの流量比(V/V)は、原料ガスに含まれる有機シラン化合物を完全酸化させるために必要な、反応ガスの体積流量V02と原料ガスの体積流量V01との最小流量比(V02/V01)をPとしたとき、好ましくは0.30~0.95P、より好ましくは0.40~0.90P、さらに好ましくは0.50~0.85Pである。流量比V/Vが上記範囲であると、ガスバリア性、及び耐屈曲性を向上できる。
次いで、プラズマCVD法により炭素原子比率が薄膜層3aよりも相対的に低い薄膜層3bを不連続領域4を介して薄膜層3a上に形成する。薄膜層3bは、薄膜層3a形成時よりも原料ガスに対する反応ガスの比率を増加させることにより形成される。この際に、薄膜層3aと薄膜層3bとの間で炭素原子比率の平均値が低下し、不連続領域4が形成される。ここで、実際のCVDチャンバー内の反応では、ガス供給管から成膜領域へ成膜ガスが供給されて成膜されるため、原料ガスを完全酸化させるために理論上必要となる反応ガス比率(原料ガスがヘキサメチルジシロキサン及び反応ガスが酸素の場合、前者:後者=1モル:12モル)であっても、現実には完全酸化反応を進行させることができず、反応ガスの含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる。そのため、炭素原子比率が薄膜層3aよりも相対的に低く、炭素分布曲線における最小値が小さい(1at%より大きく、5at%以下である)ことが好ましい薄膜層3bの形成において、反応ガスの供給量は、化学量論比よりも大きいことが好ましい。
薄膜層3bに形成において、一対の成膜ロール19及び20の空間に供給される反応ガスの体積流量Vと原料ガスの体積流量Vとの流量比(V/V)は、原料ガスに含まれる有機シラン化合物を完全酸化させるために必要な、反応ガスの体積流量V02と原料ガスの体積流量V01との最小流量比(V02/V01)をPとしたとき、好ましくは1.0~3.0P、より好ましくは1.1~2.5P、さらに好ましくは1.2~2.0Pである。流量比V/Vが上記範囲であると、薄膜層表面の濡れ性を向上できる。
上述の通り、不連続領域は原料ガスに対する反応ガス比率を所定割合増加させることにより形成することができる。原料ガスの供給量を一定にした場合、薄膜層3b形成時の反応ガスの体積流量は、薄膜層3a形成時の反応ガスの体積流量の1.2~4倍が好ましく、1.3~3倍がより好ましく、1.5~2倍がさらに好ましい。上記の倍率範囲であると、薄膜層表面の濡れ性を向上できる。
薄膜層3a及び3bの形成において、原料ガスの流量は、0℃1気圧基準において、好ましくは10~1,000sccm、より好ましくは20~500sccm、さらに好ましくは30~100sccmである。また、反応ガス、好ましくは酸素ガスの流量は、原料ガスの種類及び原料ガスの流量に応じて、V/V又はV/Vを考慮しつつ選択することができ、0℃1気圧基準において、好ましくは50~2,000sccm、より好ましくは150~1,500sccm、さらに好ましくは300~1,000sccmである。
薄膜層3a及び3bの形成において、原料ガスの供給量や酸素等の反応ガスの供給量以外のパラメータ、例えば真空チャンバー内の真空度、プラズマ発生用電源からの印加電力、プラズマ発生用電源の周波数、フィルムの搬送速度などは同一又は異なっていてもよい。不連続領域の位置は、反応ガスの比率を増加させるタイミングを制御することにより調整することができる。例えば、反応ガス比率のみを変更することにより不連続領域4を形成させて積層フィルム1を製造する場合、薄膜層3b形成時間よりも薄膜層3a形成時間を長くすることにより式(4)(X<Y/2)の関係を満たす積層フィルム1を製造することができる。
積層フィルム5(図4及び5)の製造方法の一例を説明する。
積層フィルム5は、図6に示す装置を用いて、上述のプラズマCVD法により製造することができる。まず、薄膜層6bよりも炭素原子比率が相対的に高い薄膜層6aを基材2上に形成する。薄膜層6aの形成では、炭素原子比率が相対的に高く、炭素分布曲線における最大値が大きい(23~33at%である)ことが好ましいため、原料ガスの不完全酸化反応が有利に進行する反応ガス比率を用いる。そのため、薄膜層6aの形成時において、一対の成膜ロール19及び20の空間に供給される反応ガスの体積流量Vと原料ガスの体積流量Vとの流量比(V/V)は、原料ガスに含まれる有機シラン化合物を完全酸化させるために必要な、反応ガスの体積流量V02と原料ガスの体積流量V01との最小流量比(V02/V01)をPとしたとき、好ましくは0.20~0.70P、より好ましくは0.30~0.60Pである。流量比V/Vが上記範囲であると、基材2と薄膜層6aとの密着性を向上できる。
次いで、プラズマCVD法により薄膜層6aよりも炭素原子比率が相対的に低い薄膜層6bを不連続領域7を介して薄膜層6a上に形成する。薄膜層6bは、薄膜層6a形成時よりも原料ガスに対する反応ガスの比率を所定割合増加させることにより形成される。この際に、薄膜層6aと薄膜層6bとの間で炭素原子比率の平均値が低下し、不連続領域7が形成される。薄膜層6bの形成時において、一対の成膜ロール19及び20の空間に供給される反応ガスの体積流量Vと原料ガスの体積流量Vとの流量比(V/V)は、原料ガスに含まれる有機シラン化合物を完全酸化させるために必要な、反応ガスの体積流量V02と原料ガスの体積流量V01との最小流量比(V02/V01)をPとしたとき、好ましくは0.30~0.95P、より好ましくは0.40~0.90P、さらに好ましくは0.50~0.85Pである。流量比V/Vが上記範囲であると、ガスバリア性及び耐屈曲性を向上できる。
