WO2022059299A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2022059299A1
WO2022059299A1 PCT/JP2021/025186 JP2021025186W WO2022059299A1 WO 2022059299 A1 WO2022059299 A1 WO 2022059299A1 JP 2021025186 W JP2021025186 W JP 2021025186W WO 2022059299 A1 WO2022059299 A1 WO 2022059299A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
component
parts
resin composition
resin
Prior art date
Application number
PCT/JP2021/025186
Other languages
French (fr)
Japanese (ja)
Inventor
惟允 中村
勇一 松野
悟志 野村
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2022550363A priority Critical patent/JP7321387B2/en
Publication of WO2022059299A1 publication Critical patent/WO2022059299A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention is a resin composition composed of a polyarylene sulfide resin, a spheroidal graphite, a fibrous filler and a fluororesin, and while maintaining excellent strength, fusion does not occur during frictional wear between the same materials.
  • the present invention relates to a resin composition having excellent wear resistance.
  • Polyarylene sulfide resin is an engineering plastic with excellent chemical resistance, heat resistance, mechanical properties, etc. Therefore, the polyarylene sulfide resin is widely used as a metal substitute material in applications such as electric / electronic, vehicle-related, aircraft, and housing by taking advantage of its excellent properties. In particular, recently, application to sliding parts such as gears and bearings has been studied.
  • Patent Document 1 a method of filling polyarylene sulfide with an ethylene tetrafluoride resin is known (Patent Document 1).
  • Patent Document 2 a resin composition in which an amorphous thermoplastic resin, scaly graphite, and a fibrous filler are blended with polyarylene sulfide has been proposed.
  • Patent Document 2 a resin composition in which an amorphous thermoplastic resin, scaly graphite, and a fibrous filler are blended with polyarylene sulfide has been proposed.
  • scaly graphite when scaly graphite is used, the heat dissipation of the resin is improved, but the wear resistance of the resin is not sufficient.
  • Patent Document 3 a resin composition consisting of an aromatic polyamide-imide, graphite, carbon fiber and a solid lubricant in a polyarylene sulfide resin has been proposed, but fusion and resistance between the same materials have been proposed. None was stated about wear resistance.
  • Japanese Unexamined Patent Publication No. 63-213561 Japanese Patent Application Laid-Open No. 2003-268236 Japanese Unexamined Patent Publication No. 2010-281348
  • An object of the present invention is to provide a resin composition which maintains excellent strength, does not cause fusion during frictional wear between the same materials, and has excellent wear resistance.
  • the resin composition composed of polyarylene sulfide resin, spheroidal graphite, fibrous filler and fluororesin is fused at the time of frictional wear between the same materials while maintaining excellent strength.
  • the present invention has been made by finding that the resin composition does not generate the above-mentioned material and has excellent wear resistance. That is, according to the present invention, the subject of the invention is achieved by the following.
  • A Polyarylene sulfide resin (A component) 100 parts by weight, (B) Spheroidal graphite (B component) 5 to 150 parts by weight, (C) Fibrous filler (C component) 5 to 150 parts by weight and ( D) A resin composition containing 5 to 100 parts by weight of a fluororesin (component D).
  • the resin composition of the present invention maintains excellent strength, does not cause fusion when the same materials are worn, and has excellent wear resistance, it is widely useful in parts such as gears where the same materials wear. Is.
  • Component A Polyarylene sulfide resin
  • any polyarylene sulfide resin may be used as long as it belongs to the category called polyarylene sulfide resin.
  • the polyarylene sulfide resin has, as its constituent units, for example, p-phenylene sulfide unit, m-phenylene sulfide unit, o-phenylene sulfide unit, phenylene sulfide sulfone unit, phenylene sulfide ketone unit, phenylene sulfide ether unit, diphenylene sulfide unit. , Phenylene sulfide unit containing substituent, phenylene sulfide unit containing branched structure, etc., among which 70 mol% or more, particularly 90 mol% or more of p-phenylene sulfide unit is contained. Preferred, more preferably poly (p-phenylene sulfide).
  • the dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyarylene sulfide resin used as the component A of the present invention is preferably 2.7 or more, more preferably 2. It is 8.8 or more, more preferably 2.9 or more. If the degree of dispersion is less than 2.7, burrs may be generated during molding.
  • the upper limit of the degree of dispersion (Mw / Mn) is not particularly specified, but is preferably 10 or less.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values calculated in terms of polystyrene by gel permeation chromatography (GPC). 1-Chloronaphthalene was used as a solvent, and the column temperature was 210 ° C.
  • the method for producing the polyarylene sulfide resin is not particularly limited, and the polyarylene sulfide resin is polymerized by a known method.
  • the manufacturing methods described in US Registered Patents No. 4,746,758, No. 4,786,713, Japanese Patent Application Laid-Open No. 2013-522385, Japanese Patent Application Laid-Open No. 2012-233210, Patent No. 5167276 and the like can be mentioned.
  • These production methods are methods in which a diiodoaryl compound and solid sulfur are directly heated and polymerized without a polar solvent.
  • the production method includes an iodide step and a polymerization step.
  • the aryl compound is reacted with iodine to obtain a diiodoaryl compound.
  • a polyarylene sulfide resin is produced by polymerizing a diiodoaryl compound with solid sulfur using a polymerization inhibitor.
  • Iodine is generated in the form of a gas in this step, and it is recovered and used again in the iodide step.
  • Iodine is essentially a catalyst.
  • a cycloocta-sulfur form ( S8 ) in which eight atoms are linked at room temperature can be mentioned.
  • the sulfur compound used in the polymerization reaction is not limited, and any form can be used as long as it is solid or liquid at room temperature.
  • diiodoaryl compound used in the above-mentioned production method include at least one selected from the group consisting of diiodobenzene, diiodonaphthalene, diiodobiphenyl, diiodobisphenol and diiodobenzophenone, and alkyl.
  • Derivatives of iodoaryl compounds to which groups or sulfon groups are bonded or oxygen or nitrogen is introduced are also used.
  • Iodoaryl compounds are classified into different isomers depending on the bond position of their iodine atom, and preferred examples of these isomers are p-diiodobenzene, 2,6-diiodonaphthalene, and p, p'-diiodine.
  • Iodine is a compound such as biphenyl that is symmetrically located at both ends of the molecule of the aryl compound.
  • the content of the iodine aryl compound is preferably 500 to 10,000 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
  • Typical polymerization terminators used in the above-mentioned production method include monoiodoaryl compounds, benzothiazoles, benzothiazolesulfenamides, thiurams, dithiocarbamates, aromatic sulfide compounds and the like.
  • Preferred examples of the monoiodoaryl compound include at least one selected from the group consisting of iodobiphenyl, iodophenol, iodoaniline and iodobenzophenone.
  • Preferred examples of the benzothiazoles include at least one selected from the group consisting of 2-mercaptobenzothiazole and 2,2'-dithiobisbenzothiazole.
  • Preferred examples of the benzothiazole sulfenamides are N-cyclohexylbenzothiazole2-sulfenamide, N, N-dicyclohexyl-2-benzothiazolesulfenamide, 2-morpholinothiobenzothiazole, benzothiazolesulfenamide. , Dibenzothiazole disulfide, N-dicyclohexylbenzothiazole 2-sulfenamide, at least one selected from the group.
  • Preferred examples of thiurams include at least one selected from the group consisting of tetramethylthiuram monosulfide and tetramethylthiuram disulfide.
  • Preferred examples of the dithiocarbamates include at least one selected from the group consisting of zinc dimethyldithiocarbamate and zinc diethyldithiocarbamate.
  • Preferred examples of the aromatic sulfide compound include at least one selected from the group consisting of diphenyl sulfide, diphenyl disulfide, diphenyl ether, biphenyl and benzophenone. Further, in any of the polymerization inhibitors, one or more functional groups may be substituted on the conjugated aromatic ring skeleton.
  • Examples of the functional group include a hydroxy group, a carboxy group, a mercapto group, an amino group, a cyano group, a sulfo group, a nitro group and the like, preferred examples thereof include a carboxy group and an amino group, and further preferred examples thereof include a carboxy group and an amino group. Examples include a carboxy group and an amino group showing a peak of 1600 to 1800 cm -1 or 3300 to 3500 cm -1 on the FT-IR spectrum.
  • the content of the polymerization inhibitor is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
  • a polymerization reaction catalyst may be used in the above-mentioned production method, and a nitrobenzene-based catalyst can be mentioned as a typical polymerization reaction catalyst.
  • Preferred examples of nitrobenzene catalysts are 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol, iodonitrobenzene, and 2,6-diiodo-4-. At least one selected from the group consisting of nitroamines may be mentioned.
  • the content of the polymerization reaction catalyst is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
  • polyphenylene sulfide resin of the present invention may contain a polyphenylene sulfide resin obtained by another polymerization method.
  • the spheroidal graphite may have an aspect ratio (major axis / minor axis) of 2.0 or less.
  • the aspect ratio is the ratio of the length of the longest part to the length of the shortest part (most) in an SEM photograph in which particles are magnified (for example, magnified 1000 times) using a scanning electron microscope (SEM). The length of the long part / the length of the shortest part).
