JP2021504286A - Composite material and its manufacturing method - Google Patents

Composite material and its manufacturing method Download PDF

Info

Publication number
JP2021504286A
JP2021504286A JP2020529506A JP2020529506A JP2021504286A JP 2021504286 A JP2021504286 A JP 2021504286A JP 2020529506 A JP2020529506 A JP 2020529506A JP 2020529506 A JP2020529506 A JP 2020529506A JP 2021504286 A JP2021504286 A JP 2021504286A
Authority
JP
Japan
Prior art keywords
supporting
carbon
alternatively
composite material
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020529506A
Other languages
Japanese (ja)
Other versions
JP7213401B2 (en
Inventor
艶華 頼
艶華 頼
震 董
震 董
明新 呂
明新 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Publication of JP2021504286A publication Critical patent/JP2021504286A/en
Application granted granted Critical
Publication of JP7213401B2 publication Critical patent/JP7213401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、支持骨格と炭素微小球及び/又は炭素膜と担持材とからなり、担持材は塩、電極材料又は物理吸着剤を含み、炭素微小球及び/又は炭素膜は支持骨格材料の孔隙壁面に付着し、担持材は炭素微小球及び/又は炭素膜に分散される複合材料を提供する。複合材料の製造方法は前処理後の支持骨格を糖及び担持材の混合溶液に浸して乾燥させることで成膜し、活性化させることで膜を炭素微小球及び/又は炭素膜に炭化させることを含む。【選択図】図1The present invention comprises a supporting skeleton and carbon microspheres and / or a carbon film and a supporting material, the supporting material contains a salt, an electrode material or a physical adsorbent, and the carbon microspheres and / or the carbon film is a pore in the supporting skeleton material. The carrier provides a composite material that adheres to the wall and is dispersed in carbon microspheres and / or carbon film. The method for producing a composite material is to immerse the supporting skeleton after pretreatment in a mixed solution of sugar and supporting material and dry it to form a film, and by activating it, carbonize the film into carbon microspheres and / or carbon film. including. [Selection diagram] Fig. 1

Description

<関連出願の相互参照>
本願は2017年11月30日に提出された出願番号2017112418591の中国発明特許に基づき優先権を主張する。
<Cross-reference of related applications>
The present application claims priority based on the Chinese invention patent of application number 2011112418591 filed on November 30, 2017.

本発明は電池、環境保護、吸着式除湿、エアコン、冷凍、ヒートポンプ、変圧分離精製及び水素貯蔵の技術分野に属し、特に複合材料及びその製造方法に関する。 The present invention belongs to the technical fields of batteries, environmental protection, adsorption dehumidification, air conditioners, refrigeration, heat pumps, transformer separation purification and hydrogen storage, and particularly relates to composite materials and methods for producing them.

複合多孔質材料は吸着、カタリシス、環境保護、電池などの分野で幅広く適用されている。多孔質材料は基材として、吸着剤、触媒及び電池の電極材料を担持し、性能に優れた複合多孔質材料を形成することで、担持材の分散度や利用率や活性を向上させ、その重要な機能の減衰を遅延するとともに、その伝熱・物質移動ないし導電能力を強化する。目下、複合多孔質材料は簡単な混合又は浸漬などの方法を採用することが多く、プロセスが相対的に簡単である。簡単な混合の場合、担持材の高度分散を図りにくく、ミクロレベルでの担持材と多孔質支持骨格材料との嵌合が緊密せず、ミクロレベルでの伝熱・物質移動又は導電性能の改善に限りがある。浸漬法において、単分子層の分散が実現された前提では、担持量が基材の比表面積に制限され、単位質量又は体積の担持量が限られている。これらの2種類の方法によって得られた複合多孔質材料は使用中で、例えば周期性冷熱交替、長時間の高温などの現場状況に制限され、担持材が次第に不活性化になり、吸着やカタリシスなどの能力を失い、耐減衰能力が悪くなり、寿命周期が短くなる傾向がある。 Composite porous materials are widely applied in fields such as adsorption, catalysis, environmental protection, and batteries. The porous material supports an adsorbent, a catalyst, and an electrode material of a battery as a base material, and by forming a composite porous material having excellent performance, the dispersibility, utilization rate, and activity of the supported material are improved. It delays the decay of important functions and enhances its heat transfer / mass transfer or conductivity. At present, composite porous materials often employ methods such as simple mixing or dipping, and the process is relatively simple. In the case of simple mixing, it is difficult to achieve high dispersion of the carrier material, the mating of the carrier material and the porous support skeleton material is not tight at the micro level, and heat transfer / mass transfer or conductivity performance is improved at the micro level. Is limited. In the dipping method, on the premise that the dispersion of the monolayer is realized, the supported amount is limited to the specific surface area of the base material, and the supported amount of unit mass or volume is limited. The composite porous material obtained by these two methods is in use and is limited to on-site conditions such as periodic cold-heat alternation and long-term high temperature, and the carrier gradually becomes inactivated, resulting in adsorption and catalysis. It tends to lose the ability such as, the damping resistance becomes worse, and the life cycle becomes shorter.

上記の欠点を克服するために、本発明は比表面積を向上させ、担持量を増加することができるとともに、ミクロレベルでの分散が均一で且つ嵌合が緊密であり、耐減衰能力が強い複合多孔質材料及びその製造方法を提供することを目的とする。 In order to overcome the above-mentioned drawbacks, the present invention can improve the specific surface area and increase the loading amount, and the composite has uniform dispersion at the micro level, tight fitting, and strong damping resistance. An object of the present invention is to provide a porous material and a method for producing the same.

従来の技術は、一般には、簡単な混合又は浸漬の手法を使い、高温焼成手段により、材料を多孔質支持骨格材料の上に担持するので、担持材の凝集現象がよく発生している。この問題を克服するために、製造過程において硬化防止剤及び分散剤を添加して担持材の分散度を向上させることができる。しかし、多孔質材料の比表面積に制限されることで、単分子層の分散の場合、担持量が低くなり、またミクロレベルでの担持材と多孔質支持骨格材料との嵌合が緊密せず、使用中に固まって凝集され不活性化になり、耐減衰能力が弱くなりやすい。 In the conventional technique, a simple mixing or dipping method is generally used, and the material is supported on the porous supporting skeleton material by a high-temperature firing means, so that the aggregation phenomenon of the supporting material often occurs. In order to overcome this problem, an anticaking agent and a dispersant can be added in the manufacturing process to improve the dispersity of the supporting material. However, due to the limitation on the specific surface area of the porous material, in the case of dispersion of the monolayer, the amount of support is low, and the mating of the carrier and the porous support skeleton material at the micro level is not tight. During use, it solidifies and aggregates and becomes inactive, and its damping resistance tends to weaken.

そのため、本発明は「担持材の多孔質支持骨格材料の表面における分散の仕組み及び混合炭素質前駆体材料の炭化過程におけるミクロ形態の遷移規律」を系統的に分析した上で、担持材の浸漬溶液に糖を添加し、乾燥処理により糖及び担持材を均一に膜状構造で支持骨格材料の孔隙壁面に初歩的に硬化させ、さらに適切な高温活性化処理により、微小球又は膜構造を形成し、分子及び炭素原子の作用力により、多孔質支持骨格材料の孔隙壁面に嵌め込み、骨格材料と担持材との間の熱交換又は導電能力を強化するとのことを提出している。実験結果により、担持材と糖との炭化によって得られた炭原子は交錯して嵌められ、担持材の吸着、接触反応及び冷熱交替過程における凝集は有効に抑制され、耐減衰能力は強くなり、炭素膜及び/又は炭素微小球内における担持材の分布は均一で、多孔質骨格の壁面において立体的に分布されており、分散強度は確保されながら担持量は向上され、複合材料の比表面積は増大され、担持材利用率と効率は効果的に向上された。 Therefore, the present invention systematically analyzes "the mechanism of dispersion of the supporting material on the surface of the porous supporting skeleton material and the transition discipline of the micromorphology in the carbonization process of the mixed carbonaceous precursor material", and then dips the supporting material. Sugar is added to the solution, and the sugar and the supporting material are uniformly cured on the pore wall surface of the supporting skeleton material in a film-like structure by a drying treatment, and a microsphere or a membrane structure is formed by an appropriate high-temperature activation treatment. However, it has been submitted that it is fitted into the pore wall surface of the porous supporting skeleton material by the acting force of molecules and carbon atoms, and the heat exchange or conductive ability between the skeleton material and the supporting material is strengthened. According to the experimental results, the carbon atoms obtained by carbonization of the supporting material and the sugar are interlaced and fitted, and the adsorption of the supporting material, the contact reaction and the aggregation in the cold heat exchange process are effectively suppressed, and the damping resistance is strengthened. The distribution of the supporting material in the carbon film and / or the carbon microspheres is uniform, and it is sterically distributed on the wall surface of the porous skeleton, the supporting amount is improved while the dispersion strength is secured, and the specific surface area of the composite material is high. Increased, carrier utilization and efficiency were effectively improved.

上記の目的を実現するために、本発明は以下のような技術的手段を採用している。 In order to achieve the above object, the present invention employs the following technical means.

本発明が提供する複合材料は、支持骨格と、前記支持骨格上に位置する炭素微小球及び/又は炭素膜と、前記炭素微小球及び/又は炭素膜に分散される担持材とを含む。 The composite material provided by the present invention includes a supporting skeleton, carbon microspheres and / or carbon film located on the supporting skeleton, and a supporting material dispersed in the carbon microspheres and / or carbon film.

