JP7246294B2 - 計測装置、及び建設機械 - Google Patents

計測装置、及び建設機械 Download PDF

Info

Publication number
JP7246294B2
JP7246294B2 JP2019213340A JP2019213340A JP7246294B2 JP 7246294 B2 JP7246294 B2 JP 7246294B2 JP 2019213340 A JP2019213340 A JP 2019213340A JP 2019213340 A JP2019213340 A JP 2019213340A JP 7246294 B2 JP7246294 B2 JP 7246294B2
Authority
JP
Japan
Prior art keywords
bucket
data
shape
shape data
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019213340A
Other languages
English (en)
Other versions
JP2021085178A (ja
Inventor
幸広 細
翔 藤原
佑介 船原
徹 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Hiroshima University NUC
Original Assignee
Kobelco Construction Machinery Co Ltd
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd, Hiroshima University NUC filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2019213340A priority Critical patent/JP7246294B2/ja
Priority to CN202080080587.5A priority patent/CN114761642B/zh
Priority to EP20893901.7A priority patent/EP4047142A4/en
Priority to US17/778,942 priority patent/US20220412056A1/en
Priority to PCT/JP2020/038819 priority patent/WO2021106410A1/ja
Publication of JP2021085178A publication Critical patent/JP2021085178A/ja
Application granted granted Critical
Publication of JP7246294B2 publication Critical patent/JP7246294B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/086Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles wherein the vehicle mass is dynamically estimated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

