JP7199609B1 - 異常診断方法、異常診断装置、異常診断プログラム、および、異常診断システム - Google Patents

異常診断方法、異常診断装置、異常診断プログラム、および、異常診断システム Download PDF

Info

Publication number
JP7199609B1
JP7199609B1 JP2022551748A JP2022551748A JP7199609B1 JP 7199609 B1 JP7199609 B1 JP 7199609B1 JP 2022551748 A JP2022551748 A JP 2022551748A JP 2022551748 A JP2022551748 A JP 2022551748A JP 7199609 B1 JP7199609 B1 JP 7199609B1
Authority
JP
Japan
Prior art keywords
data
parameter values
abnormality
operating state
learning model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022551748A
Other languages
English (en)
Other versions
JPWO2023209774A5 (ja
JPWO2023209774A1 (ja
Inventor
味沙 野月
伸介 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP7199609B1 publication Critical patent/JP7199609B1/ja
Publication of JPWO2023209774A1 publication Critical patent/JPWO2023209774A1/ja
Publication of JPWO2023209774A5 publication Critical patent/JPWO2023209774A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

診断対象の設備の異常の有無を診断する異常診断方法は、設備から単一または複数の評価項目の状態量を有するデータを取得するステップと、設備から取得するデータを設備の運転状態毎に分類するステップと、分類したデータ群毎にデータ数の十分性を評価するステップと、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、パラメータ値を運転状態に紐づけて保持するステップと、診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップと、取得したパラメータ値を用いて診断対象となるデータを診断する学習モデルを作成するステップと、学習モデルに基づいて異常を判定するための異常度を算出するステップと、異常度に基づき診断対象の異常の有無を判定するステップとを含む。

Description

本開示は異常診断方法、異常診断装置、および、異常診断プログラムに関する。
設備または機器の状態監視および異常診断は、一般的に、診断対象にから取得する単一または複数の評価項目の状態量を有するデータを用いて行われる。この評価項目の状態量を有するデータは、診断対象である設備または機器の各種運転データと、各種センサを用いて計測された、当該診断対象から発生する温度、振動その他の計測データとを含む。これらの運転データや計測データは、時間的な変化を連続的に観測して得られた時系列データである。
異常診断の一手法は、このように取得する時系列データのうち、正常な運転時に取得された時系列データ(正常データ)を学習データとして学習モデルを作成し、診断対象となるデータと学習モデルとに基づいて設備または機器の異常有無を判定する。このような異常診断において、メンテナンス後や運転モードの変化のように、異常由来ではなく時系列データが変化する場合に、メンテナンス前または運転モードの変化前に得られた学習データを用いて求めた学習モデルで当該設備または機器を診断すると、これらのような正常な状態変化を異常と誤判定する。したがって、このような正常な運転状態の変化がある場合に、誤判定なく設備または機器を診断する方法が求められている。
特開2017―102826号公報(特許文献1)は、「機械システムの状況変化に応じたより高い精度での異常診断を可能とする」技術を開示している([要約]の[課題]参照)。この技術によると、「診断対象データに係るパターン認識手法を用いた異常診断を行う際に、診断対象データと、学習情報作成部11が保持している抽出条件を決定するための抽出条件情報とに基づいて、学習情報に利用される学習データが診断対象データ毎に抽出された後、学習データに応じた学習情報が作成されて、異常診断が行われる」というものである([要約]の[解決手段]参照)。
特開2014―32657号公報(特許文献2)は、「高感度かつ高速な異常検知方法を備えた設備状態監視方法およびその装置」を開示している(段落0009参照)。当該方法によれば、「予め学習データをクラスタリングしてクラスタ中心とクラスタに属するデータを記憶しておき、新しい観測データに近いクラスタに属する学習データから新しい観測データに近いデータを選択し、この選択したデータから正常モデルを作成し異常測度を求め」る方法が開示されている([要約]参照)。
