JP7210665B2 - Cell porous body and manufacturing method thereof - Google Patents

Cell porous body and manufacturing method thereof Download PDF

Info

Publication number
JP7210665B2
JP7210665B2 JP2021134311A JP2021134311A JP7210665B2 JP 7210665 B2 JP7210665 B2 JP 7210665B2 JP 2021134311 A JP2021134311 A JP 2021134311A JP 2021134311 A JP2021134311 A JP 2021134311A JP 7210665 B2 JP7210665 B2 JP 7210665B2
Authority
JP
Japan
Prior art keywords
graphite
cellular porous
porous body
resin
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021134311A
Other languages
Japanese (ja)
Other versions
JP2021183701A (en
Inventor
敦紀 菊地
隆介 幾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Inoac Technical Center Co Ltd
Original Assignee
Inoac Corp
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp, Inoac Technical Center Co Ltd filed Critical Inoac Corp
Priority to JP2021134311A priority Critical patent/JP7210665B2/en
Publication of JP2021183701A publication Critical patent/JP2021183701A/en
Priority to JP2022139393A priority patent/JP7469408B2/en
Application granted granted Critical
Publication of JP7210665B2 publication Critical patent/JP7210665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Description

本発明は、電子・電気機器製品(エレクトロニクス製品)、特に、薄型・高性能なスマートフォン、パソコン、テレビ等の内部構造が複雑な電子・電気機器製品、の放熱用部材等として有用な気泡多孔体、及びその製造方法に関する。 The present invention provides an electronic/electrical device product (electronic product), in particular, a cellular porous material useful as a heat dissipation member for electronic/electrical device products with a complicated internal structure such as thin and high-performance smartphones, personal computers, and televisions. , and its manufacturing method.

電子・電気機器製品(エレクトロニクス製品)、特にスマートフォン、パソコン、テレビなどの製品は年々、薄型化、高性能化が進んでいる。一方で、データ処理速度が高速化する等により、発熱量が増大する上、内部の構造が複雑であるため、熱がこもりやすくなってきている。その発生した熱により、電子部品の短命化、熱膨張による筐体の変形、低温火傷などの問題が生じる可能性がある。そのため、電子・電気機器製品内部には、放熱を目的として、熱伝導性物質を含む部材が配置されている。従前、当該部材として、熱伝導性物質を含むシリコーン、アクリル等のゲルからなる部材が用いられていたが、前記ゲルからなる部材は、高い熱伝導性を有するが、高硬度であり、圧縮時の応力が高いため、柔軟性に欠け、近年の複雑な内部構造を有する電子・電気機器内に内部構造に追従させて配置するのは困難である。 Electronic and electrical equipment products (electronic products), especially products such as smartphones, personal computers, and televisions, are becoming thinner and higher performance year by year. On the other hand, due to the increase in data processing speed, etc., the amount of heat generated increases, and the internal structure is complicated, so that heat tends to be trapped. The generated heat may cause problems such as shortening the life of electronic components, deformation of housings due to thermal expansion, and low-temperature burns. For this reason, members containing thermally conductive substances are arranged inside electronic and electrical equipment products for the purpose of heat dissipation. Conventionally, as the member, a member made of a gel such as silicone, acrylic, etc. containing a thermally conductive substance has been used. Due to the high stress, it lacks flexibility, and it is difficult to arrange it so as to follow the internal structure in recent electronic and electrical equipment having a complicated internal structure.

特許文献1には、電子機器用放熱シート等の製造に利用可能な発泡性組成物が開示されている。しかし、特許文献1には、上記形状追従性、即ち柔軟性の観点の問題点・その解決については記載がない。また、この発泡性組成物は、必須成分としてシリコーン系界面活性剤を含むため、当該組成物から製造された放熱シートが高温に曝された場合に、低分子シロキサン成分が遊離し、劣化するという問題があり、耐熱性に欠ける。 Patent Literature 1 discloses a foamable composition that can be used in the production of heat-dissipating sheets for electronic devices. However, Patent Literature 1 does not describe the above-mentioned shape-following property, that is, the problem in terms of flexibility and its solution. In addition, since this foamable composition contains a silicone-based surfactant as an essential component, when a heat-dissipating sheet manufactured from this composition is exposed to high temperatures, the low-molecular-weight siloxane component is liberated and deteriorated. It is problematic and lacks heat resistance.

特開2016-65196号公報JP 2016-65196 A

本発明は、以上の問題点に鑑みてなされたものであり、放熱部材として利用可能な新規な気泡多孔体及びその製造方法を提供することを課題とする。
また、本発明の他の課題は、放熱性を損なうことなく、適度な柔軟性があり、他部材の形状に対して追従性がある気泡多孔体及びその製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel cellular porous material that can be used as a heat radiating member, and a method for manufacturing the same.
Another object of the present invention is to provide a cellular porous body which has moderate flexibility and conformability to the shape of other members without impairing heat dissipation, and a method for producing the same.

本発明者らは前記課題を解決するため検討した結果、熱伝導性材料として球状黒鉛を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。上記課題を解決するための手段は以下の通りである。
[1] マトリックス樹脂と、前記マトリックス樹脂内に分散した熱伝導性材料とを含有し、前記熱伝導性材料が少なくとも球状黒鉛を含有する、ことを特徴とする気泡多孔体。
[2] 前記球状黒鉛が、ベーサル面を褶曲させた構造である、[1]の気泡多孔体。
[3] 前記マトリックス樹脂が、アクリル樹脂である、[1]又は[2]の気泡多孔体。
[4] 前記熱伝導性材料が、金属酸化物を更に含有する、[1]~[3]のいずれかの気泡多孔体。
[5] 前記気泡多孔体の全質量を基準として、前記熱伝導性材料を40~60質量%含有する、[1]~[4]のいずれかの気泡多孔体。
[6] 前記熱伝導性材料が、金属酸化物と球状黒鉛とを配合比率(質量比)0:10~5:5で含有する、[1]~[5]のいずれかの気泡多孔体。
[7] 連続気泡多孔体である、[1]~[6]のいずれか一項記載の気泡多孔体。
[8] JIS K 6254に準拠して測定した25%圧縮荷重が、20kPa以下であり、京都電子工業株式会社製QTM-500を用いてプローブ法で測定した熱伝導率が、0.3W/m・K以上である、[1]~[7]のいずれかの気泡多孔体。
[9] エレクトロニクス製品の放熱材用である、[1]~[8]のいずれかの気泡多孔体。
[10] 側鎖に官能基を有する樹脂、起泡剤及び球状黒鉛を含有する液体組成物を機械発泡させる発泡工程と、前記樹脂が有する官能基同士を反応させる、及び/又は多官能性の架橋剤の官能基と反応させることで硬化させる工程とを含み、
発泡工程と硬化工程とを同時に実施する、及び/又は発泡工程の後に硬化工程を実施する、気泡多孔体の製造方法。
[11] 前記起泡剤が、前記液体組成物のpHが中性からアルカリ領域であり、及び前記起泡剤が少なくとも1種のアニオン性界面活性剤を含む、[10]の製造方法。
[12] 前記気泡多孔体が、[1]~[9]のいずれかの気泡多孔体である、[10]又は[11]の製造方法。
The present inventors have studied to solve the above problems, and as a result, have found that the above problems can be solved by using spherical graphite as a thermally conductive material, and have completed the present invention. Means for solving the above problems are as follows.
[1] A cellular porous body comprising a matrix resin and a thermally conductive material dispersed in the matrix resin, wherein the thermally conductive material contains at least spherical graphite.
[2] The cellular porous body of [1], wherein the spherical graphite has a structure in which the basal surfaces are folded.
[3] The cellular porous body of [1] or [2], wherein the matrix resin is an acrylic resin.
[4] The cellular porous body according to any one of [1] to [3], wherein the thermally conductive material further contains a metal oxide.
[5] The cellular porous body according to any one of [1] to [4], containing 40 to 60% by mass of the thermally conductive material based on the total weight of the cellular porous body.
[6] The cellular porous body according to any one of [1] to [5], wherein the thermally conductive material contains metal oxide and spherical graphite at a compounding ratio (mass ratio) of 0:10 to 5:5.
[7] The cellular porous body according to any one of [1] to [6], which is an open-celled porous body.
[8] The 25% compression load measured in accordance with JIS K 6254 is 20 kPa or less, and the thermal conductivity measured by the probe method using QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. is 0.3 W / m. - The cellular porous body according to any one of [1] to [7], which is K or higher.
[9] The cellular porous body according to any one of [1] to [8], which is used as a heat dissipation material for electronic products.
[10] A foaming step of mechanically foaming a liquid composition containing a resin having a functional group in a side chain, a foaming agent, and spherical graphite, and reacting the functional groups of the resin with each other and/or forming a polyfunctional curing by reacting with the functional groups of the cross-linking agent;
A method for producing a cellular porous body, wherein a foaming step and a curing step are performed simultaneously, and/or a curing step is performed after the foaming step.
[11] The production method of [10], wherein the foaming agent is such that the pH of the liquid composition is in the neutral to alkaline range, and the foaming agent contains at least one anionic surfactant.
[12] The production method of [10] or [11], wherein the cellular porous material is the cellular porous material of any one of [1] to [9].

本発明によれば、放熱部材として利用可能な新規な気泡多孔体及びその製造方法を提供することができる。
また、本発明によれば、放熱性を損なうことなく、適度な柔軟性があり、他部材の形状に対して追従性がある気泡多孔体及びその製造方法を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel cellular porous body that can be used as a heat radiating member and a method for manufacturing the same.
Moreover, according to the present invention, it is possible to provide a cellular porous body which has moderate flexibility and conformability to the shape of other members without impairing heat dissipation, and a method for producing the same.

以下、本発明の気泡多孔体及びその製造方法について詳述する。本明細書において、「~」はその前後の数値を含む範囲を意味する。 The cellular porous material of the present invention and the method for producing the same will be described in detail below. In the present specification, "to" means a range including the numbers before and after it.