本発明は、腕部材に対して回転可能に取り付けられた容器の収容物の体積を計測する技術に関するものである。
油圧ショベルにおいては、作業当日の作業量を把握するために、バケットが掘削した掘削物の体積が計算される。また、油圧ショベルが掘削物をダンプカーに積み込む作業を行うに場合、掘削物の体積がダンプカーの上限積載量を超えないように掘削物の体積が計算される。このように、掘削物の体積は、種々の用途に適用可能であるため、高精度に計算されることが望ましい。掘削物の体積を計算する技術として、下記の特許文献1、2が知られている。
特許文献1には、掘削後のバケットの状況を撮影した画像から算出されたバケットの表面形状と、排土後のバケット内の状況を撮影した画像から算出したバケットの内部形状との差を演算することにより、バケットの作業量を算出する技術が開示されている。
特許文献2には、掘削物が入った状態でバケットの開口面から掘削物表面までの長さと、バケットが空の時のバケットの底からバケットの開口面までの長さとを足すことにより、バケットの底から掘削物の表面までの長さを求め、この長さに基づいて掘削物の体積を計算する技術が開示されている。
特開2008-241300号公報 国際公開第2016/092684号
しかしながら、特許文献1の技術では、排土毎にバケットを所定の位置に移動させることが要求されるため、作業効率が低下する。
特許文献2の技術では、空状態のバケットがステレオカメラ装置で撮影され、撮影画像からバケットの底からバケットの開口面までの長さに基づいてバケットの形状が予め学習されている。
しかしながら、特許文献2の技術では、学習において、バケットの底から開口面までの長さが算出されているに過ぎず、バケットの姿勢データは計測されていない。そのため、特許文献2の技術は、学習時のバケットの姿勢と作業時のバケットの姿勢が異なる場合、掘削物の体積を精度よく算出できないという課題がある。
本発明の目的は、作業効率の低下を防止しつつ、バケットが収容する収容物の体積を正確に算出できる技術を提供することである。
本発明の一態様に係る計測装置は、本体部に対して起伏可能に取り付けられた腕部材であって、当該腕部材の姿勢の変更を可能にする1以上の関節を含む腕部材と、前記腕部材に対して回転可能に取り付けられる容器であって、当該容器に対する収容物の出入を許容する開口をもつ容器と、を含む作業装置において、前記容器の収容物の体積を計測する計測装置であって、前記腕部材に取り付けられ、物体の距離を示す計測データを計測する測距センサと、前記作業装置の姿勢を示す姿勢データを計測する姿勢センサと、前記測距センサにより計測された空状態の前記容器の前記計測データである第1計測データに基づいて前記容器の輪郭形状を示す第1形状データを算出する第1形状算出部と、前記第1計測データが計測された第1時点における前記姿勢データである第1姿勢データと前記第1形状データとを対応づけて記憶するメモリと、前記第1時点より後の第2時点において、前記測距センサにより計測された前記容器が収容する前記収容物の前記計測データである第2計測データに基づいて前記収容物の表面形状を示す第2形状データを算出する第2形状算出部と、前記第2時点において前記姿勢センサにより計測された前記姿勢データである第2姿勢データと前記第1姿勢データとの差を示す差分情報を算出する差分情報算出部と、前記第2時点における前記測距センサから前記容器までの前記作業装置の姿勢が前記第1時点における前記測距センサから前記容器までの前記作業装置の姿勢に一致するように、前記差分情報に基づいて、前記第2形状データを前記測距センサの3次元座標空間内で回転させる回転処理部と、回転された前記第2形状データと前記第1形状データとによって囲まれる領域を特定し、特定した前記領域に基づいて、前記第2時点における前記容器の前記収容物の体積を算出する体積算出部とを備える。
メモリには、第1時点における第1形状データと第1時点における空状態のバケットの第1姿勢データとが対応づけて記憶されている。第1時点より後の第2時点において計測された第2計測データに基づいて収容物の表面形状を示す第2形状データが算出される。第2時点における作業装置の第2姿勢データと第1時点における作業装置の第1姿勢データとの差を示す差分情報が算出される。第2形状データは、第2時点における測距センサから容器までの作業装置の姿勢が第1時点における測距センサから容器までの作業装置の姿勢に一致するように、第2形状データが、前記測距センサの3次元座標空間内で回転される。これにより、回転後の第2形状データは、第1時点における容器と同じ姿勢で計測された形状データとなる。その結果、回転後の第2形状データと第1形状データとに囲まれる領域に基づいて第2時点の収容物の体積が算出可能となり、収容物の体積を正確に算出できる。
また、上記メモリを備えているため、1度、空状態のバケットの第1形状データを算出すれば、以後、作業装置を所定の姿勢にしなくても、第2形状データから第2時点における収容物の体積が算出可能となる。その結果、収容物が収容される毎に作業装置を所定に姿勢にする必要がなくなり、作業効率の低下を防止できる。さらに、上記メモリを備えているため、第2形状データを算出する毎に収容物の体積を算出することが可能となり、この体積の算出処理をリアルタイムで実行できる。
上記計測装置において、前記第1形状データは、前記腕部材に対する前記容器の回転軸に対して直交する前記3次元座標空間内の平面に投影された前記容器の輪郭形状を示し、前記第2形状データは、前記平面に投影された前記収容物の表面形状を示し、前記回転処理部は、前記平面において、前記第2形状データを前記差分情報に基づいて回転させ、前記体積算出部は、前記平面において、回転された第2形状データと前記第1形状データとによって囲まれる領域を特定し、前記領域に基づいて前記収容物の断面積を算出し、前記断面積に前記容器の横幅を乗じて前記収容物の体積を算出することが好ましい。
この構成によれば、容器の長手方向に対して平行な座標空間内の平面において第2形状データが差分角度情報に基づいて回転される。回転後の第2形状データと前記平面における第1形状データとによって囲まれる領域が算出される。この領域に基づいて収容物の断面積が算出される。この断面積に収容物の横幅が乗じられて収容物の体積が算出される。そのため、収容物の体積を簡素な処理によって算出できる。
上記計測装置において、前記断面積は、前記第1形状データと前記第2形状データとによって囲まれる領域を複数の台形に区画し、各台形の面積を積算することによって算出されることが好ましい。
この構成によれば、第1形状データと第2形状データとによって囲まれる領域が複数の台形に区画され、各台形の面積が算出される。このように、断面積が台形近似されて算出されているため、この断面積を複数の四角形で近似した場合に比べて、断面積を正確に算出できる。
上記計測装置において、前記腕部材は、前記開口と対向する対向面を含み、前記測距センサは、前記対向面に取り付けられていることが好ましい。
この構成によれば、測距センサは、対向面に取り付けられているため、容器を開口側から計測可能となり、収容物の計測データを正確に計測できる。
上記計測装置において、前記腕部材は、建設機械の本体部に起伏可能に取り付けられていることが好ましい。
この構成によれば、建設機械が掘削した収容物の体積を算出できる。
上記計測装置において、前記収容物は、土砂であることが好ましい。
この構成によれば、容器が収容した土砂の体積を算出できる。
本発明の別の一態様にかかる建設機械は、本体部に対して起伏可能に取り付けられた腕部材であって、当該腕部材の姿勢の変更を可能にする1以上の関節を含む腕部材と、前記腕部材に対して回転可能に取り付けられるバケットとを含む作業装置と、前記腕部材に取り付けられ、物体の距離を示す計測データを計測する測距センサと、前記作業装置の姿勢を示す姿勢データを計測する姿勢センサと、前記測距センサにより計測された空状態の前記バケットの前記計測データである第1計測データに基づいて前記バケットの輪郭形状を示す第1形状データを算出する第1形状算出部と、前記第1計測データが計測された第1時点における前記姿勢データである第1姿勢データと、前記第1形状データとを対応づけて記憶するメモリと、前記第1時点より後の第2時点において、前記測距センサにより計測された前記バケットが収容する土砂の前記計測データである第2計測データに基づいて前記土砂の表面形状を示す第2形状データを算出する第2形状算出部と、前記第2時点において前記姿勢センサにより計測された前記姿勢データである第2姿勢データと前記第1姿勢データとの差を示す差分情報を算出する差分情報算出部と、前記第2時点における前記測距センサから前記バケットまでの前記作業装置の姿勢が前記第1時点における前記測距センサから前記バケットまでの前記作業装置の姿勢に一致するように、前記差分情報に基づいて、前記第2形状データを前記測距センサの3次元座標空間内で回転させる回転処理部と、回転された前記第2形状データと前記第1形状データとによって囲まれる領域を特定し、特定した前記領域に基づいて、前記第2時点における前記バケットの前記土砂の体積を算出する体積算出部とを備える。
本構成によれば、上記計測装置と同様、作業効率の低下を防止しつつ、バケットが収容する収容物の体積を正確に算出できる建設機械を提供できる。
本発明によれば、作業効率の低下を防止しつつ、バケットが収容する収容物の体積を正確に算出できる。
油圧ショベルの外観構成の一例を示す図である。 油圧ショベルの構成の一例を示すブロック図である。 第2コントローラに着目した場合の油圧ショベルの構成の一例を示すブロック図である。 計測モードにおける油圧ショベルの処理の一例を示すフローチャートである。 測距センサが計測した第1計測データの一例を示す図である。 バケット領域に設定された平面に含まれる画素データの一例を示す図である。 体積が算出される処理の一例を示すフローチャートである。 基準バケット角度を説明する図である。 第1形状データと第2形状データとが重畳される処理の説明図である。 土砂の断面積が算出される処理の説明図である。 土砂の体積の算出処理の説明図である。