特開2015-181072号公報(特許文献3)は、「設備の出力する時系列信号に基づいて設備の状態を監視する方法において、時系列信号に基づいて一定期間毎に運転パターンラベルを付与し、一定期間毎の運転パターンラベルに基づいて学習データを選定し、この選定した学習データに基づき正常モデルを作成し、時系列信号と正常モデルに基づき異常測度を算出し、この算出した異常測度に基づき設備の状態が異常か正常かの識別を行う」技術を開示している([要約]参照)。さらに、状態の近い運転パターラベルの探索方法として、マクロ特徴量(平均、分散、最大値、最小値等)に基づく方法が記載されている。
特開2017―102826号公報 特開2014―32657号公報 特開2015-181072号公報
診断対象となる設備は、予め決められたいくつかの運転状態のみで動作するものもあれば、周辺機器や環境に応じてその都度最適な運転状態を決定し動作するものがあり、後者では、予め設備が取りうる運転状態の数やその状態を定義しておくのは困難である。特許文献1または特許文献2に開示された技術のように、診断対象となるデータを運転状態毎に分類するための条件(抽出条件、クラスタ)に基づいて決定した学習データから作成した学習モデルで診断を行うと、予め作成した分類のための条件には該当しない診断対象データが入力された場合に、適切に学習データを選択することができず異常の判定を誤る可能性がある。また、このような診断対象データに対して、適切に診断を行うためには、診断対象データと同じ運転状態の学習データを新たに収集する必要があり、データが収集されるまでの間、診断が実施できない問題が発生する。
このような問題に対し、特許文献3に開示された技術は、運転状態の近い運転パターラベルの探索方法としてマクロ特徴量を用い、マクロ特徴量が類似の運転状態データを学習データとして選択し、選択した学習データに対して個別に異常を判定する閾値を設定し、設備を診断するというものである。
この技術によれば、設備の状態が変化した場合にも、状態の類似した学習データを選択して学習モデルを作成し、診断を実施することができる。一方で、診断対象となるデータに対して、学習データの選択、学習モデルの作成、異常判定のための閾値決定の一連の処理がそれぞれ必要となり、これらの処理のための計算量が増えることになる。また、異常判定のための閾値は、学習データと診断対象データの類似性に応じて適切に値を設定する必要があるが、特許文献3には、マクロ特徴量を用いて決定した学習データにより作成した学習モデルで診断するための異常判定閾値をどのように決定するかに関する具体的な方法の記述がなく、異常判定のための閾値設定を誤ると異常判定を誤る可能性がある。
メンテナンス後や運転モードの変化のように、異常に起因しない設備の状態の変化に伴う時系列データの変化があった場合でも、当該設備の状態の変化に伴う時系列データの変化を異常と誤判定することなく、診断対象設備の異常の有無を診断する技術が必要とされている。また、これらの処理を行うために必要な計算量を低減する技術が必要とされている。
本開示は上述のような背景に鑑みてなされたものであって、メンテナンス後や運転モードの変化などによって異常由来ではなく時系列データが変化した場合でもこの変化を異常と誤判定せずに、本来検出すべき異常の判定精度を向上させる技術が開示される。さらに、設備の運転状態の変化が予め予測できない場合であっても、診断に必要となる学習データの収集期間を短縮し、誤判定のない診断を行う技術が開示される。また、これらの処理に必要な計算量を低減する技術が開示される。
本開示の一形態に従うと、診断対象の設備の異常の有無を診断する異常診断方法が提供される。この異常診断方法は、設備から単一または複数の評価項目の状態量を有するデータを取得するステップと、
設備から取得するデータを設備の運転状態毎に分類するステップと、
分類したデータ群毎にデータ数の十分性を評価するステップと、
データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、パラメータ値を運転状態に紐づけて保持するステップと、
診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップと、
取得したパラメータ値を用いて診断対象となるデータを診断する学習モデルを作成するステップと、
学習モデルに基づいて異常を判定するための異常度を算出するステップと、
異常度に基づき診断対象の異常の有無を判定するステップとを含む。
他の実施の形態に従うと、診断対象の設備の異常の有無を診断する異常診断装置が提供される。この異常診断装置は、設備から単一または複数の評価項目の状態量を有するデータを取得するデータ読取部と、
設備から取得するデータを設備の運転状態毎に分類するデータ分類部と、
分類したデータ群毎にデータ数の十分性を評価し、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、パラメータ値を運転状態に紐づけて保持するパラメータ算出・保持部と、
診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するパラメータ取得部と、
取得したパラメータ値を用いて診断対象となるデータを診断する学習モデルを作成する学習モデル作成部と、
学習モデルに基づいて異常を判定するための異常度を算出する異常度算出部と、
