JP7213401B2 - Composite material and its manufacturing method - Google Patents

Composite material and its manufacturing method Download PDF

Info

Publication number
JP7213401B2
JP7213401B2 JP2020529506A JP2020529506A JP7213401B2 JP 7213401 B2 JP7213401 B2 JP 7213401B2 JP 2020529506 A JP2020529506 A JP 2020529506A JP 2020529506 A JP2020529506 A JP 2020529506A JP 7213401 B2 JP7213401 B2 JP 7213401B2
Authority
JP
Japan
Prior art keywords
immersion
carbon
composite
scaffold
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020529506A
Other languages
Japanese (ja)
Other versions
JP2021504286A (en
Inventor
艶華 頼
震 董
明新 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Publication of JP2021504286A publication Critical patent/JP2021504286A/en
Application granted granted Critical
Publication of JP7213401B2 publication Critical patent/JP7213401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

<関連出願の相互参照>
本願は2017年11月30日に提出された出願番号2017112418591の中国発明特許に基づき優先権を主張する。
<Cross reference to related applications>
This application claims priority from a Chinese invention patent with application number 2017112418591 filed on Nov. 30, 2017.

本発明は電池、環境保護、吸着式除湿、エアコン、冷凍、ヒートポンプ、変圧分離精製及び水素貯蔵の技術分野に属し、特に複合材料及びその製造方法に関する。 The present invention belongs to the technical fields of batteries, environmental protection, adsorption dehumidification, air conditioners, refrigeration, heat pumps, pressure separation purification and hydrogen storage, and more particularly to composite materials and their preparation methods.

複合多孔質材料は吸着、カタリシス、環境保護、電池などの分野で幅広く適用されている。多孔質材料は基材として、吸着剤、触媒及び電池の電極材料を担持し、性能に優れた複合多孔質材料を形成することで、担持材の分散度や利用率や活性を向上させ、その重要な機能の減衰を遅延するとともに、その伝熱・物質移動ないし導電能力を強化する。目下、複合多孔質材料は簡単な混合又は浸漬などの方法を採用することが多く、プロセスが相対的に簡単である。簡単な混合の場合、担持材の高度分散を図りにくく、ミクロレベルでの担持材と多孔質支持骨格材料との嵌合が緊密せず、ミクロレベルでの伝熱・物質移動又は導電性能の改善に限りがある。浸漬法において、単分子層の分散が実現された前提では、担持量が基材の比表面積に制限され、単位質量又は体積の担持量が限られている。これらの2種類の方法によって得られた複合多孔質材料は使用中で、例えば周期性冷熱交替、長時間の高温などの現場状況に制限され、担持材が次第に不活性化になり、吸着やカタリシスなどの能力を失い、耐減衰能力が悪くなり、寿命周期が短くなる傾向がある。 Composite porous materials have been widely applied in the fields of adsorption, catalysis, environmental protection, batteries and so on. Porous materials support adsorbents, catalysts, and battery electrode materials as base materials to form composite porous materials with excellent performance, thereby improving the degree of dispersion, utilization, and activity of the support materials. It delays the decay of important functions and enhances its heat and mass transfer or conductive capabilities. At present, composite porous materials often adopt methods such as simple mixing or soaking, and the process is relatively simple. In the case of simple mixing, it is difficult to achieve a high degree of dispersion of the support material, and the fit between the support material and the porous support framework material at the micro level is not tight, and the heat transfer/mass transfer or conductive performance at the micro level is improved. is limited. In the immersion method, on the premise that the monomolecular layer is dispersed, the supported amount is limited to the specific surface area of the substrate, and the supported amount per unit mass or volume is limited. The composite porous materials obtained by these two methods are limited to field conditions such as cyclic heat and cold cycles, prolonged high temperature, etc., during use, where the support material is gradually deactivated, resulting in adsorption and catalysis. It tends to lose such ability, deteriorate its resistance to decay, and shorten its life cycle.

上記の欠点を克服するために、本発明は比表面積を向上させ、担持量を増加することができるとともに、ミクロレベルでの分散が均一で且つ嵌合が緊密であり、耐減衰能力が強い複合多孔質材料及びその製造方法を提供することを目的とする。 In order to overcome the above drawbacks, the present invention improves the specific surface area, increases the amount of support, and provides a composite with uniform dispersion at the micro level, tight fitting, and strong damping resistance. An object of the present invention is to provide a porous material and a method for producing the same.

従来の技術は、一般には、簡単な混合又は浸漬の手法を使い、高温焼成手段により、材料を多孔質支持骨格材料の上に担持するので、担持材の凝集現象がよく発生している。この問題を克服するために、製造過程において硬化防止剤及び分散剤を添加して担持材の分散度を向上させることができる。しかし、多孔質材料の比表面積に制限されることで、単分子層の分散の場合、担持量が低くなり、またミクロレベルでの担持材と多孔質支持骨格材料との嵌合が緊密せず、使用中に固まって凝集され不活性化になり、耐減衰能力が弱くなりやすい。 The prior art generally uses simple mixing or dipping techniques, and by means of high-temperature sintering to support the material on the porous scaffold material, so the phenomenon of agglomeration of the support material often occurs. To overcome this problem, anti-hardening agents and dispersants can be added during the manufacturing process to improve the dispersion of the support material. However, due to the limitation of the specific surface area of the porous material, in the case of monomolecular layer dispersion, the amount of support is low, and the micro-level fit between the support material and the porous support framework material is not tight. , during use, it is likely to be hardened, aggregated and deactivated, and its ability to resist decay is likely to be weakened.

そのため、本発明は「担持材の多孔質支持骨格材料の表面における分散の仕組み及び混合炭素質前駆体材料の炭化過程におけるミクロ形態の遷移規律」を系統的に分析した上で、担持材の浸漬溶液に糖を添加し、乾燥処理により糖及び担持材を均一に膜状構造で支持骨格材料の孔隙壁面に初歩的に硬化させ、さらに適切な高温活性化処理により、微小球又は膜構造を形成し、分子及び炭素原子の作用力により、多孔質支持骨格材料の孔隙壁面に嵌め込み、骨格材料と担持材との間の熱交換又は導電能力を強化するとのことを提出している。実験結果により、担持材と糖との炭化によって得られた炭原子は交錯して嵌められ、担持材の吸着、接触反応及び冷熱交替過程における凝集は有効に抑制され、耐減衰能力は強くなり、炭素膜及び/又は炭素微小球内における担持材の分布は均一で、多孔質骨格の壁面において立体的に分布されており、分散強度は確保されながら担持量は向上され、複合材料の比表面積は増大され、担持材利用率と効率は効果的に向上された。 Therefore, the present invention systematically analyzes "the mechanism of dispersion of the support material on the surface of the porous scaffold material and the transition rule of the micromorphology in the carbonization process of the mixed carbonaceous precursor material", and then the immersion of the support material. Sugar is added to the solution, and the sugar and the carrier material are dried to form a uniform film-like structure on the pore walls of the scaffold material. It is proposed that the force of the molecules and carbon atoms will fit into the pore walls of the porous support scaffold material to enhance the heat exchange or electrical conductivity capability between the scaffold material and the support material. Experimental results show that the carbon atoms obtained by the carbonization of the support material and the sugar are interlaced, effectively suppressing the adsorption of the support material, the contact reaction, and the agglomeration in the process of cold-heat exchange. The distribution of the support material in the carbon membrane and/or the carbon microspheres is uniform, and it is three-dimensionally distributed on the walls of the porous skeleton. increased, and the support material utilization and efficiency were effectively improved.

上記の目的を実現するために、本発明は以下のような技術的手段を採用している。 In order to achieve the above object, the present invention employs the following technical means.

本発明が提供する複合材料は、支持骨格と、前記支持骨格上に位置する炭素微小球及び/又は炭素膜と、前記炭素微小球及び/又は炭素膜に分散される担持材とを含む。 A composite material provided by the present invention includes a scaffold, carbon microspheres and/or a carbon membrane positioned on the scaffold, and a support material dispersed in the carbon microspheres and/or the carbon membrane.