以下、本実施の形態に係る計測装置が説明される。以下の例では計測装置が油圧ショベルに実装された例が説明される。なお、計測装置は、一部の構成要素が油圧ショベルに実装され、残りの構成要素が外部装置に実装されてもよい。外部装置としては、例えばクラウドサーバが採用される。計測装置は油圧ショベル1以外の建設機械に搭載されてもよい。さらに、計測装置は建設機械以外の作業機械に搭載されてもよい。この作業機械としては、容器を用いて物体を収容する機械であればどのような機械であってもよい。この作業機械の一例は、一以上の関節を含み姿勢が変更可能に構成された腕部材と、腕部材の先端部に回転可能に取り付けられた容器とを備える作業機械である。この容器は、開口を含み、土砂、パーティクルなどの収容物を収容するために用いられる。
図1は、油圧ショベル1の外観構成の一例を示す図である。油圧ショベル1は、下部走行体2、上部旋回体3、及び作業装置4を含む。下部走行体2は、例えば、地面に対して走行可能に構成されたクローラである。上部旋回体3は、下部走行体2の上部に設けられ、下部走行体2に対して鉛直軸回りに旋回可能に構成されている。上部旋回体3は、表示部80及びコントローラ90などが搭載されている。上部旋回体3は本体部の一例である。表示部80は、操縦席に設けられ、オペレータに種々の情報を表示する。コントローラ90は、油圧ショベル1の全体制御を司る。
作業装置4は、例えば掘削作業などの作業を行うために用いられる。作業装置4は、ブーム401、アーム402及びバケット403を含む。ブーム401は、上部旋回体3の前端に対して起伏可能に取り付けられている。アーム402は、ブーム401の先端部において水平軸回りに回動可能に取付けられている。バケット403は、アーム402の先端部において回転可能に取付けられる。バケット403は、収容物を収容する容器の一例である。ブーム401及びアーム402は腕部材の一例である。バケット403は、開口403aを含む。バケット403は、掘削作業によって開口403aから侵入する土砂を収容する。収容物の一例は、土砂である。
油圧ショベル1は、さらにブームシリンダ21、アームシリンダ31、及びバケットシリンダ41を含む。
ブームシリンダ21は、上部旋回体3とブーム401との間に介在する。ブームシリンダ21は、伸縮することによりブーム401を起伏させる。
アームシリンダ31は、ブーム401とアーム402との間に介在する。アームシリンダ31は、伸縮することで、アーム402を回転させる。
バケットシリンダ41は、アーム402とバケット403との間に介在する。バケットシリンダ41は、伸縮することで、バケット403を回動させる。
油圧ショベル1は、さらにブーム角度センサ51、アーム角度センサ52、及びバケット角度センサ53を含む。
ブーム角度センサ51は、上部旋回体3に対するブーム401の起伏角度であるブーム角度を検出する。ブーム角度センサ51は、例えばブーム401の根元側に設けられている。
アーム角度センサ52は、ブーム401に対するアーム402の回転角度であるアーム角度を検出する。アーム角度センサ52は、例えばアームの402の根元側に設けられている。バケット角度センサ53は、アーム402に対するバケット403の回動角度であるバケット角度を検出する。バケット角度センサ53は、例えばアーム402の先端部に設けられている。
測距センサ60は、作業装置4に設けられ、物体の距離を示す計測データを計測する。測距センサ60の一例は、TOF(Time of Flight)センサ又はステレオカメラなどの複数の画素単位で深度が計測可能なセンサである。測距センサ60はLIDARであってもよい。
測距センサ60は、アーム402の裏面402aに設けられている。測距センサ60はセンサ面60aがバケット403側に向けられている。これにより、測距センサ60は、バケット403の内面及びバケット403に収容された土砂の形状データが計測可能である。裏面402aは、バケット403の開口403aと対向する対向面の一例である。
測距センサ60は、裏面402aに対して取り外し可能に構成されてもよい。これにより、既存の油圧ショベル1に対して本実施の形態に係る作業装置を実装できる。この場合、測距センサ60が取り付けられる度に、後述する計測モードが実行され、後述する第1形状データと姿勢データとがメモリに記憶される。さらに、この計測モードは、測距センサ60が取り付けられた後、バケット403が交換された場合に実行されてもよい。さらに、測距センサ60は、油圧ショベル1がデフォルトで備えるものであってもよい。この場合、この計測モードは、例えばバケット403が交換される都度、実行される。
本実施の形態では、油圧ショベル1は、オペレータのアーム402に対する操作によって、掘削動作と持ち上げ動作とを半自動的行う半自動運転モードを備える。この半自動運転モードにおいて、オペレータはアーム操作器を操作するだけで済む。アーム操作器の操作が開始されると、コントローラ90は、作業装置4に掘削動作を開始させる。掘削動作では、バケット403を地面に侵入させた状態で、バケット403の先端部を地面と平行に移動させる動作が自動的に行われる。掘削動作によりバケット403に土砂が収容されると、持ち上げ動作が開始される。持ち上げ動作では、土砂を収容したバケット403が持ち上げられ、上部旋回体3が旋回され、所定位置においてバケット403が開かれて土砂が排土される一連の動作が自動的に行われる。
なお、掘削動作中において、アーム操作器がオペレータの操作によって中立位置に戻されると、コントローラ90は、掘削動作を途中で停止させる。このことは、持ち上げ動作においても同じである。掘削動作及び持ち上げ動作中におけるバケット403の移動速度はアーム操作器に入力された操作量に応じた値に設定される。
このように、半自動運転モードでは、オペレータはアーム402の操作のみを行えば、後はコントローラ90により自動的に掘削動作及び持ち上げ動作が行われる。したがって、油圧ショベル1に対する操縦経験が浅いオペレータであっても掘削動作及び持ち上げ動作を円滑に行うことができる。
図2は、油圧ショベル1の構成の一例を示すブロック図である。油圧ショベル1は、図1に示すコントローラ90、測距センサ60、及び表示部80の他、アーム操作器10、ブーム駆動回路20、アーム駆動回路30、バケット駆動回路40、姿勢センサ50、及びスイッチ70を含む。図2のブロック図は、半自動運転モードを実行する上で必要なブロックのみが示されており、手動モードを実行する上で必要なブロックは図示が省略されている。
手動モードとは、コントローラ90のアシストなしで、オペレータの操作のみに基づいて掘削動作及び持ち上げ動作などの動作を油圧ショベル1が行うモードである。なお、本発明においては、掘削動作及び持ち上げ動作は半自動運転モードによる実行に限定されず、手動モードで実行されてもよいし、完全自動運転モードで実行されてもよい。完全自動モードとは、オペレータにアーム402の操作を課すことなく、掘削動作及び持ち上げ動作を自動的に実行するモードである。この完全自動モードにおいては、オペレータは、例えば掘削開始ボタンを入力する操作を行うだけでよい。後は、コントローラ90が、バケット403の移動速度を所定の速度に設定し、掘削動作及び持ち上げ動作を自動的に実行する。
アーム操作器10は、アーム402を動かすためのアーム操作がオペレータにより入力される。アーム操作には、アーム402の先端部を上部旋回体3側に移動させるアーム引き操作及びアーム402の先端部を上部旋回体3の反対側に移動させるアーム押し操作が含まれる。
アーム駆動回路30は、アーム402を駆動するための油圧回路である。アーム駆動回路30は、図1に示すアームシリンダ31の他、アームコントロールバルブ32、アーム引きパイロット圧センサ33、及びアームリモコン弁34を含む。
アームシリンダ31は、油圧ポンプからの作動油の供給を受けることにより伸縮し、これによりアーム引き動作とアーム押し動作とを行わせる。
アームコントロールバルブ32は、アーム引きパイロットポート及びアーム押しパイロットポートを有するパイロット操作式の3位置方向切換弁で構成されている。アームコントロールバルブ32は、アーム引きパイロットポートに入力されたアーム引きパイロット圧に対応するストロークで開弁する。この開弁により、アームシリンダ31に供給される作動油の流量及び方向が制御され、アーム402の速度及び方向が制御され、アーム402はアーム引き動作を行う。アームコントロールバルブ32は、アーム押しパイロットポートに入力されたアーム押しパイロット圧に対応するストロークで開弁する。この開弁により、アームシリンダ31に供給される作動油の流量及び方向が制御され、アーム402の速度及び方向が制御され、アーム402はアーム押し動作を行う。
アーム引きパイロット圧センサ33は、アームコントロールバルブ32のアーム引きパイロットポートに入力されるアーム引きパイロット圧を検出し、コントローラ90に入力する。
アームリモコン弁34は、アーム操作器10に入力されたアーム引き操作の操作量に対応した大きさのアーム引きパイロット圧をアームコントロールバルブ32のアーム引きパイロットポートに入力する。アームリモコン弁34は、アーム操作器10に入力されたアーム押し操作の操作量に対応した大きさのアーム押しパイロット圧をアームコントロールバルブ32のアーム押しパイロットポートに入力する。
ブーム駆動回路20は、ブーム401を駆動するための油圧回路である。ブーム駆動回路20は、図1に示すブームシリンダ21の他、ブームコントロールバルブ22、ブーム上げ流量操作弁23を含む。
ブームシリンダ21は、油圧ポンプからの作動油の供給を受けることにより伸縮し、これによりブーム上げ動作とブーム下げ動作とを行わせる。