異常度に基づき診断対象の異常の有無を判定する異常判定部とを備える。
他の実施の形態に従うと、診断対象の設備の異常の有無を診断する処理を、コンピュータに実行させるための異常診断プログラムが提供される。この異常診断プログラムは、設備から単一または複数の評価項目の状態量を有するデータを取得するステップと、
設備から取得するデータを設備の運転状態毎に分類するステップと、
分類したデータ群毎にデータ数の十分性を評価するステップと、
データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、パラメータ値を運転状態に紐づけて保持するステップと、
診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップと、
取得したパラメータ値を用いて診断対象となるデータを診断する学習モデルを作成するステップと、
学習モデルに基づいて異常を判定するための異常度を算出するステップと、
異常度に基づき診断対象の異常の有無を判定するステップとを、コンピューターに実行させる。
さらに他の実施の形態に従うと、診断対象の設備の異常の有無を診断する異常診断システムが提供される。この異常診断システムは、
設備から単一または複数の評価項目の状態量を有するデータを取得するデータ読取部と、
設備から取得するデータを設備の運転状態毎に分類するデータ分類部と、
分類したデータ群毎にデータ数の十分性を評価し、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、パラメータ値を運転状態に紐づけて保持するパラメータ算出・保持部と、
診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するパラメータ取得部と、
取得したパラメータ値を用いて診断対象となるデータを診断する学習モデルを作成する学習モデル作成部と、
学習モデルに基づいて異常を判定するための異常度を算出する異常度算出部と、
異常度に基づき診断対象の異常の有無を判定する異常判定部とを備える。
本開示によれば、メンテナンスや運転モード変化などによる正常な運転状態の変化を誤判定せず、診断精度を向上させることができる。設備の運転状態の変化が予め予測できない場合であっても、診断に必要となる学習データを新たに収集する期間を短縮し、誤判定のない診断を行うことができる。また、これらの計算処理に必要な計算量を低減させることができる。
この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
異常診断装置100の機能的構成を示すブロック図である。 データ分類部104における1つ以上の評価項目の時系列データの変化有無を判定する処理に基づく運転状態の分類方法を例示する図である。 パラメータ算出・保持部105が実行する処理の一部を表わすフローチャートである。 パラメータ取得部106におけるパラメータ取得処理のために実行される処理の一部を表すフローチャートである。 異常診断装置100として作動するコンピュータシステム500のハードウェア構成の一例を示す図である。 実施の形態2に従う異常診断装置100を実現するコンピュータシステム500が実行する処理の一部を表わすフローチャートである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
実施の形態1.
図1を参照して、ある実施の形態に従う異常診断装置100の構成について説明する。図1は、本発明の異常診断方法を実現する異常診断装置100の機能的構成を示すブロック図である。異常診断装置100は、診断対象である設備または機器(以下、総称して「設備」と表わす場合もある)から取得される時系列データを解析することにより、当該設備の状態が正常であるか否かを判定する。また、異常診断装置100は、その判定結果を出力するように構成される。
診断対象となる設備または機器は、たとえば、発電機、FA(ファクトリオートメーション)機器、受配電機器、昇降機および鉄道用電気機器などの装置またはプラントである。プラントの例としては、発電プラントや水処理プラント、および石油化学製品や金属、食品・医薬品などの産業プラントなどであり、プラントの種類に応じて複数の設備や機器から構成される。以上のように診断対象となる設備または機器は、単一の場合もあれば、プラントのように複数の設備や機器から構成される場合もある。以下は、異常診断装置100が発電機の状態監視および異常診断に適用される場合の構成を例示する。
図1に示されるように、異常診断装置100は、データ読取部102と、データ表示部103と、データ分類部104と、パラメータ算出・保持部105と、パラメータ取得部106と、学習モデル作成部107と、異常度算出部108と、異常判定部109と、判定結果出力部110とを備える。異常診断装置100は、設備または機器10から取得するデータの入力を受け付ける。
[データ読取]