[気泡多孔体]
本発明の気泡多孔体は、マトリックス樹脂と、前記マトリックス樹脂内に分散した熱伝導性材料とを含有し、前記熱伝導性材料が少なくとも球状黒鉛を含有する、ことを特徴とする。
(1)球状黒鉛
球状黒鉛は、高い熱伝導性があり、本発明の気泡多孔体の放熱性発現及び/または改善に寄与する。本発明に使用可能な黒鉛は球状である。本発明において、「球状」とは、真球状のみを意味するのではなく、真球形状が円盤状様に若干変形した形状、表面が一様ではなく、表面に層が重なったキャベツ様な外観を有する形状等、一般的には、真球形状とは把握されないものも含む趣旨である。但し、天然黒鉛の結晶形は六方晶形であり、一般的には、未処理の黒鉛は鱗片状であるので、これとは区別される。即ち、本発明には、少なくとも球状化処理が施された黒鉛を使用することを要する。球状化処理には、鱗片状の天然黒鉛を粉砕処理する等の簡易な処理方法も含まれるが、好ましくは、黒鉛に対して等方的に圧力が負荷される処理方法の採用である。当該処理は、気体(アルゴン等の不活性ガス)、液体(例えば水)等の加圧媒体を用いて、等方的に黒鉛に圧を負荷する方法等により実施できる。加熱の有無により、熱間等方加圧処理、冷間等方加圧処理として区別される。いずれを利用してもよい。この処理を施すことで、外形が球形であり、しかも内部の空壁(鱗片層間)が軽減された、高熱伝導性の球状黒鉛が得られる。
[Bubble porous body]
The cellular porous body of the present invention is characterized by containing a matrix resin and a thermally conductive material dispersed in the matrix resin, wherein the thermally conductive material contains at least spherical graphite.
(1) Spherical graphite Spherical graphite has high thermal conductivity and contributes to development and/or improvement of the heat dissipation properties of the cellular porous material of the present invention. Graphite that can be used in the present invention is spherical. In the present invention, the term "spherical" does not mean only a true sphere, but a shape slightly deformed from a true sphere into a discoid shape, a surface that is not uniform, and a cabbage-like appearance in which layers are superimposed on the surface. It is intended to include shapes that are not generally understood as true spheres, such as shapes having However, the crystal form of natural graphite is hexagonal, and untreated graphite is generally scale-like, so it is distinguished from this. That is, the present invention requires the use of graphite that has been at least spheroidized. The spheroidizing treatment includes a simple treatment method such as pulverizing flake natural graphite, but preferably a treatment method in which pressure is applied isotropically to the graphite. The treatment can be carried out by isotropically pressurizing graphite using a pressurized medium such as gas (inert gas such as argon) or liquid (eg water). Depending on the presence or absence of heating, it is distinguished as hot isostatic press treatment and cold isostatic press treatment. Either can be used. By applying this treatment, highly thermally conductive spherical graphite having a spherical outer shape and reduced internal void walls (between scales) can be obtained.

上記球状化処理された球状黒鉛は、他の側面から、ベーサル面を褶曲させた構造を有する球状黒鉛として特定される。ここで、「ベーサル面」とは、黒鉛結晶(六方晶系)のC軸に直交する面をいう。即ち、本発明の球状黒鉛は、天然黒鉛の結晶系に歪みが生じているものであるのが好ましい。この歪みは、X線回折パターンを測定し、天然黒鉛と比較して、ピークのブロード化の有無又は2θ値のシフトの有無を確認することで把握できる。また、気泡多孔体が、球状黒鉛を含有するか否かの確認は、原料黒鉛のX線回折パターンを測定することで確認する他、気泡多孔体の任意の2以上の断面を顕微鏡観察し、黒鉛相当部分の形状が円様であるか否かによって確認することもできる。具体的には、気泡多孔体の互いに直交する面を顕微鏡観察し、いずれの画像にも黒鉛相当部分の形状が、短径/長径の比が1/2未満の円様の形状であれば、当該気泡多孔は球状黒鉛を含んでいると言える。 The spheroidized graphite described above is specified from another aspect as spheroidal graphite having a structure in which the basal surfaces are folded. Here, the “basal plane” refers to a plane perpendicular to the C-axis of the graphite crystal (hexagonal system). That is, the spherical graphite of the present invention is preferably a natural graphite in which the crystal system is distorted. This distortion can be grasped by measuring the X-ray diffraction pattern and comparing it with natural graphite to confirm the presence or absence of peak broadening or the presence or absence of a 2θ value shift. Further, whether or not the cellular porous body contains spherical graphite can be confirmed by measuring the X-ray diffraction pattern of raw graphite, or by microscopically observing any two or more cross sections of the cellular porous body. It can also be confirmed by checking whether the shape of the portion corresponding to graphite is circular or not. Specifically, the mutually orthogonal surfaces of the cellular porous material are observed under a microscope, and if the shape of the portion corresponding to graphite in any of the images is a circular shape with a minor axis/major axis ratio of less than 1/2, It can be said that the cellular porosity contains spherical graphite.

本発明に使用可能な球状黒鉛の例には、ハイブリダイゼーションシステムを用いた高速気流中衝撃法等によって鱗片状黒鉛などの非球状の黒鉛微粉を球状化処理したもの;及び石油系または石油系のピッチを結晶化させた球状のカーボン粒子や熱硬化性樹脂を硬化させて粉末を得、該粉末を黒鉛化して得られたもの;などが挙げられる。熱伝導性の観点から、前者が好ましい。 Examples of spherical graphite that can be used in the present invention include those obtained by spheroidizing non-spherical graphite fine powder such as flake graphite by a high-speed airflow impact method using a hybridization system; and petroleum-based or petroleum-based Spherical carbon particles obtained by crystallizing pitch or those obtained by curing a thermosetting resin to obtain a powder and graphitizing the powder; The former is preferable from the viewpoint of thermal conductivity.

球状黒鉛としては市販品も好適に用いることができ、その具体例としては、日本黒鉛工業社製の球状化黒鉛などが挙げられる。本発明に用いる球状黒鉛の平均粒径(メジアン径)は、1~100μm程度である。放熱性確保と柔軟性確保とは一方を改善すると他方が低下するという傾向があるが、比較的平均粒径の小さい球状黒鉛を用いると、双方の性質をバランスよく改善できるので好ましい。気泡多孔体の最終形状によって、好ましい平均粒径範囲は変動するが、厚さ0.1~1.0mm程度のシート状の形態では、5~30μm程度であるのが好ましく、5μm~15μmであるのがより好ましい。 As the spherical graphite, commercially available products can also be suitably used, and specific examples thereof include spherical graphite manufactured by Nippon Graphite Industry Co., Ltd., and the like. The average particle diameter (median diameter) of spherical graphite used in the present invention is about 1 to 100 μm. There is a tendency that an improvement in one of the properties of securing heat dissipation and securing flexibility results in a decrease in the other, but it is preferable to use spherical graphite with a relatively small average particle size because both properties can be improved in a well-balanced manner. Although the preferred average particle size range varies depending on the final shape of the cellular porous material, it is preferably about 5 to 30 μm, more preferably 5 to 15 μm, for a sheet-like form having a thickness of about 0.1 to 1.0 mm. is more preferred.

球状以外の異方性形状(矩形状、鱗片(フレーク)状)の黒鉛を用いると、気泡多孔体の放熱性にも異方性が生じ、黒鉛添加による放熱性の改善が不十分になる。但し、不純物として異方性形状の黒鉛が、本発明の効果を少なくとも得られる程度に少い割合で、不可避的にもしくは任意に含む態様が、本発明から排除されるものではない。球状黒鉛は、全黒鉛の90質量%以上であるのが好ましく、95質量%以上であるのが好ましく、99質量%以上であるのがさらに好ましい。 If graphite having an anisotropic shape (rectangular, scale (flake)) other than spherical shape is used, the heat dissipation property of the cellular porous material is also anisotropic, and the improvement of the heat dissipation property due to the addition of graphite becomes insufficient. However, it is not excluded from the scope of the present invention that anisotropic graphite as an impurity is unavoidably or arbitrarily contained in such a small proportion that at least the effects of the present invention can be obtained. Spherical graphite accounts for preferably 90% by mass or more, preferably 95% by mass or more, and more preferably 99% by mass or more of the total graphite.

(2)マトリックス樹脂
本発明の気泡多孔体は、マトリックス樹脂を含有する。マトリックス樹脂は、本発明の気泡多孔体の主成分である。マトリックス樹脂の一態様は、線状の複数の高分子鎖が、架橋剤もしくは高分子鎖自体が有する官能基によって架橋された三次元網目構造を有する樹脂である。
(2) Matrix resin The cellular porous material of the present invention contains a matrix resin. The matrix resin is the main component of the cellular porous material of the present invention. One aspect of the matrix resin is a resin having a three-dimensional network structure in which a plurality of linear polymer chains are cross-linked by a cross-linking agent or a functional group possessed by the polymer chains themselves.

マトリックス樹脂の種類については特に制限はなく、気泡多孔構造を形成可能な、より具体的には、発泡処理によって多孔構造を形成可能な樹脂であれば、いずれも利用できる。使用可能な樹脂の例には、アクリル樹脂;ウレタン樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂; ポリ塩化ビニル樹脂;ポリスチレン樹脂;メラミン樹脂、尿素樹脂等のアミノ系樹脂;フェノール樹脂;が含まれる。マトリックス樹脂は、上記態様では、別途添加される架橋剤によって、及び/又は自己が有する官能基によって形成された架橋構造を有する。安定的に多孔構造を形成可能であること、黒鉛との併用により柔軟性のある多孔体を形成可能であることから、アクリル樹脂及びウレタン樹脂が好ましい。また、用途によっては高温に曝される場合があるので、耐熱性の高い樹脂が好ましく、その観点では、アクリル樹脂が好ましい。マトリックス樹脂がアクリル樹脂の態様では、150℃の高温に曝されても、放熱性を維持するとともに、顕著な熱劣化がない。 The type of matrix resin is not particularly limited, and any resin can be used as long as it can form a cellular porous structure, more specifically, a porous structure can be formed by a foaming treatment. Examples of usable resins include acrylic resins; urethane resins; polyolefin resins such as polyethylene and polypropylene; polyvinyl chloride resins; polystyrene resins; In the above aspect, the matrix resin has a crosslinked structure formed by a separately added crosslinking agent and/or by its own functional groups. Acrylic resins and urethane resins are preferred because they can stably form a porous structure and can form flexible porous bodies when used in combination with graphite. Also, depending on the application, the resin may be exposed to high temperatures, so a resin with high heat resistance is preferable, and from that point of view, an acrylic resin is preferable. In the embodiment in which the matrix resin is an acrylic resin, even when exposed to a high temperature of 150° C., the heat dissipation property is maintained and there is no significant thermal deterioration.

前記アクリル樹脂の重合性単量体の例には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アルリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル系単量体;アクリル酸、メタクリル酸、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸等のカルボキシル基を有する不飽和結合含有単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有重合性単量体;エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジビニルベンゼン、アリル(メタ)アクリレート等が含まれる。 Examples of polymerizable monomers for the acrylic resin include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, ( meth)heptyl acrylate, octyl (meth)acrylate, octadecyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, nonyl (meth)acrylate, dodecyl (meth)acrylate, (meth)acrylate monomers such as stearyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, phenyl (meth)acrylate, and benzyl (meth)acrylate; acrylic acid, methacrylic acid, β-carboxyethyl (meth)acrylate, 2-(meth)acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, Unsaturated bond-containing monomers having a carboxyl group such as itaconic anhydride; glycidyl group-containing polymerizable monomers such as glycidyl (meth)acrylate and allyl glycidyl ether; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl Hydroxyl group-containing polymerizable monomers such as (meth)acrylate, polyethylene glycol mono(meth)acrylate, glycerol mono(meth)acrylate; ethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neo Pentyl glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, diallyl phthalate, divinylbenzene, allyl(meth)acrylate and the like are included.