  • the spheroidal graphite used in the present invention is not particularly limited as long as the shape of graphite is spherical. If the shape of graphite is not spherical, the wear resistance is poor.
  • the particle size of graphite is preferably 10 to 35 ⁇ m, more preferably 15 to 30 ⁇ m, and even more preferably 15 to 20 ⁇ m. If the particle size of the B component is less than 10 ⁇ m, fusion between the same materials may occur, and if it exceeds 35 ⁇ m, graphite is likely to fall off and the wear resistance may be lowered.
  • Examples of such spheroidal graphite are commercially available from Nishimura Graphite Co., Ltd. as S-10, S-15, S-20, and from Ito Graphite Industry Co., Ltd. as SG-BH, SG-BL30, and can be easily marketed. It is available.
  • the content of the B component is 5 to 150 parts by weight, preferably 15 to 130 parts by weight, and more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the A component. If the content of the B component is less than 5 parts by weight, sufficient heat dissipation cannot be obtained, and fusion occurs due to frictional heat between the same materials. On the other hand, if it exceeds 150 parts by weight, productivity or molding processability is lowered, and in the worst case, extrusion molding becomes impossible.
  • the inorganic fiber filler used in the present invention is not particularly limited as long as it is a fibrous filler.
  • fibrous filler examples thereof include glass fiber, carbon fiber, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber, inorganic filler coated with a conductive substance, and the like. Fibers, aramid fibers and carbon fibers are more preferred. Further, it is more excellent mechanical strength to use these fibrous fillers by pretreating them with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound and an epoxy compound. It is preferable in the sense of obtaining.
  • the fiber thickness of the fibrous filler is preferably 3 to 30 ⁇ m, more preferably 4 to 20 ⁇ m.
  • the conductive substance in the inorganic filler coated with the conductive substance include aluminum, nickel, silver, carbon, SnO 2 (antimony dope), In 2 O 3 (antimony dope) and the like.
  • the inorganic filler to be coated include glass fiber and carbon fiber.
  • the coating method include a vacuum vapor deposition method, a sputtering method, an electroless plating method, and a baking method. Further, these may be surface-treated with a surface treatment agent such as a titanate-based, aluminum-based, or silane-based coupling agent.
  • the content of the C component is 5 to 150 parts by weight, preferably 10 to 140 parts by weight, and more preferably 20 to 130 parts by weight with respect to 100 parts by weight of the A component. If the content of the C component is less than 5 parts by weight, a sufficient reinforcing effect cannot be obtained, and if it exceeds 150 parts by weight, the productivity or molding processability is lowered, and in the worst case, extrusion molding becomes impossible.
  • the fluororesin used as the D component of the present invention is preferably a polymer having a carbon chain in the main chain and a bond of a fluorine atom in the side chain, or a copolymer having such a polymer. .. Specific examples include polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, and tetrafluoroethylene-fluoroalkyl vinyl ether-.
  • Examples thereof include fluoroolefin copolymers and ethylene-trichlorofluoroethylene copolymers.
  • polytetrafluoroethylene is preferable, and either calcined or uncalcined polytetrafluoroethylene can be used.
  • polytetrafluoroethylene is easily reaggregated, it is fired to prevent reaggregation.
  • polytetrafluoroethylene which has been calcined at a calcining treatment temperature of 360 ° C. or higher is preferable.
  • the melting point of polytetrafluoroethylene is preferably 320 to 335 ° C, more preferably 325 to 330 ° C, as measured by the DSC method in order to prevent reaggregation.
  • the particle size of polytetrafluoroethylene is preferably 0.1 to 100 ⁇ m on average, more preferably 1 ⁇ m to 20 ⁇ m, by a method of measuring a dispersion dispersed in perchlorethylene by a light transmission method.
  • the average particle size referred to here is a weight average particle size measured by a laser diffraction / scattering method (MICOTRAC method).
  • this polytetrafluoroethylene preferably has a number average molecular weight of 100,000 or more, and more preferably 200,000 or more.
  • polytetrafluoroethylene examples include KT-600M, KTL-620 and KTL-450A from Kitamura Co., Ltd., DuPont L-5 and L-2 from Daikin Industries Co., Ltd., and Asahi Aishi. It is commercially available as L150J, L169J, L170J, L172J from Eye Fluoropolymers Co., Ltd. and as Teflon (registered trademark) TLP-10F-1 from Mitsui-DuPont Fluorochemical Co., Ltd. and is easily available.
  • the content of the D component is 5 to 100 parts by weight, preferably 5 to 80 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the A component. If the content is less than 5 parts by weight, sufficient wear resistance cannot be obtained, and if it exceeds 100 parts by weight, strand breakage and surging occur during kneading.
  • the resin composition in the present invention can be used in combination with a non-fibrous filler as long as the effects of the present invention are not impaired.
  • the non-fibrous filler is not particularly limited, but is limited to silicates such as sericite, kaolin, mica, clay, bentonite, asbestos, talc and alumina silicate, swellable layered silicates such as montmorillonite and synthetic mica, alumina and silicon oxide.
  • Metal compounds such as magnesium oxide, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, glass beads, ceramic beads and boron nitride. , Silicon Carbide, Calcium Phosphate, Silica and the like.
  • the content of the E component is preferably 5 to 100 parts by weight, more preferably 5 to 80 parts by weight, and further preferably 10 to 50 parts by weight with respect to 100 parts by weight of the A component. If the content of the E component is less than 5 parts by weight, a sufficient reinforcing effect may not be obtained, and if it exceeds 100 parts by weight, productivity or molding processability may decrease, and in the worst case, extrusion molding may not be possible. be.
  • the resin composition in the present invention may contain an elastomer component as long as the effects of the present invention are not impaired.
  • Suitable elastomer components include core-shells such as acrylonitrile-butadiene-styrene copolymer (ABS resin), methylmethacrylate / butadiene-styrene copolymer (MBS resin) and silicone-acrylic composite rubber graft copolymer.
  • thermoplastic elastomers such as silicone-based thermoplastic elastomers, olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers.
  • the resin composition in the present invention may contain other thermoplastic resins as long as the effects of the present invention are not impaired.
  • other thermoplastic resins include general-purpose plastics typified by polyethylene resin, polypropylene resin, polyalkyl methacrylate resin, polyphenylene ether resin, polyacetal resin, aromatic polyester resin, liquid crystal polyester resin, polyamide resin, and annular resin.
  • Engineering plastics typified by polyolefin resins, polyarylate resins (acrystalline polyarylate, liquid crystal polyarylate), etc., so-called super engineering plastics such as polyether ether ketone, polyetherimide, polysulfon, polyether sulfone, etc. Can be mentioned.
  • the resin composition in the present invention is an antioxidant, a heat-resistant stabilizer (hindered phenol-based, hydroquinone-based, phosphite-based and their substitutes, etc.) and a weather-resistant agent (resorcinol-based, as long as the effects of the present invention are not impaired.
  • a heat-resistant stabilizer hindered phenol-based, hydroquinone-based, phosphite-based and their substitutes, etc.
  • a weather-resistant agent resorcinol-based, as long as the effects of the present invention are not impaired.
  • Antistatic agents benzotriazoles, benzophenones, hindered amines, etc.), antistatic agents and lubricants (montanoic acid and its metal salts, their esters, their half esters, stearyl alcohols, stearamides, various bisamides, bisurea, polyethylene waxes, etc.) , Pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (niglosin, etc.), crystal nucleating agents (talc, silica, kaolin, clay, etc.), plasticizers (octyl p-oxybenzoate, N-butylbenzene sulfonamide, etc.) ), Antistatic agents (alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based amphoteric antistatic agents, etc.
  • Flame retardant red phosphorus, phosphate ester, melamine cyanurate, magnesium hydroxide, hydroxides such as aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy resin Alternatively, a combination of these brominated flame retardants and antimon trioxide, etc.) and other polymers can be added.
  • the resin composition of the present invention can be produced by mixing the above components simultaneously or in any order with a mixer such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder. It is preferable to melt-knead by a twin-screw extruder, and if necessary, it is preferable to supply an arbitrary component to other melt-mixed components from a second supply port using a side feeder or the like.
  • a mixer such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder. It is preferable to melt-knead by a twin-screw extruder, and if necessary, it is preferable to supply an arbitrary component to other melt-mixed components from a second supply port using a side feeder or the like.
  • the resin extruded as described above is directly cut and pelletized, or after forming the strand, the such strand is cut with a pelletizer and pelletized.
  • a pelletizer and pelletized When it is necessary to reduce the influence of external dust and the like during pelletization, it is preferable to clean the atmosphere around the extruder.
  • the shape of the obtained pellet can take a general shape such as a cylinder, a prism, and a sphere, but is more preferably a cylinder.
  • the diameter of the cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, still more preferably 2 to 3.5 mm.
  • the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, still more preferably 2.5 to 4 mm.