データ読取部102は、診断対象となる設備から取得される時系列データを読み取る。当該時系列データは、単一、または複数の評価項目の状態量の時間的な変化を連続的に観測して得られたものである。当該時系列データは当該設備から出力されるデータと、当該設備に設けられたセンサ(図示しない)から出力されるデータとのいずれであってもよい。発電機を例に説明すると、評価項目としては、発電機の出力、回転速度、電圧、電機子電流などの運転データに関するものと、発電機を構成する機器または部品などに取り付けられたセンサにより計測される温度および振動などの計測データに関するものがあげられる。また、評価項目は、外気温などの発電機が設置される環境に関するものや、発電機の運転状態に関連する設備の運転データよび計測データを含んでもよい。評価項目は、単一または複数から構成され、評価項目の状態量とは、各評価項目からデータとして時系列に取得される物理量を示す。なお、これらの評価項目は例示であって、項目数は限定されるものではない。また、これらの時系列データはタイムスタンプ情報を含んでいてもよい。複数の評価項目の時系列データを取得する場合は、評価項目間でデータ計測(サンプリング)の周期が一致していることが望ましい。当該周期が一致していない場合は、データ取得後に一部の評価項目のデータを間引いたり補完するなどの処理を施すことにより、1つの時刻(サンプリング)に対して、複数の評価項目の状態量が割り当てられた形式とする。データ読取部102は、読み取ったデータをデータ表示部103およびデータ分類部104に送信する。
[データ表示]
データ表示部103は、データ読取部102から受信したデータを時系列データとしてグラフ化して表示する。ある局面において、データ表示部103は、タイムスタンプで特定される時刻またはタイミングにしたがって各データを時系列に表示し得る。データ表示部103は、一例として、コンピュータシステムに内蔵されたモニター装置またはコンピュータシステムに接続された外部モニター装置として実現され得る。
[データ分類]
データ分類部104は、データ読取部102で受信したデータを運転状態毎に分類する。運転状態とは、診断対象の設備の運転状態を示す。設備の運転条件や制御の変化に伴って、診断対象から取得する時系列データの状態量は変化する。この変化の前後において運転状態が異なっていると定義し、変化前後のデータを分類する。すなわち、データ分類部104は、取得したデータを、類似の運転状態(状態量)毎に分類する。また、運転条件や制御の変化だけでなく、設備の停止やメンテナンスによっても設備の状態が変化し、取得する時系列データの状態量が変化する場合があり、これらも分類の対象に含む。分類する運転状態の数は、限定されるものではなく、診断対象設備の特性や、正常運転状態であることが既知の期間のデータの状態量の変化などに応じて決定する。なお、運転状態の分類は、取得するデータの評価項目数によらず、データが計測される時刻毎に(1サンプリング毎に)、1つの運転状態が割り当てられるように実施する。
データ分類部104は、クラスタリング処理、または1つ以上の評価項目のデータの変化有無を判定する処理に基づき、データ読取部102で受信したデータを運転状態毎に分類する。
クラスタリング処理は、k-meansのような非階層型のクラスタリング手法や、階層型クラスタリング手法であり得る。他の局面において、データ分類部104は、運転状態の分類処理において、分類ルールを学習し、学習した以降に新規にデータ読取部102から受信したデータに対して、当該分類ルールに適用し、分類される運転状態を決定してもよい。例えば、クラスタリング処理で決定した各クラスタに所属するデータから各クラスタの重心を算出し、各クラスタの重心と分類対象データの距離を求め判定指標とし、予め決定した閾値に基づいて、分類する運転状態を決定することができる。別の例としては、各クラスタに分類されたデータとその運転状態とを紐づけて学習データとして、サポートベクターマシンやランダムフォレスト、k近傍法などの機械学習、ニューラルネットワークなどの深層学習に適用し、分類器を作成し、これを用いて運転状態の分類を実施することができる。
次に、1つ以上の評価項目の時系列データの変化有無を判定する処理に基づく運転状態の分類方法を説明する。
データ分類部104は、任意の評価項目を選択し、予め設定する状態量の閾値を超えるか否かによって、データが分類される運転状態を決定することができる。閾値を跨ぐ場合に時系列データに変化有りと判定し、閾値を超える前後でデータの運転状態を分け、分類する。判定のための閾値の数や値は任意に決定することができる。
さらに、図2を参照して、別の例を説明する。図2は、データ分類部における1つ以上の評価項目の時系列データの変化有無を判定する処理に基づく運転状態の分類方法を例示する図である。データ分類部104は、選択した評価項目の時系列データを任意の時間幅で分割し、分割したデータ群ごとに平均、分散、標準偏差、最大、最小、尖度、歪度などの統計量を算出する。これらの統計量のうちの少なくとも一つ、または、これらの組み合わせを、予め決定した判定のための閾値を用いて評価し、閾値を跨ぐ場合に時系列データに変化があると判定し、分割した範囲のデータが分類される運転状態を決定する。図2に示すように、ある任意の評価項目の時系列データ(取得データ)を任意の時間幅で分割し、分割したデータ群からそれぞれ平均、分散を算出し、時系列順に並べる。平均と分散にそれぞれ閾値(m1~m2、v1~m2)を予め決定しておき、これらの閾値に基づき分割した時間範囲のデータの運転状態を決定する。図2では、これらの閾値を用い第1~3の3つの運転状態に分類する例を示す。平均がm1未満であり分散がv1以上v2未満の範囲内にある場合には第1運転状態であると分類がなされ、平均がm2以上であり分散がv2以上である場合には第2運転状態であると分類がなされ、平均がm1以上m2未満の範囲内であり分散がv1以上v2未満の範囲内である場合には第3運転状態であると分類がなされる。