本発明に係る「支持骨格」とは、第一、ミクロの孔隙構造が豊富な支持骨格構造を提供し、優れた物質移動能力を保持することと、第二、比表面積が大きく、大きな担持面積を提供し、担持量及び分散の均一性を向上させることと、第三、熱伝導率が大きく、複合材料の優れた伝熱能力を実現することと、第四、導電性が強く、複合材料の優れた電子移動能力を実現するという4つの機能を備える多孔質骨格材料をいう。 The "supporting skeleton" according to the present invention is, firstly, to provide a supporting skeleton structure having abundant micropore structures and to maintain excellent mass transfer ability, and secondly, to have a large specific surface area and a large supporting area. 3) High thermal conductivity and excellent heat transfer capacity of composite material, 4th, Strong conductivity, composite material It refers to a porous skeleton material having four functions of realizing the excellent electron transfer ability of the above.

勿論、熱伝達又は導電能力に対する要求が高くない複合材料は、例えばバーミキュライト、シリカゲルなどの、高熱伝達又は強導電性の支持骨格材料を採用しなくてもよい。 Of course, for composite materials that do not have high requirements for heat transfer or conductivity, it is not necessary to adopt a support skeleton material having high heat transfer or strong conductivity such as vermiculite and silica gel.

発明に係る「炭素微小球」とは、糖膜の昇温溶融過程において、多孔質媒体の表面張力が溶融糖の表面張力より小さい場合、形成された糖微小球が炭化されて形成される炭素微小球をいう。
本発明に係る「炭素膜」とは、糖膜の昇温溶融過程において、多孔質媒体の表面張力が溶融糖の表面張力より大きい場合、直接炭化して得る炭素膜構造をいう。
本発明に係る「担持材」とは、金属イオン又はアンモニウムイオン(NH4+)と酸性イオン又は非金属イオンとが結合した化合物である塩、電池の正負極材料である電極材料、ファンデルワールスにより気体又はイオンを吸着する材料である物理吸着剤をいう。
本発明に係る「糖」とは、ポリヒドロキシ(2つ以上)のアルデヒド(Aldehyde)又はケトン(Ketone)化合物であって、加水分解されてから上記の両者のいずれかになりうる有機化合物をいう。
好ましくは、前記支持骨格の孔隙壁の平均厚さは0.3nm〜1mmである。
好ましくは、前記炭素微小球の平均粒径は10nm〜0.05mmである。
好ましくは、前記炭素膜の平均厚さは1nm〜0.05mmである。
好ましくは、前記担持材の平均粒径は10μmより小さい。
The "carbon microspheres" according to the present invention are carbon formed by carbonizing the formed sugar microspheres when the surface tension of the porous medium is smaller than the surface tension of the molten sugar in the process of heating and melting the sugar film. A microsphere.
The "carbon film" according to the present invention refers to a carbon film structure obtained by directly carbonizing the porous medium when the surface tension of the porous medium is greater than the surface tension of the molten sugar in the process of heating and melting the sugar film.
The "supporting material" according to the present invention is a salt which is a compound of a metal ion or ammonium ion (NH 4+ ) and an acidic ion or a non-metal ion, an electrode material which is a positive or negative electrode material of a battery, and van der Waals. A physical adsorbent that is a material that adsorbs gases or ions.
The "sugar" according to the present invention refers to a polyhydroxy (two or more) aldehyde (Aldehyde) or ketone (Ketone) compound, which is an organic compound that can become either of the above after being hydrolyzed. ..
Preferably, the average thickness of the pore wall of the supporting skeleton is 0.3 nm to 1 mm.
Preferably, the average particle size of the carbon microspheres is 10 nm to 0.05 mm.
Preferably, the average thickness of the carbon film is 1 nm to 0.05 mm.
Preferably, the average particle size of the carrier is smaller than 10 μm.

好ましくは、前記支持骨格の材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、炭素発泡体、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、バーミキュライト、シリカゲルの少なくとも1種である。 Preferably, the material of the supporting skeleton is at least one of expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, carbon foam, activated carbon, graphite fiber, porous metal, porous ceramic, vermiculite, and silica gel. Is.

好ましくは、前記塩はLiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、CuCl、ZnCl、AgNO、NaSOからなる群より選ばれる1種又は2種以上の組合せである。
好ましくは、前記電極材料は400℃以上の高温焼成に耐えられ、分解及び/又は変性しなく、例えばTiOである。
好ましくは、前記物理吸着剤は水素貯蔵合金、ゼオライトモレキュラーシーブ、有機金属骨格材料である。
好ましくは、前記多孔質支持骨格と担持材との質量比は1:0.5〜9である。
好ましくは、前記糖に含まれる炭素のモル質量と担持材のモル質量との比は0.5〜6である。
更に、本発明は、接触熱抵抗が10ー6〜10ー4・K/Wである複合材料を提供する。
Preferably, the salt is LiCl, BaCl 2 , CaBr 2 , NaBr, KBr, LiBr, PbCl 2 , LiCl, CaCl 2 , MnCl 2 , BaCl 2 , SrCl 2 , CoCl 2 , MgCl 2 , PbCl 2 , NiCl 2 , FeCl. It is one kind or a combination of two or more kinds selected from the group consisting of 3 , CuCl 2 , CuCl 2 , ZnCl 2 , AgNO 3 , and Na 2 SO 4 .
Preferably, the electrode material can withstand high temperature firing at 400 ° C. or higher and is not decomposed and / or denatured, for example TiO.
Preferably, the physical adsorbent is a hydrogen storage alloy, a zeolite molecular sieve, or an organometallic skeleton material.
Preferably, the mass ratio of the porous supporting skeleton to the supporting material is 1: 0.5 to 9.
Preferably, the ratio of the molar mass of carbon contained in the sugar to the molar mass of the supporting material is 0.5 to 6.
Furthermore, the present invention is the contact thermal resistance to provide a composite material 10 over 6-10 over 4 m 2 · K / W.

更に、本発明は、前処理後の多孔質支持骨格を糖及び担持材の混合溶液に浸して乾燥させることで膜を形成して、活性化させることで多孔質支持骨格の壁面に炭素微小球及び/又は炭素膜を形成して複合材料を得るステップを含む、複合材料の製造方法を提供する。
好ましくは、前記多孔質支持骨格と担持材との質量比は1:0.5〜9である。
好ましくは、前記糖に含まれる炭素のモル質量と担持材のモル質量との比は0.5〜6である。
Further, in the present invention, the pretreated porous supporting skeleton is immersed in a mixed solution of sugar and a supporting material and dried to form a film, and activated to form carbon microspheres on the wall surface of the porous supporting skeleton. And / or a method for producing a composite material, which comprises the step of forming a carbon film to obtain the composite material.
Preferably, the mass ratio of the porous supporting skeleton to the supporting material is 1: 0.5 to 9.
Preferably, the ratio of the molar mass of carbon contained in the sugar to the molar mass of the supporting material is 0.5 to 6.

好ましくは、前記支持骨格の材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、炭素発泡体、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、バーミキュライト、グラフェン、シリカゲルのうちの少なくとも1種である。 Preferably, the material of the supporting skeleton is expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, carbon foam, activated carbon, graphite fiber, porous metal, porous ceramic, vermiculite, graphene, silica gel. At least one of.

好ましくは、前記塩はLiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、CuCl、ZnCl、AgNO、NaSOからなる群より選ばれる1種又は2種以上の組合せである。
好ましくは、前記電極材料は400℃以上の高温焼成に耐えられ、分解及び/又は変性しない。
好ましくは、前記物理吸着剤は水素貯蔵合金、ゼオライトモレキュラーシーブ、有機金属骨格材料である。
Preferably, the salt is LiCl, BaCl 2 , CaBr 2 , NaBr, KBr, LiBr, PbCl 2 , LiCl, CaCl 2 , MnCl 2 , BaCl 2 , SrCl 2 , CoCl 2 , MgCl 2 , PbCl 2 , NiCl 2 , FeCl. It is one kind or a combination of two or more kinds selected from the group consisting of 3 , CuCl 2 , CuCl 2 , ZnCl 2 , AgNO 3 , and Na 2 SO 4 .
Preferably, the electrode material can withstand high temperature firing above 400 ° C. and does not decompose and / or denature.
Preferably, the physical adsorbent is a hydrogen storage alloy, a zeolite molecular sieve, or an organometallic skeleton material.

好ましくは、前記糖は単糖類、二糖類、多糖類の少なくとも1種であり、好ましくは、グルコース、フルクトース、ガラクトース、スクロース、ラクトース、マルトース、トレハロース、澱粉からなる群より選ばれる1種又は2種以上の組合せである。
好ましくは、前記糖及び担持材の混合溶液には担持材の硬化防止剤及び/又は分散剤がさらに含まれる。
Preferably, the sugar is at least one of a monosaccharide, a disaccharide and a polysaccharide, and preferably one or two selected from the group consisting of glucose, fructose, galactose, sucrose, lactose, maltose, trehalose and starch. The above combination.
Preferably, the mixed solution of the sugar and the carrier further contains an anticaking agent and / or a dispersant for the carrier.

本発明における「担持材の硬化防止剤」は主に、担持材の高温活性化過程において発生しうる凝集現象を抑制し、及び/又は担持材の長期減衰性を抑制する助剤であり、例えば、シリカ、リン酸トリカルシウムなどである。 The "anti-curing agent for the carrier" in the present invention is mainly an auxiliary agent that suppresses the agglutination phenomenon that may occur in the process of activating the carrier at a high temperature and / or suppresses the long-term damping property of the carrier, for example. , Silica, tricalcium phosphate, etc.