  • a molded product using the resin composition of the present invention can be obtained by molding pellets produced as described above. Preferably, it is obtained by injection molding or extrusion molding.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulating metal. Examples thereof include mold molding, rapid heating / cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultra-high-speed injection molding. Further, either a cold runner method or a hot runner method can be selected for molding. Further, in extrusion molding, various deformed extruded products, sheets, films and the like can be obtained.
  • Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the resin composition of the present invention can be made into a molded product by rotary molding, blow molding or the like.
  • the test piece was molded by the following method in the same manner as in (1).
  • Specific wear amount (M1-M2) / ( ⁇ ⁇ W ⁇ L)
  • Examples 1 to 10 Polyarylene sulfide resin, spheroidal graphite, fibrous filler and fluororesin were melt-kneaded at each of the blending amounts shown in Table 1 using a bent twin-screw extruder to obtain pellets.
  • the vent type twin-screw extruder used was TEX30 ⁇ -38 (complete meshing, rotating in the same direction) manufactured by Japan Steel Works, Ltd.
  • the extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 200 rpm, a vacuum degree of vent of 3 kPa, and an extrusion temperature of 320 ° C. from the first supply port to the die portion.
  • the fibrous filler and spheroidal graphite excluding the aramid fiber are supplied from the second supply port using the side feeder of the extruder, and the polyarylene sulfide resin, the aramid fiber and the fluororesin are supplied from the first supply port to the extruder. Supplied.
  • the first supply port referred to here is the supply port farthest from the die
  • the second supply port is a supply port located between the die of the extruder and the first supply port.
  • the obtained pellets are dried at 130 ° C. for 6 hours in a hot air circulation type dryer, and then evaluated by an injection molding machine (EC160NII-4Y manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 320 ° C. and a mold temperature of 140 ° C. The test piece was molded.
  • ⁇ Component A> A-1 Polyphenylene sulfide resin obtained by the following production method [Production method] To 300.00 g of paradiiodobenzene and 27.00 g of sulfur, 0.60 g of diphenyl disulfide (content of 0.65% by weight based on the weight of finally polymerized PPS) as a polymerization inhibitor was added to 180 ° C. After heating to completely melt and mix them, the temperature was raised to 220 ° C. and the pressure was lowered to 200 Torr. The obtained mixture was polymerized for 8 hours while gradually changing the temperature and pressure so that the final temperature and pressure were 320 ° C. and 1 Torr, respectively, to produce a polyphenylene sulfide resin.
  • the dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) was 4.3.
  • B-1 S-20 (Spheroidal graphite particle size manufactured by Nishimura Graphite Co., Ltd .: 20 ⁇ m)
  • B-2 10099M (scale graphite particle size manufactured by Nishimura Graphite Co., Ltd .: 57 ⁇ m)
  • B-3 AG-20 (Artificial graphite manufactured by Teijin Limited (atypical) Particle diameter: 20 ⁇ m)
  • C-1 Circular cross-section chopped glass fiber (T-732H manufactured by Nippon Electric Glass Co., Ltd., diameter: 10.5 ⁇ m, cut length: 3 mm, urethane / epoxy-based focusing agent)
  • C-2 Carbon fiber (IMC702 6 mm major axis: 6 ⁇ m, cut length: 6 mm, tensile elastic modulus: 282 GPa, tensile strength: 5,490 MPa, urethane-based focusing agent manufactured by Toho Tenax Co., Ltd.)
  • C-3 Total aromatic polyamide fiber (manufactured by Teijin Limited: para-aramid fiber T322EH major axis 12 ⁇ m, cut length 3 mm, polyester-based sizing agent)
  • D-1 Polytetrafluoroethylene (KT-600M calcined type manufactured by Kitamura Co., Ltd., melting point 328 ° C)
  • E-1 Calcium carbonate (KSS-1000 manufactured by Calfine Co., Ltd.)

Abstract

The present invention provides a resin composition which retains excellent strength and suffers no fusion bonding when rubbed against and abrading on the same material and which has excellent wear resistance. This resin composition comprises (A) 100 parts by weight of a poly(arylene sulfide) resin (A component), (B) 5-150 parts by weight of spherical graphite (B component ), (C) 5-150 parts by weight of a fibrous filler (C component), and (D) 5-100 parts by weight of a fluororesin (D component).

Description

樹脂組成物Resin composition
 本発明は、ポリアリーレンスルフィド樹脂、球状黒鉛、繊維状充填剤及びフッ素樹脂よりなる樹脂組成物であって、優れた強度を維持しつつ、同材同士の摩擦摩耗時に融着が発生せず、かつ耐摩耗性に優れる樹脂組成物に関するものである。 The present invention is a resin composition composed of a polyarylene sulfide resin, a spheroidal graphite, a fibrous filler and a fluororesin, and while maintaining excellent strength, fusion does not occur during frictional wear between the same materials. The present invention relates to a resin composition having excellent wear resistance.
 ポリアリーレンスルフィド樹脂は、耐薬品性、耐熱性、機械的特性などに優れるエンジニアリングプラスチックである。このため、ポリアリーレンスルフィド樹脂は、優れた特性を活かし金属代替材料として、電気電子、車両関連、航空機、住設などの用途に広く利用されている。特に最近では、ギアや軸受けなどの摺動部品への適用が検討されている。ポリアリーレンスルフィド樹脂の摺動性を向上させる手法として、ポリアリーレンスルフィドに四フッ化エチレン樹脂を充填する方法が知られている(特許文献1)。しかしながら、ギアのように樹脂同士が摺動する部品では、同材同士で摩耗する際の発熱から融着してしまうことが問題であった。このため、異なる樹脂同士を組み合わせてギアを構成することが一般的であった。ポリアリーレンスルフィドの発熱を抑制する試みとしては、例えばポリアリーレンスルフィドに非晶性熱可塑性樹脂、鱗片状黒鉛、繊維状フィラーを配合した樹脂組成物(特許文献2)が提案されている。しかしながら、鱗片状黒鉛を用いた場合、樹脂の放熱性は向上するものの、樹脂の耐摩耗性が十分とは言えなかった。また、モーター用軸受け部品としてポリアリーレンスルフィド樹脂に芳香族ポリアミドイミド、黒鉛、炭素繊維及び固体潤滑剤からなる樹脂組成物(特許文献3)が提案されているが、同材同士の融着や耐摩耗性に関して何ら記載されていなかった。 Polyarylene sulfide resin is an engineering plastic with excellent chemical resistance, heat resistance, mechanical properties, etc. Therefore, the polyarylene sulfide resin is widely used as a metal substitute material in applications such as electric / electronic, vehicle-related, aircraft, and housing by taking advantage of its excellent properties. In particular, recently, application to sliding parts such as gears and bearings has been studied. As a method for improving the slidability of a polyarylene sulfide resin, a method of filling polyarylene sulfide with an ethylene tetrafluoride resin is known (Patent Document 1). However, in the case of parts such as gears in which the resins slide with each other, there is a problem that the same materials are fused due to heat generation when they are worn together. For this reason, it has been common to combine different resins to form a gear. As an attempt to suppress the heat generation of polyarylene sulfide, for example, a resin composition (Patent Document 2) in which an amorphous thermoplastic resin, scaly graphite, and a fibrous filler are blended with polyarylene sulfide has been proposed. However, when scaly graphite is used, the heat dissipation of the resin is improved, but the wear resistance of the resin is not sufficient. Further, as a bearing component for a motor, a resin composition (Patent Document 3) consisting of an aromatic polyamide-imide, graphite, carbon fiber and a solid lubricant in a polyarylene sulfide resin has been proposed, but fusion and resistance between the same materials have been proposed. Nothing was stated about wear resistance.
特開昭63-213561号公報Japanese Unexamined Patent Publication No. 63-213561 特開2003-268236号公報Japanese Patent Application Laid-Open No. 2003-268236 特開2010-281348号公報Japanese Unexamined Patent Publication No. 2010-281348
 本発明の目的は、優れた強度を維持しつつ、同材同士の摩擦摩耗時に融着が発生せず、かつ耐摩耗性に優れる樹脂組成物を提供することである。 An object of the present invention is to provide a resin composition which maintains excellent strength, does not cause fusion during frictional wear between the same materials, and has excellent wear resistance.
 本発明者は鋭意検討を重ねた結果、ポリアリーレンスルフィド樹脂、球状黒鉛、繊維状充填剤及びフッ素樹脂よりなる樹脂組成物が、優れた強度を維持しつつ、同材同士の摩擦摩耗時に融着が発生せず、かつ耐摩耗性に優れる樹脂組成物であることを見出し本発明に至った。
 すなわち、本発明によれば、発明の課題は下記により達成される。
As a result of diligent studies by the present inventor, the resin composition composed of polyarylene sulfide resin, spheroidal graphite, fibrous filler and fluororesin is fused at the time of frictional wear between the same materials while maintaining excellent strength. The present invention has been made by finding that the resin composition does not generate the above-mentioned material and has excellent wear resistance.
That is, according to the present invention, the subject of the invention is achieved by the following.