マトリックス樹脂の主成分は、架橋構造を有するアクリル樹脂がより好ましい。架橋構造を有するアクリル樹脂の例には、官能基を側鎖に導入可能な(メタ)アクリル酸エステルを単独で、又は側鎖に官能基を導入可能な1種以上の他のモノマー(例えばイタコン酸、アクリルニトリル)とともに共重合させるのと同時に又は重合後に、架橋反応を進行させて架橋構造を形成したアクリル樹脂が含まれる。一旦、側鎖に官能基を有するアクリル樹脂を得た後、架橋構造を形成するのが好ましい。架橋構造は、樹脂の側鎖部分の官能基間の反応によって、及び/又は当該官能基と別途添加される架橋剤との反応によって、形成することができる。アクリル樹脂は、架橋構造を形成するのに寄与する官能基を有するのが好ましく、その例には、水酸基、カルボキシル基、ニトリル基、グリシジル基、スルホン基等が含まれる。 The main component of the matrix resin is more preferably an acrylic resin having a crosslinked structure. Examples of acrylic resins having a crosslinked structure include a (meth)acrylic ester alone capable of introducing a functional group into the side chain, or one or more other monomers capable of introducing a functional group into the side chain (e.g. itacon acid, acrylonitrile), and at the same time or after the polymerization, an acrylic resin is included in which a cross-linking structure is formed by allowing a cross-linking reaction to proceed. Once an acrylic resin having a functional group in its side chain is obtained, it is preferable to form a crosslinked structure. The crosslinked structure can be formed by reaction between the functional groups of the side chain moieties of the resin and/or by reaction of the functional groups with a separately added crosslinker. The acrylic resin preferably has functional groups that contribute to forming a crosslinked structure, examples of which include hydroxyl groups, carboxyl groups, nitrile groups, glycidyl groups, sulfone groups, and the like.

また、架橋剤としては、従来公知の架橋剤を用いることができ、その例には、2官能性以上の多官能性化合物(本発明において、「多官能性化合物」とは2以上の官能基を有する化合物を意味する。一つの分子中に含まれる官能基は同一であっても異なっていてもよい。)が挙げられる。具体的には、脂肪族イソシアネートである、粗製ヘキサメチレンジイソシアネート(クルードHDI)もしくは前記クルードHDIを精製したヘキサメチレンジイソシアネート(HDI)およびHDIの三量体であるHDIイソシアヌレート、イソホロンジイソシアネート(IPDI)、芳香族イソシアネートであるジフェニルメタンジイソシアネート(MDI)、トルエンジイソシアネート(TDI)およびトルエンジイソシアネート(TDI)のイソシアネート基をブロック剤で変性したブロック型ポリイソシアネート等のイソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤などを、使用する樹脂配合系が含有する官能基の種類及び、官能基量に応じて適量使用することができる。架橋構造の一例は、アクリル樹脂が側鎖に有する上記いずれか1種以上の官能基と、架橋剤が有するジイソシアネート基との反応によって形成される架橋構造である。 As the cross-linking agent, conventionally known cross-linking agents can be used. (The functional groups contained in one molecule may be the same or different.). Specifically, crude hexamethylene diisocyanate (crude HDI), which is an aliphatic isocyanate, or hexamethylene diisocyanate (HDI) obtained by purifying the crude HDI, and HDI isocyanurate and isophorone diisocyanate (IPDI), which are trimers of HDI, Isocyanate-based cross-linking agents such as aromatic isocyanates such as diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI), and blocked polyisocyanates obtained by modifying the isocyanate groups of toluene diisocyanate (TDI) with a blocking agent, epoxy-based cross-linking agents, and melamine-based cross-linking A suitable amount of an agent, a carbodiimide-based cross-linking agent, an oxazoline-based cross-linking agent, etc. can be used according to the type and amount of functional groups contained in the resin compounding system used. An example of the crosslinked structure is a crosslinked structure formed by a reaction between any one or more of the above functional groups that the acrylic resin has in its side chain and a diisocyanate group that the crosslinking agent has.

(3)添加剤
本発明の気泡多孔体は、上記マトリックス樹脂及び球状黒鉛とともに、他の添加剤を含んでいてもよい。
添加剤の一例は、黒鉛以外の熱伝導性材料である。球状黒鉛とともに、他の熱伝導性材料を添加することで、放熱性をより高めることができる。他の熱伝導性材料の例には、窒化ホウ素、窒化アルミニウム等の金属窒化物;酸化アルミニウム、酸化マグネシウム等の金属酸化物;タルク等の粘土鉱物が含まれる。併用する熱伝導性材料の熱伝導率は、30W/m・K以上であるのが好ましい。また、熱伝導性材料の中には、硬度の高い材料があり、用いると本発明の気泡多孔体の柔軟性が失われる場合があるので、硬度の低い熱伝導性材料を用いるのが好ましい。具体的には、モース硬度が9以下、より好ましくはモース硬度が6以下、の材料を用いるのが好ましい。放熱性及び柔軟性の観点から好ましい態様の一例は、熱伝導性材料として、球状黒鉛とともにモース硬度が前記範囲の金属酸化物を含有する態様である。
(3) Additives The cellular porous body of the present invention may contain other additives together with the matrix resin and spherical graphite.
One example of an additive is a thermally conductive material other than graphite. Heat dissipation can be further enhanced by adding other thermally conductive materials together with spherical graphite. Examples of other thermally conductive materials include metal nitrides such as boron nitride and aluminum nitride; metal oxides such as aluminum oxide and magnesium oxide; and clay minerals such as talc. The thermal conductivity of the thermally conductive material used in combination is preferably 30 W/m·K or more. In addition, among thermally conductive materials, there are materials with high hardness, and when used, the flexibility of the cellular porous material of the present invention may be lost, so it is preferable to use thermally conductive materials with low hardness. Specifically, it is preferable to use a material having a Mohs hardness of 9 or less, more preferably a Mohs hardness of 6 or less. From the viewpoint of heat dissipation and flexibility, one example of a preferred embodiment is one in which a metal oxide having a Mohs hardness within the above range is contained together with spherical graphite as a thermally conductive material.

添加剤の他の例には、界面活性剤の1種又は2種以上が含まれる。界面活性剤は、発泡処理の過程で安定的に気泡を形成するのに寄与する。即ち、起泡剤として機能する。また、マトリックス樹脂中に、球状黒鉛を安定的に分散させるのにも寄与する。特に球状黒鉛に対して湿潤性に優れた界面活性剤を使用すると、マトリックス樹脂に対する球状黒鉛の高い分散性を確保できるので好ましい。従来公知のアニオン性界面活性剤、ノニオン性界面活性剤、及び両性界面活性剤から選ばれる1種又は2種以上を使用することができる。気泡形成安定性及び湿潤性に優れた界面活性剤の例には、スルホコハク酸塩類(例えばジアルキルスルホコハク酸コハク酸ナトリウム)、アルキルベンゼンスルホン酸塩類、及びポリオキシエチレンアルキルエーテル硫酸エステル塩類といった親水性スルホン基を含むアニオン性界面活性剤が含まれる。また、湿潤性に優れた界面活性剤の例には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステルといったポリオキシアルキレン鎖を有するノニオン性界面活性剤が含まれる。本発明では、気泡形成安定性及び湿潤性の双方に優れた前記アニオン性界面活性剤の1種以上を用いる、又は上記アニオン性界面活性剤の1種以上とともに、上記湿潤性に優れるノニオン性界面活性剤の1種以上を用いるのが好ましい。また、アミノ酸型、ベタイン型、アミンオキシド型等の両性界面活性剤を1種以上用いてもよい。 Other examples of additives include one or more surfactants. A surfactant contributes to the stable formation of air bubbles during the foaming process. That is, it functions as a foaming agent. It also contributes to stably dispersing spherical graphite in the matrix resin. In particular, it is preferable to use a surfactant that has excellent wettability with respect to spherical graphite, since this ensures high dispersibility of spherical graphite in the matrix resin. One or more selected from conventionally known anionic surfactants, nonionic surfactants, and amphoteric surfactants can be used. Examples of surfactants with good foaming stability and wetting properties include hydrophilic sulfonic groups such as sulfosuccinates (e.g., sodium dialkyl sulfosuccinate succinate), alkylbenzene sulfonates, and polyoxyethylene alkyl ether sulfate ester salts. Included are anionic surfactants comprising: Examples of surfactants with excellent wettability include nonionic surfactants having polyoxyalkylene chains such as polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters. In the present invention, one or more of the anionic surfactants that are excellent in both bubble formation stability and wettability are used, or together with one or more of the anionic surfactants, the nonionic interface that is excellent in wettability It is preferred to use one or more of the active agents. In addition, one or more amphoteric surfactants such as amino acid-type, betaine-type, and amine oxide-type surfactants may be used.

本発明は、界面活性剤としてシリコーン系界面活性剤を使用しなくても、高い放熱性を有する気泡多孔体が得られるという点にも特徴がある。シリコーン系界面活性剤は、気泡形成安定性に優れるが、高温に曝されると低分子シロキサンが遊離するという問題がある。本発明は、界面活性剤としてシリコーン系界面活性剤を使用しないことで、シリコーンフリーの耐熱性に優れる気泡多孔体を提供できる。 The present invention is also characterized by the fact that it is possible to obtain a cellular porous body with high heat dissipation without using a silicone-based surfactant as a surfactant. Silicone-based surfactants are excellent in bubble-forming stability, but have the problem of liberation of low-molecular-weight siloxanes when exposed to high temperatures. INDUSTRIAL APPLICABILITY The present invention can provide a silicone-free cellular porous body having excellent heat resistance by not using a silicone-based surfactant as a surfactant.

本発明の効果を害しない範囲で、その他、増粘剤、気泡核剤、可塑剤、滑剤、着色剤、酸化防止剤、充填剤、補強剤、難燃剤、帯電防止剤、表面処理剤等の公知の添加成分を使用してもよい。
結果、得られる気泡多孔体のガラス転移温度(Tg)は、-80~0℃が好ましい。より好ましくは、-60~-10℃である。このガラス転移温度は、気泡多孔体の硬度指標とすることができる。Tgが-80℃より低すぎると気泡多孔体が、柔らかくなりシート等の腰がなくなり、また、Tgが0℃より高いと、気泡多孔体が、硬くなり柔軟性がなくなる。
In addition, thickeners, cell nucleating agents, plasticizers, lubricants, colorants, antioxidants, fillers, reinforcing agents, flame retardants, antistatic agents, surface treatment agents, etc. Known additive ingredients may be used.
As a result, the glass transition temperature (Tg) of the obtained cellular porous body is preferably -80 to 0°C. More preferably -60 to -10°C. This glass transition temperature can be used as a hardness index of the cellular porous material. If the Tg is much lower than −80° C., the cellular porous material becomes soft and the sheet loses stiffness, and if the Tg is higher than 0° C., the cellular porous material becomes hard and loses flexibility.

(4)組成
本発明の気泡多孔体に含まれる前記熱伝導性材料の割合は、気泡多孔体の全質量を基準として、30~70質量%であるのが好ましく、35~65質量%であるのがより好ましく、40~60質量%であるのがさらに好ましい。熱伝導性材料として、球状黒鉛のみを含有する態様では、球状黒鉛の割合が前記範囲であるのが好ましい。また、上記した通り、本発明には、熱伝導性材料として、球状黒鉛以外の材料、例えば金属酸化物を含んでいてもよいが、金属酸化物と球状黒鉛との質量比は、0:10~2:3であるのが好ましく、0:10~5:5であるのがより好ましい。
(4) Composition The proportion of the thermally conductive material contained in the cellular porous material of the present invention is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, based on the total mass of the cellular porous material. is more preferable, and 40 to 60% by mass is even more preferable. In a mode in which only spherical graphite is contained as the thermally conductive material, the proportion of spherical graphite is preferably within the above range. In addition, as described above, the present invention may contain a material other than spherical graphite, such as a metal oxide, as the thermally conductive material, but the mass ratio of the metal oxide to the spherical graphite is 0:10. ~2:3 is preferred, and 0:10 to 5:5 is more preferred.