「担持材の分散剤」は主に、担持材の分散度及び浸漬の均一度を向上させる助剤であり、例えば担持材のCuClにクエン酸アンモニウムを添加することで、その分散度の向上が図れる。
上記補助材料は添加が必要な原料ではなく、必要に応じて添加されるものだけである。
好ましくは、前記前処理の具体的な操作ステップは200〜1000℃で、脱酸素又は低酸素雰囲気において支持骨格を膨張させることである。
好ましくは、前記糖及び担持材の混合溶液の製造方法は、常温〜120℃で、糖と担持材を均一に混合することである。
好ましくは、前記浸漬処理の条件は、20〜120℃で、1min〜48h浸すことである。
好ましくは、前記乾燥処理の条件は、20〜180℃で、1h〜10d乾燥することである。
好ましくは、前記活性化処理の条件は、400〜1000℃で、30min〜12h活性化することである。
好ましくは、前記浸漬処理の代わりに、シャワーコート処理を採用してもよい。
The "dispersant of the supporting material" is mainly an auxiliary agent for improving the dispersity of the supporting material and the uniformity of immersion. For example, by adding ammonium citrate to CuCl 2 of the supporting material, the dispersity is improved. Can be planned.
The auxiliary material is not a raw material that needs to be added, but only one that is added as needed.
Preferably, the specific operating step of the pretreatment is to expand the supporting backbone in a deoxidized or hypoxic atmosphere at 200-1000 ° C.
Preferably, the method for producing the mixed solution of the sugar and the supporting material is to uniformly mix the sugar and the supporting material at room temperature to 120 ° C.
Preferably, the condition of the dipping treatment is to soak at 20 to 120 ° C. for 1 min to 48 hours.
Preferably, the condition of the drying treatment is drying at 20 to 180 ° C. for 1h to 10d.
Preferably, the condition of the activation treatment is activation at 400 to 1000 ° C. for 30 min to 12 hours.
Preferably, a shower coat treatment may be adopted instead of the dipping treatment.

本発明に係る「浸漬処理」は常圧過量浸漬法、常圧同体積浸漬法、負圧過量浸漬法及び負圧同体積浸漬法のうちの1種を用いることができる。常圧過量及び同体積浸漬法は、大気圧雰囲気において、支持骨格材料を浸漬液に浸漬することであり、負圧過量及び同体積浸漬法は、支持骨格材料を密閉容器内に入れ、まず密閉容器内部の気体を抽出し、真空又は略真空環境を形成した後で、浸漬液を注入することである。常圧浸漬はプロセスが簡単であり、実現しやすいのに対し、負圧浸漬はプロセスが複雑であるが、支持骨格材料の微孔における気体を排出しやすく、浸漬液が支持骨格材料の超微細の微孔に浸入しやすく、支持骨格材料の微孔の利用率を向上させ、担持材の有効な担持量を増加させる。過量浸漬法とは、浸漬液の使用量が支持骨格材料を完全に浸すために必要な量を超えて、浸漬終了後、浸漬材を溶液から取り出すことをいう。同体積浸漬法とは、浸漬液の使用量が支持骨格材料の吸液量と等量であり、両者を混合して浸漬した後で、直接浸漬材を形成することをいう。過量浸漬法はプロセスが簡単であり、プロセス制御パラメータへの要求が少ないが生産性が低いのに対し、同体積浸漬法は配合比率パラメータへの要求が高いが、連続的な工業生産に寄与し、生産された複合材料の性能の安定性が図れる。
更に、本発明は好適な複合材料製造方法を提供し、以下のようなステップを含む。
(1)支持骨格材料の前処理
As the "immersion treatment" according to the present invention, one of a normal pressure overdose dipping method, a normal pressure same volume dipping method, a negative pressure overdose dipping method and a negative pressure same volume dipping method can be used. The normal pressure excess and the same volume immersion method is to immerse the supporting skeleton material in the immersion liquid in an atmospheric pressure atmosphere, and the negative pressure excess and the same volume immersion method put the supporting skeleton material in a closed container and first seal it. After extracting the gas inside the container and forming a vacuum or a substantially vacuum environment, the immersion liquid is injected. The process of atmospheric immersion is simple and easy to realize, while the process of negative pressure immersion is complicated, but the gas in the micropores of the supporting skeleton material is easily discharged, and the immersion liquid is ultrafine of the supporting skeleton material. It easily penetrates into the micropores of the supporting skeleton material, improves the utilization rate of the micropores of the supporting skeleton material, and increases the effective carrying amount of the supporting material. The overdose method means that the amount of the immersion liquid used exceeds the amount required for completely immersing the supporting skeleton material, and the immersion material is taken out from the solution after the immersion is completed. The same volume dipping method means that the amount of the dipping liquid used is equal to the amount of liquid absorbed by the supporting skeleton material, and the dipping material is directly formed after the two are mixed and immersed. The over-immersion method has a simple process and requires less process control parameters but lower productivity, while the same volume immersion method has higher requirements for compounding ratio parameters but contributes to continuous industrial production. , The performance stability of the produced composite material can be achieved.
Furthermore, the present invention provides a suitable composite material manufacturing method and includes the following steps.
(1) Pretreatment of supporting skeleton material

支持骨格材料は膨張性黒鉛である場合、黒鉛の多孔質化を実現するように、200〜1000℃の温度で脱酸素又は低酸素雰囲気において膨張の前処理を行わなければならない。支持骨格材料は多孔質金属である場合、浸漬液の担持強度を向上させるために、金属酸化物層に対して事前去除処理を行うことができる。多孔質骨格材料は主に、第一、ミクロの孔隙構造が豊富な支持骨格構造を提供し、優れた物質移動能力を保持することと、第二、比表面積が大きく、大きな担持面積を提供し、担持量及び分散均一性を向上させることと、第三、熱伝導率が大きく、複合材料の優れた伝熱能力を実現することと、第四、導電性が強く、複合材料の優れた電子移動能力を実現するという4つの機能を備える。勿論、熱伝達や導電能力に対する要求が高くない複合材料は、例えばバーミキュライト、シリカゲルなどの高熱伝達又は強導電性の支持骨格材料を採用しなくてもよい。
(2)浸漬液の製造
When the supporting backbone material is expansive graphite, expansion pretreatment must be performed at a temperature of 200-1000 ° C. in a deoxidized or hypoxic atmosphere to achieve porosity of the graphite. When the supporting skeleton material is a porous metal, the metal oxide layer can be preliminarily removed in order to improve the supporting strength of the immersion liquid. Porous skeleton materials mainly provide a supporting skeleton structure rich in micropore structure, firstly, retain excellent mass transfer ability, and secondly, provide a large specific surface area and a large carrier area. , Improve the loading amount and dispersion uniformity, Third, realize the excellent heat transfer ability of the composite material with high thermal conductivity, Fourth, Strong conductivity, Excellent electrons of the composite material It has four functions to realize mobility. Of course, for composite materials that do not have high requirements for heat transfer and conductivity, it is not necessary to adopt a highly heat transfer or strongly conductive support skeleton material such as vermiculite or silica gel.
(2) Manufacture of immersion liquid

常温〜120℃で、前記の糖、担持材及び補助材料を溶剤に溶解し、均一に攪拌し、この工程において、主に担持材及び糖の溶解度に基づいて浸漬液の設置温度を確定する。このステップでは、主に担持材及び糖の高度分散の実現を目指し、糖は主に活性化のための炭素源を提供する。
(3)浸漬
At room temperature to 120 ° C., the sugar, the supporting material and the auxiliary material are dissolved in a solvent and stirred uniformly. In this step, the installation temperature of the immersion liquid is determined mainly based on the solubility of the supporting material and the sugar. In this step, the sugar mainly provides a carbon source for activation, with the aim of achieving a high degree of dispersion of the carrier and sugar.
(3) Immersion

支持骨格材料を浸漬液に入れ、常温〜120℃の浸漬温度において1min〜48h浸して、浸漬材を形成する。このステップでは、糖及び担持材が支持骨格材料の孔隙壁面において均一に分散されることを目指す。
(4)乾燥
The supporting skeleton material is put into an immersion liquid and immersed for 1 min to 48 hours at an immersion temperature of room temperature to 120 ° C. to form an immersion material. In this step, the sugar and the supporting material are aimed to be uniformly dispersed on the pore wall surface of the supporting skeleton material.
(4) Drying

浸漬材を乾燥させ、乾燥温度を常温〜220℃とし、乾燥時間を1h〜10日とする。この工程では、主に、大部分又は全部の溶剤を除去し、糖及び担持材を均一に膜状構造で支持骨格材料の孔隙壁面に初歩的に硬化させ、骨格材料と担持材との間の熱交換を強化し、ミクロ熱交換を強化することを目指す。
(5)活性化
The dipping material is dried, the drying temperature is set to room temperature to 220 ° C., and the drying time is set to 1 h to 10 days. In this step, mainly, most or all of the solvent is removed, and the sugar and the supporting material are uniformly cured in a film-like structure on the pore wall surface of the supporting skeleton material, and between the skeleton material and the supporting material. Aim to strengthen heat exchange and strengthen micro heat exchange.
(5) Activation

脱酸素又は低酸素雰囲気において活性化させ、活性化温度を400〜1000℃とし、活性化時間を30min〜12hとして、複合材料を得る。この工程では、一部の担持材の脱水性、糖の高温炭化メカニズム及び炭素に対する一部の雰囲気(例えば水蒸気、二酸化炭素)の活性化作用を利用して糖類の分解炭化を行い、支持骨格材料の孔隙壁面エネルギーと溶融状態の糖の表面張力との相互作用を受けて、糖膜は炭素微小球及び/又は炭素膜を形成し、炭原子間に担持材が嵌合され、複合材料を形成することから、多孔質骨格材料の比表面積に制限され、単分子層の分散方法の担持量が少なく、高密度担持の耐減衰能力が悪いなどの欠点を克服している。このステップでは、高温環境は高温炉、電子レンジなどにより提供されうる。 The composite material is obtained by activating in a deoxidized or hypoxic atmosphere, setting the activation temperature to 400 to 1000 ° C. and the activation time to 30 min to 12 h. In this step, saccharides are decomposed and carbonized by utilizing the dehydration property of some supporting materials, the high temperature carbonization mechanism of sugars, and the activation action of some atmospheres (for example, water vapor and carbon dioxide) on carbon, and the supporting skeleton material is used. In response to the interaction between the pore wall surface energy and the surface tension of the molten sugar, the sugar film forms carbon microspheres and / or carbon film, and the carrier is fitted between the carbon atoms to form a composite material. Therefore, it is limited to the specific surface area of the porous skeleton material, the amount supported by the method of dispersing the monolayer is small, and the drawbacks such as poor damping resistance of high-density support are overcome. In this step, a high temperature environment can be provided by a high temperature furnace, microwave oven, etc.