本発明に係る「支持骨格」とは、第一、ミクロの孔隙構造が豊富な支持骨格構造を提供し、優れた物質移動能力を保持することと、第二、比表面積が大きく、大きな担持面積を提供し、担持量及び分散の均一性を向上させることと、第三、熱伝導率が大きく、複合材料の優れた伝熱能力を実現することと、第四、導電性が強く、複合材料の優れた電子移動能力を実現するという4つの機能を備える多孔質骨格材料をいう。 The "supporting framework" according to the present invention firstly provides a supporting framework structure rich in micropores and maintains excellent mass transfer ability, and secondly, has a large specific surface area and a large loading area. and improve the uniformity of loading and dispersion; third, high thermal conductivity to realize excellent heat transfer ability of composite materials; It refers to a porous framework material with four functions of realizing excellent electron transfer ability of

勿論、熱伝達又は導電能力に対する要求が高くない複合材料は、例えばバーミキュライト、シリカゲルなどの、高熱伝達又は強導電性の支持骨格材料を採用しなくてもよい。 Of course, composite materials that do not have high requirements for heat transfer or electrical conductivity may not adopt high heat transfer or strong electrical conductivity scaffold materials, such as vermiculite, silica gel, and the like.

発明に係る「炭素微小球」とは、糖膜の昇温溶融過程において、多孔質媒体の表面張力が溶融糖の表面張力より小さい場合、形成された糖微小球が炭化されて形成される炭素微小球をいう。
本発明に係る「炭素膜」とは、糖膜の昇温溶融過程において、多孔質媒体の表面張力が溶融糖の表面張力より大きい場合、直接炭化して得る炭素膜構造をいう。
本発明に係る「担持材」とは、金属イオン又はアンモニウムイオン(NH4+)と酸性イオン又は非金属イオンとが結合した化合物である塩、電池の正負極材料である電極材料、ファンデルワールスにより気体又はイオンを吸着する材料である物理吸着剤をいう。
本発明に係る「糖」とは、ポリヒドロキシ(2つ以上)のアルデヒド(Aldehyde)又はケトン(Ketone)化合物であって、加水分解されてから上記の両者のいずれかになりうる有機化合物をいう。
好ましくは、前記支持骨格の孔隙壁の平均厚さは0.3nm~1mmである。
好ましくは、前記炭素微小球の平均粒径は10nm~0.05mmである。
好ましくは、前記炭素膜の平均厚さは1nm~0.05mmである。
好ましくは、前記担持材の平均粒径は10μmより小さい。
The "carbon microspheres" according to the invention are carbon particles formed by carbonizing the formed sugar microspheres when the surface tension of the porous medium is smaller than the surface tension of the molten sugar in the process of heating and melting the sugar film. Microspheres.
The "carbon membrane" according to the present invention refers to a carbon membrane structure obtained by direct carbonization when the surface tension of the porous medium is greater than the surface tension of the molten sugar during the process of heating and melting the sugar membrane.
The “support material” according to the present invention means a salt that is a compound in which a metal ion or ammonium ion (NH 4+ ) and an acid ion or non-metal ion are combined, an electrode material that is a positive and negative electrode material of a battery, and van der Waals A physical adsorbent is a material that adsorbs gases or ions.
A "sugar" according to the present invention refers to an organic compound that is a polyhydroxy (two or more) Aldehyde or Ketone compound that can be hydrolyzed to either of the above. .
Preferably, the mean thickness of the pore walls of said scaffold is between 0.3 nm and 1 mm.
Preferably, the carbon microspheres have an average particle size of 10 nm to 0.05 mm.
Preferably, the carbon film has an average thickness of 1 nm to 0.05 mm.
Preferably, the average particle size of said support material is less than 10 μm.

好ましくは、前記支持骨格の材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、炭素発泡体、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、バーミキュライト、シリカゲルの少なくとも1種である。 Preferably, the material of the scaffold is at least one of expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, carbon foam, activated carbon, graphite fiber, porous metal, porous ceramic, vermiculite and silica gel. is.

好ましくは、前記塩はLiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、CuCl、ZnCl、AgNO、NaSOからなる群より選ばれる1種又は2種以上の組合せである。
好ましくは、前記電極材料は400℃以上の高温焼成に耐えられ、分解及び/又は変性しなく、例えばTiOである。
好ましくは、前記物理吸着剤は水素貯蔵合金、ゼオライトモレキュラーシーブ、有機金属骨格材料である。
好ましくは、前記多孔質支持骨格と担持材との質量比は1:0.5~9である。
好ましくは、前記糖に含まれる炭素のモル質量と担持材のモル質量との比は0.5~6である。
更に、本発明は、接触熱抵抗が10ー6~10ー4・K/Wである複合材料を提供する。
Preferably, said salt is LiCl, BaCl2 , CaBr2 , NaBr, KBr, LiBr, PbCl2 , LiCl, CaCl2, MnCl2 , BaCl2 , SrCl2 , CoCl2 , MgCl2 , PbCl2 , NiCl2 , FeCl 3 , CuCl 2 , CuCl 2 , ZnCl 2 , AgNO 3 , and Na 2 SO 4 , or a combination of two or more.
Preferably, the electrode material is resistant to high temperature firing above 400° C. and does not decompose and/or denature, eg TiO.
Preferably, said physical adsorbents are hydrogen storage alloys, zeolite molecular sieves, organometallic frameworks.
Preferably, the weight ratio of said porous scaffold to support material is 1:0.5-9.
Preferably, the ratio of the molar mass of carbon contained in the sugar to the molar mass of the support material is 0.5-6.
Furthermore, the present invention provides a composite material having a contact thermal resistance of 10-6 to 10-4 m2 ·K/W.

更に、本発明は、前処理後の多孔質支持骨格を糖及び担持材の混合溶液に浸して乾燥させることで膜を形成して、活性化させることで多孔質支持骨格の壁面に炭素微小球及び/又は炭素膜を形成して複合材料を得るステップを含む、複合材料の製造方法を提供する。
好ましくは、前記多孔質支持骨格と担持材との質量比は1:0.5~9である。
好ましくは、前記糖に含まれる炭素のモル質量と担持材のモル質量との比は0.5~6である。
Furthermore, according to the present invention, the pretreated porous scaffold is immersed in a mixed solution of sugar and a support material and dried to form a membrane. and/or forming a carbon film to obtain a composite material.
Preferably, the weight ratio of said porous scaffold to support material is 1:0.5-9.
Preferably, the ratio of the molar mass of carbon contained in the sugar to the molar mass of the support material is 0.5-6.

好ましくは、前記支持骨格の材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、炭素発泡体、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、バーミキュライト、グラフェン、シリカゲルのうちの少なくとも1種である。 Preferably, the material of the scaffold is expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, carbon foam, activated carbon, graphite fiber, porous metal, porous ceramic, vermiculite, graphene, silica gel. At least one of

好ましくは、前記塩はLiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、CuCl、ZnCl、AgNO、NaSOからなる群より選ばれる1種又は2種以上の組合せである。
好ましくは、前記電極材料は400℃以上の高温焼成に耐えられ、分解及び/又は変性しない。
好ましくは、前記物理吸着剤は水素貯蔵合金、ゼオライトモレキュラーシーブ、有機金属骨格材料である。
Preferably, said salt is LiCl, BaCl2 , CaBr2 , NaBr, KBr, LiBr, PbCl2 , LiCl, CaCl2, MnCl2 , BaCl2 , SrCl2 , CoCl2 , MgCl2 , PbCl2 , NiCl2 , FeCl 3 , CuCl 2 , CuCl 2 , ZnCl 2 , AgNO 3 , and Na 2 SO 4 , or a combination of two or more.
Preferably, the electrode material is resistant to high temperature firing above 400° C. and does not decompose and/or denature.
Preferably, said physical adsorbents are hydrogen storage alloys, zeolite molecular sieves, organometallic frameworks.

好ましくは、前記糖は単糖類、二糖類、多糖類の少なくとも1種であり、好ましくは、グルコース、フルクトース、ガラクトース、スクロース、ラクトース、マルトース、トレハロース、澱粉からなる群より選ばれる1種又は2種以上の組合せである。
好ましくは、前記糖及び担持材の混合溶液には担持材の硬化防止剤及び/又は分散剤がさらに含まれる。
Preferably, the sugar is at least one of monosaccharides, disaccharides and polysaccharides, preferably one or two selected from the group consisting of glucose, fructose, galactose, sucrose, lactose, maltose, trehalose and starch. It is a combination of the above.
Preferably, the mixed solution of sugar and carrier material further contains an anti-hardening agent and/or a dispersant for the carrier material.