ブームコントロールバルブ22は、ブーム引きパイロットポート及びブーム押しパイロットポートを有するパイロット操作式の3位置方向切換弁で構成されている。ブームコントロールバルブ22は、ブーム上げパイロットポートに入力されたブーム上げパイロット圧に対応するストロークで開弁する。この開弁により、ブームシリンダ21に供給される作動油の流量及び方向が制御され、ブーム401の速度及び方向が制御され、ブーム401はブーム上げ動作を行う。ブームコントロールバルブ22は、ブーム下げパイロットポートに入力されたブーム下げパイロット圧に対応するストロークで開弁する。この開弁により、ブームシリンダ21に供給される作動油の流量及び方向が制御され、ブーム401の速度及び方向が制御され、ブーム401はブーム下げ動作を行う。
ブーム上げ流量操作弁23は、パイロット油圧源(図略)からブーム上げパイロットポートに入力されるパイロット圧をコントローラ90から入力されるブーム流量指令信号に応じて減圧する。これにより、コントローラ90は、ブーム上げパイロットポートに入力されるパイロット圧をブーム上げ流量操作弁23を通じて自動操作する。
バケット駆動回路40は、バケット403を駆動するための油圧回路である。バケット駆動回路40は、図1に示すバケットシリンダ41の他、バケットコントロールバルブ42、バケット掬い流量操作弁43を含む。
バケットシリンダ41は、油圧ポンプからの作動油の供給を受けることにより伸縮し、これによりバケット掬い動作とバケット開き動作とを行わせる。
バケットコントロールバルブ42は、バケット掬いパイロットポート及びバケット開きパイロットポートを有するパイロット操作式の3位置方向切換弁で構成されている。バケットコントロールバルブ42は、バケット掬いパイロットポートに入力されたバケット掬いパイロット圧に対応するストロークで開弁する。この開弁により、バケットシリンダ41に供給される作動油の流量及び方向が制御され、バケット403の速度及び方向が制御され、バケット403はバケット掬い動作を行う。バケットコントロールバルブ42は、バケット開きパイロットポートに入力されたバケット開きパイロット圧に対応するストロークで開弁する。この開弁により、バケットシリンダ41に供給される作動油の流量及び方向が制御され、バケット403の速度及び方向が制御され、バケット403はバケット開き動作を行う。
バケット掬い流量操作弁43は、パイロット油圧源(図略)からバケット掬いパイロットポートに入力されるパイロット圧をコントローラ90から入力されるバケット流量指令信号に応じて減圧する。これにより、コントローラ90は、バケット掬いパイロットポートに入力されるパイロット圧をバケット掬い流量操作弁43を通じて自動操作する。
姿勢センサ50は、図1に示すブーム角度センサ51、アーム角度センサ52、及びバケット角度センサ53を含む。
ブーム角度センサ51、アーム角度センサ52、及びバケット角度センサ53は、それぞれ、例えば所定の演算周期でブーム角度、アーム角度、及びバケット角度をコントローラ90に入力する。
測距センサ60は、所定の演算周期で計測した計測データをコントローラ90に入力する。計測データは、測距センサ60の視野内にある物体の深度を複数の画素毎に示す距離画像データで構成されている。
スイッチ70は、油圧ショベル1のモードを切り替えるためのオペレータからの操作が入力されるスイッチである。スイッチ70は、操縦席に設けられた物理的なスイッチであってもよいし、表示部80に表示されるグラフィカルユーザインターフェースであっってもよい。
コントローラ90は、CPU及びメモリを含むコンピュータまたは専用の電気回路で構成されている。コントローラ90は、第1コントローラ110及び第2コントローラ120を含む。
第1コントローラ110は、半自動運転モードにおける油圧ショベル1の制御を司る。第1コントローラ110は、バケット位置演算部111、掘削動作制御部112、目標速度演算部113、及び持ち上げ動作制御部114を含む。
バケット位置演算部111は、ブーム角度センサ51、アーム角度センサ52、及びバケット角度センサ53により計測されたブーム角度、アーム角度、及びバケット角度に基づいて、バケット403の特定部位の位置を算出する。この特定部位の一例は、バケット403の先端位置である。この特定部位の位置は、例えば既知のブーム長、アーム長、及びバケット長と、計測されたブーム角度、アーム角度、及びバケット角度とに基づく幾何演算により算出される。この先端位置は、例えば、所定の演算周期で算出される。
さらに、目標速度演算部113は、アーム引きパイロット圧センサ33により計測されたアーム引きパイロット圧と、バケット位置演算部111により算出されたバケット403の特定部位の位置とに基づいて、ブーム401及びバケット403のそれぞれの目標速度を算出する。
掘削動作中におけるブーム401の目標速度は、例えば予め定められた目標施工面に施工面を近づけるためのブーム401の上げ方向の目標速度である。掘削動作中におけるバケット403の目標速度は、アーム引き動作に従って、バケット403の特定部位を目標施工面に沿って自動的に平行移動させるためのバケット403の目標速度である。
持ち上げ動作中におけるブーム401の目標速度は、例えば掘削動作終了後にバケット403を予め定められた排土位置に移動させるための、ブーム401の上げ方向の目標速度である。持ち上げ動作中におけるバケット403の目標速度は、例えば掘削動作終了後にバケット403を予め定められた排土位置に移動させるためのバケット403の掬い方向の目標速度である。
掘削動作制御部112は、目標速度演算部113によって算出された掘削動作におけるブーム401及びバケット403のそれぞれの目標速度で、ブーム401及びバケット403のそれぞれが動作するように、ブーム上げ流量操作弁23及びバケット掬い流量操作弁43のそれぞれを制御する。この制御により掘削動作の半自動運転が実現される。
持ち上げ動作制御部114は、目標速度演算部113によって算出された持ち上げ動作におけるブーム401及びバケット403のそれぞれの目標速度で、ブーム401及びバケット403のそれぞれが動作するように、ブーム上げ流量操作弁23及びバケット掬い流量操作弁43のそれぞれを制御する。この制御により持ち上げ動作の半自動運転が実現される。
掘削動作と持ち上げ動作との切り替えは目標速度演算部113により行われる。例えば、目標速度演算部113は、掘削動作が終了すると、掘削動作制御部112に掘削動作を終了させ、持ち上げ動作制御部114に持ち上げ動作を開始させる。一方、目標速度演算部113は、持ち上げ動作中において排土が終了した場合、持ち上げ動作制御部114に持ち上げ動作を終了させ、掘削動作制御部112に掘削動作を開始させればよい。
第2コントローラ120は、バケット403が収容する土砂の体積を算出する処理を制御するものである。図3は、第2コントローラ120に着目した場合の油圧ショベル1の構成の一例を示すブロック図である。
第2コントローラ120は、第1形状算出部121、第2形状算出部122、姿勢データ取得部123、メモリ124、差分情報算出部125、回転処理部126、及び体積算出部127を含む。
第1形状算出部121は、測距センサ60により計測された空状態のバケット403の計測データである第1計測データに基づいてバケット403の輪郭形状を示す第1形状データを算出する。第1形状算出部121の処理の詳細は、例えば以下の通りである。まず、第1形状算出部121は、第1計測データに含まれる複数の画素データのうち深度が閾値以下の画素データを抽出する。この閾値は、第1計測データに含まれる油圧ショベル1の画素データを、油圧ショベル1の背景となる画素データと区別するために予め定められた値を持つ。これにより、第1計測データから空状態のバケット403を示す画素データが抽出される。次に、第1形状算出部121は、抽出された複数の画素データのそれぞれを測距センサ60の3次元座標空間に配置する3次元座標変換を行う。次に、第1形状算出部121は、3次元座標空間に配置された画素データのうち、バケット403の長手方向に対して平行な平面上に位置する画素データを第1形状データとして抽出する。これにより、前記平面に投影されたバケット403の輪郭形状を示す第1形状データが得られる。バケット403の長手方向に対して平行な平面とは、アーム402に対するバケット403の回転軸に直交する平面である。
姿勢データ取得部123は、第1計測データが計測される第1時点における姿勢データである第1姿勢データと、第1形状算出部121により算出された第1形状データとを対応づけてメモリ124に記憶させる。以下の説明では、第1姿勢データは、第1時点におけるバケット角度であるものとする。但し、これに限定されず、第1姿勢データには、第1時点におけるアーム角度、及びブーム角度が含まれてもよい。
本実施の形態では、計測モードにおいて、オペレータの操作によってバケット403の姿勢が予め定められた基準バケット角度になった時点が第1時点とされる。この場合、姿勢データ取得部123は、姿勢センサ50が計測した計測データをモニタし、バケット角度が基準バケット角度になったことを検出した場合に、第1形状算出部121により算出された第1形状データを基準バケット角度と対応づけてメモリ124に記憶させればよい。但し、これは一例であり、油圧ショベル1の稼働中において、例えばオペレータがスイッチ70に計測指示を入力した時点が第1時点として採用されてもよい。この場合、姿勢データ取得部123は、第1時点において姿勢センサ50により計測されたバケット角度を第1形状データと対応づけてメモリ124に記憶させればよい。
さらに、姿勢データ取得部123は、第1時点より後の第2時点において、姿勢センサ50により計測される第2姿勢データを取得する。以下の説明では、第2姿勢データは、第2時点におけるバケット角度であるものとする。但し、これに限定されず、第2姿勢データには、第2時点におけるアーム角度及びブーム角度が含まれていてもよい。
メモリ124は、例えばソリッドステートドライブ及びフラッシュメモリなどの不揮発性の記憶装置で構成される。メモリ124は、第1形状データ及び第1姿勢データを対応づけて記憶する。