その中、前記複合材料は支持骨格材料、複合材料、炭素微小球及び/又は炭素膜からなり、炭素微小球及び炭素膜における炭原子に複合材料の微粒子及び/又は分子が嵌められ、平均粒径及び/又は厚さが1nm〜0.1mmであり、複合材料の平均粒径が一般に10μmより小さい。複合材料は、均一に炭素微小球及び/又は炭素膜に分散される補助材料も含んでもよいが、補助材料を添加しない又は補助材料が製造過程において分解された場合、最終の複合材料には、添加された補助材料がない。 Among them, the composite material is composed of a supporting skeleton material, a composite material, carbon microspheres and / or a carbon film, and fine particles and / or molecules of the composite material are fitted to carbon atoms in the carbon microspheres and the carbon film, and the average particle size. And / or the thickness is 1 nm to 0.1 mm, and the average particle size of the composite is generally smaller than 10 μm. The composite may also include an auxiliary material that is uniformly dispersed in the carbon microspheres and / or carbon film, but if no auxiliary material is added or the auxiliary material is decomposed during the manufacturing process, the final composite material There are no auxiliary materials added.

前記の複合材料原料の各成分の配合割合について、担持材の質量を基準とすると、溶剤がその質量の0.1〜100倍であり、支持骨格材料がその質量の0.1〜100倍であり、糖がその質量の0.01〜100倍であり、補助材料がその質量の0〜2倍であり、担持材のモル質量を基準とすると、糖に含まれる炭素のモル質量がその0.5ー6倍である。前記溶剤は水及びアルコール類の少なくとも1種であり、前記担持材は必ず溶剤に溶解可能又は均一な懸濁液を形成可能でなければならず、例えば、LiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、CuCl、AgNO、ZnCl、NaSOなどである。前記糖は単糖類、二糖類、多糖類の少なくとも1種であり、例えば、グルコース、フルクトース、ガラクトース、スクロース、ラクトース、マルトース、トレハロース、澱粉などであり、そして溶剤に溶解可能でなければならない。前記支持骨格材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、発泡カーボン、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、モレキュラーシーブ、シリカゲルのうちの少なくとも1種であり、熱伝達物質移動の骨格構造を提供する。前記補助材料は担持材の硬化防止剤、分散剤を含む。担持材の硬化防止剤は主に、複合材料の高温活性化過程において発生しうる凝集現象を抑制し、また複合材料の長期減衰性も抑制することができ、例えばシリカ、リン酸トリカルシウムなどである。分散剤は、主に複合材料の分散度及び浸漬の均一度を向上させるためのものであり、例えばCuClにクエン酸アンモニウムを添加することで、その分散度を向上させることができる。補助材料は添加が必要な原料ではなく、必要に応じて添加されるものである。 With respect to the blending ratio of each component of the composite material raw material, the solvent is 0.1 to 100 times the mass and the supporting skeleton material is 0.1 to 100 times the mass, based on the mass of the supporting material. Yes, the sugar is 0.01 to 100 times its mass, the auxiliary material is 0 to 2 times its mass, and the molar mass of carbon contained in the sugar is 0, based on the molar mass of the carrier. .5-6 times. The solvent must be at least one of water and alcohols, and the carrier must be soluble in the solvent or form a uniform suspension, eg, LiCl, NaCl 2 , CaBr 2 , NaBr, etc. KBr, LiBr, PbCl 2 , LiCl, CaCl 2 , MnCl 2 , BaCl 2 , SrCl 2 , CoCl 2 , MgCl 2 , PbCl 2 , NiCl 2 , FeCl 3 , CuCl 2 , CuCl 2 , AgNO 3 , ZnCl 2 , Na 2 SO 4 and so on. The sugar is at least one of a monosaccharide, a disaccharide and a polysaccharide, such as glucose, fructose, galactose, sucrose, lactose, maltose, trehalose, starch and the like, and must be soluble in a solvent. The supporting skeleton material is at least one of expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, foamed carbon, activated carbon, graphite fiber, porous metal, porous ceramic, molecular sieve, and silica gel. , Provides a skeletal structure for heat transferant transfer. The auxiliary material contains an anticaking agent and a dispersant for the supporting material. The anticaking agent for the carrier mainly suppresses the agglutination phenomenon that may occur in the process of high temperature activation of the composite material, and can also suppress the long-term damping property of the composite material, for example, silica, tricalcium phosphate, etc. is there. The dispersant is mainly for improving the dispersity of the composite material and the uniformity of immersion. For example, by adding ammonium citrate to CuCl 2 , the dispersity can be improved. Auxiliary materials are not raw materials that need to be added, but are added as needed.

本発明に係る複合材料の製造ステップにおける(3)浸漬工程は浸漬液で支持骨格材料をシャワーコートすることで実現してもよく、シャワーコート時間は1分間〜24時間であり、浸漬温度は常温〜120℃であり、シャワーコート工程を採用することは工業生産により適用でき、浸漬工程でより均一にするために、機械による攪拌工程を伴うことができる。 The (3) immersion step in the production step of the composite material according to the present invention may be realized by shower-coating the supporting skeleton material with the immersion liquid, the shower coating time is 1 minute to 24 hours, and the immersion temperature is normal temperature. It is ~ 120 ° C., the adoption of the shower coating step can be applied by industrial production and can be accompanied by a mechanical stirring step to make it more uniform in the dipping step.

本発明に係る浸漬工程は常圧過量浸漬法、常圧同体積浸漬法、負圧過量浸漬法及び負圧同体積浸漬法の内のいずれか1種を適用することができる。常圧過量及び同体積浸漬法は、大気圧雰囲気で、支持骨格材料を浸漬液に浸漬することであり、負圧過量及び同体積浸漬法は支持骨格材料を密閉容器に入れ、まず密閉容器内部の気体を抽出し、真空又は略真空環境を形成した後で、浸漬液を注入する。常圧浸漬はプロセスが簡単であり、実現しやすいのに対し、負圧浸漬はプロセスが複雑であるが、支持骨格材料の微孔における気体を排出しやすく、浸漬液が支持骨格材料の超微細の微孔に浸入しやすく、支持骨格材料の微孔の利用率を向上させ、担持材の有効な担持量を増加させる。過量浸漬法とは、浸漬液の使用量が支持骨格材料を完全に浸すために必要な量を超えて、浸漬終了後、浸漬材を溶液から取り出すことをいう。同体積浸漬法とは、浸漬液の使用量が支持骨格材料の吸液量と等量であり、両者を混合して浸漬した後で、直接浸漬材を形成することをいう。過量浸漬法はプロセスが簡単であり、プロセス制御パラメータへの要求が少ないが生産性が低いのに対し、同体積浸漬法は配合比率パラメータへの要求が高いが、連続的な工業生産に寄与し、生産された複合材料の性能の安定性が図れる。 As the dipping step according to the present invention, any one of the normal pressure overdose dipping method, the normal pressure same volume dipping method, the negative pressure overdose dipping method and the negative pressure same volume dipping method can be applied. The normal pressure excess and the same volume immersion method is to immerse the supporting skeleton material in the immersion liquid in an atmospheric pressure atmosphere, and the negative pressure excess and the same volume immersion method put the supporting skeleton material in a closed container and first inside the closed container. After extracting the gas of the above and forming a vacuum or a substantially vacuum environment, the immersion liquid is injected. The process of atmospheric immersion is simple and easy to realize, while the process of negative pressure immersion is complicated, but the gas in the micropores of the supporting skeleton material is easily discharged, and the immersion liquid is ultrafine of the supporting skeleton material. It easily penetrates into the micropores of the supporting skeleton material, improves the utilization rate of the micropores of the supporting skeleton material, and increases the effective carrying amount of the supporting material. The overdose method means that the amount of the immersion liquid used exceeds the amount required for completely immersing the supporting skeleton material, and the immersion material is taken out from the solution after the immersion is completed. The same volume dipping method means that the amount of the dipping liquid used is equal to the amount of liquid absorbed by the supporting skeleton material, and the dipping material is directly formed after the two are mixed and immersed. The over-immersion method has a simple process and requires less process control parameters but lower productivity, while the same volume immersion method has higher requirements for compounding ratio parameters but contributes to continuous industrial production. , The performance stability of the produced composite material can be achieved.

本発明に係る複合材料の製造方法について、支持骨格材料、浸漬材又は複合材料をいずれのステップの前後でも、粘着、プレス、切断の少なくとも1種の方法で加工成型できることも特徴とし、その中に、粘着とプレスは粉末状又はペレット状の支持骨格材料、浸漬材又は複合材料に同時に適用可能であり、粘着はまた塊状の材料の接続にも使え、切断は主にチャンクの材料の取扱いに用いられる。このステップは複合材料が必要な形状になることを目的とし、これらの3種類の方法の内の1種、2種又は3種を適用できる。 The method for producing a composite material according to the present invention is also characterized in that the supporting skeleton material, the dipping material or the composite material can be processed and molded by at least one method of adhesion, pressing and cutting before and after any step. Adhesive and press can be applied simultaneously to powdered or pelletized supporting skeleton materials, dipping or composite materials, adhesive can also be used to connect massive materials, cutting is mainly used for handling chunk materials Be done. This step aims to give the composite the required shape and one, two or three of these three methods can be applied.