本発明における「担持材の硬化防止剤」は主に、担持材の高温活性化過程において発生しうる凝集現象を抑制し、及び/又は担持材の長期減衰性を抑制する助剤であり、例えば、シリカ、リン酸トリカルシウムなどである。 The "anti-hardening agent for the support material" in the present invention is mainly an auxiliary agent that suppresses the aggregation phenomenon that may occur in the high-temperature activation process of the support material and/or suppresses the long-term decay property of the support material. , silica, and tricalcium phosphate.

「担持材の分散剤」は主に、担持材の分散度及び浸漬の均一度を向上させる助剤であり、例えば担持材のCuClにクエン酸アンモニウムを添加することで、その分散度の向上が図れる。
上記補助材料は添加が必要な原料ではなく、必要に応じて添加されるものだけである。
好ましくは、前記前処理の具体的な操作ステップは200~1000℃で、脱酸素又は低酸素雰囲気において支持骨格を膨張させることである。
好ましくは、前記糖及び担持材の混合溶液の製造方法は、常温~120℃で、糖と担持材を均一に混合することである。
好ましくは、前記浸漬処理の条件は、20~120℃で、1min~48h浸すことである。
好ましくは、前記乾燥処理の条件は、20~180℃で、1h~10d乾燥することである。
好ましくは、前記活性化処理の条件は、400~1000℃で、30min~12h活性化することである。
好ましくは、前記浸漬処理の代わりに、シャワーコート処理を採用してもよい。
"Support material dispersant" is mainly an aid to improve the dispersion degree and immersion uniformity of the support material, such as adding ammonium citrate to the support material CuCl2 to improve its dispersion can be achieved.
The above-mentioned auxiliary materials are not raw materials that need to be added, but only those that are added according to need.
Preferably, the specific operating step of said pretreatment is swelling the scaffold at 200-1000° C. in a deoxygenated or low oxygen atmosphere.
Preferably, the method for producing the mixed solution of sugar and carrier material is to uniformly mix sugar and carrier material at room temperature to 120°C.
Preferably, the conditions for the immersion treatment are immersion at 20 to 120° C. for 1 min to 48 hours.
Preferably, the conditions for the drying treatment are drying at 20 to 180° C. for 1 hour to 10 days.
Preferably, the conditions for the activation treatment are activation at 400 to 1000° C. for 30 min to 12 hours.
Preferably, instead of the immersion treatment, a shower coating treatment may be employed.

本発明に係る「浸漬処理」は常圧過量浸漬法、常圧同体積浸漬法、負圧過量浸漬法及び負圧同体積浸漬法のうちの1種を用いることができる。常圧過量及び同体積浸漬法は、大気圧雰囲気において、支持骨格材料を浸漬液に浸漬することであり、負圧過量及び同体積浸漬法は、支持骨格材料を密閉容器内に入れ、まず密閉容器内部の気体を抽出し、真空又は略真空環境を形成した後で、浸漬液を注入することである。常圧浸漬はプロセスが簡単であり、実現しやすいのに対し、負圧浸漬はプロセスが複雑であるが、支持骨格材料の微孔における気体を排出しやすく、浸漬液が支持骨格材料の超微細の微孔に浸入しやすく、支持骨格材料の微孔の利用率を向上させ、担持材の有効な担持量を増加させる。過量浸漬法とは、浸漬液の使用量が支持骨格材料を完全に浸すために必要な量を超えて、浸漬終了後、浸漬材を溶液から取り出すことをいう。同体積浸漬法とは、浸漬液の使用量が支持骨格材料の吸液量と等量であり、両者を混合して浸漬した後で、直接浸漬材を形成することをいう。過量浸漬法はプロセスが簡単であり、プロセス制御パラメータへの要求が少ないが生産性が低いのに対し、同体積浸漬法は配合比率パラメータへの要求が高いが、連続的な工業生産に寄与し、生産された複合材料の性能の安定性が図れる。
更に、本発明は好適な複合材料製造方法を提供し、以下のようなステップを含む。
(1)支持骨格材料の前処理
For the "immersion treatment" according to the present invention, one of the atmospheric pressure excessive immersion method, the atmospheric pressure equal volume immersion method, the negative pressure excessive immersion method and the negative pressure equal volume immersion method can be used. The normal pressure and equal volume immersion method is to immerse the scaffold material in an immersion liquid in an atmospheric pressure atmosphere. It is to inject the immersion liquid after extracting the gas inside the container and forming a vacuum or near-vacuum environment. Normal pressure immersion is a simple process and is easy to implement. It easily penetrates into the micropores of the scaffold material, improves the utilization rate of the micropores of the scaffold material, and increases the effective loading of the support material. The overdipping method means that the amount of immersion liquid used exceeds the amount required for completely immersing the scaffold material, and the immersion material is removed from the solution after the immersion is completed. The same-volume immersion method means that the amount of the immersion liquid used is the same as the liquid absorption amount of the scaffold material, and the two are mixed and immersed, and then the immersion material is formed directly. The overdose immersion method has a simple process, less requirements for process control parameters, but lower productivity, while the equal volume immersion method has higher requirements for blending ratio parameters, but contributes to continuous industrial production. , the stability of the performance of the produced composite material can be achieved.
Further, the present invention provides a preferred method of manufacturing composite materials, comprising the steps as follows.
(1) Pretreatment of scaffold material

支持骨格材料は膨張性黒鉛である場合、黒鉛の多孔質化を実現するように、200~1000℃の温度で脱酸素又は低酸素雰囲気において膨張の前処理を行わなければならない。支持骨格材料は多孔質金属である場合、浸漬液の担持強度を向上させるために、金属酸化物層に対して事前去除処理を行うことができる。多孔質骨格材料は主に、第一、ミクロの孔隙構造が豊富な支持骨格構造を提供し、優れた物質移動能力を保持することと、第二、比表面積が大きく、大きな担持面積を提供し、担持量及び分散均一性を向上させることと、第三、熱伝導率が大きく、複合材料の優れた伝熱能力を実現することと、第四、導電性が強く、複合材料の優れた電子移動能力を実現するという4つの機能を備える。勿論、熱伝達や導電能力に対する要求が高くない複合材料は、例えばバーミキュライト、シリカゲルなどの高熱伝達又は強導電性の支持骨格材料を採用しなくてもよい。
(2)浸漬液の製造
If the scaffold material is expandable graphite, it must be pre-expanded in a deoxygenated or low-oxygen atmosphere at a temperature of 200-1000° C. so as to achieve porosity of the graphite. If the scaffold material is a porous metal, the metal oxide layer can be subjected to a pre-removal treatment in order to improve the holding strength of the immersion liquid. Porous scaffold materials mainly provide a supporting scaffold structure rich in micropores and retain excellent mass transfer ability, and second, have a large specific surface area and provide a large loading area. , to improve the loading and dispersion uniformity; 3. to achieve high thermal conductivity and excellent heat transfer ability of the composite; and 4. to achieve strong electrical conductivity and excellent electron It has four functions of realizing mobility. Of course, composite materials that do not require high heat transfer or electrical conductivity may not adopt high heat transfer or strong electrical conductivity scaffold materials, such as vermiculite and silica gel.
(2) Manufacture of immersion liquid

常温~120℃で、前記の糖、担持材及び補助材料を溶剤に溶解し、均一に攪拌し、この工程において、主に担持材及び糖の溶解度に基づいて浸漬液の設置温度を確定する。このステップでは、主に担持材及び糖の高度分散の実現を目指し、糖は主に活性化のための炭素源を提供する。
(3)浸漬
The above sugar, carrier material and auxiliary material are dissolved in a solvent at normal temperature to 120° C. and stirred uniformly. This step mainly aims at achieving a high degree of dispersion of the support material and the sugar, which mainly provides the carbon source for the activation.
(3) Immersion

支持骨格材料を浸漬液に入れ、常温~120℃の浸漬温度において1min~48h浸して、浸漬材を形成する。このステップでは、糖及び担持材が支持骨格材料の孔隙壁面において均一に分散されることを目指す。
(4)乾燥
The scaffold material is placed in an immersion liquid and immersed at an immersion temperature of room temperature to 120° C. for 1 min to 48 hours to form an immersion material. In this step, the goal is to have the sugar and carrier material evenly distributed on the pore walls of the scaffold material.
(4) Drying