(5)形態・性質
本発明の気泡多孔体中の気泡の形態については特に制限はないが、連続気泡であるのが好ましい。放熱性、柔軟性の観点から、連続気泡であるのが好ましい。なお、「連続気泡」とは、隣り合う気泡を隔てる樹脂膜に貫通孔があり、隣り合う気泡どうしが3次元的に連通している状態をいう。また、「連続気泡」構造であると、発泡体内部まで外気が通過できる性質がある。本発明では、厳密に全ての孔間が連通していることを要求するものではなく、一部閉じた孔が内部に存在していても、全体として外気が通過できる性質があれば、「連続気泡」構造であるとする。気泡の形態については、電子顕微鏡で観察することで確認できる。
(5) Form/Properties The form of the cells in the porous body of the present invention is not particularly limited, but open cells are preferred. From the viewpoint of heat dissipation and flexibility, open cells are preferred. The term "interconnected cells" refers to a state in which there are through holes in the resin film that separates adjacent cells, and the adjacent cells communicate with each other in a three-dimensional manner. In addition, the "open-cell" structure has the property that outside air can pass to the inside of the foam. In the present invention, it is not strictly required that all the holes are in communication. Suppose that it is a "bubble" structure. The form of bubbles can be confirmed by observing with an electron microscope.

本発明の気泡多孔体の密度が250~600kg/mであると、放熱性及び柔軟性の双方に優れるので好ましく、300~500kg/mであると、より好ましい。密度が前記範囲より低いと、放熱性が低くなり、用途によっては(例えば、精密電子・電気機器製品内部に配置される放熱シートの用途には)適さなくなる。また密度が前記範囲を超えると、柔軟性が低くなり、硬度が高まる結果、複雑な構造に対する形状追従性が悪くなり、用途によっては(例えば、精密電子・電気機器製品内部に配置される放熱シートの用途には)適さなくなる。 The density of the cellular porous body of the present invention is preferably 250 to 600 kg/m 3 because it is excellent in both heat dissipation and flexibility, and more preferably 300 to 500 kg/m 3 . If the density is lower than the above range, the heat radiation property will be low, and it will not be suitable for some applications (for example, for heat radiation sheets placed inside precision electronic and electrical equipment products). Also, if the density exceeds the above range, the flexibility decreases and the hardness increases, resulting in poor conformability to complex structures. use) becomes unsuitable.

本発明によれば、高い放熱性及び高い柔軟性を示す気泡多孔体を提供できる。具体的には、 JIS K 6254に準拠して測定した25%圧縮荷重(厚さ25%分を圧縮する時に必要な圧力を意味する。「25%CLD(Compression-Load-Deflection)」と略記する場合がある。)が、20kPa以下であり、京都電子工業株式会社製QTM-500を用いてプローブ法で測定した熱伝導率が、0.3W/m・K以上である気泡多孔体を提供できる。柔軟性の観点からは、前記25%圧縮荷重は低いほど好ましいが、取り扱い性等の観点から、一般的には、25%圧縮荷重の下限値は3kPa程度になる。放熱性の観点からは、前記熱伝導率は高いほど好ましいが、一般的には上限値は0.7W/m・K程度になる。 According to the present invention, it is possible to provide a cellular porous body exhibiting high heat dissipation and high flexibility. Specifically, 25% compression load measured in accordance with JIS K 6254 (meaning the pressure required when compressing a 25% thickness portion, abbreviated as "25% CLD (Compression-Load-Deflection)" ) is 20 kPa or less, and the thermal conductivity measured by the probe method using QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. is 0.3 W/m·K or more. . From the viewpoint of flexibility, the lower the 25% compression load is, the better. However, from the viewpoint of handleability and the like, the lower limit of the 25% compression load is generally about 3 kPa. From the viewpoint of heat dissipation, the higher the thermal conductivity, the better, but generally the upper limit is about 0.7 W/m·K.

本発明の気泡多孔体の一実施形態は、厚み0.1~1mm程度のシート状の気泡多孔体である。本発明の気泡多孔体は、薄いシート状であっても、十分に高い放熱性を示すとともに、シート状であることにより、その柔軟性を活かして、複雑な内部構造を有する精密電子・電気機器製品内に容易に配置することできる。前記実施形態は、精密電子・電気機器製品内部にこもりがちであった熱を除去し、精密電子・電気機器製品の熱による劣化を軽減する放熱シートの用途に供することができる。 One embodiment of the cellular porous material of the present invention is a sheet-like cellular porous material having a thickness of about 0.1 to 1 mm. The cellular porous body of the present invention exhibits sufficiently high heat dissipation even in the form of a thin sheet. It can be easily placed in the product. The above-described embodiment can be used as a heat-dissipating sheet that removes heat that tends to stay inside precision electronic/electrical equipment products and reduces deterioration of precision electronic/electrical equipment products due to heat.

(6)成形方法
本発明の気泡多孔体を所望の形状にするために、従来公知の種々の方法により、成形加工することができる。所望の最終形状に応じて適切な成形加工方法を選択することができる。シート状の気泡多孔体を製造する場合は、キャスティング法を利用することができる。気泡の導入処理(発泡処理)は、成形加工の前に行うのが好ましい。また、マトリックス樹脂が架橋構造を有する態様では、架橋構造の形成、即ち架橋反応の進行は、成形加工と同時に行ってもよい。
(6) Molding method In order to form the cellular porous body of the present invention into a desired shape, it can be molded by various conventionally known methods. A suitable molding method can be selected according to the desired final shape. A casting method can be used to produce a sheet-like cellular porous material. It is preferable to perform the bubble introduction treatment (foaming treatment) before the molding process. Moreover, in the aspect in which the matrix resin has a crosslinked structure, the formation of the crosslinked structure, that is, the progress of the crosslinking reaction may be performed simultaneously with the molding process.

(7)用途
本発明の気泡多孔体は、電子・電気機器製品の放熱材として用いるのに適する。その他、パッキング材としても有用である。特に内部構造が複雑な精密電子・電気機器製品の放熱材に適する。放熱部材の中には、耐熱性が悪く、熱源になる電子部品等に接触させずに配置されているものもある。本発明の気泡多孔体、特にマトリックス樹脂がアクリル樹脂である態様は、耐熱性にも優れるので、熱源になる電子部品に接触可能な接触型放熱材の用途に供することもできる。
(7) Applications The cellular porous material of the present invention is suitable for use as a heat dissipation material for electronic and electrical equipment products. In addition, it is also useful as a packing material. It is especially suitable as a heat dissipation material for precision electronic and electrical equipment products with complex internal structures. Some of the heat dissipating members have poor heat resistance and are arranged without being in contact with electronic components or the like that are heat sources. The foamed porous body of the present invention, particularly the embodiment in which the matrix resin is an acrylic resin, is excellent in heat resistance, so it can be used as a contact-type heat dissipating material that can come into contact with electronic components that serve as heat sources.

[気泡多孔体の製造方法]
本発明は、側鎖に官能基を有する樹脂、起泡剤及び球状黒鉛を含有する液体組成物を機械発泡させる発泡工程と、前記樹脂が有する官能基同士を反応させる、及び/又は多官能性の架橋剤の官能基と反応させることで硬化させる工程とを含み
発泡工程と硬化工程とを同時に実施する、及び/又は発泡工程の後に硬化工程を実施する、気泡多孔体の製造方法にも関する。
この方法によれば、本発明の気泡多孔体を安定的に製造することができる。
[Method for producing cellular porous material]
The present invention comprises a foaming step of mechanically foaming a liquid composition containing a resin having a functional group in a side chain, a foaming agent and spherical graphite, reacting the functional groups of the resin with each other, and/or and curing by reacting with the functional groups of the cross-linking agent of (1). .
According to this method, the cellular porous material of the present invention can be stably produced.

(1)液体組成物の各成分
本発明の製造方法に用いる液体組成物は、少なくとも、側鎖に官能基を有する樹脂、起泡剤、及び球状黒鉛を含む。さらに、前記樹脂の硬化に寄与する多官能性化合物、即ち架橋剤を含んでいてもよい。側鎖に官能基を有する樹脂、起泡剤、球状黒鉛、及び架橋剤それぞれの好ましい例等については、上記[気泡多孔体]について説明した各成分の好ましい例等と同様である。
(1) Each Component of Liquid Composition The liquid composition used in the production method of the present invention contains at least a resin having a functional group on its side chain, a foaming agent, and spherical graphite. Furthermore, it may contain a polyfunctional compound that contributes to curing of the resin, that is, a cross-linking agent. Preferred examples of each of the resin having a functional group in the side chain, the foaming agent, the spherical graphite, and the cross-linking agent are the same as the preferred examples of each component described in the above [Cellular porous body].

液体組成物として調製するために、さらに溶媒を含んでいるのが好ましい。使用可能な溶媒の例には、水、有機溶媒(例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤の1種または2種以上)が含まれるが、本発明では、水のみを用いるのが好ましい。有機溶媒を用いると、液体組成物の粘度が水を使用した場合と比較して高くなり、気泡形成安定性及び成形性が悪くなる。有機溶媒を含まないのが好ましいが、成形性に影響を与えない程度(例えば成形性を害する程度に粘度が向上しない程度)の割合で含んでいてもよい。 For preparation as a liquid composition, it preferably further contains a solvent. Examples of solvents that can be used include water, organic solvents (e.g., alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, etc., polar solvents such as N-methylpyrrolidone, or 2 or more) are included, but in the present invention, it is preferable to use only water. When an organic solvent is used, the viscosity of the liquid composition becomes higher than when water is used, resulting in poor bubble formation stability and moldability. Although it is preferable not to contain an organic solvent, it may be contained in a proportion that does not affect the moldability (for example, the viscosity does not increase to the extent that the moldability is impaired).