本発明に係る複合材料の製造方法において、成型後の複合材料を粘着、半田付け方法の少なくとも1種で熱交換界面に固定し、伝熱を強化することができる。ここでは、粘着に使用される粘着剤は、より優れた伝熱効果を得るために、できるだけ熱伝達能力の優れた熱伝導性接着剤を用いる。また、高すぎる溶接温度による複合材料のミクロ構造への破壊を防ぐために、複合材料の使用温度と熱伝導性接着剤や半田の使用温度とのマッチング及び真空半田付け温度による複合吸着剤への影響を考える必要がある。 In the method for producing a composite material according to the present invention, the composite material after molding can be fixed to the heat exchange interface by at least one of the adhesive and soldering methods to enhance heat transfer. Here, as the pressure-sensitive adhesive used for adhesion, a heat-conducting adhesive having an excellent heat transfer ability is used in order to obtain a better heat transfer effect. In addition, in order to prevent the composite material from being destroyed by the microstructure due to the welding temperature being too high, matching the operating temperature of the composite material with the operating temperature of the thermally conductive adhesive or solder and the effect of the vacuum soldering temperature on the composite adsorbent Need to think about.

本発明に係る複合材料の製造方法において、粘着又は押圧成型工程では、熱伝達材料を支持骨格材料、浸漬材又は複合材料に添加してから成型してもよく、吸着剤内部の伝熱をさらに強化する。前記熱伝達材料としては、主に、黒鉛、銅、鉄、アルミニウム、炭化ケイ素、アルミナ、窒化アルミニウムなどの粉末又はメッシュ材料を添加する。 In the method for producing a composite material according to the present invention, in the adhesive or pressure molding step, the heat transfer material may be added to the supporting skeleton material, the dipping material or the composite material and then molded, and the heat transfer inside the adsorbent is further increased. Strengthen. As the heat transfer material, a powder or mesh material such as graphite, copper, iron, aluminum, silicon carbide, alumina, or aluminum nitride is mainly added.

本発明に係る複合材料の製造方法の成型過程において、支持骨格材料、浸漬材又は複合材料を熱交換壁面に直接成型し、押圧や粘着や半田付け方法の少なくとも1種により、熱交換面の緊密な接触を実現してもよい。上記した成型後で熱交換界面に吸着剤で粘着し又は半田付けすることと比べると、ここでは、熱伝導性接着剤又は半田への要求がより高く、熱伝導性接着剤の耐熱温度、半田の溶接温度を活性化温度より低くしなければならない。
更に、本発明は、上記方法のいずれかで製造される複合材料を提供する。
更に、本発明は、上記複合材料の何れかを含む吸着式冷凍装置を提供する。
更に、本発明は、上記複合材料の何れかを含むトランスセパレータを提供する。
更に、本発明は、上記複合材料の何れかを含むヒートポンプを提供する。
更に、本発明は、上記複合材料の何れかを含む吸着式除湿装置を提供する。
更に、本発明は、上記複合材料の何れかを含む電池装置を提供する。
更に、本発明は、上記複合材料の何れかを含む水素貯蔵装置を提供する。
In the molding process of the method for manufacturing a composite material according to the present invention, the support skeleton material, the dipping material or the composite material is directly molded on the heat exchange wall surface, and the heat exchange surface is brought into close contact by at least one of pressing, adhesion and soldering methods. Contact may be realized. Compared to the above-mentioned adhesion or soldering to the heat exchange interface with an adsorbent after molding, the demand for the heat conductive adhesive or solder is higher here, and the heat resistant temperature of the heat conductive adhesive, soldering The welding temperature must be lower than the activation temperature.
Furthermore, the present invention provides a composite material produced by any of the above methods.
Further, the present invention provides an adsorption type refrigerating apparatus containing any of the above composite materials.
Furthermore, the present invention provides a transseparator containing any of the above composite materials.
Furthermore, the present invention provides a heat pump containing any of the above composite materials.
Furthermore, the present invention provides an adsorption dehumidifier containing any of the above composite materials.
Further, the present invention provides a battery device containing any of the above composite materials.
Furthermore, the present invention provides a hydrogen storage device containing any of the above composite materials.

本発明における上記複合材料はいずれも電池、環境保護、吸着式除湿、エアコン、冷凍、ヒートポンプ、変圧分離精製及び水素貯蔵制造などの分野に適用でき、優れた効果を得て、この業界の関連の国際又は国家基準に達成する又はそれより優れている。 All of the above composite materials in the present invention can be applied to fields such as batteries, environmental protection, adsorption dehumidification, air conditioners, refrigeration, heat pumps, transformational separation purification and hydrogen storage manufacturing, and have excellent effects, and are related to this industry. Achieve or better than international or national standards.

(1)本発明の製造プロセスは簡単であり、成型しやすく、原料が簡単に入手でき且つソースが幅広く、生産方式が柔軟で、制御可能であり、工業生産に有利である。本発明において製造される複合材料は支持骨格材料、炭素微小球及び/又は炭素膜及び担持材からなり、担持材は塩、電極材料及び物理吸着剤を含み、炭素微小球及び/又は炭素膜は支持骨格材料の孔隙壁面にしっかり付着し、炭素球の平均粒径が10nm〜0.05mmであり、炭素膜の平均厚さが1nm〜0.1mmであり、担持材は炭素微小球及び/又は炭素膜に均一に分布され、その平均粒径が少なくとも10μmより小さいことから、担持材は炭原子間に直接嵌められ、耐凝集・耐不活性化能力が明らかに強化され、使用寿命が効果的に向上される。複合材料は従来の骨格材料の比表面積の制限を破り、担持量を増加する前提で、複合材料の比表面積を効果的に増加し、吸着、反応又は電子移動速率を強化することができる。複合材料は押圧、粘着又は半田付け方法で吸着剤と熱交換壁面との緊密な接触を実現しやすく、両者間の接触熱抵抗を効果的に低減する。前記製造方法はプロセスが簡単であり、成型しやすく、工業生産が便利である。 (1) The manufacturing process of the present invention is simple, easy to mold, easily available raw materials, wide range of sources, flexible production method, controllable, and advantageous for industrial production. The composite material produced in the present invention comprises a supporting skeleton material, carbon microspheres and / or a carbon film and a supporting material, the supporting material containing a salt, an electrode material and a physical adsorbent, and the carbon microspheres and / or the carbon film. It adheres firmly to the pore wall surface of the supporting skeleton material, the average particle size of carbon spheres is 10 nm to 0.05 mm, the average thickness of the carbon film is 1 nm to 0.1 mm, and the supporting material is carbon microspheres and / or Since it is uniformly distributed on the carbon film and its average particle size is smaller than at least 10 μm, the supporting material is directly fitted between carbon atoms, the aggregation and deactivation resistance is clearly enhanced, and the service life is effective. Will be improved. The composite material can effectively increase the specific surface area of the composite material and enhance the adsorption, reaction or electron transfer rate on the premise of breaking the limitation of the specific surface area of the conventional skeleton material and increasing the supported amount. The composite material can easily achieve close contact between the adsorbent and the heat exchange wall surface by a pressing, adhesive or soldering method, and effectively reduces the contact thermal resistance between the two. The manufacturing method has a simple process, is easy to mold, and is convenient for industrial production.

(2)本発明において得られる複合材料は、炭素微小球及び/又は炭素膜における担持材の均一な分散を実現し、担持量が大きく、マクロ及びミクロレベルでの伝熱・物質移動のいずれも明らかに強化される。 (2) The composite material obtained in the present invention realizes uniform dispersion of the supporting material on the carbon microspheres and / or the carbon film, has a large supporting amount, and has both heat transfer and mass transfer at the macro and micro levels. Obviously enhanced.

(3)本発明において得られる複合材料は、従来の骨格材料の比表面積の制限を破り、担持量を増大させる前提で、複合材料の比表面積を効果的に増加し、吸着、反応又は電子移動速率を強化することができる。
(4)本発明において得られる複合材料は、担持材が炭原子間に直接嵌合され、耐凝集・耐不活性化能力が明らかに強化され、使用寿命が効果的に向上される。
(3) The composite material obtained in the present invention effectively increases the specific surface area of the composite material on the premise of breaking the limitation of the specific surface area of the conventional skeleton material and increasing the supported amount, and adsorbs, reacts or transfers electrons. The speed rate can be enhanced.
(4) In the composite material obtained in the present invention, the supporting material is directly fitted between the coal atoms, the aggregation / deactivation resistance is clearly enhanced, and the service life is effectively improved.

(5)本発明の複合材料は、活性化の前後で、熱交換器の熱交換壁面に押圧、粘着又は半田付けされることができ、その方式が柔軟且つ便利であり、吸着剤と熱交換器との接触熱抵抗を効果的に低減することができる。
(6)本発明の複合材料は構造が簡単で、熱伝達及び電子移動の効率が高く、実用性が強く、普及しやすい。
(5) The composite material of the present invention can be pressed, adhered or soldered to the heat exchange wall surface of the heat exchanger before and after activation, and the method is flexible and convenient, and heat exchange with the adsorbent. The thermal resistance to contact with the vessel can be effectively reduced.
(6) The composite material of the present invention has a simple structure, high efficiency of heat transfer and electron transfer, strong practicality, and easy to spread.