浸漬材を乾燥させ、乾燥温度を常温~220℃とし、乾燥時間を1h~10日とする。この工程では、主に、大部分又は全部の溶剤を除去し、糖及び担持材を均一に膜状構造で支持骨格材料の孔隙壁面に初歩的に硬化させ、骨格材料と担持材との間の熱交換を強化し、ミクロ熱交換を強化することを目指す。
(5)活性化
The immersion material is dried, and the drying temperature is normal temperature to 220° C., and the drying time is 1 hour to 10 days. This step consists mainly of removing most or all of the solvent, preliminarily curing the sugar and the support material in a uniform film-like structure on the pore walls of the scaffold material, and creating a solidified bond between the scaffold material and the support material. Aim to enhance heat exchange and strengthen micro heat exchange.
(5) Activation

脱酸素又は低酸素雰囲気において活性化させ、活性化温度を400~1000℃とし、活性化時間を30min~12hとして、複合材料を得る。この工程では、一部の担持材の脱水性、糖の高温炭化メカニズム及び炭素に対する一部の雰囲気(例えば水蒸気、二酸化炭素)の活性化作用を利用して糖類の分解炭化を行い、支持骨格材料の孔隙壁面エネルギーと溶融状態の糖の表面張力との相互作用を受けて、糖膜は炭素微小球及び/又は炭素膜を形成し、炭原子間に担持材が嵌合され、複合材料を形成することから、多孔質骨格材料の比表面積に制限され、単分子層の分散方法の担持量が少なく、高密度担持の耐減衰能力が悪いなどの欠点を克服している。このステップでは、高温環境は高温炉、電子レンジなどにより提供されうる。 A composite material is obtained by activating in a deoxygenated or low-oxygen atmosphere at an activation temperature of 400 to 1000° C. and an activation time of 30 min to 12 h. In this process, the dehydration properties of some support materials, the high-temperature carbonization mechanism of sugars, and the activating action of some atmospheres (e.g., steam and carbon dioxide) on carbon are used to decompose and carbonize sugars. Under the interaction of the pore wall energy and the surface tension of the sugar in the molten state, the sugar membrane forms carbon microspheres and/or carbon membranes, and the support material is interdigitated between the carbon atoms to form a composite material. Therefore, it overcomes the drawbacks that the specific surface area of the porous skeleton material is limited, the loading amount of the monomolecular layer dispersion method is small, and the attenuation resistance performance of high-density loading is poor. In this step, the high temperature environment may be provided by a high temperature furnace, microwave oven, or the like.

その中、前記複合材料は支持骨格材料、複合材料、炭素微小球及び/又は炭素膜からなり、炭素微小球及び炭素膜における炭原子に複合材料の微粒子及び/又は分子が嵌められ、平均粒径及び/又は厚さが1nm~0.1mmであり、複合材料の平均粒径が一般に10μmより小さい。複合材料は、均一に炭素微小球及び/又は炭素膜に分散される補助材料も含んでもよいが、補助材料を添加しない又は補助材料が製造過程において分解された場合、最終の複合材料には、添加された補助材料がない。 Wherein, the composite material consists of a scaffold material, a composite material, carbon microspheres and/or carbon membranes, carbon atoms in the carbon microspheres and carbon membrane are embedded with fine particles and/or molecules of the composite material, and the average particle size is and/or the thickness is between 1 nm and 0.1 mm and the average grain size of the composite is generally less than 10 μm. The composite material may also contain auxiliary materials that are uniformly dispersed in the carbon microspheres and/or carbon membranes, but if no auxiliary material is added or if the auxiliary material is degraded during the manufacturing process, the final composite material will contain: No auxiliary materials added.

前記の複合材料原料の各成分の配合割合について、担持材の質量を基準とすると、溶剤がその質量の0.1~100倍であり、支持骨格材料がその質量の0.1~100倍であり、糖がその質量の0.01~100倍であり、補助材料がその質量の0~2倍であり、担持材のモル質量を基準とすると、糖に含まれる炭素のモル質量がその0.5ー6倍である。前記溶剤は水及びアルコール類の少なくとも1種であり、前記担持材は必ず溶剤に溶解可能又は均一な懸濁液を形成可能でなければならず、例えば、LiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、CuCl、AgNO、ZnCl、NaSOなどである。前記糖は単糖類、二糖類、多糖類の少なくとも1種であり、例えば、グルコース、フルクトース、ガラクトース、スクロース、ラクトース、マルトース、トレハロース、澱粉などであり、そして溶剤に溶解可能でなければならない。前記支持骨格材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、発泡カーボン、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、モレキュラーシーブ、シリカゲルのうちの少なくとも1種であり、熱伝達物質移動の骨格構造を提供する。前記補助材料は担持材の硬化防止剤、分散剤を含む。担持材の硬化防止剤は主に、複合材料の高温活性化過程において発生しうる凝集現象を抑制し、また複合材料の長期減衰性も抑制することができ、例えばシリカ、リン酸トリカルシウムなどである。分散剤は、主に複合材料の分散度及び浸漬の均一度を向上させるためのものであり、例えばCuClにクエン酸アンモニウムを添加することで、その分散度を向上させることができる。補助材料は添加が必要な原料ではなく、必要に応じて添加されるものである。 Regarding the blending ratio of each component of the composite material raw material, the solvent is 0.1 to 100 times the mass of the support material, and the scaffold material is 0.1 to 100 times the mass of the support material. , the sugar is 0.01 to 100 times its mass, the auxiliary material is 0 to 2 times its mass, and the molar mass of the carbon contained in the sugar is 0, based on the molar mass of the support material 0.5-6 times. The solvent is at least one of water and alcohols, and the support material must be soluble in the solvent or capable of forming a uniform suspension, such as LiCl, BaCl 2 , CaBr 2 , NaBr, KBr, LiBr, PbCl2 , LiCl, CaCl2, MnCl2 , BaCl2 , SrCl2 , CoCl2 , MgCl2 , PbCl2 , NiCl2 , FeCl3 , CuCl2 , CuCl2 , AgNO3 , ZnCl2 , Na2 SO4 and the like. The sugar is at least one of monosaccharides, disaccharides, polysaccharides, such as glucose, fructose, galactose, sucrose, lactose, maltose, trehalose, starch, etc., and must be soluble in a solvent. The scaffold material is at least one of expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, foamed carbon, activated carbon, graphite fiber, porous metal, porous ceramic, molecular sieve, and silica gel. , provides the framework for heat transfer mass transfer. Said auxiliary material includes an anti-hardening agent for the support material and a dispersing agent. The anti-hardening agent of the support material mainly suppresses the aggregation phenomenon that may occur in the high temperature activation process of the composite material, and can also suppress the long-term decay property of the composite material, such as silica, tricalcium phosphate, etc. be. The dispersant is mainly used to improve the dispersion degree and the uniformity of soaking of the composite material, for example, adding ammonium citrate to CuCl2 can improve its dispersion degree. Auxiliary materials are not raw materials that need to be added, but are added as needed.

本発明に係る複合材料の製造ステップにおける(3)浸漬工程は浸漬液で支持骨格材料をシャワーコートすることで実現してもよく、シャワーコート時間は1分間~24時間であり、浸漬温度は常温~120℃であり、シャワーコート工程を採用することは工業生産により適用でき、浸漬工程でより均一にするために、機械による攪拌工程を伴うことができる。 The (3) immersion step in the manufacturing step of the composite material according to the present invention may be realized by shower-coating the scaffold material with an immersion liquid, the shower-coating time being 1 minute to 24 hours, and the immersion temperature being room temperature. ∼120°C, adopting a shower coating process is more applicable for industrial production, and can be accompanied by a mechanical agitation process to make the dipping process more uniform.