(2)液体組成物の調製方法
前記液体組成物は、前記樹脂の水系エマルジョン及び球状黒鉛の水系分散液をそれぞれ調製して、これらを混合して調製すると、球状黒鉛の凝集等を生じさせずに液体組成物を調製できるので好ましい。前記樹脂の水系エマルジョン中の樹脂の固形分濃度、及び前記球状黒鉛の水系分散液中の球状黒鉛の固形分濃度については特に制限はないが、一般的には、50質量%~90質量%程度である。球状黒鉛の水系分散液中にあらかじめ起泡剤となる界面活性剤を混合しておくと、樹脂の水系エマルジョンと混合した際の樹脂中への球状黒鉛の分散安定性がより向上するので好ましい。特に、起泡剤として、湿潤性が良好な界面活性剤の少なくとも1種を用いると、球状黒鉛の樹脂中への分散安定性がより改善するので好ましい。中でも、気泡形成安定性及び湿潤性が良好な上記アニオン界面活性剤から選ばれる少なくとも1種を用いるのが好ましく、さらに湿潤性が良好な上記ノニオン性界面活性剤から選ばれる少なくとも1種を用いるのがより好ましい。例えば、球状黒鉛の水系分散液は、固形分20~60質量%程度の界面活性剤(起泡剤)の水溶液ないし水懸濁液に、球状黒鉛を混合することで調製できる。なお、架橋剤、他の熱伝導性材料等、他の添加剤を使用する態様では、球状黒鉛の水系分散液中に他の添加剤を添加して、樹脂の水系エマルジョンと混合して、液体組成物を調製するのが好ましい。
(2) Method for preparing a liquid composition The liquid composition is prepared by preparing an aqueous emulsion of the resin and an aqueous dispersion of spherical graphite, and mixing them together to prevent aggregation of spherical graphite. It is preferable because the liquid composition can be prepared in a short period of time. The solid content concentration of the resin in the aqueous emulsion of the resin and the solid content concentration of the spherical graphite in the aqueous dispersion of the spherical graphite are not particularly limited, but generally about 50% to 90% by mass. is. It is preferable to mix a surfactant as a foaming agent in the aqueous dispersion of spherical graphite in advance, because the dispersion stability of the spherical graphite in the resin when mixed with the aqueous emulsion of the resin is further improved. In particular, it is preferable to use at least one surfactant having good wettability as the foaming agent, because the dispersion stability of the spherical graphite in the resin is further improved. Among them, it is preferable to use at least one selected from the above anionic surfactants having good bubble formation stability and wettability, and at least one selected from the above nonionic surfactants having good wettability is preferably used. is more preferred. For example, an aqueous dispersion of spherical graphite can be prepared by mixing spherical graphite with an aqueous solution or suspension of a surfactant (foaming agent) having a solid content of about 20 to 60% by mass. In the embodiment using other additives such as cross-linking agents and other thermally conductive materials, other additives are added to the spherical graphite aqueous dispersion and mixed with the resin aqueous emulsion to form a liquid. Compositions are preferably prepared.

(3)液体組成物の組成・性質
前記液体組成物の全固形分濃度は、50~90質量%程度であり、65~85質量%であるのが好ましい。一般的には、液体組成物の全固形分中、樹脂(及び所望により添加される架橋剤)及び球状黒鉛(所望により添加される他の熱伝導性材料)の合計質量が95%以上になり、起泡剤(具体的には界面活性剤)等の他の添加剤の合計質量は5%以下になる。但し、用いる材料の種類等に応じて固形分中の各材料の好ましい質量割合も変動する。また、液体組成物のpHは、安定的に気泡を形成するために、中性からアルカリ領域であるのが好ましく、具体的には、pHが7以上であり、7~11であるのが好ましい。より好ましくは、7~9である。液体組成物のpHは、起泡剤の種類や添加量を調整することで前記好ましい範囲にすることができる。また、液体組成物の粘度は、以下の発泡工程において安定的に気泡を形成するために、10000~200000mPa・s程度であるのが適切である。
(3) Composition and Properties of Liquid Composition The total solid concentration of the liquid composition is about 50 to 90% by mass, preferably 65 to 85% by mass. In general, the total mass of the resin (and optionally added cross-linking agent) and spherical graphite (other optionally added thermally conductive material) is 95% or more of the total solid content of the liquid composition. , a foaming agent (specifically, a surfactant), etc., the total weight of other additives is 5% or less. However, the preferred mass ratio of each material in the solid content also varies depending on the type of material used. Further, the pH of the liquid composition is preferably in the neutral to alkaline range in order to stably form bubbles. Specifically, the pH is 7 or higher, preferably 7 to 11. . More preferably, it is 7-9. The pH of the liquid composition can be adjusted to the preferred range by adjusting the type and amount of foaming agent added. Also, the viscosity of the liquid composition is suitably about 10,000 to 200,000 mPa·s in order to stably form bubbles in the following foaming step.

(4)発泡工程
発泡工程では、前記液体組成物を攪拌して、気泡を発生させる、機械発泡を実施する。機械発泡(メカニカルフロス)法は、液体組成物を攪拌羽根等で攪拌することにより、大気中の空気等の気体をエマルジョン組成物に混入させて発泡させる方法である。撹拌装置としては、機械発泡法に一般に用いられる撹拌装置を特に制限なく使用可能であるが、例えば、ホモジナイザー、ディゾルバー、メカニカルフロス発泡機等を使用することができる。本発明では、機械発泡法により発泡工程を実施することで、独立気泡の形成を抑制し、連続気泡の形成を支配的にして、硬化後の多孔体の密度が大きくなるのを防止し、柔軟性の高い多孔体を得ている。
(4) Foaming Step In the foaming step, the liquid composition is stirred to perform mechanical foaming to generate bubbles. The mechanical foaming (mechanical froth) method is a method of stirring a liquid composition with a stirring blade or the like to mix gas such as air in the atmosphere into the emulsion composition to foam it. As the stirring device, a stirring device generally used for mechanical foaming can be used without particular limitation, and for example, a homogenizer, a dissolver, a mechanical froth foamer and the like can be used. In the present invention, by performing the foaming process by a mechanical foaming method, the formation of closed cells is suppressed, the formation of open cells is dominant, and the density of the porous body after curing is prevented from increasing, and the flexibility is improved. A highly flexible porous body is obtained.

攪拌条件については特に制限はないが、攪拌時間は、通常は1~10分、好ましくは2~6分である。また、上記の混合における攪拌速度は、気泡を細かくするために200rpm以上が好ましく(500rpm以上がより好ましく)、発泡機からの発泡物の吐出をスムーズにするために2000rpm以下が好ましい(800rpm以下がより好ましい)。発泡工程の温度条件についても特に制限はないが、通常は常温である。発泡と同時に後述の硬化工程も実施する場合は、官能基の反応を進行させるために加熱してもよい。 The stirring conditions are not particularly limited, but the stirring time is usually 1 to 10 minutes, preferably 2 to 6 minutes. In addition, the stirring speed in the above mixing is preferably 200 rpm or more (more preferably 500 rpm or more) in order to make the air bubbles fine, and is preferably 2000 rpm or less (800 rpm or less is preferable) in order to smoothly discharge the foam from the foaming machine. more preferred). The temperature conditions for the foaming step are also not particularly limited, but are usually room temperature. When the curing step, which will be described later, is performed simultaneously with the foaming, heating may be performed in order to advance the reaction of the functional groups.

(5)硬化工程
硬化工程では、前記樹脂が有する官能基同士を反応させる、及び/又は架橋剤の官能基と反応させることで、樹脂を硬化させる。この工程により、前記液体組成物が、気泡多孔体としての構造体になる。硬化工程は、発泡工程後に実施するのが好ましい。液体組成物中の溶媒(水)を蒸発させるため、及び架橋反応を進行させるために、加熱するのが好ましい。加熱温度及び加熱時間も、原料を架橋(硬化)させることができる温度及び時間であればよく、例えば、80~150℃(特に、120℃程度が好適)で1時間程度とすればよい。
(5) Curing Step In the curing step, the resin is cured by reacting the functional groups of the resin with each other and/or with the functional groups of the cross-linking agent. Through this process, the liquid composition becomes a structure as a cellular porous body. The curing step is preferably performed after the foaming step. Heating is preferred to evaporate the solvent (water) in the liquid composition and to promote the cross-linking reaction. The heating temperature and heating time may be any temperature and time at which the raw material can be crosslinked (cured), for example, 80 to 150° C. (preferably about 120° C.) and about 1 hour.

また、硬化工程は、得られる気泡多孔体を所望の形状にするための成形加工の一工程として実施されてもよい。例えば、シート状の気泡多孔体を製造する態様では、硬化工程を、キャスティング法の一工程として実施してもよい。具体的には、「(4)発泡工程」を実施した液体組成物を、基材表面に所望の厚みに流延し、加熱して溶媒(水)を蒸発させつつ、架橋反応を進行させて硬化させ、基材表面にシートを製造することができる。液体組成物を流延する基材としては、特に制限はなく、樹脂基材(厚み25~50μmPETフィルム、所望により表面が離型処理されたもの)、厚み2μm~100μmの金属基材またはテープ形状に裁断された長尺の金属基材、同様にテープ形状に裁断された厚み1μm~30μmのPETフィルムと2μm~100μmの粘着材層との積層基材、及び、テープ形状に裁断された長尺フィルムに積層された凹部の深さが2μm~100μm、凸部の高さが2μm~100μmの凹凸形状を有する粘着層からなるエアレス積層基材等を用いることができる。 Moreover, the curing step may be carried out as one step of the molding process for forming the resulting cellular porous body into a desired shape. For example, in a mode of manufacturing a sheet-like cellular porous body, the curing step may be carried out as one step of the casting method. Specifically, the liquid composition subjected to the "(4) foaming step" is cast on the surface of the base material to a desired thickness, and heated to evaporate the solvent (water) while allowing the cross-linking reaction to proceed. It can be cured to produce a sheet on the substrate surface. The substrate on which the liquid composition is cast is not particularly limited, and may be a resin substrate (25-50 μm thick PET film, optionally with release treatment on the surface), a metal substrate having a thickness of 2 μm-100 μm, or a tape shape. A long metal substrate cut into a tape shape, a laminated substrate of a PET film having a thickness of 1 μm to 30 μm and an adhesive layer having a thickness of 2 μm to 100 μm similarly cut into a tape shape, and a long length cut into a tape shape An airless laminated base material or the like can be used which is laminated on a film and which is composed of an adhesive layer having an uneven shape with concave portions having a depth of 2 μm to 100 μm and convex portions having a height of 2 μm to 100 μm.

本発明の製造方法の一実施形態は、
側鎖に官能基を有する樹脂、起泡剤及び球状黒鉛を含有する液体組成物を機械発泡させる発泡工程と、
発泡工程の後に、前記液体組成物を基材の表面にシート状に流延する流延工程と、
流延工程の後に、前記樹脂が有する官能基同士を反応させる、及び/又は多官能性の架橋剤の官能基と反応させることで硬化させ、シートを得る硬化工程
とを含むシート状気泡多孔体の製造方法である。
One embodiment of the production method of the present invention is
A foaming step of mechanically foaming a liquid composition containing a resin having a functional group in a side chain, a foaming agent, and spherical graphite;
After the foaming step, a casting step of casting the liquid composition on the surface of the substrate in a sheet form;
After the casting step, the resin is cured by reacting the functional groups of the resin with each other and/or by reacting with the functional groups of a multifunctional cross-linking agent to obtain a sheet. is a manufacturing method.

以下、実施例により、本発明の気泡多孔体及びその製造方法の効果について、具体的に説明する。 Hereinafter, the effects of the cellular porous material and the method for producing the same of the present invention will be specifically described by way of examples.