次いで、プラズマCVD法により薄膜層6bよりも炭素原子比率が相対的に低い薄膜層6cを不連続領域8を介して薄膜層6b上に形成する。薄膜層6cは、薄膜層6b形成時よりも原料ガスに対する反応ガスの比率を所定割合増加させることにより形成される。この際に、薄膜層6bと薄膜層6cとの間で炭素原子比率の平均値が低下し、不連続領域8が形成される。薄膜層6cの形成時において、一対の成膜ロール19及び20の空間SPに供給される反応ガスの体積流量V10と原料ガスの体積流量Vとの流量比(V10/V)は、原料ガスに含まれる有機シラン化合物を完全酸化させるために必要な、反応ガスの体積流量V02と原料ガスの体積流量V01との最小流量比(V02/V01)をPとしたとき、好ましくは1.0~3.0P、より好ましくは1.1~2.5P、さらに好ましくは1.2~2.0Pである。流量比V10/Vが上記範囲であると、薄膜層表面の濡れ性を向上できる。
上述の通り、不連続領域は原料ガスに対する反応ガス比率を所定割合増加させることにより形成することができる。原料ガスの供給量を一定にした場合、薄膜層6b形成時の反応ガスの体積流量は、薄膜層6a形成時の反応ガスの体積流量の1.2~4倍が好ましく、1.3~3倍がより好ましく、1.5~2倍がさらに好ましい。この体積流量の倍率が上記範囲であると、薄膜層表面の濡れ性を向上できる。また、薄膜層6c形成時の反応ガスの体積流量は、薄膜層6b形成時の反応ガスの体積流量の1.2~4倍が好ましく、1.3~3倍がより好ましく、1.5~2倍がさらに好ましい。この体積流量の倍率が上記範囲であると、薄膜層表面の濡れ性を向上できる。
薄膜層6a~6cの形成において、原料ガスの流量は、0℃1気圧基準において、好ましくは10~1,000sccm、より好ましくは20~500sccm、さらに好ましくは30~100sccmである。また、反応ガス、好ましくは酸素ガスの流量は、原料ガスの種類及び原料ガスの流量に応じて、V/V、V/V又はV10/Vを考慮しつつ選択することができ、0℃1気圧基準において、好ましくは50~2,000sccm、より好ましくは150~1,500sccm、さらに好ましくは300~1,000sccmである。
薄膜層6a~6cの形成において、原料ガスの供給量や酸素等の反応ガスの供給量以外のパラメータ、例えば真空チャンバー内の真空度、プラズマ発生用電源からの印加電力、プラズマ発生用電源の周波数、フィルムの搬送速度などは同一又は異なっていてもよい。不連続領域7及び8の位置は、反応ガスの比率を増加させるタイミングを制御することにより調整することができる。例えば、反応ガス比率のみを変更することにより不連続領域7を形成させて積層フィルム5を製造する場合、薄膜層6a形成時間を薄膜層6形成時間の1/2より短くすることにより前記式(4)(X<Y/2)の関係を満たすことができ、薄膜層6c形成時間を薄膜層6形成時間の1/2より短くすることにより前記式(5)(Q<Y/2)の関係を満たすことができる。
上記の積層フィルム1及び積層フィルム5の一実施態様において、積層フィルム1では反応ガス比率を1回増加させることにより、不連続領域4を形成し、また積層フィルム5では反応ガス比率を2回増加させることにより、不連続領域7及び8を形成したが、反応ガス比率を3回以上増加させることにより、不連続領域を3個以上形成することもできる。
[表示装置]
本発明の積層フィルムは表示装置に利用することができる。表示装置とは、表示機構を有する装置であり、発光源として発光素子又は発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(電場放出表示装置(FED等)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置)、プラズマ表示装置、投射型表示装置(グレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置等)及び圧電セラミックディスプレイ等が挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置及び投写型液晶表示装置等の何れをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に、本発明の積層フィルムを備える表示装置としては、有機EL表示装置及びタッチパネル表示装置が好ましく、特に有機EL表示装置が好ましい。
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、積層フィルムについての各測定値は、以下の方法により測定した値を採用した。
[測定方法]
(1)接触角の測定