黒鉛ー炭素微小球ー塩化カルシウムの複合材料のSEMである。It is an SEM of a composite material of graphite-carbon microspheres-calcium chloride. 黒鉛ー炭素膜ー塩化カルシウムの複合材料のSEM画像及びEDS分析である。SEM image and EDS analysis of graphite-carbon film-calcium chloride composite material. 黒鉛ー炭素膜ー塩化カルシウムの複合材料及び塩化カルシウムが1000回吸着循環された後のSEMであり、但し、Aは黒鉛ー炭素膜ー塩化カルシウムの複合材料が1000回吸着循環された後のSEMであり、Bは塩化カルシウムが10回吸着循環された後のSEMである。The SEM after the graphite-carbon film-calcium chloride composite material and calcium chloride have been adsorbed and circulated 1000 times, where A is the SEM after the graphite-carbon film-calcium chloride composite material has been adsorbed and circulated 1000 times. B is an SEM after calcium chloride has been adsorbed and circulated 10 times. 黒鉛ー炭素微小球ー塩化カルシウムの複合材料及び塩化カルシウムのみによるアンモニアの吸脱着の動力学的比較である。It is a kinetic comparison of the adsorption and desorption of ammonia by the composite material of graphite-carbon microsphere-calcium chloride and calcium chloride alone.

以下、当業者が理解しやすいために、実施例により、本発明の特征及びその他の関連特徴については、さらに詳細に説明する。
(実施例1)
Hereinafter, the special conquest and other related features of the present invention will be described in more detail by way of examples for the sake of those skilled in the art.
(Example 1)

本実施例において、担持材は24gの塩化カルシウムであり、支持骨格材料は6gの膨張性黒鉛であり、溶剤は100mLの水であり、糖は6.16gのスクロースである。700℃の脱酸素雰囲気で2分間加熱して、膨張性黒鉛を膨張黒鉛に処理し、塩化カルシウム及びスクロースを50℃の水に溶解するとともに、均一に攪拌し、浸漬液を得る。常圧同体積浸漬法により、55℃の浸漬温度で、黒鉛を浸漬液に1h浸して、浸漬材を形成し、120℃で、浸漬材を12hエアフローして乾燥させ、550℃の温度で、浸漬材を二酸化炭素雰囲気で2.5h活性化させてから、取り出し、乾燥皿において常温に冷却させ、粉末状の複合材料を得る。この複合材料はメタノール、エタノール、アンモニア及び水の吸着に用いられる。このような複合材料の支持骨格は膨張黒鉛であり、図1に示すように、SEMにおいて、壁面に約100nmの平均粒径の炭素微小球が形成され、塩化カルシウムが均一に炭素微小球に担持されることが示されている。XRD分析では、塩化カルシウムの折回ピークは見られない。塩化カルシウムの含有量が約80%である。この粉末吸着剤は金型で押圧成型されてもよく、密度が520kg/mであり、熱伝達硬化粘着剤により、熱交換壁面に粘着され、接触熱抵抗は10−4・K/Wオーダーとされる。図4に示すように、測定状態が同じである場合は、最大吸着量の80%の吸脱着を完了する時間は塩化カルシウムの場合の1/5のみである。
(実施例2)
In this example, the carrier is 24 g calcium chloride, the supporting backbone material is 6 g expansive graphite, the solvent is 100 mL water and the sugar is 6.16 g sucrose. The expanded graphite is treated with expanded graphite by heating in a deoxidized atmosphere at 700 ° C. for 2 minutes, and calcium chloride and sucrose are dissolved in water at 50 ° C. and uniformly stirred to obtain an immersion liquid. By the normal pressure same volume immersion method, graphite is immersed in the immersion liquid for 1 hour at a immersion temperature of 55 ° C. to form an immersion material, and the immersion material is air-flowed and dried at 120 ° C. for 12 hours at a temperature of 550 ° C. The dipping material is activated in a carbon dioxide atmosphere for 2.5 hours, then taken out and cooled to room temperature in a drying dish to obtain a powdery composite material. This composite is used for adsorption of methanol, ethanol, ammonia and water. The supporting skeleton of such a composite material is expanded graphite, and as shown in FIG. 1, carbon microspheres having an average particle size of about 100 nm are formed on the wall surface in SEM, and calcium chloride is uniformly supported on the carbon microspheres. It has been shown to be done. XRD analysis does not show a folding peak of calcium chloride. The content of calcium chloride is about 80%. This powder adsorbent may be press-molded with a mold, has a density of 520 kg / m 3 , is adhered to the heat exchange wall surface by a heat transfer curing adhesive, and has a contact thermal resistance of 10 -4 m 2 · K /. It is a W order. As shown in FIG. 4, when the measurement conditions are the same, the time to complete the adsorption / desorption of 80% of the maximum adsorption amount is only 1/5 of that of calcium chloride.
(Example 2)

本実施例において、担持材は24gの塩化カルシウムであり、支持骨格材料は6gの膨張性黒鉛であり、溶剤は100mLの水であり、糖は12gのグルコースである。800℃の脱酸素雰囲気で2分間加熱し、膨張性黒鉛を膨張黒鉛に処理し、塩化カルシウム及びスクロースを50℃の水に溶解するとともに、均一に攪拌し、浸漬液を得る。常圧同体積浸漬法により、55℃の浸漬温度で、黒鉛を浸漬液に1h浸して、浸漬材を形成し、120℃で、浸漬材を12hエアフローして乾燥させ、650℃の温度で、浸漬材を窒素雰囲気で1.5h活性化させてから、取り出して乾燥皿で常温に冷却させ、粉末状の複合材料を得る。この複合材料はメタノール、エタノール、アンモニア及び水の吸着に用いられる。このような複合材料の支持骨格は膨張黒鉛であり、図2に示すように、SEMには、その内部の膨張黒鉛の2次孔隙壁面に約50nmの平均厚さの炭素膜が形成され、塩化カルシウムの含有量が約75%であることが示され、EDS分析により、塩化カルシウムが炭素原子に均一に嵌められていることがわかる。図3により、このような複合材料の場合、1000回の吸着後、そのミクロ構造には明らかに変化が起こらず、耐減衰能力に優れているが、塩化カルシウムのみの場合は10回だけの吸着で、凝集、固まりが発生することがわかる。
(実施例3)
In this example, the carrier is 24 g of calcium chloride, the supporting backbone material is 6 g of expansive graphite, the solvent is 100 mL of water and the sugar is 12 g of glucose. The mixture is heated in a deoxidized atmosphere at 800 ° C. for 2 minutes to treat expanded graphite into expanded graphite, and calcium chloride and sucrose are dissolved in water at 50 ° C. and stirred uniformly to obtain an immersion liquid. By the normal pressure same volume immersion method, graphite is immersed in the immersion liquid for 1 hour at a immersion temperature of 55 ° C. to form an immersion material, and at 120 ° C., the immersion material is air-flowed for 12 hours to dry, and at a temperature of 650 ° C. After activating the dipping material in a nitrogen atmosphere for 1.5 hours, it is taken out and cooled to room temperature in a drying dish to obtain a powdery composite material. This composite is used for adsorption of methanol, ethanol, ammonia and water. The supporting skeleton of such a composite material is expanded graphite, and as shown in FIG. 2, a carbon film having an average thickness of about 50 nm is formed on the secondary pore wall surface of the expanded graphite inside the SEM, and chloride is formed. The calcium content is shown to be about 75%, and EDS analysis reveals that calcium chloride is uniformly fitted to the carbon atoms. According to FIG. 3, in the case of such a composite material, after 1000 times of adsorption, the microstructure does not change clearly and the damping resistance is excellent, but in the case of calcium chloride alone, it is adsorbed only 10 times. It can be seen that aggregation and lumping occur.
(Example 3)

本実施例において、担持材は60gの臭化リチウムであり、支持骨格材料は50gの銅発泡体であり、溶剤は50mLの水であり、糖は20gのプルランである。銅発泡体を必要な形状に切断し、酸化層除去処理を行い、臭化リチウム及び澱粉を常温の水に溶解し、均一に攪拌し、浸漬液を得る。常圧過量浸漬法により、80℃の浸漬温度(該浸漬温度下で、澱粉は糊化される)で、銅発泡体を浸漬液に1h浸してから、取り出し、浸漬材を形成し、常温において、2d通気乾燥させ、浸漬材と熱交換壁面に融解点350℃の半田を塗布し、しっかり押え付け、450℃の温度で、真空炉に1h放置することで、活性化及び真空半田付けの過程を同時に完了することができ、複合材料ー熱交換器の一体化の作製を実現し、その接触熱抵抗が10ー5〜10ー6・K/Wオーダーである。このような複合材料は主に除湿に用いられる。
(実施例4)
In this example, the carrier is 60 g lithium bromide, the supporting backbone material is 50 g copper foam, the solvent is 50 mL water and the sugar is 20 g pullulan. The copper foam is cut into a required shape, an oxide layer is removed, and lithium bromide and starch are dissolved in water at room temperature and stirred uniformly to obtain an immersion liquid. By the normal pressure over-immersion method, the copper foam is immersed in the immersion liquid for 1 hour at an immersion temperature of 80 ° C. (the starch is gelatinized under the immersion temperature), then taken out to form an immersion material, and at room temperature. , 2d aeration drying, apply solder with a melting point of 350 ° C to the dipping material and heat exchange wall surface, press firmly, and leave it in a vacuum furnace at a temperature of 450 ° C for 1 hour to activate and vacuum solder the process. can complete simultaneously, to achieve the production of integrated composite material over heat exchanger, the thermal contact resistance is 10 @ 5 -10 over 6 m 2 · K / W order. Such composite materials are mainly used for dehumidification.
(Example 4)

本実施例において、担持材は30gの一酸化ケイ素であり、支持骨格材料は黒鉛であり、溶剤は100mLの水であり、糖は10gのグルコースである。一酸化ケイ素及びグルコースを50℃の水に溶解し、均一に攪拌し、懸濁の浸漬液を得る。負圧同体積浸漬法により、浸漬温度を60℃とし、浸漬時間を2hとし、浸漬材を形成し、浸漬材を120℃で24h真空乾燥させ、500wの出力で、浸漬材を電子レンジで窒素雰囲気において1000℃より低い温度で12min活性化させ、その後、取り出し、乾燥皿において常温に冷却させ、直接脱酸素雰囲気で押圧成型する。この複合材料はリチウム電池の負極に適用可能である。 In this example, the carrier is 30 g of silicon monoxide, the supporting backbone material is graphite, the solvent is 100 mL of water, and the sugar is 10 g of glucose. Silicon monoxide and glucose are dissolved in water at 50 ° C. and stirred uniformly to obtain a suspension immersion solution. By the negative pressure same volume immersion method, the immersion temperature is 60 ° C., the immersion time is 2 hours, the immersion material is formed, the immersion material is vacuum dried at 120 ° C. for 24 hours, and the immersion material is nitrogenized in a microwave oven at an output of 500 w. It is activated in an atmosphere at a temperature lower than 1000 ° C. for 12 minutes, then taken out, cooled to room temperature in a drying dish, and directly pressed and molded in a deoxidized atmosphere. This composite material is applicable to the negative electrode of lithium batteries.