なお、統計量を算出する評価項目は、一つ以上とし、複数の評価項目を用いて評価を行ってもよい。この方法により、状態量の閾値判定による分類では困難な、データのばらつきを考慮した運転状態の変化を分類することができる。
クラスタリング処理、または1つ以上の評価項目のデータの変化有無を判定する処理に基づきデータを分類する処理において、分類される運転状態の数や、判定基準として使用される各種閾値の値は任意に決定することができ、設定後に更新されてもよい。
なお、設備メンテナンス又は設備の運転制御条件の変更によって、対象データに変化があることが明らかな場合は、データ分類部104は、設備メンテナンス又は運転制御条件の変更などのタイミングで運転状態を分類し得る。
[パラメータ値の算出・保持]
図1を再び参照して、パラメータ算出・保持部105は、データ分類部104によって分類されたデータ群毎に学習モデルの作成に必要なパラメータの値を算出して、算出した値を保持する。ある実施の形態に従うと、学習モデルとは、異常判定を行うための解析出力値(異常度)を算出するための数式またはデータ処理である。パラメータとは、学習モデル(数式やデータ処理)を構成する定数部分を意味し、学習データ(学習に用いるデータ)に応じて変化する値である。
以降の説明では、学習モデルとしてマハラノビス・タグチ法(MT法)(の単位空間)を用いる場合を例に説明する。ここで、単位空間とは、診断の基準となる正常なデータ群のことを意味する。学習モデルをマハラノビス・タグチ法(MT法)(の単位空間)とする場合、学習モデル作成に必要なパラメータとして、単位空間を構成するデータの平均、標準偏差、相関行列の逆行列がある。
本開示における学習モデルは、MT法に限定されるものではなく、統計モデルを用いる方法、機械学習や深層学習の分野で用いられる公知の異常診断のためのモデル、データ解析手法にも適用することができる。
そこで、図3を参照して、パラメータの値の算出・保持処理について説明する。図3は、パラメータ算出・保持部105が実行する処理の一部を表わすフローチャートである。以下の処理は、周知の構成を有するCPUその他のプロセッサが当該処理を実現する命令を実行することにより実現される。他の局面において、これらの処理は、各処理を実現するように構成された回路素子によっても実現され得る。
ステップS310にて、パラメータ算出・保持部105は、データ分類部104によって分類されたデータの入力を受ける。
ステップS320にて、パラメータ算出・保持部105は、分類されたデータ群毎にデータ数の十分性評価を実行する。パラメータ算出・保持部105は、十分性の評価として、例えば過去の診断実績から誤判定なく診断可能なパラメータ値の算出および学習モデルの作成に必要なデータ数を予め決定し、そのデータ数に基づき、十分性の評価を行う。すなわち、本実施の形態における十分性の評価として、各運転状態に、分類されたデータ群のデータの数が、誤判定なく診断可能な数以上であるか否かが判断される。また、この方法以外にも、パラメータ算出・保持部105は、複数の評価項目間の相関係数や任意の評価項目の基本統計量(平均、分散、最大値、最小値、尖度、歪度)の変化量に基づいて十分性の評価を行うことができる。具体的には、パラメータ算出・保持部105は、まず、ある運転状態に分類されたデータ群を任意の時間範囲(データ数毎)に分割し、時系列順序が最も古い最小分割範囲のデータ群に対して上記の相関係数や基本統計量を算出する。次に、パラメータ算出・保持部105は、時系列順が2番目に古いデータ群と最も古いデータ群とを合わせたデータ群から上記の相関係数や基本統計量を算出する。パラメータ算出・保持部105は、さらに時系列順序が3番目に古いデータ群、2番目に古いデータ群、最も古いデータ群とを合わせたデータ群から上記の相関係数や基本統計量を算出する。このように、パラメータ算出・保持部105は、分割されたすべてのデータ群を用いた算出が完了するまで、時系列順序が新しいデータ群を段階的に追加していき、相関係数や基本統計量を求める。パラメータ算出・保持部105は、段階的に求めた相関係数や基本統計量の変化量を求め、変化量が予め定めた閾値より小さくなる場合の算出に用いたデータ数が、誤判定なく診断を実施するためのパラメータ算出に十分な数であると判断する。この方法により、学習のためのデータが追加されたとしても、パラメータ算出・保持部105は、それ以上に相関係数や基本統計量が変化しない最小のデータ数を決定することができ、変化量が予め定めた閾値より小さくなる場合は十分性評価がOKであると判断することができる。また、パラメータ算出・保持部105は、任意の時間範囲(データ数)に分割したデータ群それぞれに対して相関係数や基本統計量を算出しておき、これらのばらつきを評価し、ばらつきが閾値以下となる分割データ数を十分性評価においてOKと判断するデータ数として採用してもよい。なお、学習モデルを構成するパラメータが複数ある場合は、パラメータ算出・保持部105は、パラメータ毎にデータ数の十分性評価のための評価方法とその閾値を個別に上記から選択して設定してもよい。