 1.(A)ポリアリーレンスルフィド樹脂(A成分)100重量部に対し、(B)球状黒鉛(B成分)5~150重量部、(C)繊維状充填剤(C成分)5~150重量部及び(D)フッ素樹脂(D成分)5~100重量部を含有する樹脂組成物。 1. (A) Polyarylene sulfide resin (A component) 100 parts by weight, (B) Spheroidal graphite (B component) 5 to 150 parts by weight, (C) Fibrous filler (C component) 5 to 150 parts by weight and ( D) A resin composition containing 5 to 100 parts by weight of a fluororesin (component D).
 2.A成分100重量部に対し、(E)非繊維状充填剤(E成分)5~100重量部を含有する前項1に記載の樹脂組成物。 2. The resin composition according to item 1 above, which contains (E) 5 to 100 parts by weight of the non-fibrous filler (component E) with respect to 100 parts by weight of the component A.
 3.B成分の粒子径が10μm~35μmである前項1又は2に記載の樹脂組成物。 3. The resin composition according to item 1 or 2 above, wherein the particle size of the component B is 10 μm to 35 μm.
 4.C成分がガラス繊維である前項1~3のいずれかに記載の樹脂組成物。 4. The resin composition according to any one of the above items 1 to 3, wherein the C component is glass fiber.
 5.前項1~4のいずれかに記載の樹脂組成物からなる成形体。 5. A molded product made of the resin composition according to any one of the above items 1 to 4.
 6.A)ポリアリーレンスルフィド樹脂(A成分)100重量部に対し、(B)球状黒鉛(B成分)5~150重量部、(C)繊維状充填剤(C成分)5~150重量部及び(D)フッ素樹脂(D成分)5~100重量部を混合することを含む、前項1に記載の樹脂組成物の製造方法。 6. A) Polyarylene sulfide resin (A component) 100 parts by weight, (B) spheroidal graphite (B component) 5 to 150 parts by weight, (C) fibrous filler (C component) 5 to 150 parts by weight and (D) ) The method for producing a resin composition according to item 1 above, which comprises mixing 5 to 100 parts by weight of a fluororesin (component D).
 本発明の樹脂組成物は、優れた強度を維持しつつ、同材同士の摩耗時に融着が発生せず、かつ耐摩耗性に優れるため、ギアなどの同材同士が摩耗する部品において幅広く有用である。 Since the resin composition of the present invention maintains excellent strength, does not cause fusion when the same materials are worn, and has excellent wear resistance, it is widely useful in parts such as gears where the same materials wear. Is.
 以下、本発明の詳細について説明する。 Hereinafter, the details of the present invention will be described.
 (A成分:ポリアリーレンスルフィド樹脂)
 本発明のA成分として使用されるポリアリーレンスルフィド樹脂としては、ポリアリーレンスルフィド樹脂と称される範疇に属するものであれば如何なるものを用いてもよい。
(Component A: Polyarylene sulfide resin)
As the polyarylene sulfide resin used as the component A of the present invention, any polyarylene sulfide resin may be used as long as it belongs to the category called polyarylene sulfide resin.
 ポリアリーレンスルフィド樹脂としては、その構成単位として、例えばp-フェニレンスルフィド単位、m-フェニレンスルフィド単位、o-フェニレンスルフィド単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等よりなるものを挙げることができ、その中でも、p-フェニレンスルフィド単位を70モル%以上、特に90モル%以上含有しているものが好ましく、さらに、ポリ(p-フェニレンスルフィド)がより好ましい。 The polyarylene sulfide resin has, as its constituent units, for example, p-phenylene sulfide unit, m-phenylene sulfide unit, o-phenylene sulfide unit, phenylene sulfide sulfone unit, phenylene sulfide ketone unit, phenylene sulfide ether unit, diphenylene sulfide unit. , Phenylene sulfide unit containing substituent, phenylene sulfide unit containing branched structure, etc., among which 70 mol% or more, particularly 90 mol% or more of p-phenylene sulfide unit is contained. Preferred, more preferably poly (p-phenylene sulfide).
 本発明のA成分として使用されるポリアリーレンスルフィド樹脂の重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は好ましくは2.7以上、より好ましくは2.8以上、さらに好ましくは2.9以上である。分散度が2.7未満の場合は、成形時のバリ発生が多くなる場合がある。なお、分散度(Mw/Mn)の上限は特に規定されないが、10以下であることが好ましい。ここで、重量平均分子量(Mw)及び数平均分子量(Mn)はゲルパーミネーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出された値である。なお、溶媒には1-クロロナフタレンを使用し、カラム温度は210℃とした。 The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyarylene sulfide resin used as the component A of the present invention is preferably 2.7 or more, more preferably 2. It is 8.8 or more, more preferably 2.9 or more. If the degree of dispersion is less than 2.7, burrs may be generated during molding. The upper limit of the degree of dispersion (Mw / Mn) is not particularly specified, but is preferably 10 or less. Here, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values calculated in terms of polystyrene by gel permeation chromatography (GPC). 1-Chloronaphthalene was used as a solvent, and the column temperature was 210 ° C.
 ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されるものではなく、既知の方法で重合される。例えば米国登録特許第4,746,758号、第4,786,713号、特表2013-522385、特開2012-233210及び特許5167276等に記載された製造方法が挙げられる。これらの製造方法は、ジヨードアリール化合物と固体硫黄を、極性溶媒なしに直接加熱して重合させる方法である。 The method for producing the polyarylene sulfide resin is not particularly limited, and the polyarylene sulfide resin is polymerized by a known method. For example, the manufacturing methods described in US Registered Patents No. 4,746,758, No. 4,786,713, Japanese Patent Application Laid-Open No. 2013-522385, Japanese Patent Application Laid-Open No. 2012-233210, Patent No. 5167276 and the like can be mentioned. These production methods are methods in which a diiodoaryl compound and solid sulfur are directly heated and polymerized without a polar solvent.
 前記製造方法はヨウ化工程及び重合工程を含む。該ヨウ化工程ではアリール化合物をヨードと反応させて、ジヨードアリール化合物を得る。続く重合工程で、重合停止剤を用いてジヨードアリール化合物を固体硫黄と重合反応させてポリアリーレンスルフィド樹脂を製造する。ヨードはこの工程で気体状で発生し、これを回収して再びヨウ化工程に用いられる。実質的にヨードは触媒である。 The production method includes an iodide step and a polymerization step. In the iodination step, the aryl compound is reacted with iodine to obtain a diiodoaryl compound. In the subsequent polymerization step, a polyarylene sulfide resin is produced by polymerizing a diiodoaryl compound with solid sulfur using a polymerization inhibitor. Iodine is generated in the form of a gas in this step, and it is recovered and used again in the iodide step. Iodine is essentially a catalyst.
 前記製造方法で用いられる代表的な固体硫黄としては、室温で8個の原子が連結されたシクロオクタ硫黄形態(S)が挙げられる。しかしながら重合反応に用いられる硫黄化合物は限定されるものではなく、常温で固体又は液体であればいずれの形態でも使用し得る。 As a typical solid sulfur used in the above-mentioned production method, a cycloocta-sulfur form ( S8 ) in which eight atoms are linked at room temperature can be mentioned. However, the sulfur compound used in the polymerization reaction is not limited, and any form can be used as long as it is solid or liquid at room temperature.