要するに、上記は本発明の好適な実施例だけであり、本発明を制限するものではなく、前記の実施例を参照しながら本発明を詳細に説明したが、当業者は、前記の実施例に記載の技術案を補正したり、その中の一部を均等置換することができると理解しうる。本発明の主旨及び原則において行われる補正、均等置換、改良などはいずれも本発明の保護範囲に含まれる。以上図面を参考しながら本発明の具体的な実施形態を説明したが、本発明の保護範囲を制限するわけではなく、当業者が本発明の技術案に基づき、創造的な労働を費やしなくても行える各種の補正又は変形は本発明の保護範囲内に含まれる。 In short, the above is only a preferred embodiment of the present invention and does not limit the present invention, and the present invention has been described in detail with reference to the above-mentioned examples, but those skilled in the art have described the above-mentioned examples. It can be understood that the described technical proposal can be amended or a part thereof can be evenly replaced. Corrections, equal replacements, improvements, etc. made in the gist and principle of the present invention are all included in the scope of protection of the present invention. Although the specific embodiment of the present invention has been described above with reference to the drawings, it does not limit the scope of protection of the present invention, and those skilled in the art will not spend creative labor based on the technical proposal of the present invention. Various corrections or modifications that can also be made are included within the scope of protection of the present invention.

Claims (10)

支持骨格と、
前記支持骨格上に位置する炭素微小球及び/又は炭素膜と、
前記炭素微小球及び/又は炭素膜中に分散される担持材と、を含むことを特徴とする複合材料。
Supporting skeleton and
A carbon microsphere and / or a carbon film located on the supporting skeleton,
A composite material comprising the carbon microspheres and / or a supporting material dispersed in a carbon film.
前記支持骨格の孔隙壁の平均厚さは0.3nm〜1mmであり、
又は前記炭素微小球の平均粒径は10nm〜0.05mmであり、
又は前記膜の平均厚さは1nm〜0.05mmであり、
又は前記担持材の平均粒径は10μmより小さく、
又は前記支持骨格の材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、発泡カーボン、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、バーミキュライト、グラフェン、シリカゲルのうちの少なくとも1種であり、
又は前記担持材において、塩がLiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、ZnCl、CuCl、AgNO、NaSOからなる群より選ばれる1種又は2種以上の組合せであり、電極材料がTiO、窒化物、スズ系酸化物、スズ合金、金属間化合物、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウムからなる群より選ばれる1種又は2種以上の組合せであり、物理吸着材料が水素貯蔵合金、ゼオライトモレキュラーシーブ、有機金属骨格材料であり、
又は前記支持骨格と担持材との質量比は0.5〜9であり、
又は前記炭素微小球及び/又は炭素膜における炭素のモル質量と担持材のモル質量との比は0.05〜6である、ことを特徴とする請求項1に記載の複合材料。
The average thickness of the pore wall of the supporting skeleton is 0.3 nm to 1 mm.
Alternatively, the average particle size of the carbon microspheres is 10 nm to 0.05 mm.
Alternatively, the average thickness of the film is 1 nm to 0.05 mm.
Alternatively, the average particle size of the supporting material is smaller than 10 μm.
Alternatively, the material of the supporting skeleton is at least one of expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, foamed carbon, activated carbon, graphite fiber, porous metal, porous ceramic, vermiculite, graphene, and silica gel. Seed and
Alternatively, in the supporting material, the salts are LiCl, BaCl 2 , CaBr 2 , NaBr, KBr, LiBr, PbCl 2 , LiCl, CaCl 2 , MnCl 2 , BaCl 2 , SrCl 2 , CoCl 2 , MgCl 2 , PbCl 2 , NiCl 2. , FeCl 3 , CuCl 2 , ZnCl 2 , CuCl 2 , AgNO 3 , Na 2 SO 4 selected from the group consisting of one or a combination of two or more, and the electrode material is TiO, nitride, tin oxide, One or a combination of two or more selected from the group consisting of tin alloys, intermetal compounds, lithium cobaltate, lithium manganate, and lithium iron phosphate, and the physical adsorption materials are hydrogen storage alloys, zeolite molecular sieves, and organic metals. It is a skeletal material
Alternatively, the mass ratio of the supporting skeleton to the supporting material is 0.5 to 9.
The composite material according to claim 1, wherein the ratio of the molar mass of carbon to the molar mass of the supporting material in the carbon microspheres and / or the carbon film is 0.05 to 6.
前記複合材料の接触熱抵抗は10ー6〜10ー4・K/Wである、ことを特徴とする請求項1に記載の複合材料。 The composite material of claim 1, wherein the contact thermal resistance of the composite material is 10 @ 6 to 10 over 4 m 2 · K / W, characterized in that. 請求項1〜3のいずれか1項に記載の複合材料を含む、ことを特徴とする吸着式冷凍装置。 An adsorption type refrigerating apparatus comprising the composite material according to any one of claims 1 to 3. 請求項1〜3のいずれか1項に記載の複合材料を含む、ことを特徴とするトランスセパレータ。 A transseparator comprising the composite material according to any one of claims 1 to 3. 請求項1〜3のいずれか1項に記載の複合材料を含む、ことを特徴とするヒートポンプ。 A heat pump comprising the composite material according to any one of claims 1 to 3. 前処理後の支持骨格を糖及び担持材の混合溶液に浸漬して乾燥させることで、膜を形成し、活性化させることで膜を炭素微小球及び/又は炭素膜に炭化させて複合材料を得るステップを含む、ことを特徴とする複合材料の製造方法。 The support skeleton after the pretreatment is dipped in a mixed solution of sugar and a supporting material and dried to form a film, which is activated to carbonize the film into carbon microspheres and / or a carbon film to form a composite material. A method for producing a composite material, comprising the step of obtaining. 前記多孔質支持骨格と担持材との質量比は1:0.5〜9であり、
又は前記の糖における炭素のモル質量と担持材のモル質量との比は0.5〜6であり、
又は前記支持骨格の材料は膨張性黒鉛、アルミナ、多孔質黒鉛、多孔質繊維、活性炭繊維、発泡カーボン、活性炭、黒鉛繊維、多孔質金属、多孔質セラミック、バーミキュライト、グラフェン、シリカゲルのうちの少なくとも1種であり、
又は前記担持材において、塩がLiCl、BaCl、CaBr、NaBr、KBr、LiBr、PbCl、LiCl、CaCl、MnCl、BaCl、SrCl、CoCl、MgCl、PbCl、NiCl、FeCl、CuCl、ZnCl、CuCl、AgNO、NaSOからなる群より選ばれる1種又は2種以上の組合せであり、電極材料がTiO、窒化物、スズ系酸化物、スズ合金、金属間化合物、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウムからなる群より選ばれる1種又は2種以上の組合せであり、物理吸着材料が水素貯蔵合金、ゼオライトモレキュラーシーブ、有機金属骨格材料であり、
又は前記糖は単糖類、二糖類、多糖類のうちの少なくとも1種であり、グルコース、フルクトース、ガラクトース、スクロース、ラクトース、マルトース、トレハロース、澱粉からなる群より選ばれる1種又は2種以上の組合せであることが好ましく、
又は前記糖及び担持材の混合溶液は担持材の硬化防止剤及び/又は分散剤をさらに含み、
又は前記前処理の具体的な操作ステップは、200〜1000℃で脱酸素又は低酸素雰囲気において支持骨格を膨張させることであり、
又は前記糖及び担持材の混合溶液の製造方法は、20〜120℃で糖と担持材を均一に混合することであり、
又は前記浸漬処理の条件は、20〜120℃で、1min〜48h浸すことであり、
又は前記乾燥処理の条件は、20〜220℃で、1h〜10d乾燥することであり、
又は前記活性化処理の条件は、100〜1000℃で、30min〜12h活性化することであり、
又は前記浸漬処理はシャワーコート処理により代替される、ことを特徴とする請求項7に記載の方法。
The mass ratio of the porous supporting skeleton to the supporting material is 1: 0.5 to 9.
Alternatively, the ratio of the molar mass of carbon to the molar mass of the supporting material in the sugar is 0.5 to 6.
Alternatively, the material of the supporting skeleton is at least one of expandable graphite, alumina, porous graphite, porous fiber, activated carbon fiber, foamed carbon, activated carbon, graphite fiber, porous metal, porous ceramic, vermiculite, graphene, and silica gel. Seed and
Alternatively, in the supporting material, the salts are LiCl, BaCl 2 , CaBr 2 , NaBr, KBr, LiBr, PbCl 2 , LiCl, CaCl 2 , MnCl 2 , BaCl 2 , SrCl 2 , CoCl 2 , MgCl 2 , PbCl 2 , NiCl 2. , FeCl 3 , CuCl 2 , ZnCl 2 , CuCl 2 , AgNO 3 , Na 2 SO 4 selected from the group consisting of one or a combination of two or more, and the electrode material is TiO, nitride, tin oxide, One or a combination of two or more selected from the group consisting of tin alloys, intermetal compounds, lithium cobaltate, lithium manganate, and lithium iron phosphate, and the physical adsorption materials are hydrogen storage alloys, zeolite molecular sieves, and organic metals. It is a skeletal material
Alternatively, the sugar is at least one of a monosaccharide, a disaccharide, and a polysaccharide, and is one or a combination of two or more selected from the group consisting of glucose, fructose, galactose, sucrose, lactose, maltose, trehalose, and starch. Is preferable,
Alternatively, the mixed solution of the sugar and the supporting material further contains an anticaking agent and / or a dispersant for the supporting material.
Alternatively, the specific operating step of the pretreatment is to expand the supporting backbone in a deoxidized or hypoxic atmosphere at 200-1000 ° C.
Alternatively, the method for producing a mixed solution of the sugar and the supporting material is to uniformly mix the sugar and the supporting material at 20 to 120 ° C.
Alternatively, the condition of the dipping treatment is to soak at 20 to 120 ° C. for 1 min to 48 hours.
Alternatively, the condition of the drying treatment is to dry for 1h to 10d at 20 to 220 ° C.
Alternatively, the condition of the activation treatment is that the activation treatment is performed at 100 to 1000 ° C. for 30 minutes to 12 hours.
The method according to claim 7, wherein the dipping treatment is replaced by a shower coating treatment.
請求項7又は8に記載の方法で製造される複合材料。 A composite material produced by the method according to claim 7 or 8. 請求項1〜3、9のいずれか1項に記載の複合材料の電池、環境保護、除湿、冷凍、変圧分離精製、水素貯蔵又はエアコン、ヒートポンプの製造における使用。