第2形状算出部122は、第1時点より後の第2時点において、測距センサ60により計測されたバケット403が収容する土砂の計測データである第2計測データに基づいて土砂の表面形状を示す第2形状データを算出する。第2時点は、例えば掘削動作期間及び/又は持ち上げ動作期間を所定の演算周期で区切ったサンプリング時点を示す。第2形状算出部122の処理の詳細は、例えば以下の通りである。まず、第2形状算出部122は、第2計測データに含まれる複数の画素データのうち深度が閾値以下の画素データを抽出する。この閾値は、第1形状算出部121が使用した上述の閾値と同じである。これにより、第2計測データからバケット403に収容された土砂を開口403aから見たときの画素データが抽出される。抽出される画素データにはバケット403の縁の画素データが含まれていてもよい。次に、第2形状算出部122は、抽出された複数の画素データのそれぞれを測距センサ60の3次元座標空間に配置する3次元座標変換を行う。次に、第2形状算出部122は、3次元座標空間に配置された画素データのうち、バケット403の長手方向に対して平行な平面上に位置する画素データを第2形状データとして抽出する。これにより、前記平面に投影された土砂の輪郭形状を示す第2形状データが得られる。
第2形状データは、例えば、油圧ショベル1の稼働中において所定の演算周期で繰り返し算出されてもよいし、掘削動作中及び/又は持ち上げ動作中において所定の演算周期で繰り返し算出されてもよい。
差分情報算出部125は、第2時点において姿勢センサ50により計測された姿勢データである第2姿勢データと第1姿勢データとの差を示す差分情報を算出する。本実施の形態では、測距センサ60はアーム402に取り付けられているため、差分情報算出部125は、第2時点において姿勢センサ50により計測されたバケット角度と、メモリ124に記憶されたバケット角度との差分角度を差分情報として算出する。
回転処理部126は、第2時点における測距センサ60からバケット403までの作業装置4の姿勢が第1時点における測距センサ60からバケット403までの作業装置4の姿勢に一致するように、差分情報に基づいて、第2形状データを、測距センサ60の3次元座標空間内で回転させる。本実施の形態では、測距センサ60はアーム402に取り付けられている。そのため、回転処理部126は、第1時点における測距センサ60からバケット403までの作業装置4の姿勢と、第2時点における測距センサ60からバケット403までの作業装置4の姿勢とが一致するように、第2形状データを回転させる。具体的には、回転処理部126は、第2時点におけるバケット角度と第2時点におけるバケット角度とが一致するように第2形状データを差分角度回転させる。
例えば、差分角度Δθが第2時点のバケット角度から第1時点のバケット角度を減じた値であるとすると、回転処理部126は、前記平面において第2形状データを-Δθ回転させる行列演算を行うことによって第2形状データを回転させればよい。
測距センサ60からのバケット403の内面の見え方は、バケット角度に応じて異なるが、第2形状データをこのように回転させることで、第2形状データを第1時点のバケット角度と同じバケット角度で計測された形状データにすることができる。
体積算出部127は、回転処理部126によって回転された第2形状データと、メモリ124に記憶された第1形状データとによって囲まれる領域を特定し、特定した領域に基づいて、第2時点においてバケット403が収容する土砂の体積を算出する。具体的には、体積算出部127は、前記領域の面積をバケット403が収容する土砂の断面積として算出し、この断面積にバケット403の横幅を乗じることで土砂の体積を算出すればよい。
ここで、体積算出部127は、前記領域を複数の台形に区画し、各台形の面積を積算することで前記断面積を算出すればよい。
スイッチ70は、半自動運転モード、手動モード、又は完全自動モードで油圧ショベル1を駆動させるオペレータの指示を受け付ける。さらに、スイッチ70は、油圧ショベル1の動作モードを上述した計測モードにするためのオペレータの指示又は第1時点を指定するための計測指示を受け付ける。
表示部80は、体積算出部127が算出した体積を示す画像を表示する。表示される体積は1回の掘削動作により掘削された土砂の体積であってもよい。
次に、計測モードにおける処理について説明する。図4は、計測モードにおける油圧ショベル1の処理の一例を示すフローチャートである。計測モードは、例えば油圧ショベル1の動作モードを計測モードにするためのオペレータの指示がスイッチ70に入力されたときに開始される。
ステップS1では、測距センサ60は、オペレータの操作によって基準バケット角度に位置決めされたバケット403の計測データを第1計測データとして計測する。図8は、基準バケット角度θrefを説明する図である。図8の例では、横方向から見たときのアーム402及びバケット403が示されている。横方向とは、バケット403の回転軸と平行な方向である。長手方向L1はブーム401の先端部401bとアーム402の先端部402bとを繋ぐ直線の方向である。
図8の例では、バケット角度θは、バケット403の長手方向L2と基準方向Lrefとのなす角度である。長手方向L2は、アーム402の先端部402bとバケット403の先端部403bとを繋ぐ直線の方向である。基準方向Lrefは、長手方向L1と長手方向L2とが1直線に揃ったときの長手方向L2である。バケット角度θは、基準方向Lrefに対して先端部403bがアーム402の裏面402aに近づく回転方向(図8の例では反時計回りの回転方向)がプラスであり、先端部403bが裏面402aから離れる回転方向(図8の例では時計回りの回転方向)がマイナスである。このプラスとマイナスの関係は逆であってもよい。
基準バケット角度θrefの一例は、120度である。なお、基準バケット角度θrefは、測距センサ60の視野内にバケット403の内面の全域が入る角度であればどのような角度が採用されてもよい。
第2コントローラ120は、計測モードの開始時に、空状態のバケット403のバケット角度を基準バケット角度にするための操作をオペレータに促す映像を表示部80に表示してもよい。
図4に参照を戻す。ステップS2では、第1形状算出部121は、ステップS1で計測された第1計測データを3次元座標空間に配置する3次元座標変換を行う。
ステップS3では、第1形状算出部121は、3次元座標空間に配置された画素データのうち、バケット403の長手方向に対して平行な平面上に位置する画素データを第1形状データとして算出する。
図5は、測距センサ60が計測した第1計測データの一例を示す図である。図5に示すように、第1計測データには、開口403a側から見たバケット403の内面を示す画素データからなるバケット領域501と、バケット403の背景とが含まれていることがわかる。ここでは、説明の便宜上、バケット領域501の濃度は一定で表されているが、実際にはこの濃度は測距センサ60とバケット403との距離に応じた濃淡で表される。さらに、背景の濃度は白一色で表されているが、実際には、この濃度はバケット403の周囲にある物体(例えば、地面)と測距センサ60との距離に応じた濃淡で表される。
第1形状算出部121は、図5に示されるような第1計測データから深度が閾値以下の画素データを抽出し、3次元座標空間に配置する。これにより、バケット領域501を構成する画素データが3次元座標空間に配置される。
第1形状算出部121は、3次元座標空間に配置された画素データに平面502を設定する。この平面502は、バケット403の長手方向L2と平行且つバケット403の開口面と直交する平面である。さらに、この平面502は、バケット403の横方向のほぼ中央に設定されている。次に、第1形状算出部121は、バケット領域501の画素データのうち、平面502に含まれる画素データを抽出する。
図6は、バケット領域501に設定された平面502に含まれる画素データの一例を示す図である。平面502は縦方向にY軸、横方向にZ軸が設定されている。Y軸は測距センサ60の3次元座標空間における高さ方向を示す。Z軸はこの3次元座標空間における奥行き方向を示す。なお、この3次元座標空間は、X、Y、Zの3軸からなる3次元直交座標系の空間である。X軸は油圧ショベル1の横方向を示す。
平面502には、空状態のバケット403の内面を示す複数の画素データ602が配置されている。第1形状データ601は、これら複数の画素データ602により構成される。以上により第1形状データ601が算出される。
図4に参照を戻す。ステップS4では、姿勢データ取得部123は、第1形状データと基準バケット角度とを対応づけてメモリ124に記憶する。
以上により計測モードの処理が終了される。続いて、バケット403が収容する土砂の体積を算出する処理が説明される。図7は、体積が算出される処理の一例を示すフローチャートである。なお、図7のフローは所定の演算周期で繰り返し実行される。図7のフローの1ループの処理は第2時点における処理となる。
ステップS11では、測距センサ60は、第2時点における計測データである第2計測データを計測する。ステップS12では、姿勢データ取得部123は、第2時点において姿勢センサ50により計測されたバケット角度を取得する。
ステップS13では、第2形状算出部122は、第2計測データから深度が閾値以下の画素データを抽出し、抽出した画素データを3次元座標空間に配置する。
ステップS14では、第2形状算出部122は、3次元座標空間に配置された画素データのうち平面502にある画素データを抽出することで第2形状データを算出する。これにより、第2時点においてバケット403が収容する土砂の表面の輪郭形状を示す第2形状データが得られる。
ステップS15では、差分情報算出部125は、ステップS12で取得されたバケット角度と、メモリ124に記憶された基準バケット角度との差分角度を算出する。
ステップS16では、回転処理部126は、ステップS14で算出された第2形状データをステップS15で算出された差分角度、回転させる。回転処理の詳細は上述したため、ここでは説明が省略される。
ステップS17では、体積算出部127は、第1形状データと、ステップS16で回転された第2形状データとを平面502に重畳する。図9は、第1形状データ601と第2形状データ901とが重畳される処理の説明図である。図9において左図はメモリ124に記憶された第1形状データ601を示し、中図は回転後の第2形状データを示し、右図は重畳後の第1形状データ601及び第2形状データ901を示している。