(材料)
・マトリックス樹脂材料
マトリックス樹脂材料1として、アクリルニトリル-アクリル酸アルキルエステル-イタコン酸共重合体であるアクリル樹脂のエマルジョン(Tg-40℃、pH9、固形分濃度60質量%、溶媒は水)を準備した。
マトリックス樹脂材料2として、ウレタン樹脂のエマルジョン(pH8、固形分濃度60質量%、溶媒は水)を準備した。
・起泡剤
起泡剤として、以下の界面活性剤をそれぞれ準備した。
アニオン界面活性剤1として、ステアリン酸アンモニウムと水との混合液(pH11・固形分30%)を準備した。
アニオン界面活性剤2として、アルキルスルホコハク酸ナトリウムと水との混合液(pH9.3・固形分35%)を準備した。
両性界面活性剤1として、ヤシ油脂肪酸アミドプロピルベタインと水との混合液(pH7.5・固形分30%)を準備した。
両性界面活性剤2として、ミリスチルベタインと水との混合液(pH6.5、固形分36%)を準備した。
ノニオン界面活性剤1として、ポリオキシエチレンアルキルエーテルと水との混合液(pH6.5、固形分50%)を準備した。
(material)
・Matrix resin material As the matrix resin material 1, an acrylic resin emulsion (Tg-40°C, pH 9, solid content concentration 60% by mass, solvent is water), which is acrylonitrile-acrylic acid alkyl ester-itaconic acid copolymer, is prepared. bottom.
As the matrix resin material 2, a urethane resin emulsion (pH 8, solid content concentration 60 mass %, solvent: water) was prepared.
- Foaming agent The following surfactants were prepared as foaming agents.
As the anionic surfactant 1, a mixture of ammonium stearate and water (pH 11, solid content 30%) was prepared.
As the anionic surfactant 2, a mixture of sodium alkylsulfosuccinate and water (pH 9.3, solid content 35%) was prepared.
As an amphoteric surfactant 1, a mixed solution of coconut oil fatty acid amidopropyl betaine and water (pH 7.5, solid content 30%) was prepared.
As an amphoteric surfactant 2, a mixture of myristylbetaine and water (pH 6.5, solid content 36%) was prepared.
As the nonionic surfactant 1, a mixture of polyoxyethylene alkyl ether and water (pH 6.5, solid content 50%) was prepared.

・架橋剤
架橋剤として、疎水系HDIイソシアヌレート(官能基数3.5)を準備した。
・熱伝導性材料(黒鉛)
黒鉛1として、日本黒鉛工業社製の球状黒鉛の粉体(平均粒径20μm)を準備した。この球状黒鉛は、球状化処理によって、黒鉛結晶(六方晶系)のベーサル面が褶曲されている。
黒鉛2として、黒鉛1と粒径のみ異なる日本黒鉛工業社製の球状黒鉛の粉体(平均粒径10μm)を準備した。
黒鉛3として、伊藤黒鉛工業社製の球状黒鉛の粉体(平均粒径20μm)を準備した。
この黒鉛は、黒鉛1、黒鉛2と異なり、黒鉛結晶(六方晶系)のベーサル面は褶曲していない球状に加工されたものである(球状に加工された鱗片状黒鉛)。
黒鉛4として、伊藤黒鉛工業社製の黒鉛の粉体(平均粒径20μm)を準備した。この黒鉛は、球状化処理されておらず、黒鉛結晶(六方晶系)のベーサル面は褶曲していない(鱗片状黒鉛)。
・熱伝導性材料(黒鉛以外)
金属酸化物1として、アルミニウムとマグネシウムからなる酸化物の粉体(形状:球状、平均粒径10μm、モース硬度6)を準備した。
金属酸化物2として、アルミニウムとマグネシウムからなる酸化物の粉体(形状:球状、平均粒径20μm、モース硬度6)を準備した。
金属酸化物3として、酸化アルミニウムの粉体(形状:球状、平均粒径20μm、モース硬度9)を準備した。
- Cross-linking agent Hydrophobic HDI isocyanurate (number of functional groups: 3.5) was prepared as a cross-linking agent.
・Thermal conductive material (graphite)
As graphite 1, spherical graphite powder (average particle size: 20 μm) manufactured by Nippon Graphite Industry Co., Ltd. was prepared. In this spherical graphite, the basal planes of graphite crystals (hexagonal system) are bent by a spheroidizing treatment.
As graphite 2, spherical graphite powder (average particle size: 10 μm) manufactured by Nippon Graphite Industries Co., Ltd., which is different from graphite 1 only in particle size, was prepared.
As the graphite 3, spherical graphite powder (average particle size: 20 μm) manufactured by Ito Graphite Industry Co., Ltd. was prepared.
This graphite differs from graphite 1 and graphite 2 in that the basal planes of graphite crystals (hexagonal system) are processed into a non-folded spherical shape (spheroidally processed flake graphite).
As the graphite 4, graphite powder (average particle size: 20 μm) manufactured by Ito Graphite Industry Co., Ltd. was prepared. This graphite is not spheroidized, and the basal planes of the graphite crystals (hexagonal system) are not folded (flaky graphite).
・Thermal conductive materials (other than graphite)
As the metal oxide 1, powder of an oxide composed of aluminum and magnesium (shape: spherical, average particle size: 10 μm, Mohs hardness: 6) was prepared.
As the metal oxide 2, powder of an oxide composed of aluminum and magnesium (shape: spherical, average particle size: 20 μm, Mohs hardness: 6) was prepared.
As the metal oxide 3, aluminum oxide powder (shape: spherical, average particle size: 20 μm, Mohs hardness: 9) was prepared.

(実施例1及び2)
下記表に示す割合で、黒鉛1、アニオン界面活性剤1、アニオン界面活性剤2、両性界面活性剤1、両性界面活性剤2、及びノニオン界面活性剤1を混合し、そこに架橋剤を添加して、黒鉛1の水分散液を調製し、これを、上記マトリックス樹脂用材料1の100質量部に添加・混合して、実施例1及び2用の液体組成物をそれぞれ調製した。
この液体組成物の全固形分濃度、及び熱伝導性材料の固形分濃度等は、下記表に記載の通りである。この液体組成物のpHは8.4であった。また粘度も機械発泡可能な粘度範囲であった。
(Examples 1 and 2)
Graphite 1, anionic surfactant 1, anionic surfactant 2, amphoteric surfactant 1, amphoteric surfactant 2, and nonionic surfactant 1 are mixed in the proportions shown in the table below, and a cross-linking agent is added. Then, an aqueous dispersion of graphite 1 was prepared, and this was added to and mixed with 100 parts by mass of the matrix resin material 1 to prepare liquid compositions for Examples 1 and 2, respectively.
The total solid content concentration of this liquid composition, the solid content concentration of the thermally conductive material, etc. are as shown in the table below. The pH of this liquid composition was 8.4. Moreover, the viscosity was also within a viscosity range in which mechanical foaming was possible.

上記で調製した各液体組成物を、機械発泡法(攪拌500回転、攪拌時間3分、温度23℃)により発泡させ、その後、前記液体組成物を、離型処理したPETフィルム基材の表面にシート状に流延し、120℃に加熱して、水を蒸発させるとともに、架橋反応を進行させて、アクリル樹脂を硬化させて、気泡多孔シートを作製した。得られた気泡多孔シートの厚み、外観、密度、熱伝導率(高いほど放熱性に優れる)、硬度(低いほど柔軟性に優れる)、及び耐熱性のそれぞれを下記方法で測定し、その結果は、下記表に示す。 Each liquid composition prepared above is foamed by a mechanical foaming method (stirring 500 rpm, stirring time 3 minutes, temperature 23° C.), and then the liquid composition is applied to the surface of a release-treated PET film substrate. The mixture was cast into a sheet and heated to 120° C. to evaporate water, promote a cross-linking reaction, and cure the acrylic resin to produce a cellular porous sheet. The thickness, appearance, density, thermal conductivity (higher is better heat dissipation), hardness (lower is better flexibility), and heat resistance of the resulting cellular porous sheet were measured by the following methods. , as shown in the table below.

(実施例3及び4)
上記液体組成物の調製において、黒鉛1に替えて黒鉛2を用いた以外は同様にして、下記表に示す組成の実施例3及び4用の各液体組成物をそれぞれ調製した。各液体組成物のpHは、実施例1の液体組成物と同様に8.4であった。
実施例3及び4の液体組成物それぞれを用いた以外は、上記と同様にして、実施例3及び4のシート状気泡多孔体をそれぞれ製造し、同様に評価した。結果を下記表に示す。
(Examples 3 and 4)
Liquid compositions for Examples 3 and 4 having the compositions shown in the table below were prepared in the same manner as in the preparation of the above liquid composition, except that graphite 2 was used instead of graphite 1. The pH of each liquid composition was 8.4, the same as the liquid composition of Example 1.
Sheet-like cellular porous bodies of Examples 3 and 4 were produced in the same manner as described above except that the liquid compositions of Examples 3 and 4 were used, respectively, and evaluated in the same manner. The results are shown in the table below.

(実施例5及び6)
上記液体組成物の調製において、黒鉛1に替えて黒鉛3を用いた以外は同様にして、下記表に示す組成の実施例5及び6用の各液体組成物をそれぞれ調製した。各液体組成物のpHおよび粘度は上記実施例と大差なく、メカニカルフロス法による気泡形成に関しても大差はなかった。
実施例5及び6の液体組成物それぞれを用いた以外は、上記と同様にして、実施例5及び6のシート状気泡多孔体をそれぞれ製造し、同様に評価した。結果を下記表に示す。
(Examples 5 and 6)
Liquid compositions for Examples 5 and 6 having the compositions shown in the table below were prepared in the same manner as in the preparation of the above liquid composition, except that graphite 3 was used instead of graphite 1. The pH and viscosity of each liquid composition were not significantly different from those of the above examples, and the bubble formation by the mechanical froth method was also not significantly different.
Sheet-like cellular porous bodies of Examples 5 and 6 were produced in the same manner as described above except that the liquid compositions of Examples 5 and 6 were used, respectively, and evaluated in the same manner. The results are shown in the table below.

(比較例1及び2)
上記液体組成物の調製において、黒鉛1に替えて黒鉛4を用いた以外は同様にして、下記表に示す組成の比較例1及び2用の各液体組成物をそれぞれ調製した。各液体組成物の粘度は上記実施例と比較して顕著に高く、メカニカルフロス法による気泡形成が劣っていた。
比較例1及び2の液体組成物それぞれを用いた以外は、上記と同様にして、比較例1及び2のシート状気泡多孔体をそれぞれ製造し、同様に評価した。結果を下記表に示す。
(Comparative Examples 1 and 2)
Liquid compositions for Comparative Examples 1 and 2 having the compositions shown in the table below were prepared in the same manner as in the preparation of the above liquid composition, except that graphite 4 was used instead of graphite 1. The viscosity of each liquid composition was remarkably higher than that of the above examples, and the foam formation by the mechanical floss method was inferior.
Sheet-like cellular porous bodies of Comparative Examples 1 and 2 were produced in the same manner as described above except that the liquid compositions of Comparative Examples 1 and 2 were used, respectively, and evaluated in the same manner. The results are shown in the table below.

(厚み)
各シートの厚みは、接触子がΦ50mmの厚みゲージを用いて測定した。測定値を下記表に示す。
(密度)
各シートの密度は、JIS K 6401に準拠して測定した。測定値を下記表に示す。
(外観評価)
各シート表面及び気泡(セル)の外観評価は目視にて行った。また作製したシートのいずれも、連続気泡であることは、走査型電子顕微鏡(200倍)により確認した。
セルが均一かつ表面が荒れていない場合を「○」、若干セルが荒れている、また表面状態が荒い場合を「△」、セルが非常に荒い、セルが形成されていないまたは表面状態が顕著に荒れている場合を「×」と評価した。結果を下記表に示す。
(thickness)
The thickness of each sheet was measured using a thickness gauge with a contact tip of Φ50 mm. The measured values are shown in the table below.
(density)
The density of each sheet was measured according to JIS K6401. The measured values are shown in the table below.
(Appearance evaluation)
The appearance of each sheet surface and air bubbles (cells) was visually evaluated. Moreover, it was confirmed by a scanning electron microscope (200 times) that all of the produced sheets had open cells.
"○" indicates that the cells are uniform and the surface is not rough, "△" indicates that the cells are slightly rough and the surface is rough, and the cells are very rough, no cells are formed, or the surface is remarkable. The case where it was rough was evaluated as "x". The results are shown in the table below.