 前記製造方法で用いられる代表的なジヨードアリール化合物としては、ジヨードベンゼン、ジヨードナフタレン、ジヨードビフェニル、ジヨードビスフェノール及びジヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられ、またアルキル基やスルホン基が結合していたり、酸素や窒素が導入されたりしているヨードアリール化合物の誘導体も使用される。ヨードアリール化合物はそのヨード原子の結合位置によって異なる異性体に分類され、これらの異性体のうち好ましい例は、p-ジヨードベンゼン、2,6-ジヨードナフタレン、及びp,p’-ジヨードビフェニルのようにヨードがアリール化合物の分子両端に対称的に位置する化合物である。該ヨードアリール化合物の含有量は前記固体硫黄100重量部に対し500~10,000重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。 Representative examples of the diiodoaryl compound used in the above-mentioned production method include at least one selected from the group consisting of diiodobenzene, diiodonaphthalene, diiodobiphenyl, diiodobisphenol and diiodobenzophenone, and alkyl. Derivatives of iodoaryl compounds to which groups or sulfon groups are bonded or oxygen or nitrogen is introduced are also used. Iodoaryl compounds are classified into different isomers depending on the bond position of their iodine atom, and preferred examples of these isomers are p-diiodobenzene, 2,6-diiodonaphthalene, and p, p'-diiodine. Iodine is a compound such as biphenyl that is symmetrically located at both ends of the molecule of the aryl compound. The content of the iodine aryl compound is preferably 500 to 10,000 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
 前記製造方法で用いられる代表的な重合停止剤としては、モノヨードアリール化合物、ベンゾチアゾール類、ベンゾチアゾールスルフェンアミド類、チウラム類、ジチオカルバメート類、芳香族スルフィド化合物などが挙げられる。モノヨードアリール化合物のうち好ましい例としては、ヨードビフェニル、ヨードフェノール、ヨードアニリン、ヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾール類のうち好ましい例としては、2-メルカプトベンゾチアゾール、2,2’-ジチオビスベンゾチアゾールからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾールスルフェンアミド類のうち好ましい例としては、N-シクロヘキシルベンゾチアゾール2-スルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾールスルフェンアミド、2-モルホリノチオベンゾチアゾール、ベンゾチアゾールスルフェンアミド、ジベンゾチアゾールジスルファイド、N-ジシクロヘキシルベンゾチアゾール2-スルフェンアミドからなる群より選ばれる少なくとも1種が挙げられる。チウラム類のうち好ましい例としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドからなる群より選ばれる少なくとも1種が挙げられる。ジチオカルバメート類のうち好ましい例としては、ジメチルジチオカルバメート酸亜鉛、ジエチルジチオカルバメート酸亜鉛からなる群より選ばれる少なくとも1種が挙げられる。芳香族スルフィド化合物のうち好ましい例としては、ジフェニルスルフィド、ジフェニルジスルフィド、ジフェニルエーテル、ビフェニル、ベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。またいずれの重合停止剤においても、共役芳香環骨格上に一つ又は複数の官能基が置換されていてもよい。前記官能基の例としては、ヒドロキシ基、カルボキシ基、メルカプト基、アミノ基、シアノ基、スルホ基、ニトロ基などが挙げられ、好ましい例としてはカルボキシ基、アミノ基が挙げられ、さらに好ましい例としてはFT-IRスペクトル上で、1600~1800cm-1又は3300~3500cm-1のピークを示すカルボキシ基、アミノ基が挙げられる。重合停止剤の含有量は前記固体硫黄100重量部に対し1~30重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。 Typical polymerization terminators used in the above-mentioned production method include monoiodoaryl compounds, benzothiazoles, benzothiazolesulfenamides, thiurams, dithiocarbamates, aromatic sulfide compounds and the like. Preferred examples of the monoiodoaryl compound include at least one selected from the group consisting of iodobiphenyl, iodophenol, iodoaniline and iodobenzophenone. Preferred examples of the benzothiazoles include at least one selected from the group consisting of 2-mercaptobenzothiazole and 2,2'-dithiobisbenzothiazole. Preferred examples of the benzothiazole sulfenamides are N-cyclohexylbenzothiazole2-sulfenamide, N, N-dicyclohexyl-2-benzothiazolesulfenamide, 2-morpholinothiobenzothiazole, benzothiazolesulfenamide. , Dibenzothiazole disulfide, N-dicyclohexylbenzothiazole 2-sulfenamide, at least one selected from the group. Preferred examples of thiurams include at least one selected from the group consisting of tetramethylthiuram monosulfide and tetramethylthiuram disulfide. Preferred examples of the dithiocarbamates include at least one selected from the group consisting of zinc dimethyldithiocarbamate and zinc diethyldithiocarbamate. Preferred examples of the aromatic sulfide compound include at least one selected from the group consisting of diphenyl sulfide, diphenyl disulfide, diphenyl ether, biphenyl and benzophenone. Further, in any of the polymerization inhibitors, one or more functional groups may be substituted on the conjugated aromatic ring skeleton. Examples of the functional group include a hydroxy group, a carboxy group, a mercapto group, an amino group, a cyano group, a sulfo group, a nitro group and the like, preferred examples thereof include a carboxy group and an amino group, and further preferred examples thereof include a carboxy group and an amino group. Examples include a carboxy group and an amino group showing a peak of 1600 to 1800 cm -1 or 3300 to 3500 cm -1 on the FT-IR spectrum. The content of the polymerization inhibitor is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
 前記製造方法では重合反応触媒を使用しても良く、代表的な重合反応触媒としては、ニトロベンゼン系触媒が上げられる。ニトロベンゼン系触媒のうち好ましい例としては、1,3-ジヨード-4-ニトロベンゼン、1-ヨード-4-ニトロベンゼン、2,6-ジヨード-4-ニトロフェノール、ヨードニトロベンゼン、2,6-ジヨード-4-ニトロアミンからなる群より選ばれる少なくとも1種が挙げられる。重合反応触媒の含有量は前記固体硫黄100重量部に対し0.01~20重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。 A polymerization reaction catalyst may be used in the above-mentioned production method, and a nitrobenzene-based catalyst can be mentioned as a typical polymerization reaction catalyst. Preferred examples of nitrobenzene catalysts are 1,3-diiodo-4-nitrobenzene, 1-iodo-4-nitrobenzene, 2,6-diiodo-4-nitrophenol, iodonitrobenzene, and 2,6-diiodo-4-. At least one selected from the group consisting of nitroamines may be mentioned. The content of the polymerization reaction catalyst is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the solid sulfur. This amount is determined in consideration of the formation of disulfide bonds.
 この重合方法を使うことにより、実質的に塩素含有量及びナトリウム含有量を低減させる必要が無く、コストパフォーマンスに優れたポリフェニレンスルフィド樹脂を得ることができる。 By using this polymerization method, it is not necessary to substantially reduce the chlorine content and the sodium content, and a polyphenylene sulfide resin having excellent cost performance can be obtained.
 また本発明のポリフェニレンスルフィド樹脂は、その他の重合方法によって得られたポリフェニレンスルフィド樹脂を含んでいてもよい。 Further, the polyphenylene sulfide resin of the present invention may contain a polyphenylene sulfide resin obtained by another polymerization method.
 (B成分:球状黒鉛)
 本発明において、球状黒鉛は、アスペクト比(長径/短径)が2.0以下であるものであってよい。アスペクト比は、例えば、走査型電子顕微鏡(SEM)を用いて粒子を拡大観察(例えば、1000倍に拡大)したSEM写真において、もっとも短い部分の長さに対する最も長い部分の長さの比(最も長い部分の長さ/最も短い部分の長さ)である。
(B component: spheroidal graphite)
In the present invention, the spheroidal graphite may have an aspect ratio (major axis / minor axis) of 2.0 or less. The aspect ratio is the ratio of the length of the longest part to the length of the shortest part (most) in an SEM photograph in which particles are magnified (for example, magnified 1000 times) using a scanning electron microscope (SEM). The length of the long part / the length of the shortest part).
 本発明で使用される球状黒鉛は黒鉛の形状が球状であれば特に限定されない。黒鉛の形状が球状でない場合は、耐摩耗性に劣る。 The spheroidal graphite used in the present invention is not particularly limited as long as the shape of graphite is spherical. If the shape of graphite is not spherical, the wear resistance is poor.
 黒鉛の粒子径は10~35μmであることが好ましく、より好ましくは15~30μm、さらに好ましくは15~20μmである。B成分の粒子径が10μm未満では、同材同士の融着が発生する場合があり、35μmを超えると黒鉛の脱落が起こりやすくなり、耐摩耗性が低下する場合がある。 The particle size of graphite is preferably 10 to 35 μm, more preferably 15 to 30 μm, and even more preferably 15 to 20 μm. If the particle size of the B component is less than 10 μm, fusion between the same materials may occur, and if it exceeds 35 μm, graphite is likely to fall off and the wear resistance may be lowered.
 このような球状黒鉛の例としては西村黒鉛(株)よりS-10、S-15、S-20として、伊藤黒鉛工業(株)よりSG-BH、SG-BL30として市販されており、容易に入手可能である。 Examples of such spheroidal graphite are commercially available from Nishimura Graphite Co., Ltd. as S-10, S-15, S-20, and from Ito Graphite Industry Co., Ltd. as SG-BH, SG-BL30, and can be easily marketed. It is available.
 B成分の含有量は、A成分100重量部に対し、5~150重量部であり、好ましくは15~130重量部、より好ましくは20~100重量部である。B成分の含有量が5重量部未満では、十分な放熱性が得られず、同材同士の摩擦熱により融着が起こる。他方、150重量部を超えると生産性又は成形加工性が低下し、最悪の場合押し出し成形ができなくなる。 The content of the B component is 5 to 150 parts by weight, preferably 15 to 130 parts by weight, and more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the A component. If the content of the B component is less than 5 parts by weight, sufficient heat dissipation cannot be obtained, and fusion occurs due to frictional heat between the same materials. On the other hand, if it exceeds 150 parts by weight, productivity or molding processability is lowered, and in the worst case, extrusion molding becomes impossible.
 (C成分:繊維状充填剤)
 本発明で使用される無機繊維充填剤は、繊維状の充填剤であれば特に限定されない。例えば、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維、導電性物質で被覆された無機フィラーなどが挙げられ、これらの中でガラス繊維、アラミド繊維、炭素繊維がより好ましい。また、これら繊維状充填剤をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物及びエポキシ化合物などのカップリング剤で予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
(C component: fibrous filler)
The inorganic fiber filler used in the present invention is not particularly limited as long as it is a fibrous filler. Examples thereof include glass fiber, carbon fiber, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber, inorganic filler coated with a conductive substance, and the like. Fibers, aramid fibers and carbon fibers are more preferred. Further, it is more excellent mechanical strength to use these fibrous fillers by pretreating them with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound and an epoxy compound. It is preferable in the sense of obtaining.