ステップS330にて、パラメータ算出・保持部105は、データ数が十分であるか否かを判断する。パラメータ算出・保持部105は、データ数が十分であると判断すると、すなわち、データ数の十分性評価の結果がOKであれば(ステップS330にてYES)、制御をステップS340に切り換える。そうでない場合には、すなわち、当該十分性評価の結果がNGであれば(ステップS330にてNO)、パラメータ算出・保持部105は、制御をステップS350に切り換える。
ステップS340にて、パラメータ算出・保持部105は、ステップS310において入力を受けたデータ(分類後のデータ群)から当該パラメータの値(以降の説明では、パラメータ値とする)を算出する。
ステップS350にて、パラメータ算出・保持部105は、パラメータ値を算出しない。
ステップS360にて、パラメータ算出・保持部105は、算出したパラメータ値(ステップS340)を運転状態と紐づけて保持する。他方、パラメータ算出・保持部105は、パラメータ値を算出しない場合(ステップS350)は、パラメータ値がないことを運転状態と紐づけて保持する。
これらの処理は、学習モデルを構成するすべてのパラメータに対して同様の処理が実行される。また、パラメータの算出・保持部105は、データ分類部104にて分類した運転状態毎に同様の処理を行い、すべての運転状態に対して学習モデルを構成するパラメータ値を算出し、十分性評価結果に応じてその値またはその値がないことを保持する。
パラメータの算出・保持処理とは、異常診断を行うための学習モデルを作成する「学習」の工程の一部であると捉えることができる。
[パラメータ値の取得]
パラメータ取得部106は、診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得する。本実施の形態において、各運転状態に紐づけられたパラメータ値の保持状況とは、パラメータ算出・保持部105における処理の結果であり、運転状態毎に、学習モデルを構成するパラメータ値もしくはパラメータ値なしの情報が紐づけられたもの、およびその状態を意味する。
パラメータの取得とは、異常診断を行うための学習モデルを作成する「学習」の工程の一部であり、診断対象となるデータを誤判定なく診断するために適した学習モデルを作成するための構成であると捉えることができる。
次に、パラメータ取得部106におけるパラメータ値の取得処理について説明する。
まず、図1を参照して、診断対象となるデータがパラメータ取得部106に到達するまでの流れを説明する。診断対象となるデータは、データ読取部102にて読取がなされ、次にデータ分類部104にて、分類処理がなされる。この処理は、データ分類部の説明で述べた分類ルールに基づいて実施することができる。その後、パラメータ取得部106での処理がなされる。
ここで、図4を参照して、パラメータ取得部106におけるパラメータ値の取得処理を説明する。図4は、パラメータ取得部106におけるパラメータ取得処理のために実行される処理の一部を表すフローチャートである。以下の処理も、周知の構成を有するCPUその他のプロセッサが当該処理を実現する命令を実行することにより実現される。他の局面において、これらの処理は、各処理を実現するように構成された回路素子によっても実現され得る。
ステップS410にて、パラメータ取得部106は、パラメータ算出・保持部105で保持しているパラメータ値のうち、データ分類部104で決定した、診断対象となるデータの運転状態と同じ運転状態に紐づけられたパラメータの保持状況を参照する。
ステップS420にて、パラメータ取得部106は、学習モデルを構成する全てのパラメータ値が、参照した運転状態から取得可能であるか否かを判断する。すなわち、当該運転状態における全てのパラメータ値が値ありとしてパラメータ算出・保持部105に保持されているか否かを判断する。パラメータ取得部106は、全てのパラメータ値が取得可能であると(値ありとして保持されている)判断すると(ステップS420にてYES)、制御をステップS430に切り換える。そうでない場合には(ステップS420にてNO)、パラメータ取得部106は、制御をステップS440に切り換える。
ステップS430にて、パラメータ取得部106は、当該運転状態に保持されている全てのパラメータ値を取得する。
ステップS440にて、パラメータ取得部106は、学習モデルを構成する一部のパラメータ値が参照した運転状態から取得可能であるか否かを判断する。すなわち、当該運転状態における一部のパラメータが値ありとしてパラメータ算出・保持部105に保持されているか否かを判断する。パラメータ取得部106は、学習モデルを構成する一部のパラメータ値が取得可能であると(値ありとして保持されている)判断すると(ステップS440にてYES)、制御をステップS450に切り換える。そうでない場合には、(ステップS440にてNO)、パラメータ取得部106は、制御をステップS460に切り換える。
ステップS450にて、パラメータ取得部106は、取得可能な一部のパラメータ値のみを取得し、残りのパラメータ値を、他の運転状態で保持されている同一種のパラメータ値から取得する。
ステップS460にて、パラメータ取得部106は、全てのパラメータ値を取得しない。
次に、データ分類部104、パラメータ算出・保持部105およびパラメータ取得部106による処理の内容を、以下の具体例を用いて説明する。設備が正常に運転していることが予め確認されている既知の任意の期間のデータを学習データとして、データ分類、パラメータ算出・保持の処理に適用する。ここでは、データ分類部104にて処理の結果、設備の運転状態が、3つの運転状態A,B,Cのデータ群に分類されたと仮定して説明を行う。また、学習モデルとして、MT法による異常診断を実施するための単位空間情報(平均、標準偏差、相関行列の逆行列)を作成する場合を考える。