23℃50%RHの雰囲気下で、接触角計(DropMaster DM-500、協和界面科学(株)製)を用いて、積層フィルムA~Cの薄膜層表面の水滴に対する接触角を液滴法により求めた。1.0μLの水滴を薄膜層表面に滴下後、1,000m秒後の接触角を値として用いた。
(2)薄膜層の膜厚の測定
薄膜層の膜厚は、FIB(Focused Ion Beam)加工で作製した薄膜層の切片の断面を、透過型電子顕微鏡(日本電子(株)製、JEM-2200FS)を用いて観察することにより求めた。
(FIB条件)
・装置:FB2200((株)日立ハイテクノロジーズ製)
・加速電圧:40kV
(3)薄膜層の炭素分布曲線
積層フィルムの薄膜層について、炭素分布曲線は、下記条件にてXPSデプスプロファイル測定を行い、横軸を薄膜層の表面からの距離(nm)、縦軸を炭素元素の原子百分率(炭素原子比率)としてグラフ化して作成した。
(測定条件)
エッチングイオン種:アルゴン(Ar
エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO熱酸化膜換算値):3nm
X線光電子分光装置:アルバック・ファイ(株)製、Quantera SXM
照射X線:単結晶分光AlKα
X線のスポット形状及び直径:円形、100μm
[実施例1]
図6に示す製造装置を用いて、以下の積層フィルム(積層フィルムAとする)を製造した。積層フィルムAの層構成は図1に示すものと同様である。
2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を基材(基材2)として用い、これを送り出しロール11に装着した。そして、第1成膜ロール17と第2成膜ロール18との間の空間に無終端のトンネル状の磁場が形成されているところに、成膜ガス(原料ガス(HMDSO)及び反応ガス(酸素ガス)の混合ガス)を供給し、第1成膜ロール17と第2成膜ロール18にそれぞれ電力を供給して第1成膜ロール17と第2成膜ロール18との間に放電させ、下記成膜条件1にて15分間、プラズマCVD法により、炭素原子比率が薄膜層3bに比べて相対的に高い薄膜層3aを基材2上に形成した後、下記成膜条件2に変更し、5分間、プラズマCVD法により、炭素原子比率が薄膜層3aに比べて相対的に低い薄膜層3bを、不連続領域4を介して薄膜層3a上に形成し、1つの不連続領域4を有する積層フィルムAを得た。積層フィルムAの炭素分布曲線を図7に示す。炭素分布曲線において、薄膜層3aに相当する部分の炭素原子比率の平均値は16at%であり、薄膜層3bに相当する部分の炭素原子比率の平均値は12at%であり、極小値の数は17であり、極大値の数は17であり、不連続領域4の膜厚は37nmであり、X=Y/4.4[式中、X(nm)は、薄膜層3(薄膜層3b)の表面から、不連続領域4における極小値Cまでの距離を示し、Y(nm)は、薄膜層3の表面から、該薄膜層3(薄膜層3a)と基材2との界面までの距離を示す]であった。また、積層フィルムAの膜厚は100.392μmであった。
(成膜条件1)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:500sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:0.8m/min
パス回数:3回
(成膜条件2)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:750sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:0.8m/min
パス回数:1回
[実施例2]
成膜条件1及び2を、以下の成膜条件3及び4に変更したこと以外は、実施例1と同様にして、1つの不連続領域4を有する積層フィルム(積層フィルムBとする)を得た。積層フィルムBの層構成は図1に示すものと同様である。得られた積層フィルムBの炭素分布曲線を図8に示す。炭素分布曲線において、薄膜層3aに相当する部分の炭素原子比率の平均値は15at%であり、薄膜層3bに相当する部分の炭素原子比率の平均値は7at%であり、極小値の数は12であり、極大値の数は12であり、不連続領域4の膜厚は38nmであり、X=Y/2.8[式中、X(nm)は、薄膜層3(薄膜層3b)の表面から、不連続領域4における極小値Cまでの距離を示し、Y(nm)は、薄膜層3の表面から、該薄膜層3(薄膜層3a)と基材2との界面までの距離を示す]であった。また、積層フィルムBの膜厚は100.375μmであった。
(成膜条件3)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:500sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:1.0m/min
パス回数:3回
(成膜条件4)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:1,000sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:1.0m/min
パス回数:2回
[実施例3]