 繊維状充填剤の繊維太さは、3~30μmであることが好ましく、より好ましくは4~20μmである。 The fiber thickness of the fibrous filler is preferably 3 to 30 μm, more preferably 4 to 20 μm.
 導電性物質で被覆された無機フィラーにおける導電性物質の具体例としてはアルミニウム、ニッケル、銀、カーボン、SnO(アンチモンドープ)、In(アンチモンドープ)などが例示できる。また被覆される無機フィラーとしては、ガラス繊維、炭素繊維などが例示できる。被覆方法としては真空蒸着法、スパッタリング法、無電解メッキ法、焼き付け法などが挙げられる。またこれらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。 Specific examples of the conductive substance in the inorganic filler coated with the conductive substance include aluminum, nickel, silver, carbon, SnO 2 (antimony dope), In 2 O 3 (antimony dope) and the like. Examples of the inorganic filler to be coated include glass fiber and carbon fiber. Examples of the coating method include a vacuum vapor deposition method, a sputtering method, an electroless plating method, and a baking method. Further, these may be surface-treated with a surface treatment agent such as a titanate-based, aluminum-based, or silane-based coupling agent.
 C成分の含有量は、A成分100重量部に対し、5~150重量部であり、好ましくは10~140重量部、より好ましくは20~130重量部である。C成分の含有量が5重量部未満では十分な補強効果が得られず、150重量部を超えると生産性又は成形加工性が低下し、最悪の場合押し出し成形ができなくなる。 The content of the C component is 5 to 150 parts by weight, preferably 10 to 140 parts by weight, and more preferably 20 to 130 parts by weight with respect to 100 parts by weight of the A component. If the content of the C component is less than 5 parts by weight, a sufficient reinforcing effect cannot be obtained, and if it exceeds 150 parts by weight, the productivity or molding processability is lowered, and in the worst case, extrusion molding becomes impossible.
 (D成分:フッ素樹脂)
 本発明のD成分として使用されるフッ素樹脂は、主鎖に炭素鎖を有し、側鎖にフッ素原子の結合を有する重合体、又はそのような重合体を有する共重合体であることが好ましい。具体例としては、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-フルオロアルキルビニルエーテル-フルオロオレフィン共重合体、エチレン-トリクロロフルオロエチレン共重合体などが挙げられる。なかでも好ましくは、ポリテトラフルオロエチレンであり、焼成、未焼成のどちらのポリテトラフルオロエチレンでも使用可能であるが、ポリテトラフルオロエチレンは再凝集し易いので、再凝集し難くするために焼成処理等を施した粉末状ものが好ましく、特に焼成処理温度360℃以上で焼成されたポリテトラフルオロエチレンが好ましい。ポリテトラフルオロエチレンの融点は、再凝集し難くするためDSC法で測定して320~335℃のものが好ましく、より好ましくは325~330℃である。またポリテトラフルオロエチレンの粒子径は、パークロルエチレン中に分散させた分散液を光透過法により測定する方法で平均0.1~100μmのものが好ましく、より好ましくは1μm~20μmである。なおここでいう平均粒径はレーザー回折・散乱法(MICOTRAC法)を用いて測定した重量平均粒径である。また、このポリテトラフルオロエチレンは、数平均分子量としては10万以上のものが好ましく、より好ましくは20万以上のものである。
(D component: fluororesin)
The fluororesin used as the D component of the present invention is preferably a polymer having a carbon chain in the main chain and a bond of a fluorine atom in the side chain, or a copolymer having such a polymer. .. Specific examples include polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, and tetrafluoroethylene-fluoroalkyl vinyl ether-. Examples thereof include fluoroolefin copolymers and ethylene-trichlorofluoroethylene copolymers. Of these, polytetrafluoroethylene is preferable, and either calcined or uncalcined polytetrafluoroethylene can be used. However, since polytetrafluoroethylene is easily reaggregated, it is fired to prevent reaggregation. In the form of powder, which has been subjected to the above, is preferable, and in particular, polytetrafluoroethylene which has been calcined at a calcining treatment temperature of 360 ° C. or higher is preferable. The melting point of polytetrafluoroethylene is preferably 320 to 335 ° C, more preferably 325 to 330 ° C, as measured by the DSC method in order to prevent reaggregation. The particle size of polytetrafluoroethylene is preferably 0.1 to 100 μm on average, more preferably 1 μm to 20 μm, by a method of measuring a dispersion dispersed in perchlorethylene by a light transmission method. The average particle size referred to here is a weight average particle size measured by a laser diffraction / scattering method (MICOTRAC method). Further, this polytetrafluoroethylene preferably has a number average molecular weight of 100,000 or more, and more preferably 200,000 or more.
 このようなポリテトラフルオロエチレンの例としては、(株)喜多村よりKT-600M、KTL-620、KTL-450Aとして、ダイキン工業(株)よりルブロンL-5、L-2として、また旭アイシ-アイフロロポリマーズ(株)よりL150J、L169J、L170J、L172Jとして、また三井・デュポンフロロケミカル(株)よりテフロン(登録商標)TLP-10F-1として市販されており容易に入手可能である。 Examples of such polytetrafluoroethylene are KT-600M, KTL-620 and KTL-450A from Kitamura Co., Ltd., DuPont L-5 and L-2 from Daikin Industries Co., Ltd., and Asahi Aishi. It is commercially available as L150J, L169J, L170J, L172J from Eye Fluoropolymers Co., Ltd. and as Teflon (registered trademark) TLP-10F-1 from Mitsui-DuPont Fluorochemical Co., Ltd. and is easily available.
 D成分の含有量はA成分100重量部に対し、5~100重量であり、好ましくは5~80重量部、より好ましくは5~50重量部である。含有量が5重量部未満では十分な耐摩耗性が得られず、100重量部を超えると混練時にストランド切れやサージングなどが発生する。 The content of the D component is 5 to 100 parts by weight, preferably 5 to 80 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the A component. If the content is less than 5 parts by weight, sufficient wear resistance cannot be obtained, and if it exceeds 100 parts by weight, strand breakage and surging occur during kneading.
 (E成分:非繊維状充填剤)
 本発明における樹脂組成物は本発明の効果を損なわない範囲で非繊維状充填剤を併用することができる。非繊維状充填剤は特に限定されないが、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、燐酸カルシウム及びシリカなどが挙げられる。
(E component: non-fibrous filler)
The resin composition in the present invention can be used in combination with a non-fibrous filler as long as the effects of the present invention are not impaired. The non-fibrous filler is not particularly limited, but is limited to silicates such as sericite, kaolin, mica, clay, bentonite, asbestos, talc and alumina silicate, swellable layered silicates such as montmorillonite and synthetic mica, alumina and silicon oxide. , Metal compounds such as magnesium oxide, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, glass beads, ceramic beads and boron nitride. , Silicon Carbide, Calcium Phosphate, Silica and the like.
 E成分の含有量は、A成分100重量部に対し、5~100重量部であることが好ましく、より好ましくは5~80重量部、さらに好ましくは10~50重量部である。E成分の含有量が5重量部未満では、十分な補強効果が得られない場合があり、100重量部を超えると生産性又は成形加工性が低下し、最悪の場合押し出し成形ができなくなる場合がある。 The content of the E component is preferably 5 to 100 parts by weight, more preferably 5 to 80 parts by weight, and further preferably 10 to 50 parts by weight with respect to 100 parts by weight of the A component. If the content of the E component is less than 5 parts by weight, a sufficient reinforcing effect may not be obtained, and if it exceeds 100 parts by weight, productivity or molding processability may decrease, and in the worst case, extrusion molding may not be possible. be.
 本発明における樹脂組成物は本発明の効果を損なわない範囲で、エラストマー成分を含むことができる。好適なエラストマー成分としては、アクリロニトリル・ブタジエン・スチレン系共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)及びシリコーン・アクリル複合ゴム系グラフト共重合体などのコア-シェルグラフト共重合体樹脂、あるいはシリコーン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーが挙げられる。 The resin composition in the present invention may contain an elastomer component as long as the effects of the present invention are not impaired. Suitable elastomer components include core-shells such as acrylonitrile-butadiene-styrene copolymer (ABS resin), methylmethacrylate / butadiene-styrene copolymer (MBS resin) and silicone-acrylic composite rubber graft copolymer. Examples thereof include graft copolymer resins, and thermoplastic elastomers such as silicone-based thermoplastic elastomers, olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers.
 本発明における樹脂組成物は本発明の効果を損なわない範囲で、他の熱可塑性樹脂を含むことができる。他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、芳香族ポリエステル樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、などのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。 The resin composition in the present invention may contain other thermoplastic resins as long as the effects of the present invention are not impaired. Examples of other thermoplastic resins include general-purpose plastics typified by polyethylene resin, polypropylene resin, polyalkyl methacrylate resin, polyphenylene ether resin, polyacetal resin, aromatic polyester resin, liquid crystal polyester resin, polyamide resin, and annular resin. Engineering plastics typified by polyolefin resins, polyarylate resins (acrystalline polyarylate, liquid crystal polyarylate), etc., so-called super engineering plastics such as polyether ether ketone, polyetherimide, polysulfon, polyether sulfone, etc. Can be mentioned.