このような場合、パラメータ算出・保持部105は、運転状態A,B,Cのそれぞれについて、各パラメータを算出するためのデータ十分性評価を行う。
その結果、例えば運転状態Aでは、全てのパラメータの十分性評価の結果がOKであったとすると、運転状態Aでは、パラメータ算出・保持部105は、運転状態Aに分類された学習データを用いて平均a、標準偏差a、相関行列の逆行列aを算出し、算出したそれぞれの値を運転状態Aに紐づけて保持する。
一方、運転状態Bでは、相関行列の逆行列のみデータの十分性評価の結果がNGであったとすると、パラメータ算出・保持部105は、運転状態Bに分類された学習データからは、平均b、標準偏差bのみを算出し、算出したこれらの値を運転状態Bに紐づけて保持する。相関行列の逆行列は、値なしとして運転状態Bに紐づけて保持する。
また、運転状態Cでは、全てのパラメータのデータの十分性評価の結果がNGであったとすると、パラメータ算出・保持部105は、運転状態Cに分類された学習データからは、全てのパラメータを算出せず、パラメータの値がないことを示す情報を運転状態Cに紐づけて保持する。
次に、パラメータ取得部106の処理例について説明する。一例として、診断対象となるデータがデータ読取部102に入力され、データ分類部104によって分類された結果、当該データの運転状態が運転状態Aであると判定された場合を考える。パラメータ取得部106は、診断対象データと同じ運転状態である運転状態Aに保持されているパラメータ値(平均a、標準偏差a、相関行列の逆行列a)を取得する。
次に、診断対象データの運転状態が運転状態Bであると判定された場合を考える。パラメータ取得部106は、診断対象データと同じ運転状態である運転状態Bに保持されているパラメータ値を取得する。運転状態Bでは、平均bおよび標準偏差bのみが値ありとして保持されているため、パラメータ取得部106は、これらの値を取得する。他方、相関行列の逆行列の値は運転状態Bでは保持されておらず、パラメータ取得部106は、当該値を取得できない。そこで、パラメータ取得部106は、この未取得のパラメータ値を他の運転状態(例えば運転状態A)で保持されているパラメータ値から取得する。よって、運転状態Bでは、パラメータ取得部106は、平均b、標準偏差b、相関行列の逆行列aを取得する。
なお、パラメータ取得部106は、他の運転状態で保持されているパラメータを取得する場合に、どの運転状態を選ぶかは任意に決定することができるが、他の運転状態から取得するパラメータ値が運転状態間で類似していることが望ましい。例えば、相関行列の逆行列を他の運転状態から取得する場合には、パラメータ取得部106は、評価項目間の相関の類似性が高いと考えられる運転状態で保持されているパラメータ値を取得する。他の種類のパラメータについても同様の考え方が適用され得る。また、学習モデルやパラメータの種類によっては、他の運転状態のパラメータ値が流用できないように予め指定しておく運用が採用されてもよい。
このように、診断対象データと同じ運転状態で保持されているパラメータ値が一部保持されていなかったとしても、他の運転状態の学習データから算出・保持したパラメータ値を取得することで、診断対象データと同じ運転状態の学習データを新たに収集(してパラメータを算出)する期間を短縮することができる。パラメータ値が保持されていない(十分性評価がNGの)パラメータは、十分性評価がOKである他のパラメータに比べ誤判定のない診断に必要となる学習データ数が多く、収集に時間を要する。よって、このパラメータ値を取得するのためのデータ収集期間が不要となる分、診断開始までのデータ収集期間を短縮することができる。
最後に、診断対象データの運転状態が運転状態Cであると判定された場合を考える。パラメータ取得部106は、診断対象データと同じ運転状態Cに保持されているパラメータ値を取得するが、運転状態Cでは全てのパラメータの値がないため、パラメータ取得部106は、全てのパラメータの値を取得しない。
[学習モデルの作成]
学習モデル作成部107は、パラメータ取得部106で得られたパラメータ値を用いて学習モデルを作成する。前述の通り、学習モデルとしては、MT法その他の任意の異常診断手法が用いられ得る。MT法の場合は、取得したパラメータ値(平均、標準偏差、相関行列の逆行列)を用いて単位空間とする。なお、パラメータ取得部106にて診断対象となるデータの運転状態と同じ運転状態に紐づけられたパラメータ値を全て取得しない場合は、学習モデル作成部107は、学習モデルを作成せず、診断を一時保留する。診断を保留するとは、以降の異常度算出部108における異常度算出処理、および異常判定部109における異常判定処理を一時的に行わないことを意味する。診断に必要な学習データが十分に収集できていない状態(十分性評価がNGの場合)は、異常診断装置100は、診断を見送るようにすることで、誤判定を防止することができる。さらに、従来技術のように診断対象データ毎に学習モデル作成に必要な学習データを選択する処理が不要で、診断対象データの運転状態が決まれば自動的にパラメータ値および学習モデルが決まるため計算容量を低減することができる。
[異常度の算出]