中図に示されるように回転処理により、第2形状データ901は、基準バケット角度と同じバケット角度で計測された形状データにされている。そのため、右図に示すように、平面502に第1形状データ601と第2形状データ901とを重畳させることで、第1形状データ601と第2形状データ901とで取り囲まれる領域1001が形成される。
図7に参照を戻す。ステップS18では、体積算出部127は、バケット403に収容された土砂の断面積を算出する。図10は、土砂の断面積が算出される処理の説明図である。
体積算出部127は、平面502に配置された第1形状データ601を構成する画素データ602を用いて第1形状データ601の輪郭線6011を算出する。さらに、体積算出部127は、平面502に配置された回転後の第2形状データ901を用いて第2形状データ901の輪郭線9011を算出する。そして、体積算出部127は、輪郭線6011と輪郭線9011とにより囲まれる領域1001を抽出する。
領域1001を抽出した体積算出部127は、領域1001をY軸と平行な複数の直線1003で区切り、各直線1003と輪郭線6011との交点、並びに各直線1003と輪郭線9011との交点を求める。交点を求めた体積算出部127は、隣接する交点同士を直線でつなぐ。これにより、領域1001は、長手方向がY軸と平行であり、Z軸方向に配列された複数の台形1002に区画される。この区画が終了した体積算出部127は、各台形1002の面積を求め、求めた面積を積算する。これにより、台形近似により領域1001の面積、すなわち、土砂の断面積が算出される。
図7に参照を戻す。ステップS19では、体積算出部127は、ステップS18で算出した土砂の断面積にバケット403の横幅を乗じることで、土砂の体積を算出する。ステップS19の処理が終了すると、処理はステップS11に戻される。
図11は、土砂の体積の算出処理の説明図である。図11に示すように、土砂の体積は、ステップS18で算出された土砂の断面積に予め定められたバケット403の横幅1101を乗じることで算出される。横幅1101は、例えばメモリ124に記憶されている。
以上説明したように、本実施の形態によれば、第1時点において、空状態のバケット403の形状データである第1形状データが算出され、第1時点におけるバケット角度と対応づけてメモリ124に記憶される。第2時点において、土砂を収容したバケット403の形状データである第2形状データが算出される。第1時点におけるバケット角度と第2時点におけるバケット角度との差分角度が算出される。第2形状データは、座標空間内において差分角度回転される。これにより、回転後の第2形状データは、第1時点におけるバケットと同じ姿勢で計測された形状データとなる。その結果、回転後の第2形状データと第1形状データとに囲まれる領域に基づいて第2時点の収容物の体積が算出可能となり、収容物の体積を正確に算出できる。
また、メモリ124を備えているため、1度、空状態のバケットの第1形状データを算出すれば、以後、作業装置を所定の姿勢にしなくても、第2形状データから第2時点における収容物の体積が算出可能となる。その結果、収容物が収容される毎に作業装置を所定に姿勢にする必要がなくなり、作業効率の低下を防止できる。さらに、メモリ124を備えているため、第2形状データを算出する毎に収容物の体積を算出することが可能となり、この体積の算出処理をリアルタイムで実行できる。
本発明は、下記の変形例が採用できる。
(1)図5の例では、第1形状データは1枚の平面502に位置する画素データで構成されていたが、本発明はこれに限定されない。第1形状データは、N(2以上の整数)枚の平面502のそれぞれに配置された画素データで構成されてもよい。第2形状データも、第1形状データと同様、N枚の平面502のそれぞれに配置された画素データで構成されてもよい。
この場合、第2コントローラ120は下記の処理により土砂の体積を算出すればよい。まず、回転処理部126は、N枚の平面502のそれぞれに配置された第2形状データを差分角度回転させる。次に、体積算出部127は、回転後のN個の第2形状データと、N個の第2形状データに対応するN個の第1形状データとによって囲まれるN個の断面積を算出する。N個の第2形状データに対応するN個の第1形状データとは、例えば、1枚目の平面502に配置された第2形状データにおいては、1枚目の平面502に配置された第1形状データが該当し、例えば2枚目の平面502に配置された第2形状データにおいては、2枚目の平面502に配置された第1形状データが該当する。次に、体積算出部127は、N個の断面積の積算値を土砂の体積として算出する。この構成によれば、土砂の体積がより正確に算出される。
(2)図1の例では、測距センサ60は、アーム402の裏面402aに取り付けられていたが、本発明はこれに限定されない。測距センサ60は、ブーム401の裏面401aに取り付けられていてもよい。
この場合の第2コントローラ120の処理は、下記の通りである。姿勢データ取得部123は、第1時点におけるバケット角度及びアーム角度を第1姿勢データとして取得し、第1姿勢データを第1形状算出部121により算出された第1形状データと対応づけてメモリ124に記憶する。姿勢データ取得部123は、第2時点におけるバケット角度及びアーム角度を第2姿勢データとして取得する。差分情報算出部125は、第2時点におけるアーム角度と第1時点におけるアーム角度との差分角度であるアーム差分角度を算出する。差分情報算出部125は、第2時点におけるバケット角度と第1時点におけるバケット角度との差分角度であるバケット差分角度を算出する。回転処理部126は、第2時点におけるアーム402及びバケット403の姿勢が第1時点におけるアーム402及びバケット403の姿勢と一致するように、アーム差分角度とバケット差分角度とを用いて第2形状データを回転させる。
回転処理が終了すると、体積算出部127は、上記と同様に、回転後の第2形状データと第1形状データとを用いて土砂の体積を算出する。
この構成によれば、測距センサ60がブーム401に取り付けられた場合においても、バケット403が収容する体積が算出可能となる。
さらに、測距センサ60は上部旋回体3の前面に取り付けられてもよい。この場合、第1時点におけるブーム角度、アーム角度、及びバケット角度と、第2時点におけるブーム角度、アーム角度、及びバケット角度とのそれぞれの差分角度である、ブーム差分角度、アーム差分角度、及びバケット差分角度を算出する。回転処理部126は、第2時点におけるブーム401、アーム402、及びバケット403の姿勢が第1時点におけるブーム401、アーム402、及びバケット403の姿勢と一致するように、ブーム差分角度とアーム差分角度とバケット差分角度とを用いて第2形状データ901を回転させる。
回転処理が終了すると、体積算出部127は、上記と同様に回転後の第2形状データ901と第1形状データとを用いて土砂の体積を算出する。この構成によれば、上部旋回体3に測距センサ60が取り付けられている場合において、作業装置4の上部旋回体3側の部材に測距センサ60が取り付けられている場合において、バケット403が収容する土砂の体積が算出可能となる。
(3)上記実施の形態において、計測装置は油圧ショベル1に適用されたがこれに限定されない。計測装置は、油圧ショベル1などの建設機械以外の機械、例えばアームロボットに適用されてもよい。このアームロボットは、本体部と作業装置とを備えている。作業装置は本体部に対して回動自在に取り付けられた腕部材と、腕部材の先端に回動可能に取り付けられた容器とを含む。腕部材は1以上の関節を含みその姿勢が変更可能に構成されている。容器は、掬い動作により例えば収容物を収容し、特定の位置にて収容物を排出する。収容物は、例えばポップコーンのような粒状の食品であってもよいし、ビーズのような食品とは異なる物質であってもよいし、粉末薬品などであってもよい。この構成によれば、計測装置をアームロボットに適用した場合においても、容器が収容する収容物の体積が算出可能となる。
(4)図1の例では、第2コントローラ120は、油圧ショベル1に実装されたが、これに限定されない。第2コントローラ120は、油圧ショベル1に対してネットワークを介して接続されたサーバに実装されてもよい。この場合、サーバは、油圧ショベル1に実装された測距センサ60及び姿勢センサ50から姿勢データ及び計測データを取得すればよい。ネットワークは例えばローカルエリアネットワークであってもよいし、インターネット及び携帯電話通信網を含むワイドエリアネットワークであってもよい。
(5)上記実施の形態において表示部80はバケット403が収容する土砂の体積を示す画像を表示するが、本発明はこれに限定されない。例えば、体積算出部127は、算出した体積に予め定められた土砂の比重を乗じることで土砂の重量を算出し、表示部80に表示させてもよい。この構成によれば、オペレータにバケット403が収容する土砂の重量が報知可能となる。さらに、体積算出部127は、算出した重量から油圧ショベル1の作業量を算出して表示部80に表示してもよい。この場合、体積算出部127は、例えば1日あたり、1時間あたりなどの単位時間あたりにバケット403が収容した土砂の体積の合計値を算出し、この合計値に基づいて単位時間あたりの作業量を算出すればよい。
さらに、体積算出部127は、算出した体積の合計値が土砂の排土先となるダンプトラックの上限積載量以上になった場合、そのことを示す情報を表示部80に表示させてもよい。
1 :油圧ショベル
2 :下部走行体
3 :上部旋回体
4 :作業装置
60 :測距センサ
61 :ブーム角度センサ
70 :スイッチ
80 :表示部
90 :コントローラ
110 :第1コントローラ
120 :第2コントローラ
121 :第1形状算出部
122 :第2形状算出部
123 :姿勢データ取得部
124 :メモリ
125 :差分情報算出部
126 :回転処理部
127 :体積算出部
601 :第1形状データ
901 :第2形状データ