本発明に係る浸漬工程は常圧過量浸漬法、常圧同体積浸漬法、負圧過量浸漬法及び負圧同体積浸漬法の内のいずれか1種を適用することができる。常圧過量及び同体積浸漬法は、大気圧雰囲気で、支持骨格材料を浸漬液に浸漬することであり、負圧過量及び同体積浸漬法は支持骨格材料を密閉容器に入れ、まず密閉容器内部の気体を抽出し、真空又は略真空環境を形成した後で、浸漬液を注入する。常圧浸漬はプロセスが簡単であり、実現しやすいのに対し、負圧浸漬はプロセスが複雑であるが、支持骨格材料の微孔における気体を排出しやすく、浸漬液が支持骨格材料の超微細の微孔に浸入しやすく、支持骨格材料の微孔の利用率を向上させ、担持材の有効な担持量を増加させる。過量浸漬法とは、浸漬液の使用量が支持骨格材料を完全に浸すために必要な量を超えて、浸漬終了後、浸漬材を溶液から取り出すことをいう。同体積浸漬法とは、浸漬液の使用量が支持骨格材料の吸液量と等量であり、両者を混合して浸漬した後で、直接浸漬材を形成することをいう。過量浸漬法はプロセスが簡単であり、プロセス制御パラメータへの要求が少ないが生産性が低いのに対し、同体積浸漬法は配合比率パラメータへの要求が高いが、連続的な工業生産に寄与し、生産された複合材料の性能の安定性が図れる。 Any one of a normal pressure excessive immersion method, a normal pressure same volume immersion method, a negative pressure excessive immersion method and a negative pressure same volume immersion method can be applied to the immersion process according to the present invention. The normal pressure and equal volume immersion method is to immerse the scaffold material in the immersion liquid under atmospheric pressure, and the negative pressure and equal volume immersion method involves placing the scaffold material in a closed container, of gas and forming a vacuum or near-vacuum environment before injecting the immersion liquid. Normal pressure immersion is a simple process and is easy to implement. It easily penetrates into the micropores of the scaffold material, improves the utilization rate of the micropores of the scaffold material, and increases the effective loading of the support material. The overdipping method means that the amount of immersion liquid used exceeds the amount required for completely immersing the scaffold material, and the immersion material is removed from the solution after the immersion is completed. The same-volume immersion method means that the amount of the immersion liquid used is the same as the liquid absorption amount of the scaffold material, and the two are mixed and immersed, and then the immersion material is formed directly. The overdose immersion method has a simple process, less requirements for process control parameters, but lower productivity, while the equal volume immersion method has higher requirements for blending ratio parameters, but contributes to continuous industrial production. , the stability of the performance of the produced composite material can be achieved.

本発明に係る複合材料の製造方法について、支持骨格材料、浸漬材又は複合材料をいずれのステップの前後でも、粘着、プレス、切断の少なくとも1種の方法で加工成型できることも特徴とし、その中に、粘着とプレスは粉末状又はペレット状の支持骨格材料、浸漬材又は複合材料に同時に適用可能であり、粘着はまた塊状の材料の接続にも使え、切断は主にチャンクの材料の取扱いに用いられる。このステップは複合材料が必要な形状になることを目的とし、これらの3種類の方法の内の1種、2種又は3種を適用できる。 The method for producing a composite material according to the present invention is also characterized in that the scaffold material, the dipping material or the composite material can be processed and molded by at least one method of adhesion, pressing and cutting before and after any of the steps. , Adhesion and pressing can be applied simultaneously to powdered or pelletized scaffold materials, soaked materials or composite materials, adhesion can also be used to connect bulk materials, and cutting is mainly used for handling chunks of material. be done. This step aims to bring the composite into the required shape and can be applied in one, two or three of these three methods.

本発明に係る複合材料の製造方法において、成型後の複合材料を粘着、半田付け方法の少なくとも1種で熱交換界面に固定し、伝熱を強化することができる。ここでは、粘着に使用される粘着剤は、より優れた伝熱効果を得るために、できるだけ熱伝達能力の優れた熱伝導性接着剤を用いる。また、高すぎる溶接温度による複合材料のミクロ構造への破壊を防ぐために、複合材料の使用温度と熱伝導性接着剤や半田の使用温度とのマッチング及び真空半田付け温度による複合吸着剤への影響を考える必要がある。 In the method for producing a composite material according to the present invention, the molded composite material can be fixed to the heat exchange interface by at least one of adhesive and soldering methods to enhance heat transfer. Here, as the adhesive used for adhesion, a thermally conductive adhesive having as excellent a heat transfer ability as possible is used in order to obtain a more excellent heat transfer effect. Also, in order to prevent damage to the microstructure of the composite material due to excessive welding temperature, the matching of the use temperature of the composite material with the use temperature of the thermally conductive adhesive and solder and the effect of the vacuum soldering temperature on the composite adsorbent were investigated. need to think about

本発明に係る複合材料の製造方法において、粘着又は押圧成型工程では、熱伝達材料を支持骨格材料、浸漬材又は複合材料に添加してから成型してもよく、吸着剤内部の伝熱をさらに強化する。前記熱伝達材料としては、主に、黒鉛、銅、鉄、アルミニウム、炭化ケイ素、アルミナ、窒化アルミニウムなどの粉末又はメッシュ材料を添加する。 In the method for producing a composite material according to the present invention, in the adhesive or press molding step, a heat transfer material may be added to the supporting framework material, the immersion material, or the composite material before molding. Strengthen. The heat transfer material is mainly added with powder or mesh material such as graphite, copper, iron, aluminum, silicon carbide, alumina, aluminum nitride.

本発明に係る複合材料の製造方法の成型過程において、支持骨格材料、浸漬材又は複合材料を熱交換壁面に直接成型し、押圧や粘着や半田付け方法の少なくとも1種により、熱交換面の緊密な接触を実現してもよい。上記した成型後で熱交換界面に吸着剤で粘着し又は半田付けすることと比べると、ここでは、熱伝導性接着剤又は半田への要求がより高く、熱伝導性接着剤の耐熱温度、半田の溶接温度を活性化温度より低くしなければならない。
更に、本発明は、上記方法のいずれかで製造される複合材料を提供する。
更に、本発明は、上記複合材料の何れかを含む吸着式冷凍装置を提供する。
更に、本発明は、上記複合材料の何れかを含むトランスセパレータを提供する。
更に、本発明は、上記複合材料の何れかを含むヒートポンプを提供する。
更に、本発明は、上記複合材料の何れかを含む吸着式除湿装置を提供する。
更に、本発明は、上記複合材料の何れかを含む電池装置を提供する。
更に、本発明は、上記複合材料の何れかを含む水素貯蔵装置を提供する。
In the molding process of the composite material manufacturing method according to the present invention, the support frame material, the dipping material, or the composite material is directly molded on the heat exchange wall surface, and the heat exchange surface is tightly bonded by at least one of pressing, adhesive, and soldering methods. contact can be achieved. Compared to sticking or soldering the heat exchange interface with an adsorbent after molding as described above, here the requirements for the thermally conductive adhesive or solder are higher, the heat resistant temperature of the thermally conductive adhesive, the solder must be below the activation temperature.
Additionally, the present invention provides a composite material produced by any of the above methods.
Further, the present invention provides an adsorption refrigeration system comprising any of the above composite materials.
Additionally, the present invention provides a transformer separator comprising any of the above composite materials.
Furthermore, the present invention provides a heat pump comprising any of the above composite materials.
Further, the present invention provides an adsorption dehumidifier comprising any of the above composite materials.
Furthermore, the present invention provides a battery device comprising any of the above composite materials.
Additionally, the present invention provides a hydrogen storage device comprising any of the above composite materials.

本発明における上記複合材料はいずれも電池、環境保護、吸着式除湿、エアコン、冷凍、ヒートポンプ、変圧分離精製及び水素貯蔵制造などの分野に適用でき、優れた効果を得て、この業界の関連の国際又は国家基準に達成する又はそれより優れている。 Any of the above composite materials in the present invention can be applied in the fields of batteries, environmental protection, adsorption dehumidification, air conditioners, refrigeration, heat pumps, pressure separation purification and hydrogen storage production, etc. Meets or exceeds international or national standards.