図6に示す製造装置を用いて、以下の積層フィルム(積層フィルムCとする)を製造した。積層フィルムCの層構成は図4に示すものと同様である。
2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を基材(基材2)として用い、これを送り出しロール11に装着した。そして、第1成膜ロール17と第2成膜ロール18との間の空間に無終端のトンネル状の磁場が形成されているところに、成膜ガス(原料ガス(HMDSO)及び反応ガス(酸素ガス)の混合ガス)を供給し、第1成膜ロール17と第2成膜ロール18にそれぞれ電力を供給して第1成膜ロール17と第2成膜ロール18との間に放電させ、下記成膜条件5にて5分間、プラズマCVD法により、薄膜層6bよりも炭素原子比率が相対的に高い薄膜層6aを基材2上に形成した後、下記成膜条件6に変更し、10分間、プラズマCVD法により、薄膜層6a上に不連続領域7を介して薄膜層6bを形成し、次いで、下記成膜条件7に変更し、5分間、プラズマCVD法により、薄膜層6bよりも炭素原子比率が相対的に低い薄膜層6cを不連続領域8を介して薄膜層6b上に形成し、2つの不連続領域7及び8を有する積層フィルムCを得た。積層フィルムCの炭素分布曲線を図9に示す。炭素分布曲線において、薄膜層6aに相当する部分の炭素原子比率の平均値は18at%であり、薄膜層6bに相当する部分の炭素原子比率の平均値は17at%であり、薄膜層6cに相当する部分の炭素原子比率の平均値は12at%であり、極小値の数は16であり、極大値の数は16であり、不連続領域7の膜厚は42nmであり、不連続領域8の膜厚は42nmであり、炭素分布曲線における最大値は20at%であり、X=Y/5.0[式中、X(nm)は、薄膜層6(薄膜層6c)の表面から、不連続領域8における極小値Cまでの距離を示し、Y(nm)は、薄膜層6の表面から、該薄膜層6(薄膜層6a)と基材2との界面までの距離を示す]であり、Q=Y/4.7[式中、Q(nm)は、不連続領域7における極大値Aから、薄膜層6(薄膜層6a)と基材2との界面までの距離を示し、Y(nm)は薄膜層6(薄膜層6c)の表面から、該薄膜層6(薄膜層6a)と基材2との界面までの距離を示す]であった。また、積層フィルムCの膜厚は100.392μmであった。
(成膜条件5)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:300sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:0.8m/min
パス回数:1回
(成膜条件6)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:500sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:0.8m/min
パス回数:2回
(成膜条件7)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:750sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:0.8m/min
パス回数:1回
[比較例1]
図6に示す製造装置を用いて、以下の積層フィルム(積層フィルムDという)を製造した。
2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を基材(基材2)として用い、これを送り出しロール11に装着した。そして、第1成膜ロール17と第2成膜ロール18との間の空間に無終端のトンネル状の磁場が形成されているところに、成膜ガス(原料ガス(HMDSO)及び反応ガス(酸素ガス)の混合ガス)を供給し、第1成膜ロール17と第2成膜ロール18にそれぞれ電力を供給して第1成膜ロール17と第2成膜ロール18との間に放電させ、下記成膜条件9にて20分間、プラズマCVD法により、薄膜層を基材上に形成し、不連続領域を有さない積層フィルムDを得た。積層フィルムDの炭素分布曲線を図10に示す。炭素分布曲線において、炭素原子比率の平均値は16at%であり、極小値の数は19であり、極大値の数は19であった。また、積層フィルムDの膜厚は100.418μmであった。
(成膜条件8)
原料ガス(HMDSO)の供給量:50sccm(0℃、1気圧基準)
酸素ガスの供給量:500sccm(0℃、1気圧基準)
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度:0.8m/min
パス回数:4回
実施例1~3及び比較例1で得られた積層フィルムA~Dの炭素分布曲線に基づいて、不連続領域の条件である前記式(1)のa-bの値、前記式(2)のb-cの値、前記式(3)の(a-c)/dxの値、炭素分布曲線における極大値の最大値と極大値の最小値との差、極小値の最大値と極小値の最小値との差、及び最小値(極小値の最小値)を算出し、表1及び表2に示した。また、積層フィルムA~Dの薄膜層表面の接触角を表2に示した。なお、実施例3においては2つの不連続領域を有するため、2つの不連続領域の条件の値を示した。
Figure 0007261547000001
Figure 0007261547000002