Claims (7)

  1. 本体部に対して起伏可能に取り付けられた腕部材であって、当該腕部材の姿勢の変更を可能にする1以上の関節を含む腕部材と、前記腕部材に対して回転可能に取り付けられる容器であって、当該容器に対する収容物の出入を許容する開口をもつ容器と、を含む作業装置において、前記容器の収容物の体積を計測する計測装置であって、
    前記腕部材に取り付けられ、物体の距離を示す計測データを計測する測距センサと、
    前記作業装置の姿勢を示す姿勢データを計測する姿勢センサと、
    前記測距センサにより計測された空状態の前記容器の前記計測データである第1計測データに基づいて前記容器の輪郭形状を示す第1形状データを算出する第1形状算出部と、
    前記第1計測データが計測された第1時点における前記姿勢データである第1姿勢データと前記第1形状データとを対応づけて記憶するメモリと、
    前記第1時点より後の第2時点において、前記測距センサにより計測された前記容器が収容する前記収容物の前記計測データである第2計測データに基づいて前記収容物の表面形状を示す第2形状データを算出する第2形状算出部と、
    前記第2時点において前記姿勢センサにより計測された前記姿勢データである第2姿勢データと前記第1姿勢データとの差を示す差分情報を算出する差分情報算出部と、
    前記第2時点における前記測距センサから前記容器までの前記作業装置の姿勢が前記第1時点における前記測距センサから前記容器までの前記作業装置の姿勢に一致するように、前記差分情報に基づいて前記第2形状データを前記測距センサの3次元座標空間内で回転させる回転処理部と、
    回転された前記第2形状データと前記第1形状データとによって囲まれる領域を特定し、特定した前記領域に基づいて、前記第2時点における前記容器の前記収容物の体積を算出する体積算出部とを備える、
    計測装置。
  2. 前記第1形状データは、前記腕部材に対する前記容器の回転軸に対して直交する前記3次元座標空間内の平面に投影された前記容器の輪郭形状を示し、
    前記第2形状データは、前記平面に投影された前記収容物の表面形状を示し、
    前記回転処理部は、前記平面において、前記第2形状データを前記差分情報に基づいて回転させ、
    前記体積算出部は、前記平面において、回転された第2形状データと前記第1形状データとによって囲まれる領域を特定し、前記領域に基づいて前記収容物の断面積を算出し、前記断面積に前記容器の横幅を乗じて前記収容物の体積を算出する、
    請求項1記載の計測装置。
  3. 前記断面積は、前記第1形状データと前記第2形状データとによって囲まれる領域を複数の台形に区画し、各台形の面積を積算することによって算出される、
    請求項2記載の計測装置。
  4. 前記腕部材は、前記開口と対向する対向面を含み、
    前記測距センサは、前記対向面に取り付けられている、
    請求項1~3のいずれかに記載の計測装置。
  5. 前記腕部材は、建設機械の本体部に起伏可能に取り付けられている、
    請求項1~4のいずれかに記載の計測装置。
  6. 前記収容物は、土砂である、
    請求項1~5のいずれかに記載の計測装置。
  7. 本体部に対して起伏可能に取り付けられた腕部材であって、当該腕部材の姿勢の変更を可能にする1以上の関節を含む腕部材と、前記腕部材に対して回転可能に取り付けられるバケットとを含む作業装置と、
    前記腕部材に取り付けられ、物体の距離を示す計測データを計測する測距センサと、
    前記作業装置の姿勢を示す姿勢データを計測する姿勢センサと、
    前記測距センサにより計測された空状態の前記バケットの前記計測データである第1計測データに基づいて前記バケットの輪郭形状を示す第1形状データを算出する第1形状算出部と、
    前記第1計測データが計測された第1時点における前記姿勢データである第1姿勢データと、前記第1形状データとを対応づけて記憶するメモリと、
    前記第1時点より後の第2時点において、前記測距センサにより計測された前記バケットが収容する土砂の前記計測データである第2計測データに基づいて前記土砂の表面形状を示す第2形状データを算出する第2形状算出部と、
    前記第2時点において前記姿勢センサにより計測された前記姿勢データである第2姿勢データと前記第1姿勢データとの差を示す差分情報を算出する差分情報算出部と、
    前記第2時点における前記測距センサから前記バケットまでの前記作業装置の姿勢が前記第1時点における前記測距センサから前記バケットまでの作業装置の姿勢に一致するように、前記差分情報に基づいて、前記第2形状データを前記測距センサの3次元座標空間内で回転させる回転処理部と、
    回転された前記第2形状データと前記第1形状データとによって囲まれる領域を特定し、特定した前記領域に基づいて、前記第2時点における前記バケットの前記土砂の体積を算出する体積算出部とを備える、
    建設機械。
JP2019213340A 2019-11-26 2019-11-26 計測装置、及び建設機械 Active JP7246294B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019213340A JP7246294B2 (ja) 2019-11-26 2019-11-26 計測装置、及び建設機械
CN202080080587.5A CN114761642B (zh) 2019-11-26 2020-10-14 测量装置以及工程机械
EP20893901.7A EP4047142A4 (en) 2019-11-26 2020-10-14 MEASURING DEVICE AND CONSTRUCTION MACHINE
US17/778,942 US20220412056A1 (en) 2019-11-26 2020-10-14 Measuring device, and construction machine
PCT/JP2020/038819 WO2021106410A1 (ja) 2019-11-26 2020-10-14 計測装置、及び建設機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213340A JP7246294B2 (ja) 2019-11-26 2019-11-26 計測装置、及び建設機械