(熱伝導率)
各シートの熱伝導率は、京都電子工業株式会社製 迅速熱伝導率計(QTM-500)を用いてプローブ法により測定した。熱伝導率が0.3W/m・K以上の場合を「○」、熱伝導率が0.2W/m・K以上、0.3W/m・K未満の場合を「△」、熱伝導率が0.2W/m・K未満の場合を「×」と評価した。評価結果を下記表に示す。
(柔軟性)
各シートの硬度をJIS K6254に準拠して測定した。具体的には、直径50mmに打ち抜いたサンプルをオートグラフを用いて、1mm/minの速度で厚さの25%を押しつぶした際の反発応力の大きさを測定した。測定には、(株)島津製作所製のAUTOGRAPH AGS-Xを用いた。25%CLDが20kPa未満の場合を「○」、25%CLDが20kPa以上、50kPa未満の場合を「△」、25%CLDが50kPa以上の場合を「×」と評価した。結果を下記表に示す。
(耐熱性)
各シートの温度150℃の恒温槽に336時間放置した後取り出し、常温常湿にて24時間放置後、サンプル片を作製し、引張強度測定を行った。引張強度は、JIS K6251に準拠して測定した。測定には、(株)島津製作所製のAUTOGRAPH AGS-Xを用いた。別途、150℃×336時間での処理前にも同様に引張強度を測定しておき、処理前後の引張強度の値を、以下の式に代入し、低下率を算出し評価した。
低下率=(処理後の引張強度÷処理前の引張強度)×100
低下率が20%未満の場合を「○」、20%以上、30%未満の場合を「△」、30%以上の場合を「×」と評価した。
(Thermal conductivity)
The thermal conductivity of each sheet was measured by a probe method using a rapid thermal conductivity meter (QTM-500) manufactured by Kyoto Electronics Industry Co., Ltd. "○" when the thermal conductivity is 0.3 W/m K or more, "△" when the thermal conductivity is 0.2 W/m K or more and less than 0.3 W/m K, thermal conductivity is less than 0.2 W/m·K was evaluated as “×”. The evaluation results are shown in the table below.
(flexibility)
The hardness of each sheet was measured according to JIS K6254. Specifically, using an autograph, a sample punched to a diameter of 50 mm was crushed at a speed of 1 mm/min to 25% of the thickness, and the magnitude of the repulsive stress was measured. For the measurement, AUTOGRAPH AGS-X manufactured by Shimadzu Corporation was used. A case where the 25% CLD was less than 20 kPa was evaluated as "○", a case where the 25% CLD was 20 kPa or more and less than 50 kPa was evaluated as "Δ", and a case where the 25% CLD was 50 kPa or more was evaluated as "X". The results are shown in the table below.
(Heat-resistant)
Each sheet was left in a constant temperature bath at a temperature of 150° C. for 336 hours and then taken out. Tensile strength was measured according to JIS K6251. For the measurement, AUTOGRAPH AGS-X manufactured by Shimadzu Corporation was used. Separately, the tensile strength was similarly measured before the treatment at 150° C. for 336 hours, and the tensile strength values before and after the treatment were substituted into the following formula to calculate the rate of decrease for evaluation.
Reduction rate = (tensile strength after treatment / tensile strength before treatment) x 100
When the rate of decrease was less than 20%, it was evaluated as "Good"; when it was 20% or more and less than 30%, it was evaluated as "Fair";

Figure 0007210665000001
Figure 0007210665000001

上記表に示した結果から、球状黒鉛である黒鉛1~3を含む実施例1~6は、同じ割合で鱗片状黒鉛である黒鉛4を含む比較例1及び2と比較して、総合的評価として優れていることが理解できる。特に、平均粒径が比較的小さい(20μm未満)のベーサル面褶曲球状黒鉛を用いると、外観に悪影響を及ばさずに、熱伝導率(放熱性)と柔軟性の双方の改善効果が得られる組成の幅が広くなることが理解できる。 From the results shown in the table above, Examples 1 to 6 containing graphite 1 to 3, which are spherical graphite, are compared with Comparative Examples 1 and 2 containing graphite 4, which is flake graphite, in the same proportion. Comprehensive evaluation It can be understood that it is excellent as In particular, when basal plane folded spherical graphite with a relatively small average particle size (less than 20 μm) is used, both thermal conductivity (heat dissipation) and flexibility can be improved without adversely affecting the appearance. It can be understood that the width of the composition is widened.

一方、鱗片状の黒鉛4を用いた比較例1及び2は、実施例1~6と比較して、熱伝導率が悪い(放熱性に劣る)ことに加えて、外観も劣っていることが理解できる。この原因は、各シートの原料として用いた液体組成物の粘度が高く、機械発泡法によって安定的に気泡が形成されなかったことによるものと考えられる。鱗片状黒鉛の量が増えるほど液の粘度が増加する傾向にあるので、比較例の放熱性を改善するために、さらに鱗片状黒鉛の量を増加しても、熱伝導性の改善を図ることはできず、即ち、上記結果から、鱗片状の黒鉛を使用するのでは、球状黒鉛を使用した場合に得られる高い熱伝導性(放熱性)と柔軟性は実現し得ないと言える。
さらに、下記表に示す通り、比較例1用の組成物の調製において、黒鉛4とともに金属酸化物1を併用して、熱伝導率の改善を試みたが、熱伝導率の改善効果が若干得られたものの、一方で外観不良が顕著になった。即ち、鱗片状黒鉛と金属酸化物との併用では、熱伝導率の改善効果には限界があり、球状黒鉛を用いる本件発明の実施例の効果は得られないことが理解できる。
On the other hand, Comparative Examples 1 and 2 using flake graphite 4 have poor thermal conductivity (poor heat dissipation) and inferior appearance compared to Examples 1 to 6. Understandable. The reason for this is thought to be that the viscosity of the liquid composition used as the raw material for each sheet was high, and the mechanical foaming method did not stably form air bubbles. As the amount of flake graphite increases, the viscosity of the liquid tends to increase. Therefore, in order to improve the heat dissipation property of the comparative example, even if the amount of flake graphite is increased, the thermal conductivity is improved. That is, from the above results, it can be said that the use of flake graphite cannot achieve the high thermal conductivity (heat dissipation) and flexibility obtained when spherical graphite is used.
Furthermore, as shown in the table below, in the preparation of the composition for Comparative Example 1, an attempt was made to improve the thermal conductivity by using the metal oxide 1 together with the graphite 4, but the effect of improving the thermal conductivity was slightly obtained. However, on the other hand, poor appearance became noticeable. That is, it can be understood that the combined use of flake graphite and metal oxide has a limit to the effect of improving thermal conductivity, and the effect of the examples of the present invention using spherical graphite cannot be obtained.

Figure 0007210665000002
Figure 0007210665000002

(実施例7~12)
上記実施例1又は2の液体組成物の調製に替えて、黒鉛1又は2の濃度を変える、黒鉛1又は2とともに金属酸化物(他の熱伝導性材料)を用いる、その混合割合を変更する等して、下記表に示す組成の実施例7~21用の各液体組成物をそれぞれ調製した。各液体組成物のpHは、実施例1又は2の液体組成物と同様に、8.4程度であった。
下記表に示す組成の各液体組成物を用いた以外は、上記実施例1等と同様にして、実施例7~21のシート状気泡多孔体をそれぞれ製造した。
(Examples 7-12)
Instead of preparing the liquid composition of Example 1 or 2 above, changing the concentration of graphite 1 or 2, using a metal oxide (other thermally conductive material) with graphite 1 or 2, and changing the mixing ratio Similarly, each liquid composition for Examples 7 to 21 having the composition shown in the table below was prepared. The pH of each liquid composition was about 8.4, like the liquid compositions of Examples 1 and 2.
Sheet-like cellular porous bodies of Examples 7 to 21 were produced in the same manner as in Example 1 and the like, except that each liquid composition having the composition shown in the table below was used.

Figure 0007210665000003
Figure 0007210665000003

上記表中に記載の実施例7~21は、球状黒鉛1又は2と金属酸化物1~3のいずれかを組み合わせた実施例である。いずれも鱗片状の黒鉛を用いた比較例1及び2と比較して、熱伝導率が高かった。中でも、黒鉛1又は2(特に黒鉛1)とモース硬度が9未満の金属酸化物1又は2と組み合わせた実施例7~14及び18~21は、モース硬度9の金属酸化物3を用いた実施例15~17と比較して、柔軟性改善効果に優れていた。モース硬度が9未満の金属酸化物を用いると、金属酸化物の影響による柔軟性低下を抑制でき、高い熱伝導率と柔軟性をバランスよく達成できる。
なお、放熱性が若干劣る実施例であっても、放熱性に対する要求が厳しくない用途(例えばパッキング材)には、有用であるし、また柔軟性が若干劣る実施例であっても、内部構造が複雑ではない電子・電気機器に放熱材として用いることができる。
Examples 7 to 21 described in the above table are examples in which spherical graphite 1 or 2 and any of metal oxides 1 to 3 are combined. Both had higher thermal conductivity than Comparative Examples 1 and 2 using flake graphite. Among them, Examples 7 to 14 and 18 to 21 in which graphite 1 or 2 (especially graphite 1) and metal oxide 1 or 2 having a Mohs hardness of less than 9 were combined were performed using a metal oxide 3 having a Mohs hardness of 9. Compared with Examples 15 to 17, the effect of improving flexibility was excellent. When a metal oxide having a Mohs hardness of less than 9 is used, a decrease in flexibility due to the influence of the metal oxide can be suppressed, and high thermal conductivity and flexibility can be achieved in a well-balanced manner.
It should be noted that even an example with slightly inferior heat dissipation properties is useful for applications that do not require strict heat dissipation (for example, packing materials), and even if an example with slightly inferior flexibility is used, the internal structure It can be used as a heat dissipation material for electronic and electrical equipment that is not complicated.

(実施例22~31)
上記実施例1の液体組成物の調製に替えて、黒鉛1の濃度を変える、黒鉛1とともに金属酸化物(他の熱伝導性材料)を用いる、その混合割合を変更する、マトリックス樹脂の種類を変更する等して、下記表に示す組成の実施例22~31用の各液体組成物をそれぞれ調製した。各液体組成物のpHは、実施例1の液体組成物と同様に8.4であったが、実施例31用の液体組成物のpHは8.0であった。また、液体組成物の中には、実施例1等の液体組成物と比較して、粘度が高く、機械発泡法による気泡形成に劣るものもあった。
実施例1の液体組成物を、各液体組成物に変更した以外は、実施例1と同様にして、実施例22~31のシート状気泡多孔体をそれぞれ製造した。
(Examples 22-31)
Instead of preparing the liquid composition of Example 1 above, changing the concentration of graphite 1, using a metal oxide (other thermally conductive material) together with graphite 1, changing the mixing ratio, and changing the type of matrix resin Each liquid composition for Examples 22 to 31 having the composition shown in the table below was prepared by changing the composition. The pH of each liquid composition was 8.4, like the liquid composition of Example 1, but the pH of the liquid composition for Example 31 was 8.0. Moreover, some of the liquid compositions had higher viscosity than the liquid compositions of Example 1 and the like, and were inferior in bubble formation by the mechanical foaming method.
Sheet-like cellular porous bodies of Examples 22 to 31 were produced in the same manner as in Example 1, except that the liquid composition of Example 1 was changed to each liquid composition.