表1に示されるように、実施例1~3で得られた積層体A~Cは、比較例1で得られた不連続領域を有さない積層体Dと比較し、接触角が小さく、優れた薄膜層表面の濡れ性を有することが確認された。
1,5…積層フィルム、2…基材、3,3a,3b,6,6a,6b,6c…薄膜層、4,7,8…不連続領域、10…製造装置、11…送り出しロール、12…巻き取りロール、13~16…搬送ロール、17…第1成膜ロール、18…第2成膜ロール、19…ガス供給管、20…プラズマ発生用電源、23,24…磁場形成装置、2…基材(フィルム)、SP…空間(成膜空間)

Claims (4)

  1. 基材と、該基材の少なくとも一方の面に積層された薄膜層とを有し、該薄膜層は珪素原子、酸素原子及び炭素原子を含有し、該薄膜層の膜厚方向における薄膜層の表面からの距離と、該距離に位置する点の薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線において、少なくとも3つの極値を有し、極大値の最大値と極大値の最小値との差は14at%以下であり、かつ式(1)~(3):
    3at%≦a-b≦10at% (1)
    3at%≦b-c (2)
    0.5<(a-c)/dx (3)
    [式(1)~式(3)中、炭素分布曲線において、該薄膜層の膜厚方向における基材側からの互いに隣接する極値を順に、極大値A、極小値C、極大値Bとしたとき、aは極大値Aの炭素原子比率(at%)を示し、bは極大値Bの炭素原子比率(at%)を示し、cは極小値Cの炭素原子比率(at%)を示し、dxは極大値Aと極小値Cとの距離(nm)を示す]
    の関係を満たす少なくとも1つの不連続領域を有し、
    前記炭素分布曲線において、薄膜層の表面から、不連続領域の極大値Bまでの領域における炭素原子比率の平均値は3~15at%であり、ここで、不連続領域が2つ以上ある場合、該極大値Bは最も薄膜層表面に近い不連続領域における極大値を示し、
    前記炭素分布曲線における最小値は、1at%より大きく、5at%以下であり、
    前記炭素分布曲線において、前記薄膜層の表面から、不連続領域における極小値Cまでの距離X(nm)と、前記薄膜層の表面から、該薄膜層と前記基材との界面までの距離Y(nm)とが、式(4):
    X<Y/2 (4)
    の関係を満たし、ここで、不連続領域が2つ以上ある場合、極小値Cは2つ以上の不連続領域の中で、最も炭素原子比率の小さい極小値を示す、積層フィルム。
  2. 前記炭素分布曲線において、極小値の最大値と極小値の最小値との差は14~19at%である、請求項1に記載の積層フィルム。
  3. 前記式(1)は、3at%≦a-b≦10at%であり、
    前記式(2)は、3at%≦b-c≦10at%であり、
    前記式(3)は、0.5<(a-c)/dx<0.8である、請求項1又は2に記載の積層フィルム。
  4. 少なくとも2つの不連続領域を有し、前記炭素分布曲線における最大値が23~33at%である、請求項1~のいずれかに記載の積層フィルム。
JP2018151573A 2017-08-25 2018-08-10 積層フィルム Active JP7261547B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162751 2017-08-25
JP2017162751 2017-08-25

Publications (2)

Publication Number Publication Date
JP2019038261A JP2019038261A (ja) 2019-03-14
JP7261547B2 true JP7261547B2 (ja) 2023-04-20

Family

ID=65438900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151573A Active JP7261547B2 (ja) 2017-08-25 2018-08-10 積層フィルム

Country Status (7)

Country Link
US (1) US20200259118A1 (ja)
EP (1) EP3674079A4 (ja)
JP (1) JP7261547B2 (ja)
KR (1) KR20200044853A (ja)
CN (1) CN111032338B (ja)
TW (1) TWI775926B (ja)
WO (1) WO2019039463A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198607B2 (ja) * 2017-08-25 2023-01-04 住友化学株式会社 積層フィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147661A1 (ja) 2013-03-21 2014-09-25 コニカミノルタ株式会社 ガスバリア性フィルムのロール体、およびガスバリア性フィルムの製造方法
WO2015107702A1 (ja) 2014-01-15 2015-07-23 コニカミノルタ株式会社 ガスバリア性フィルム