(1)本発明の製造プロセスは簡単であり、成型しやすく、原料が簡単に入手でき且つソースが幅広く、生産方式が柔軟で、制御可能であり、工業生産に有利である。本発明において製造される複合材料は支持骨格材料、炭素微小球及び/又は炭素膜及び担持材からなり、担持材は塩、電極材料及び物理吸着剤を含み、炭素微小球及び/又は炭素膜は支持骨格材料の孔隙壁面にしっかり付着し、炭素球の平均粒径が10nm~0.05mmであり、炭素膜の平均厚さが1nm~0.1mmであり、担持材は炭素微小球及び/又は炭素膜に均一に分布され、その平均粒径が少なくとも10μmより小さいことから、担持材は炭原子間に直接嵌められ、耐凝集・耐不活性化能力が明らかに強化され、使用寿命が効果的に向上される。複合材料は従来の骨格材料の比表面積の制限を破り、担持量を増加する前提で、複合材料の比表面積を効果的に増加し、吸着、反応又は電子移動速率を強化することができる。複合材料は押圧、粘着又は半田付け方法で吸着剤と熱交換壁面との緊密な接触を実現しやすく、両者間の接触熱抵抗を効果的に低減する。前記製造方法はプロセスが簡単であり、成型しやすく、工業生産が便利である。 (1) The manufacturing process of the present invention is simple, easy to mold, raw materials are easily available and widely sourced, and the production mode is flexible and controllable, which is advantageous for industrial production. The composite material produced in the present invention consists of a scaffold material, carbon microspheres and/or carbon membranes and a support material, the support material comprising a salt, an electrode material and a physical adsorbent, the carbon microspheres and/or carbon membrane comprising The carbon spheres have an average particle diameter of 10 nm to 0.05 mm, the average thickness of the carbon film is 1 nm to 0.1 mm, and the support material is carbon microspheres and/or It is evenly distributed in the carbon film, and its average particle size is at least less than 10 μm, so that the support material is directly interposed between the carbon atoms, and the anti-agglomeration and anti-deactivation ability is obviously enhanced, and the service life is effective. improved to The composite material breaks the limitation of the specific surface area of the traditional framework material, and on the premise of increasing the loading amount, the specific surface area of the composite material can be effectively increased to enhance the adsorption, reaction or electron transfer rate. The composite material is easy to achieve intimate contact between the adsorbent and the heat exchange wall by pressing, sticking or soldering, effectively reducing the contact thermal resistance between the two. The manufacturing method has a simple process, is easy to mold, and is convenient for industrial production.

(2)本発明において得られる複合材料は、炭素微小球及び/又は炭素膜における担持材の均一な分散を実現し、担持量が大きく、マクロ及びミクロレベルでの伝熱・物質移動のいずれも明らかに強化される。 (2) The composite material obtained in the present invention realizes uniform dispersion of the support material in the carbon microspheres and / or carbon membrane, has a large amount of support, and has both macro- and micro-level heat transfer and mass transfer. clearly strengthened.

(3)本発明において得られる複合材料は、従来の骨格材料の比表面積の制限を破り、担持量を増大させる前提で、複合材料の比表面積を効果的に増加し、吸着、反応又は電子移動速率を強化することができる。
(4)本発明において得られる複合材料は、担持材が炭原子間に直接嵌合され、耐凝集・耐不活性化能力が明らかに強化され、使用寿命が効果的に向上される。
(3) The composite material obtained in the present invention overcomes the limitation of the specific surface area of the conventional framework material, and on the premise of increasing the amount supported, effectively increases the specific surface area of the composite material, resulting in adsorption, reaction, or electron transfer. Speed can be enhanced.
(4) In the composite material obtained in the present invention, the support material is directly interposed between the carbon atoms, which obviously enhances the anti-agglomeration and anti-deactivation ability, effectively improving the service life.

(5)本発明の複合材料は、活性化の前後で、熱交換器の熱交換壁面に押圧、粘着又は半田付けされることができ、その方式が柔軟且つ便利であり、吸着剤と熱交換器との接触熱抵抗を効果的に低減することができる。
(6)本発明の複合材料は構造が簡単で、熱伝達及び電子移動の効率が高く、実用性が強く、普及しやすい。
(5) The composite material of the present invention can be pressed, glued or soldered to the heat exchange wall of the heat exchanger before and after activation, and the method is flexible and convenient, and the adsorbent and heat exchange It can effectively reduce the contact thermal resistance with the vessel.
(6) The composite material of the present invention has a simple structure, high heat transfer and electron transfer efficiency, strong practicability, and is easy to spread.

黒鉛ー炭素微小球ー塩化カルシウムの複合材料のSEMである。SEM of graphite-carbon microspheres-calcium chloride composite. 黒鉛ー炭素膜ー塩化カルシウムの複合材料のSEM画像及びEDS分析である。SEM image and EDS analysis of a graphite-carbon membrane-calcium chloride composite. 黒鉛ー炭素膜ー塩化カルシウムの複合材料及び塩化カルシウムが1000回吸着循環された後のSEMであり、但し、Aは黒鉛ー炭素膜ー塩化カルシウムの複合材料が1000回吸着循環された後のSEMであり、Bは塩化カルシウムが10回吸着循環された後のSEMである。Graphite-carbon film-calcium chloride composite material and SEM after 1000 adsorption cycles of calcium chloride, where A is SEM after 1000 adsorption cycles of the graphite-carbon film-calcium chloride composite material. and B is the SEM after 10 adsorption cycles of calcium chloride. 黒鉛ー炭素微小球ー塩化カルシウムの複合材料及び塩化カルシウムのみによるアンモニアの吸脱着の動力学的比較である。It is a kinetic comparison of adsorption and desorption of ammonia by a composite material of graphite-carbon microspheres-calcium chloride and by calcium chloride alone.

以下、当業者が理解しやすいために、実施例により、本発明の特征及びその他の関連特徴については、さらに詳細に説明する。
(実施例1)
Specific features and other relevant features of the present invention are described in greater detail below by way of examples to facilitate understanding by those skilled in the art.
(Example 1)

本実施例において、担持材は24gの塩化カルシウムであり、支持骨格材料は6gの膨張性黒鉛であり、溶剤は100mLの水であり、糖は6.16gのスクロースである。700℃の脱酸素雰囲気で2分間加熱して、膨張性黒鉛を膨張黒鉛に処理し、塩化カルシウム及びスクロースを50℃の水に溶解するとともに、均一に攪拌し、浸漬液を得る。常圧同体積浸漬法により、55℃の浸漬温度で、黒鉛を浸漬液に1h浸して、浸漬材を形成し、120℃で、浸漬材を12hエアフローして乾燥させ、550℃の温度で、浸漬材を二酸化炭素雰囲気で2.5h活性化させてから、取り出し、乾燥皿において常温に冷却させ、粉末状の複合材料を得る。この複合材料はメタノール、エタノール、アンモニア及び水の吸着に用いられる。このような複合材料の支持骨格は膨張黒鉛であり、図1に示すように、SEMにおいて、壁面に約100nmの平均粒径の炭素微小球が形成され、塩化カルシウムが均一に炭素微小球に担持されることが示されている。XRD分析では、塩化カルシウムの折回ピークは見られない。塩化カルシウムの含有量が約80%である。この粉末吸着剤は金型で押圧成型されてもよく、密度が520kg/mであり、熱伝達硬化粘着剤により、熱交換壁面に粘着され、接触熱抵抗は10-4・K/Wオーダーとされる。図4に示すように、測定状態が同じである場合は、最大吸着量の80%の吸脱着を完了する時間は塩化カルシウムの場合の1/5のみである。
(実施例2)
In this example, the support material is 24 g calcium chloride, the scaffold material is 6 g expandable graphite, the solvent is 100 mL water, and the sugar is 6.16 g sucrose. Heat for 2 minutes in a deoxidized atmosphere at 700° C. to process the expandable graphite into expanded graphite, dissolve calcium chloride and sucrose in water at 50° C., and stir uniformly to obtain an immersion liquid. Graphite is immersed in the immersion solution for 1 h at an immersion temperature of 55°C by the normal pressure equal volume immersion method to form an immersion material, and the immersion material is air-flowed for 12 h at 120°C to dry. After activating the soaked material in carbon dioxide atmosphere for 2.5 hours, it is taken out and cooled to normal temperature in a drying dish to obtain a powdery composite material. This composite material is used for adsorption of methanol, ethanol, ammonia and water. The supporting framework of such a composite material is expanded graphite, and as shown in FIG. shown to be XRD analysis shows no fold peaks for calcium chloride. The content of calcium chloride is about 80%. This powder adsorbent may be press-molded with a mold, has a density of 520 kg/m 3 , is adhered to the heat exchange wall surface by a heat transfer curing adhesive, and has a contact thermal resistance of 10 −4 m 2 K/ W order. As shown in FIG. 4, when the measurement conditions are the same, the time required to complete the adsorption/desorption of 80% of the maximum adsorption amount is only 1/5 that of calcium chloride.
(Example 2)