Figure 0007210665000004
Figure 0007210665000004

得られた各シートについて、実施例1等と同様に上記評価を行ったところ、いずれも総合評価として比較例より優れていて、実用に耐えるレベルであった。
上記表1、表3及び表4に示す実施例の評価結果から、特に、熱伝導性材料を40~60質量%含む実施例、全熱伝導性材料のうち球状黒鉛が占める割合が50質量%以上であると、高い放熱性と柔軟性をバランスよく有するシートが得られることが理解できる。
また、マトリックス樹脂としてアクリル樹脂を用いると、さらに耐熱性にも優れるシートが得られることが理解できる。
なお、上記実施例では、球状黒鉛の配合によって得られる効果を明確化するために、各実施例の界面活性剤の組成を同一にしたが、組成を変動しても、同様の効果が得られる。

When the obtained sheets were evaluated in the same manner as in Example 1 and the like, all of them were superior to the comparative examples as a comprehensive evaluation, and were of a level that could withstand practical use.
From the evaluation results of Examples shown in Tables 1, 3, and 4 above, in particular, Examples containing 40 to 60% by mass of thermally conductive material, and spherical graphite occupying 50% by mass of all thermally conductive materials It can be understood that a sheet having a good balance between high heat dissipation and flexibility can be obtained in the above manner.
Further, it can be understood that the use of an acrylic resin as the matrix resin provides a sheet having even better heat resistance.
In the above examples, the composition of the surfactant in each example was the same in order to clarify the effect obtained by blending the spherical graphite, but the same effect can be obtained even if the composition is varied. .

Claims (1)

マトリックス樹脂と、前記マトリックス樹脂内に分散した熱伝導性材料とを含有する気泡多孔体であって、前記熱伝導性材料少なくとも球状黒鉛を含有するものであり
前記気泡多孔体の京都電子工業株式会社製QTM-500を用いてプローブ法で測定した熱伝導率0.2W/m・K以上であるとを特徴とする気泡多孔体。
A cellular porous body containing a matrix resin and a thermally conductive material dispersed in the matrix resin, wherein the thermally conductive material contains at least spherical graphite,
A cellular porous body characterized by having a thermal conductivity of 0.2 W/m·K or more measured by a probe method using QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. of the cellular porous body.
JP2021134311A 2016-12-07 2021-08-19 Cell porous body and manufacturing method thereof Active JP7210665B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021134311A JP7210665B2 (en) 2016-12-07 2021-08-19 Cell porous body and manufacturing method thereof
JP2022139393A JP7469408B2 (en) 2016-12-07 2022-09-01 Porous cell body and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237524A JP6933458B2 (en) 2016-12-07 2016-12-07 Bubble porous body and its manufacturing method
JP2021134311A JP7210665B2 (en) 2016-12-07 2021-08-19 Cell porous body and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016237524A Division JP6933458B2 (en) 2016-12-07 2016-12-07 Bubble porous body and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022139393A Division JP7469408B2 (en) 2016-12-07 2022-09-01 Porous cell body and method for producing same

Publications (2)

Publication Number Publication Date
JP2021183701A JP2021183701A (en) 2021-12-02
JP7210665B2 true JP7210665B2 (en) 2023-01-23

Family

ID=62491537

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016237524A Active JP6933458B2 (en) 2016-12-07 2016-12-07 Bubble porous body and its manufacturing method
JP2021134311A Active JP7210665B2 (en) 2016-12-07 2021-08-19 Cell porous body and manufacturing method thereof
JP2022139393A Active JP7469408B2 (en) 2016-12-07 2022-09-01 Porous cell body and method for producing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016237524A Active JP6933458B2 (en) 2016-12-07 2016-12-07 Bubble porous body and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022139393A Active JP7469408B2 (en) 2016-12-07 2022-09-01 Porous cell body and method for producing same

Country Status (5)

Country Link
JP (3) JP6933458B2 (en)
KR (1) KR102369721B1 (en)
CN (1) CN110072926B (en)
TW (1) TWI735717B (en)
WO (1) WO2018105578A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239277B2 (en) * 2017-06-13 2023-03-14 株式会社イノアック技術研究所 conductive foam
WO2020246132A1 (en) * 2019-06-07 2020-12-10 Dic株式会社 Urethane resin composition and layered product
JP7368327B2 (en) 2020-06-29 2023-10-24 株式会社イノアック技術研究所 Airgel molded product and its manufacturing method
WO2022059299A1 (en) * 2020-09-15 2022-03-24 帝人株式会社 Resin composition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128931A (en) 2000-10-30 2002-05-09 Sekisui Chem Co Ltd Thermally conductive resin sheet
JP2002348110A (en) 2001-05-28 2002-12-04 Mitsui Mining Co Ltd Graphite particle and method for producing the same
JP2005015737A (en) 2003-06-30 2005-01-20 Nippon Zeon Co Ltd Conductive self-sticking foamed sheet
JP2009506149A (en) 2005-08-23 2009-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing foam molded body, foam obtained thereby and use thereof
US20110189619A1 (en) 2008-02-20 2011-08-04 I-Sol Ventures Gmbh Heat accumulator composite material
JP2011241375A (en) 2010-04-23 2011-12-01 Sumitomo Chemical Co Ltd Heat dissipation member and part for lighting fixture comprising the same
JP2013082767A (en) 2011-10-06 2013-05-09 Nitto Denko Corp Heat-dissipating member and method for producing the same
JP2013136646A (en) 2011-11-30 2013-07-11 Jsp Corp Polystyrene-based resin-extruded foam plate
CN204031708U (en) 2014-07-17 2014-12-17 苏州滕艺科技有限公司 A kind of heat conduction and heat radiation and electromagnetic wave eliminator
WO2016052599A1 (en) 2014-09-30 2016-04-07 積水化学工業株式会社 Heat-conductingfoam sheet for electronic devices
CN105482435A (en) 2014-09-29 2016-04-13 中国科学院苏州纳米技术与纳米仿生研究所 Three-dimensional-corrugated-graphene heat dissipating slurry, preparation method therefor and application of three-dimensional-corrugated-graphene heat dissipating slurry
JP2016171062A (en) 2015-03-10 2016-09-23 大日本印刷株式会社 Gas diffusion layer, laminate and method of manufacturing same
WO2016152660A1 (en) 2015-03-23 2016-09-29 積水化学工業株式会社 Acylic resin heat dissipation foam sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065196A (en) 2014-06-11 2016-04-28 積水化学工業株式会社 Foamable composition and foam

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128931A (en) 2000-10-30 2002-05-09 Sekisui Chem Co Ltd Thermally conductive resin sheet
JP2002348110A (en) 2001-05-28 2002-12-04 Mitsui Mining Co Ltd Graphite particle and method for producing the same
US20020197201A1 (en) 2001-05-28 2002-12-26 Mitsui Mining Co., Ltd. Graphite particles and process for production thereof
JP2005015737A (en) 2003-06-30 2005-01-20 Nippon Zeon Co Ltd Conductive self-sticking foamed sheet
JP2009506149A (en) 2005-08-23 2009-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing foam molded body, foam obtained thereby and use thereof
US20110189619A1 (en) 2008-02-20 2011-08-04 I-Sol Ventures Gmbh Heat accumulator composite material
JP2011241375A (en) 2010-04-23 2011-12-01 Sumitomo Chemical Co Ltd Heat dissipation member and part for lighting fixture comprising the same
JP2013082767A (en) 2011-10-06 2013-05-09 Nitto Denko Corp Heat-dissipating member and method for producing the same
JP2013136646A (en) 2011-11-30 2013-07-11 Jsp Corp Polystyrene-based resin-extruded foam plate
CN204031708U (en) 2014-07-17 2014-12-17 苏州滕艺科技有限公司 A kind of heat conduction and heat radiation and electromagnetic wave eliminator
CN105482435A (en) 2014-09-29 2016-04-13 中国科学院苏州纳米技术与纳米仿生研究所 Three-dimensional-corrugated-graphene heat dissipating slurry, preparation method therefor and application of three-dimensional-corrugated-graphene heat dissipating slurry
WO2016052599A1 (en) 2014-09-30 2016-04-07 積水化学工業株式会社 Heat-conductingfoam sheet for electronic devices
JP2016171062A (en) 2015-03-10 2016-09-23 大日本印刷株式会社 Gas diffusion layer, laminate and method of manufacturing same
WO2016152660A1 (en) 2015-03-23 2016-09-29 積水化学工業株式会社 Acylic resin heat dissipation foam sheet

Also Published As

Publication number Publication date
JP2022164877A (en) 2022-10-27
WO2018105578A1 (en) 2018-06-14
JP6933458B2 (en) 2021-09-08
JP2021183701A (en) 2021-12-02
CN110072926A (en) 2019-07-30
CN110072926B (en) 2022-07-08
KR102369721B1 (en) 2022-03-04
TWI735717B (en) 2021-08-11
TW201835192A (en) 2018-10-01
JP7469408B2 (en) 2024-04-16
KR20190089864A (en) 2019-07-31
JP2018090745A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP7210665B2 (en) Cell porous body and manufacturing method thereof
JP6453057B2 (en) Heat-meltable fluororesin composition excellent in thermal conductivity, molded article produced from the composition, and method for producing the same
US20100193984A1 (en) Foam sheet-forming composition, heat conductive foam sheet and process
JP6009917B2 (en) Thermally conductive foam sheet for electronic equipment
US20180112115A1 (en) Acrylic resin heat-dissipating foam sheet
JP2010132866A (en) Thermal conductive sheet, method for producing the thermal conductive sheet, and heat dissipator using the thermal conductive sheet
JP6732145B1 (en) Thermally conductive resin composition, thermal conductive sheet and manufacturing method
US20190367791A1 (en) Lightweight polymer composition having excellent thermal conductivity, method of preparing the same and product using the same
JP2023017860A (en) foam sheet
KR102338096B1 (en) conductive foam
WO2012063672A1 (en) Heat-conductive resin composition
JP2016124908A (en) Resin molded body
JP2005306967A (en) Flame-retardant heat-conductive sheet
WO2015147254A1 (en) Heat-conducting laminate for electronic device
TWI837091B (en) conductive foam
KR20080041115A (en) Silicone rubber composition and low odor silicone rubber sponge using the same
JP6704248B2 (en) Conductive foam and method for producing the same
TW201116615A (en) Thermally conductive composition
JP2018053018A (en) Heat-radiation foamed sheet and adhesive tape
WO2024053089A1 (en) Thermal-conductive resin composition and cured product of same, and thermal-conductive sheet and method for manufacturing same
KR20220115222A (en) Composition and method for preparing the composition
JP2019131776A (en) Elastomer composition, and method for producing the same
JP2008062406A (en) Acrylic resin laminated sheet-like molded object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230111

R150 Certificate of patent or registration of utility model

Ref document number: 7210665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150