JP2015206096A (ja) 2014-04-23 2015-11-19 コニカミノルタ株式会社 ガスバリアーフィルム及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402414B2 (ja) * 2003-09-30 2010-01-20 大日本印刷株式会社 積層材およびそれを使用した液体充填包装用小袋
US9011994B2 (en) * 2009-04-09 2015-04-21 Sumitomo Chemical Company, Limited Gas-barrier multilayer film
JP5791010B2 (ja) * 2010-10-08 2015-10-07 住友化学株式会社 電気泳動表示素子
WO2012046767A1 (ja) * 2010-10-08 2012-04-12 住友化学株式会社 積層フィルム
WO2013146964A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
WO2014061627A1 (ja) * 2012-10-19 2014-04-24 コニカミノルタ株式会社 ガスバリアーフィルム及びガスバリアーフィルムの製造方法
WO2014123201A1 (ja) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 ガスバリア性フィルム、およびその製造方法
WO2014163062A1 (ja) * 2013-04-02 2014-10-09 コニカミノルタ株式会社 ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
JPWO2015163358A1 (ja) * 2014-04-23 2017-04-20 コニカミノルタ株式会社 ガスバリアーフィルム及びその製造方法
JP6354302B2 (ja) * 2014-05-08 2018-07-11 コニカミノルタ株式会社 ガスバリア性フィルム
JP6638182B2 (ja) * 2014-09-30 2020-01-29 住友化学株式会社 積層フィルムおよびフレキシブル電子デバイス
CN108290376B (zh) * 2015-11-18 2020-04-07 柯尼卡美能达株式会社 气体阻隔性膜
CN110214080B (zh) * 2016-11-30 2021-05-25 柯尼卡美能达株式会社 阻气性膜
JP7198607B2 (ja) * 2017-08-25 2023-01-04 住友化学株式会社 積層フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147661A1 (ja) 2013-03-21 2014-09-25 コニカミノルタ株式会社 ガスバリア性フィルムのロール体、およびガスバリア性フィルムの製造方法
WO2015107702A1 (ja) 2014-01-15 2015-07-23 コニカミノルタ株式会社 ガスバリア性フィルム
JP2015206096A (ja) 2014-04-23 2015-11-19 コニカミノルタ株式会社 ガスバリアーフィルム及びその製造方法

Also Published As

Publication number Publication date
KR20200044853A (ko) 2020-04-29
TWI775926B (zh) 2022-09-01
CN111032338B (zh) 2022-06-17
JP2019038261A (ja) 2019-03-14
TW201919890A (zh) 2019-06-01
WO2019039463A1 (ja) 2019-02-28
EP3674079A1 (en) 2020-07-01
EP3674079A4 (en) 2021-05-05
CN111032338A (zh) 2020-04-17
US20200259118A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6044634B2 (ja) 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
JP6342776B2 (ja) 積層体の製造方法
TWI523758B (zh) 層合薄膜及電子裝置
JP7261547B2 (ja) 積層フィルム
JP7198607B2 (ja) 積層フィルム
JP6699173B2 (ja) 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
JP6508053B2 (ja) 積層フィルム、有機エレクトロルミネッセンス装置、光電変換装置および液晶ディスプレイ
JP6897567B2 (ja) ガスバリアーフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7261547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150