 本発明における樹脂組成物は本発明の効果を損なわない範囲で、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系及びこれらの置換体等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤及び滑剤(モンタン酸及びその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、各種ビスアミド、ビス尿素及びポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン等)、結晶核剤(タルク、シリカ、カオリン、クレー等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(赤燐、リン酸エステル、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)及び他の重合体を添加することができる。 The resin composition in the present invention is an antioxidant, a heat-resistant stabilizer (hindered phenol-based, hydroquinone-based, phosphite-based and their substitutes, etc.) and a weather-resistant agent (resorcinol-based, as long as the effects of the present invention are not impaired. Antistatic agents, benzotriazoles, benzophenones, hindered amines, etc.), antistatic agents and lubricants (montanoic acid and its metal salts, their esters, their half esters, stearyl alcohols, stearamides, various bisamides, bisurea, polyethylene waxes, etc.) , Pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (niglosin, etc.), crystal nucleating agents (talc, silica, kaolin, clay, etc.), plasticizers (octyl p-oxybenzoate, N-butylbenzene sulfonamide, etc.) ), Antistatic agents (alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based amphoteric antistatic agents, etc. ), Flame retardant (red phosphorus, phosphate ester, melamine cyanurate, magnesium hydroxide, hydroxides such as aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy resin Alternatively, a combination of these brominated flame retardants and antimon trioxide, etc.) and other polymers can be added.
 (樹脂組成物の製造)
 本発明の樹脂組成物は上記各成分を同時に、又は任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。好ましくは2軸押出機による溶融混練が好ましく、必要に応じて、任意の成分をサイドフィーダー等を用いて第2供給口より、溶融混合された他の成分中に供給することが好ましい。
(Manufacturing of resin composition)
The resin composition of the present invention can be produced by mixing the above components simultaneously or in any order with a mixer such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder. It is preferable to melt-knead by a twin-screw extruder, and if necessary, it is preferable to supply an arbitrary component to other melt-mixed components from a second supply port using a side feeder or the like.
 上記の如く押出された樹脂は、直接切断してペレット化するか、又はストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、及び球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1~5mm、より好ましくは1.5~4mm、さらに好ましくは2~3.5mmである。一方、円柱の長さは好ましくは1~30mm、より好ましくは2~5mm、さらに好ましくは2.5~4mmである。 The resin extruded as described above is directly cut and pelletized, or after forming the strand, the such strand is cut with a pelletizer and pelletized. When it is necessary to reduce the influence of external dust and the like during pelletization, it is preferable to clean the atmosphere around the extruder. The shape of the obtained pellet can take a general shape such as a cylinder, a prism, and a sphere, but is more preferably a cylinder. The diameter of the cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, still more preferably 2 to 3.5 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, still more preferably 2.5 to 4 mm.
 (成形品について)
 本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、及び超高速射出成形等を挙げることができる。また成形はコールドランナー方式及びホットランナー方式のいずれも選択することができる。また押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。
(About molded products)
A molded product using the resin composition of the present invention can be obtained by molding pellets produced as described above. Preferably, it is obtained by injection molding or extrusion molding. In injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulating metal. Examples thereof include mold molding, rapid heating / cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultra-high-speed injection molding. Further, either a cold runner method or a hot runner method can be selected for molding. Further, in extrusion molding, various deformed extruded products, sheets, films and the like can be obtained. Inflation method, calendar method, casting method, etc. can also be used for forming sheets and films. Further, it can be molded as a heat-shrinkable tube by applying a specific stretching operation. Further, the resin composition of the present invention can be made into a molded product by rotary molding, blow molding or the like.
 本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The embodiment of the present invention, which the present inventor considers to be the best at present, is a collection of preferable ranges of each of the above requirements. For example, a representative example thereof will be described in the following examples. Of course, the present invention is not limited to these forms.
 [樹脂組成物の評価]
 (1)引張破断強度
 ISO527(測定条件23℃)に準拠して測定した。なお、試験片は、下記の方法で成形した。この数値が大きいほど樹脂組成物の機械的強度が優れていることを意味する。
[Evaluation of resin composition]
(1) Tensile breaking strength Measured according to ISO527 (measurement condition 23 ° C.). The test piece was molded by the following method. The larger this value is, the better the mechanical strength of the resin composition is.
 (2)比摩耗量
 摩擦摩耗試験機(株式会社エーアンドデイ製 EFM-III-EN)を用いてリングオンリングの摩擦摩耗試験を行った。試験片はJISK7218に従い、外径25.6mm、内径20mm、長さ15mmの中空円筒形状のものを用いた。同一の試験片同士を摩擦摩耗試験機に固定し、下方の試験片を、荷重50Nで100分間、速度500mm/sで回転させた。その結果より比摩耗量を下記式により算出した。この数値が小さいほど、耐摩耗性に優れることを意味する。また、試験中に試験片同士の融着によって荷重が不安定になった場合を「×」と評価した。なお、試験片は、(1)と同様に下記の方法で成形した。
  比摩耗量=(M1-M2)/(ρ×W×L)
  M1:試験前の上方、下方の試験片の重量の平均値(mg)
  M2:試験後の上方、下方の試験片の重量の平均値(mg)
  ρ:樹脂密度
  W(荷重):50N
  L(走行距離):3000m
(2) Specific wear amount A ring-on-ring friction wear test was performed using a friction wear tester (EFM-III-EN manufactured by A & D Co., Ltd.). As the test piece, a hollow cylindrical one having an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a length of 15 mm was used according to JIS K7218. The same test pieces were fixed to each other in a friction and wear tester, and the lower test pieces were rotated at a speed of 500 mm / s for 100 minutes under a load of 50 N. From the result, the specific wear amount was calculated by the following formula. The smaller this value is, the better the wear resistance is. In addition, the case where the load became unstable due to the fusion of the test pieces during the test was evaluated as "x". The test piece was molded by the following method in the same manner as in (1).
Specific wear amount = (M1-M2) / (ρ × W × L)
M1: Mean value (mg) of the weight of the upper and lower test pieces before the test
M2: Mean value (mg) of the weight of the upper and lower test pieces after the test
ρ: Resin density W (load): 50N
L (mileage): 3000m
 [実施例1~10、比較例1~11]
 ポリアリーレンスルフィド樹脂、球状黒鉛、繊維状充填剤及びフッ素樹脂を表1に記載の各配合量で、ベント式二軸押出機を用いて溶融混練してペレットを得た。ベント式二軸押出機は日本製鋼所(株)製:TEX30α‐38(完全かみ合い、同方向回転)を使用した。押出条件は吐出量20kg/h、スクリュー回転数200rpm、ベントの真空度3kPaであり、また押出温度は第一供給口からダイス部分まで320℃とした。なお、アラミド繊維を除く繊維状充填剤及び球状黒鉛は上記押出機のサイドフィーダーを使用し第二供給口から供給し、ポリアリーレンスルフィド樹脂、アラミド繊維及びフッ素樹脂は第一供給口から押出機に供給した。ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。得られたペレットを130℃で6時間、熱風循環式乾燥機にて乾燥した後、射出成形機(東芝機械(株)製 EC160NII-4Y)によりシリンダー温度320℃、金型温度140℃で評価用の試験片を成形した。
[Examples 1 to 10, Comparative Examples 1 to 11]
Polyarylene sulfide resin, spheroidal graphite, fibrous filler and fluororesin were melt-kneaded at each of the blending amounts shown in Table 1 using a bent twin-screw extruder to obtain pellets. The vent type twin-screw extruder used was TEX30α-38 (complete meshing, rotating in the same direction) manufactured by Japan Steel Works, Ltd. The extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 200 rpm, a vacuum degree of vent of 3 kPa, and an extrusion temperature of 320 ° C. from the first supply port to the die portion. The fibrous filler and spheroidal graphite excluding the aramid fiber are supplied from the second supply port using the side feeder of the extruder, and the polyarylene sulfide resin, the aramid fiber and the fluororesin are supplied from the first supply port to the extruder. Supplied. The first supply port referred to here is the supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port. The obtained pellets are dried at 130 ° C. for 6 hours in a hot air circulation type dryer, and then evaluated by an injection molding machine (EC160NII-4Y manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 320 ° C. and a mold temperature of 140 ° C. The test piece was molded.
 表1中の記号表記の各成分は下記の通りである。
<A成分>
A-1:以下の製造方法で得られたポリフェニレンスルフィド樹脂
[製造方法]
 パラジヨードベンゼン300.00g及び硫黄27.00gに、重合停止剤としてジフェニルジスルフィド0.60g(最終的に重合されたPPSの重量に基づいて0.65重量%の含量)を投入して180℃に加熱して完全にそれらを溶融及び混合した後、温度を220℃に昇温し、且つ、圧力を200Torrに降圧した。得られた混合物を、最終温度及び圧力が夫々320℃及び1Torrとなるように温度及び圧力を段階的に変化させつつ、8時間重合反応させてポリフェニレンスルフィド樹脂を製造した。重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は4.3であった。
Each component of the symbol notation in Table 1 is as follows.