Publications (2)

Publication Number Publication Date
JP2021085178A JP2021085178A (ja) 2021-06-03
JP7246294B2 true JP7246294B2 (ja) 2023-03-27

Family

ID=76087049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213340A Active JP7246294B2 (ja) 2019-11-26 2019-11-26 計測装置、及び建設機械

Country Status (5)

Country Link
US (1) US20220412056A1 (ja)
EP (1) EP4047142A4 (ja)
JP (1) JP7246294B2 (ja)
CN (1) CN114761642B (ja)
WO (1) WO2021106410A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023057349A (ja) * 2021-10-11 2023-04-21 国立大学法人広島大学 バケット情報取得装置およびこれを備えた建設機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241300A (ja) 2007-03-26 2008-10-09 Komatsu Ltd 油圧ショベルの作業量計測方法および作業量計測装置
WO2016092684A1 (ja) 2014-12-12 2016-06-16 株式会社日立製作所 体積推定装置およびそれを用いた作業機械
WO2019189260A1 (ja) 2018-03-27 2019-10-03 住友重機械工業株式会社 ショベル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085583A (en) * 1999-05-24 2000-07-11 Carnegie Mellon University System and method for estimating volume of material swept into the bucket of a digging machine
AU2005227398B1 (en) * 2005-10-28 2006-04-27 Leica Geosystems Ag Method and apparatus for determining the loading of a bucket
WO2016170665A1 (ja) * 2015-04-24 2016-10-27 株式会社日立製作所 体積推定装置、それを備えた作業機械、および体積推定システム
JP7210129B2 (ja) * 2016-03-16 2023-01-23 住友重機械工業株式会社 ショベル
JP6866070B2 (ja) * 2016-03-16 2021-04-28 住友重機械工業株式会社 ショベル
US10733752B2 (en) * 2017-07-24 2020-08-04 Deere & Company Estimating a volume of contents in a container of a work vehicle
JP6868938B2 (ja) * 2017-08-24 2021-05-12 日立建機株式会社 建設機械の荷重計測システム
KR102125282B1 (ko) * 2017-09-06 2020-06-23 히다찌 겐끼 가부시키가이샤 작업 기계
KR102230061B1 (ko) * 2017-10-27 2021-03-19 히다치 겡키 가부시키 가이샤 적입량 적산 장치 및 적입량 적산 시스템
CN109680738B (zh) * 2019-02-12 2024-02-27 徐州徐工挖掘机械有限公司 一种液压挖掘机物料在线称重装置及方法
CN109948189B (zh) * 2019-02-19 2023-05-05 江苏徐工工程机械研究院有限公司 一种挖掘机铲斗物料体积与重量测量***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241300A (ja) 2007-03-26 2008-10-09 Komatsu Ltd 油圧ショベルの作業量計測方法および作業量計測装置
WO2016092684A1 (ja) 2014-12-12 2016-06-16 株式会社日立製作所 体積推定装置およびそれを用いた作業機械
WO2019189260A1 (ja) 2018-03-27 2019-10-03 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
EP4047142A4 (en) 2023-01-11
CN114761642A (zh) 2022-07-15
JP2021085178A (ja) 2021-06-03
WO2021106410A1 (ja) 2021-06-03
EP4047142A1 (en) 2022-08-24
US20220412056A1 (en) 2022-12-29
CN114761642B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US20180120098A1 (en) Volume Estimation Apparatus, Working Machine Including the Same, and Volume Estimation System
WO2021106411A1 (ja) 計測装置、操作支援システム、及び建設機械
JP5108350B2 (ja) 油圧ショベルの作業量計測方法および作業量計測装置
JP7274831B2 (ja) 作業機械
CN111954737B (zh) 挖土机
CN112962709B (zh) 工程机械设备及其作业轨迹规划方法和***、存储介质
JP2022168304A (ja) 積込機械の制御装置、遠隔操作システム、および制御方法
JP7188940B2 (ja) 制御装置、積込機械、および制御方法
KR102259549B1 (ko) 작업 기계
WO2019125668A1 (en) Method and system for monitoring a rotatable implement of a machine
JP7199865B2 (ja) 作業機械を制御するためのシステム及び方法
KR102402518B1 (ko) 작업 기계
WO2020054366A1 (ja) 作業機械の制御システム及び方法
US20150315765A1 (en) Excavation system providing linkage placement training
CA3029812A1 (en) Image display system of work machine, remote operation system of work machine, work machine, and method for displaying image of work machine
KR20190034648A (ko) 작업 기계
US20180313061A1 (en) Control system using fuzzy logic to display machine productivity data
JP7246294B2 (ja) 計測装置、及び建設機械
KR20210122246A (ko) 쇼벨
JP7289701B2 (ja) ショベル
EP4202129A1 (en) Target path changing system for attachment
JP7287320B2 (ja) 作業機械
JP7404280B2 (ja) ショベル
WO2023136326A1 (ja) 作業機械
JP7268577B2 (ja) 作業機械

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230314

R150 Certificate of patent or registration of utility model

Ref document number: 7246294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150