Use of the composite material according to any one of claims 1 to 9 in the manufacture of batteries, environmental protection, dehumidification, refrigeration, transformational separation and purification, hydrogen storage or air conditioning, and heat pumps.

JP2020529506A 2017-11-30 2018-11-28 Composite material and its manufacturing method Active JP7213401B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711241859.1A CN108079934B (en) 2017-11-30 2017-11-30 A kind of composite material and preparation method
CN201711241859.1 2017-11-30
PCT/CN2018/117792 WO2019105356A1 (en) 2017-11-30 2018-11-28 Composite material and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2021504286A true JP2021504286A (en) 2021-02-15
JP7213401B2 JP7213401B2 (en) 2023-01-27

Family

ID=62173375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529506A Active JP7213401B2 (en) 2017-11-30 2018-11-28 Composite material and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7213401B2 (en)
CN (1) CN108079934B (en)
WO (1) WO2019105356A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108079934B (en) * 2017-11-30 2019-02-22 山东大学 A kind of composite material and preparation method
CN108704453A (en) * 2018-05-31 2018-10-26 佛山市高明区爪和新材料科技有限公司 A kind of preparation method of air dewetting agent
CN111995798B (en) * 2018-06-18 2022-04-15 杭州沸创生命科技股份有限公司 Composite material containing molecular sieve and fiber, preparation method and application thereof
CN111099943B (en) * 2018-10-29 2021-07-02 中国石油化工股份有限公司 Method for microwave pyrolysis of biomass
CN109225145A (en) * 2018-11-25 2019-01-18 中国科学院合肥物质科学研究院 A kind of preparation method and application of zirconium-based metallic organic coordination compound UiO-66/ Foam carbon composite material
CN110102271B (en) * 2019-05-15 2024-02-13 天津清科环保科技有限公司 Porous section bar containing nano adsorbent for VOCs treatment and method and equipment thereof
CN110890530B (en) * 2019-10-30 2021-04-13 苏州大学 Lithium metal secondary battery based on porous ceramic composite lithium metal cathode and preparation method thereof
CN110957477B (en) * 2019-10-30 2021-04-27 苏州大学 Porous ceramic composite lithium metal cathode and preparation method thereof
CN112892517B (en) * 2019-12-04 2022-07-01 中国科学院大连化学物理研究所 Hybrid carbon material and preparation method thereof, catalyst containing hybrid carbon material and preparation method thereof
CN113013385A (en) * 2019-12-19 2021-06-22 山西沃特海默新材料科技股份有限公司 Coating agent, silicon-carbon material and preparation process
CN111686478B (en) * 2020-06-30 2022-05-24 成都大学 Carbon foam membrane material for oil-water emulsion separation, preparation method and application
CN114432870B (en) * 2020-10-31 2023-05-05 中国石油化工股份有限公司 FCC regenerated flue gas treatment method and device
CN114149056A (en) * 2021-11-22 2022-03-08 青岛农业大学 Preparation and application of heteroatom-containing carbon microsphere particle electrode
CN113990415A (en) * 2021-12-30 2022-01-28 南京师范大学 Three-dimensional catalytic material catalytic characteristic screening system based on neural network
CN114573372B (en) * 2022-03-31 2024-02-23 浙江华熔科技有限公司 High-temperature-resistant and oxidation-resistant graphite microporous plugging agent and preparation method thereof
CN115117327B (en) * 2022-08-25 2022-11-22 溧阳天目先导电池材料科技有限公司 Low-expansion silicon-based composite material and preparation method and application thereof
CN115739027A (en) * 2022-10-21 2023-03-07 合肥工业大学 NH 2 -MIL-101 (Fe) @ BC composite material, application and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169391A1 (en) * 2012-05-08 2013-11-14 Stc. Unm Improved hydrothermal stability of oxides with carbon coatings
WO2014080632A1 (en) * 2012-11-21 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
CN106784640A (en) * 2015-11-25 2017-05-31 北京有色金属研究总院 Lithium ion battery silicon substrate composite negative pole material, its preparation method and the lithium ion battery negative comprising the material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213016B4 (en) * 2002-03-22 2006-08-17 Helsa-Automotive Gmbh & Co. Kg Mechanically stable, porous activated carbon moldings, process for its preparation and its use
CN101003380B (en) * 2006-01-19 2010-05-12 中国石油化工股份有限公司 Method for synthesizing ZSM-5 zeolite with multilevel pore canals
EP2342009B1 (en) * 2008-09-08 2017-03-15 Amminex Emissions Technology A/S Additives for highly compacted ammonia storage materials
WO2011011579A2 (en) * 2009-07-22 2011-01-27 Wisys Technology Foundation, Inc. Carbon microbeads with hierarchical structure
CN102730680B (en) * 2012-07-23 2014-12-03 清华大学深圳研究生院 High-density high-rigidity graphene porous carbon material as well as preparation method and applications thereof
CN103191704B (en) * 2013-04-18 2015-04-22 中国科学技术大学 Composite adsorbent and preparation method thereof
CN103623820B (en) * 2013-11-07 2016-06-15 江苏大学 The noble metal anthraquinone hydrogenation catalyst preparation method that a kind of carbide promotes
CN105498690A (en) * 2016-01-15 2016-04-20 广东工业大学 Composite adsorption material and preparation method thereof
CN108079934B (en) * 2017-11-30 2019-02-22 山东大学 A kind of composite material and preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169391A1 (en) * 2012-05-08 2013-11-14 Stc. Unm Improved hydrothermal stability of oxides with carbon coatings
WO2014080632A1 (en) * 2012-11-21 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
CN106784640A (en) * 2015-11-25 2017-05-31 北京有色金属研究总院 Lithium ion battery silicon substrate composite negative pole material, its preparation method and the lithium ion battery negative comprising the material

Also Published As

Publication number Publication date
JP7213401B2 (en) 2023-01-27
WO2019105356A1 (en) 2019-06-06
CN108079934B (en) 2019-02-22
CN108079934A (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP2021504286A (en) Composite material and its manufacturing method
CN108493412B (en) Preparation method of porous silicon-carbon composite negative electrode material
CN107195875B (en) Composite electrode material with three-dimensional graphene coated MOF and preparation method thereof
CN109755482B (en) Silicon/carbon composite material and preparation method thereof
CN109742355A (en) A kind of preparation of silicon carbon composite materials method
CN101759178B (en) Preparation method for hollow carbon hemisphere
CN101961644B (en) Chloride-carbonaceous skeleton composite adsorbent and preparation method thereof
WO2011075965A1 (en) Composite copper powder for manufacturing inner wall capillary structure of heat pipe
CN105152159A (en) Nitrogen-doped carbon aerogel and preparation method thereof
CN111592377B (en) Electromagnetic shielding foam composite material and preparation method and application thereof
CN108039465A (en) Combination electrode material and its preparation method and application
CN109652022B (en) Preparation method of novel composite diatomite phase change energy storage material carrier
Zhou et al. Facile fabrication of Cu‐doped carbon aerogels as catalysts for the thermal decomposition of ammonium perchlorate
CN105129787A (en) Preparing method of three-dimensional hierarchical porous graphene
CN114015418A (en) Thermochemical adsorption heat storage material with efficient mass and heat transfer and preparation method thereof
CN112619021B (en) Preparation method of superfine powder fire extinguishing agent based on porous carbon fluoride material
CN113800500A (en) Method for preparing boron-doped carbon nanosheet from lignin and product
CN111584838A (en) Porous silicon/silicon-carbon composite material and preparation method and application thereof
CN107511482B (en) A method of foam metal is prepared by coke composite foamable agent
CN107649078A (en) A kind of graphene composite material aeroge and preparation method
CN109835880A (en) A kind of original position template prepares the method and application of porous carbon materials
CN109317063B (en) Carbon aerogel and preparation method thereof
CN111533112A (en) Graphene hollow nanospheres and preparation method thereof
CN110803700B (en) Porous carbon material and method for preparing porous carbon material by utilizing microwave hot-zone effect
CN111017923B (en) Free radical induced controllable microspherical activated carbon and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R150 Certificate of patent or registration of utility model

Ref document number: 7213401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150