<Component A>
A-1: Polyphenylene sulfide resin obtained by the following production method [Production method]
To 300.00 g of paradiiodobenzene and 27.00 g of sulfur, 0.60 g of diphenyl disulfide (content of 0.65% by weight based on the weight of finally polymerized PPS) as a polymerization inhibitor was added to 180 ° C. After heating to completely melt and mix them, the temperature was raised to 220 ° C. and the pressure was lowered to 200 Torr. The obtained mixture was polymerized for 8 hours while gradually changing the temperature and pressure so that the final temperature and pressure were 320 ° C. and 1 Torr, respectively, to produce a polyphenylene sulfide resin. The dispersity (Mw / Mn) represented by the weight average molecular weight (Mw) and the number average molecular weight (Mn) was 4.3.
<B成分>
B-1:S-20(西村黒鉛(株)製 球状黒鉛 粒子径:20μm)
B-2:10099M(西村黒鉛(株)製 鱗状黒鉛 粒子径:57μm)
B-3:AG-20(帝人(株)製 人造黒鉛(不定形) 粒子径:20μm)
<B component>
B-1: S-20 (Spheroidal graphite particle size manufactured by Nishimura Graphite Co., Ltd .: 20 μm)
B-2: 10099M (scale graphite particle size manufactured by Nishimura Graphite Co., Ltd .: 57 μm)
B-3: AG-20 (Artificial graphite manufactured by Teijin Limited (atypical) Particle diameter: 20 μm)
<C成分>
C-1:円形断面チョップドガラス繊維(日本電気硝子(株)製 T-732H 直径:10.5μm、カット長:3mm、ウレタン・エポキシ系集束剤)
C-2:炭素繊維(東邦テナックス(株)製 IMC702 6mm 長径:6μm、カット長:6mm、引張弾性率:282GPa、引張強度:5,490MPa、ウレタン系集束剤)
C-3:全芳香族ポリアミド繊維(帝人(株)製:パラ系アラミド繊維 T322EH 長径12μm、カット長3mm、ポリエステル系集束剤)
<C component>
C-1: Circular cross-section chopped glass fiber (T-732H manufactured by Nippon Electric Glass Co., Ltd., diameter: 10.5 μm, cut length: 3 mm, urethane / epoxy-based focusing agent)
C-2: Carbon fiber (IMC702 6 mm major axis: 6 μm, cut length: 6 mm, tensile elastic modulus: 282 GPa, tensile strength: 5,490 MPa, urethane-based focusing agent manufactured by Toho Tenax Co., Ltd.)
C-3: Total aromatic polyamide fiber (manufactured by Teijin Limited: para-aramid fiber T322EH major axis 12 μm, cut length 3 mm, polyester-based sizing agent)
<D成分>
D-1:ポリテトラフルオロエチレン((株)喜多村製 KT-600M 焼成タイプ 融点328℃)
<E成分>
E-1:炭酸カルシウム((株)カルファイン製 KSS-1000)
<D component>
D-1: Polytetrafluoroethylene (KT-600M calcined type manufactured by Kitamura Co., Ltd., melting point 328 ° C)
<E component>
E-1: Calcium carbonate (KSS-1000 manufactured by Calfine Co., Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  A)ポリアリーレンスルフィド樹脂(A成分)100重量部に対し、(B)球状黒鉛(B成分)5~150重量部、(C)繊維状充填剤(C成分)5~150重量部及び(D)フッ素樹脂(D成分)5~100重量部を含有する樹脂組成物。 A) Polyarylene sulfide resin (A component) 100 parts by weight, (B) spheroidal graphite (B component) 5 to 150 parts by weight, (C) fibrous filler (C component) 5 to 150 parts by weight and (D) ) A resin composition containing 5 to 100 parts by weight of a fluororesin (component D).
  2.  A成分100重量部に対し、(E)非繊維状充填剤(E成分)5~100重量部を含有する請求項1記載の樹脂組成物。 The resin composition according to claim 1, which contains (E) 5 to 100 parts by weight of the non-fibrous filler (E component) with respect to 100 parts by weight of the A component.
  3.  B成分の粒子径が10μm~35μmである請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the particle size of the component B is 10 μm to 35 μm.
  4.  C成分がガラス繊維である請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the C component is glass fiber.
  5.  請求項1~4のいずれか一項に記載の樹脂組成物からなる成形体。 A molded product made of the resin composition according to any one of claims 1 to 4.
  6.  A)ポリアリーレンスルフィド樹脂(A成分)100重量部に対し、(B)球状黒鉛(B成分)5~150重量部、(C)繊維状充填剤(C成分)5~150重量部及び(D)フッ素樹脂(D成分)5~100重量部を混合することを含む、請求項1に記載の樹脂組成物の製造方法。 A) Polyarylene sulfide resin (A component) 100 parts by weight, (B) spheroidal graphite (B component) 5 to 150 parts by weight, (C) fibrous filler (C component) 5 to 150 parts by weight and (D) ) The method for producing a resin composition according to claim 1, which comprises mixing 5 to 100 parts by weight of a fluororesin (component D).
PCT/JP2021/025186 2020-09-15 2021-07-02 Resin composition WO2022059299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022550363A JP7321387B2 (en) 2020-09-15 2021-07-02 resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154548 2020-09-15
JP2020154548 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022059299A1 true WO2022059299A1 (en) 2022-03-24

Family

ID=80776019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025186 WO2022059299A1 (en) 2020-09-15 2021-07-02 Resin composition

Country Status (2)

Country Link
JP (1) JP7321387B2 (en)
WO (1) WO2022059299A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132618A (en) * 1991-11-14 1993-05-28 Tosoh Corp Resin composition
JPH05331314A (en) * 1992-06-03 1993-12-14 Ntn Corp Heat-resistant resin sliding material
JPH0741780A (en) * 1993-07-30 1995-02-10 Ntn Corp Heat-resistant conductive sliding bearing
JP2002295626A (en) * 2001-03-28 2002-10-09 Kanebo Ltd Resinous nut
JP2003014141A (en) * 2001-06-28 2003-01-15 Ntn Corp Disc valve and resin composition for disc valve
JP2007119638A (en) * 2005-10-28 2007-05-17 Chubu Electric Power Co Inc Polyarylene sulfide-based molding material and pps-based molding
WO2018105578A1 (en) * 2016-12-07 2018-06-14 株式会社イノアック技術研究所 Cell porous body and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132618A (en) * 1991-11-14 1993-05-28 Tosoh Corp Resin composition
JPH05331314A (en) * 1992-06-03 1993-12-14 Ntn Corp Heat-resistant resin sliding material
JPH0741780A (en) * 1993-07-30 1995-02-10 Ntn Corp Heat-resistant conductive sliding bearing
JP2002295626A (en) * 2001-03-28 2002-10-09 Kanebo Ltd Resinous nut
JP2003014141A (en) * 2001-06-28 2003-01-15 Ntn Corp Disc valve and resin composition for disc valve
JP2007119638A (en) * 2005-10-28 2007-05-17 Chubu Electric Power Co Inc Polyarylene sulfide-based molding material and pps-based molding
WO2018105578A1 (en) * 2016-12-07 2018-06-14 株式会社イノアック技術研究所 Cell porous body and method for producing same

Also Published As

Publication number Publication date
JPWO2022059299A1 (en) 2022-03-24
JP7321387B2 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
JP6825916B2 (en) Resin composition
CN112189034A (en) Resin composition
JP6982961B2 (en) Resin composition
JP6074105B2 (en) Resin composition
JP7092573B2 (en) Resin composition
CN109197805B (en) Fishing tackle component and force-releasing device of fishing tackle fishing reel using same
WO2022059299A1 (en) Resin composition
JP6742132B2 (en) Resin composition and method for producing the same
JP6495679B2 (en) Polyarylene sulfide resin composition
JP2021134243A (en) Resin composition
JP2016166300A (en) Polyarylene sulfide resin composition
JPH07228763A (en) Friction-and abrasion-resistant resin composition
JPH083040B2 (en) Polyamideimide resin molding composition
CA3117167A1 (en) Fluorinated copolymer compositions with improved impact resistance
JPH11279405A (en) Polyarylene sulfide resin composition
JPH1199546A (en) Manufacture of polyallylene sulfide molding
JP2019156987A (en) Resin composition
JP7156872B2 (en) resin composition
JP7373668B2 (en) Polyphenylene sulfide resin composition and vibration damping material containing the same
US20230407157A1 (en) Wear-Resistant Compositions Including Crosslinked Aromatic Polymers and Methods for Improving Wear Resistance Using the Same
JP7260317B2 (en) resin composition
JPS60258251A (en) Polyether ketone resin composition
JPH05295209A (en) Thermoplastic resin composition
US20220227995A1 (en) Polyamide-based resin composition for injection molding and sliding component formed therefrom
JP2023060933A (en) Polyarylene sulfide resin composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868986

Country of ref document: EP

Kind code of ref document: A1