本実施例において、担持材は24gの塩化カルシウムであり、支持骨格材料は6gの膨張性黒鉛であり、溶剤は100mLの水であり、糖は12gのグルコースである。800℃の脱酸素雰囲気で2分間加熱し、膨張性黒鉛を膨張黒鉛に処理し、塩化カルシウム及びスクロースを50℃の水に溶解するとともに、均一に攪拌し、浸漬液を得る。常圧同体積浸漬法により、55℃の浸漬温度で、黒鉛を浸漬液に1h浸して、浸漬材を形成し、120℃で、浸漬材を12hエアフローして乾燥させ、650℃の温度で、浸漬材を窒素雰囲気で1.5h活性化させてから、取り出して乾燥皿で常温に冷却させ、粉末状の複合材料を得る。この複合材料はメタノール、エタノール、アンモニア及び水の吸着に用いられる。このような複合材料の支持骨格は膨張黒鉛であり、図2に示すように、SEMには、その内部の膨張黒鉛の2次孔隙壁面に約50nmの平均厚さの炭素膜が形成され、塩化カルシウムの含有量が約75%であることが示され、EDS分析により、塩化カルシウムが炭素原子に均一に嵌められていることがわかる。図3により、このような複合材料の場合、1000回の吸着後、そのミクロ構造には明らかに変化が起こらず、耐減衰能力に優れているが、塩化カルシウムのみの場合は10回だけの吸着で、凝集、固まりが発生することがわかる。
(実施例3)
In this example, the support material is 24 g calcium chloride, the scaffold material is 6 g expandable graphite, the solvent is 100 mL water and the sugar is 12 g glucose. Heat for 2 minutes in a deoxidized atmosphere at 800° C. to process the expandable graphite into expanded graphite, dissolve calcium chloride and sucrose in water at 50° C., and stir uniformly to obtain an immersion liquid. Graphite is immersed in the immersion solution for 1 h at an immersion temperature of 55°C by the normal pressure equal volume immersion method to form an immersion material, and the immersion material is air-flowed for 12 h at 120°C to dry. After activating the immersed material in nitrogen atmosphere for 1.5 hours, it is taken out and cooled to room temperature in a drying dish to obtain a powdery composite material. This composite material is used for adsorption of methanol, ethanol, ammonia and water. The supporting framework of such a composite material is expanded graphite, and as shown in FIG. The calcium content is shown to be about 75%, and EDS analysis shows that the calcium chloride is evenly fitted to the carbon atoms. According to FIG. 3, in the case of such a composite material, after 1000 times of adsorption, the microstructure does not change obviously, and the attenuation resistance is excellent. It can be seen that agglomeration and clumping occur.
(Example 3)

本実施例において、担持材は60gの臭化リチウムであり、支持骨格材料は50gの銅発泡体であり、溶剤は50mLの水であり、糖は20gのプルランである。銅発泡体を必要な形状に切断し、酸化層除去処理を行い、臭化リチウム及び澱粉を常温の水に溶解し、均一に攪拌し、浸漬液を得る。常圧過量浸漬法により、80℃の浸漬温度(該浸漬温度下で、澱粉は糊化される)で、銅発泡体を浸漬液に1h浸してから、取り出し、浸漬材を形成し、常温において、2d通気乾燥させ、浸漬材と熱交換壁面に融解点350℃の半田を塗布し、しっかり押え付け、450℃の温度で、真空炉に1h放置することで、活性化及び真空半田付けの過程を同時に完了することができ、複合材料ー熱交換器の一体化の作製を実現し、その接触熱抵抗が10ー5~10ー6・K/Wオーダーである。このような複合材料は主に除湿に用いられる。
(実施例4)
In this example, the support material is 60 g lithium bromide, the scaffold material is 50 g copper foam, the solvent is 50 mL water, and the sugar is 20 g pullulan. The copper foam is cut into a required shape, subjected to oxide layer removal treatment, lithium bromide and starch are dissolved in room temperature water, and stirred uniformly to obtain an immersion liquid. By the normal pressure overdose immersion method, the copper foam is immersed in the immersion liquid at an immersion temperature of 80 ° C. (starch is gelatinized under the immersion temperature) for 1 h, then taken out to form an immersion material. , 2d air drying, apply solder with a melting point of 350 ° C to the immersion material and the heat exchange wall surface, press it firmly, and leave it in a vacuum furnace at a temperature of 450 ° C for 1 h to activate and vacuum soldering process. can be completed at the same time, realizing the fabrication of integrated composite material-heat exchanger, whose contact thermal resistance is on the order of 10 −5 ~10 −6 m 2 ·K/W. Such composite materials are mainly used for dehumidification.
(Example 4)

本実施例において、担持材は30gの一酸化ケイ素であり、支持骨格材料は黒鉛であり、溶剤は100mLの水であり、糖は10gのグルコースである。一酸化ケイ素及びグルコースを50℃の水に溶解し、均一に攪拌し、懸濁の浸漬液を得る。負圧同体積浸漬法により、浸漬温度を60℃とし、浸漬時間を2hとし、浸漬材を形成し、浸漬材を120℃で24h真空乾燥させ、500wの出力で、浸漬材を電子レンジで窒素雰囲気において1000℃より低い温度で12min活性化させ、その後、取り出し、乾燥皿において常温に冷却させ、直接脱酸素雰囲気で押圧成型する。この複合材料はリチウム電池の負極に適用可能である。 In this example, the support material is 30 g silicon monoxide, the scaffold material is graphite, the solvent is 100 mL water and the sugar is 10 g glucose. Silicon monoxide and glucose are dissolved in water at 50° C. and stirred evenly to obtain a suspension dipping liquid. By the negative pressure equal volume immersion method, the immersion temperature is 60 ° C., the immersion time is 2 hours, the immersion material is formed, the immersion material is vacuum dried at 120 ° C. for 24 hours, and the immersion material is microwaved with nitrogen at an output of 500 W. It is activated at a temperature lower than 1000° C. for 12 minutes in an atmosphere, then taken out, cooled to normal temperature in a drying dish, and pressed directly in a deoxygenated atmosphere. This composite material can be applied to the negative electrode of lithium batteries.

要するに、上記は本発明の好適な実施例だけであり、本発明を制限するものではなく、前記の実施例を参照しながら本発明を詳細に説明したが、当業者は、前記の実施例に記載の技術案を補正したり、その中の一部を均等置換することができると理解しうる。本発明の主旨及び原則において行われる補正、均等置換、改良などはいずれも本発明の保護範囲に含まれる。以上図面を参考しながら本発明の具体的な実施形態を説明したが、本発明の保護範囲を制限するわけではなく、当業者が本発明の技術案に基づき、創造的な労働を費やしなくても行える各種の補正又は変形は本発明の保護範囲内に含まれる。 In short, the above is only a preferred embodiment of the present invention, not a limitation of the present invention, and although the present invention has been described in detail with reference to the foregoing embodiments, those skilled in the art will appreciate the It can be understood that the described technical solution can be amended or a part thereof can be equivalently replaced. Any amendment, equivalent substitution, improvement, etc. made within the spirit and principle of the present invention shall fall within the protection scope of the present invention. Although the specific embodiments of the present invention have been described above with reference to the drawings, the protection scope of the present invention is not limited, and those skilled in the art should not spend creative efforts based on the technical solutions of the present invention. Various modifications or variations that can be made fall within the protection scope of the present invention.

Claims (1)

黒鉛ー炭素膜ー塩化カルシウムの複合材料の製造方法であって、
塩化カルシウム、膨張性黒鉛、水、及びスクロースを原料とし、
700℃の脱酸素雰囲気で2分間加熱して、膨張性黒鉛を膨張黒鉛に処理する工程と、
塩化カルシウム及びスクロースを水に溶解し、浸漬液を得る工程と、
前記膨張黒鉛を前記浸漬液に1h浸して、漬材を形成する工程と、
120℃で、前記浸漬材を乾燥させ、550℃の温度で、前記浸漬材を二酸化炭素雰囲気で2.5h活性化させる工程と、を含む
ことを特徴とする複合材料の製造方法。
A method for producing a graphite-carbon film-calcium chloride composite material,
Using calcium chloride, expandable graphite, water, and sucrose as raw materials,
a step of heating for 2 minutes in a deoxidized atmosphere at 700° C. to process the expandable graphite into expandable graphite;
dissolving calcium chloride and sucrose in water to obtain a dip;
a step of immersing the expanded graphite in the immersion liquid for 1 h to form an immersion material;
drying the immersion material at 120° C. and activating the immersion material in a carbon dioxide atmosphere at a temperature of 550° C. for 2.5 h.
JP2020529506A 2017-11-30 2018-11-28 Composite material and its manufacturing method Active JP7213401B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711241859.1A CN108079934B (en) 2017-11-30 2017-11-30 A kind of composite material and preparation method
CN201711241859.1 2017-11-30
PCT/CN2018/117792 WO2019105356A1 (en) 2017-11-30 2018-11-28 Composite material and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2021504286A JP2021504286A (en) 2021-02-15
JP7213401B2 true JP7213401B2 (en) 2023-01-27

Family

ID=62173375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529506A Active JP7213401B2 (en) 2017-11-30 2018-11-28 Composite material and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7213401B2 (en)
CN (1) CN108079934B (en)
WO (1) WO2019105356A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108079934B (en) * 2017-11-30 2019-02-22 山东大学 A kind of composite material and preparation method
CN108704453A (en) * 2018-05-31 2018-10-26 佛山市高明区爪和新材料科技有限公司 A kind of preparation method of air dewetting agent
CN111995798B (en) * 2018-06-18 2022-04-15 杭州沸创生命科技股份有限公司 Composite material containing molecular sieve and fiber, preparation method and application thereof
CN111099943B (en) * 2018-10-29 2021-07-02 中国石油化工股份有限公司 Method for microwave pyrolysis of biomass
CN109225145A (en) * 2018-11-25 2019-01-18 中国科学院合肥物质科学研究院 A kind of preparation method and application of zirconium-based metallic organic coordination compound UiO-66/ Foam carbon composite material
CN110102271B (en) * 2019-05-15 2024-02-13 天津清科环保科技有限公司 Porous section bar containing nano adsorbent for VOCs treatment and method and equipment thereof
CN110890530B (en) * 2019-10-30 2021-04-13 苏州大学 Lithium metal secondary battery based on porous ceramic composite lithium metal cathode and preparation method thereof
CN110957477B (en) * 2019-10-30 2021-04-27 苏州大学 Porous ceramic composite lithium metal cathode and preparation method thereof
CN112892517B (en) * 2019-12-04 2022-07-01 中国科学院大连化学物理研究所 Hybrid carbon material and preparation method thereof, catalyst containing hybrid carbon material and preparation method thereof
CN113013385A (en) * 2019-12-19 2021-06-22 山西沃特海默新材料科技股份有限公司 Coating agent, silicon-carbon material and preparation process
CN111686478B (en) * 2020-06-30 2022-05-24 成都大学 Carbon foam membrane material for oil-water emulsion separation, preparation method and application
CN114432870B (en) * 2020-10-31 2023-05-05 中国石油化工股份有限公司 FCC regenerated flue gas treatment method and device
CN114149056A (en) * 2021-11-22 2022-03-08 青岛农业大学 Preparation and application of heteroatom-containing carbon microsphere particle electrode
CN113990415A (en) * 2021-12-30 2022-01-28 南京师范大学 Three-dimensional catalytic material catalytic characteristic screening system based on neural network
CN114573372B (en) * 2022-03-31 2024-02-23 浙江华熔科技有限公司 High-temperature-resistant and oxidation-resistant graphite microporous plugging agent and preparation method thereof
CN115117327B (en) * 2022-08-25 2022-11-22 溧阳天目先导电池材料科技有限公司 Low-expansion silicon-based composite material and preparation method and application thereof
CN115739027A (en) * 2022-10-21 2023-03-07 合肥工业大学 NH 2 -MIL-101 (Fe) @ BC composite material, application and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169391A1 (en) 2012-05-08 2013-11-14 Stc. Unm Improved hydrothermal stability of oxides with carbon coatings
WO2014080632A1 (en) 2012-11-21 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
CN106784640A (en) 2015-11-25 2017-05-31 北京有色金属研究总院 Lithium ion battery silicon substrate composite negative pole material, its preparation method and the lithium ion battery negative comprising the material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213016B4 (en) * 2002-03-22 2006-08-17 Helsa-Automotive Gmbh & Co. Kg Mechanically stable, porous activated carbon moldings, process for its preparation and its use
CN101003380B (en) * 2006-01-19 2010-05-12 中国石油化工股份有限公司 Method for synthesizing ZSM-5 zeolite with multilevel pore canals
EP2342009B1 (en) * 2008-09-08 2017-03-15 Amminex Emissions Technology A/S Additives for highly compacted ammonia storage materials
WO2011011579A2 (en) * 2009-07-22 2011-01-27 Wisys Technology Foundation, Inc. Carbon microbeads with hierarchical structure
CN102730680B (en) * 2012-07-23 2014-12-03 清华大学深圳研究生院 High-density high-rigidity graphene porous carbon material as well as preparation method and applications thereof
CN103191704B (en) * 2013-04-18 2015-04-22 中国科学技术大学 Composite adsorbent and preparation method thereof
CN103623820B (en) * 2013-11-07 2016-06-15 江苏大学 The noble metal anthraquinone hydrogenation catalyst preparation method that a kind of carbide promotes
CN105498690A (en) * 2016-01-15 2016-04-20 广东工业大学 Composite adsorption material and preparation method thereof
CN108079934B (en) * 2017-11-30 2019-02-22 山东大学 A kind of composite material and preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169391A1 (en) 2012-05-08 2013-11-14 Stc. Unm Improved hydrothermal stability of oxides with carbon coatings
WO2014080632A1 (en) 2012-11-21 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
CN106784640A (en) 2015-11-25 2017-05-31 北京有色金属研究总院 Lithium ion battery silicon substrate composite negative pole material, its preparation method and the lithium ion battery negative comprising the material

Also Published As

Publication number Publication date
JP2021504286A (en) 2021-02-15
WO2019105356A1 (en) 2019-06-06
CN108079934B (en) 2019-02-22
CN108079934A (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP7213401B2 (en) Composite material and its manufacturing method
CN107195875B (en) Composite electrode material with three-dimensional graphene coated MOF and preparation method thereof
Li et al. Review of carbon materials for lithium‐sulfur batteries
Kim et al. Preparation and characterization of graphite foams
CN102814188B (en) Activated carbon coating/foam silicon carbide structural catalyst and preparation method thereof
CN107369563B (en) Preparation method of nickel sulfide particle/cellulose-based composite carbon aerogel material
CN112691645A (en) Carbon aerogel/metal organic framework composite material, preparation method thereof and application thereof in gas storage
JP2015529620A (en) High density and high hardness graphene porous carbon material, method for producing the same, and use thereof
WO2011075965A1 (en) Composite copper powder for manufacturing inner wall capillary structure of heat pipe
CN102515145A (en) Preparation process for high specific surface porous carbon material
CN111592377B (en) Electromagnetic shielding foam composite material and preparation method and application thereof
CN105668552A (en) Preparation method of easy-to-disperse nitrogen-doped graphene powder
CN103663438A (en) Preparation method of porous graphene
CN110289424A (en) A kind of preparation method of MOF derived carbon and cellular porous carbon composite
CN109742355A (en) A kind of preparation of silicon carbon composite materials method
CN105217616A (en) Porous graphene load carbon nano-onions three-dimensional composite material preparation method
US9999867B2 (en) Composite adsorbent material
CN112899515B (en) Preparation method of foamed aluminum-titanium alloy material
CN101961644A (en) Chloride-carbonaceous skeleton composite adsorbent and preparation method thereof
CN105129787A (en) Preparing method of three-dimensional hierarchical porous graphene
CN104693474A (en) Preparation method for three-dimensional porous material
Bonaccorsi et al. Synthesis of SAPO-34/graphite composites for low temperature heat adsorption pumps
CN106395802A (en) Method for preparing graphene porous membrane
CN111850432B (en) Preparation method and application of composite material
CN110105923B (en) Method for simultaneously enhancing stability and thermal conductivity of expanded vermiculite-based composite phase change material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R150 Certificate of patent or registration of utility model

Ref document number: 7213401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150