異常度算出部108は、診断対象となるデータと、学習モデル作成部107によって作成された学習モデルとを用いて、設備の異常を判定するための異常度を算出する。ある局面に従う一例として、MT法の例では、異常度算出部108は、診断対象となるデータと作成した学習モデルである単位空間とから、異常度としてマハラノビス距離を算出する。
異常判定部109は、異常度算出部108によって算出された異常度と、異常の有無を判定するために予め定められた閾値とに基づいて、診断対象である設備または機器における異常の有無を判定する。
例えば、異常判定部109は、異常度に予め閾値を定めておき、異常度が閾値未満の場合は正常であると判定し、異常度が閾値以上の場合には異常であると判定する。パラメータ算出・保持部105において、データ数の十分性評価を実施する構成としたことで、パラメータ取得部106において、学習モデルを構成する少なくとも1つ以上のパラメータが取得可能で診断が実行される場合は、異常と判定するための異常度の閾値は、一律の値に決定することができる。具体的には、パラメータ算出・保持部105における十分性評価において、データ数が十分(パラメータ値が保持されている)ということは、ある一定の精度で診断を行う学習モデル作成に必要なパラメータ値が算出できていることを意味する。それ以上に学習データが増えたとしても、パラメータ値と診断精度は変化しない。従って、十分性評価でOKとなったデータ数から求めたパラメータ値を用いて作成された学習モデルを適用する診断において、正常か否かを判定する閾値は一定の値に定めることができる。すなわち、診断対象データ毎に異常判定のための閾値を決定する処理が不要となり、診断対象データは、その運転状態に対応した予め決められた異常判定閾値を用いて判定を行うことができる。
従来技術では、誤判定なく診断するためには、個々の診断対象データに対して、診断対象データと学習モデルに応じた異常判定のための閾値を個別に決定する処理が必要である。これに対し、本発明では、パラメータ算出・保持部105における学習データの十分性評価結果(パラメータ値が値ありとして保持されているか否か)や、パラメータ取得部106におけるパラメータ値の取得可否に応じて、学習モデルを作成するか否か、すなわち診断を実施するか否かが自動的に決定される。異常判定部109は、診断を実施する場合は、上述のように異常判定のための閾値を一つの値に決定することができるため、診断対象データ毎に異常判定のための閾値を決定する処理が不要となり、診断のための計算量を低減することができる。
[判定結果の出力]
判定結果出力部110は、異常度算出部108によって算出された異常度の時系列の変化と、異常判定部109における判定結果とを出力する。判定結果出力部110は、これらの判定結果を、異常診断装置100に接続されたモニター装置(図示しない)または通信回線(図示しない)を用いて外部の装置(たとえば、中央監視装置に設けられたサーバコンピュータ)に送信してもよい。
[ハードウェア構成]
図5を参照して、異常診断装置100のハードウェア構成について説明する。図5は、異常診断装置100として作動するコンピュータシステム500のハードウェア構成の一例を示す図である。
コンピュータシステム500は、CPU(Central Processing Unit)510と、ROM(Read Only Memory)520と、RAM(Random Access Memory)530と、ハードディスク装置(HDD:Hard Disk Drive)540と、通信インターフェイス(I/F)550と、入出力(I/O)インターフェイス560とを備える。入出力インターフェイス560は、入力部570および表示部580に接続され得る。
CPU510は、プログラムに含まれる各命令を実行する。CPU510がプログラムを実行すると、各命令に応じて、図1に示される機能を実現する処理が実行される。
ROM520は、予め準備されたプログラムまたはデータを永続的に(不揮発的に)保持している。
RAM530は、CPU510によるプログラムの実行中に利用されるデータを一時的に格納し、作業領域として利用される一時的なデータメモリとして機能する。
HDD540は、不揮発性の記憶装置であり、CPU510によって生成されたデータ、通信インターフェイス550を介して受信したデータ、あるいは、入出力インターフェイス560に対して入力されたデータを格納する。不揮発性の記憶装置は、HDD540に限られず、HDD540に代えて、あるいは、HDD540に加えて、フラッシュメモリなどの半導体記憶装置が採用され得る。
通信インターフェイス550は、コンピュータシステム500と通信可能に接続された他の装置と通信する。たとえば、コンピュータシステム500が診断対象の設備を含む外部機器と通信可能に接続されている場合、通信インターフェイス550は、データ読取部102として、当該外部機器から送信されたデータを読み取る(受信する)。
I/Oインターフェイス560は、外部機器からコンピュータシステム500に対する信号の入力を受け付け、また、外部機器に信号を出力する。外部機器は、例えば、中央管理装置その他のサーバコンピュータ、無線接続されているスマートフォン、タブレット端末等を含み得る。
入力部570は、コンピュータシステム500に対する命令または信号の入力を受け付ける。ある局面において、入力部570は、キーボード、マウス、タッチパネルその他の機器のようにコンピュータシステム500のユーザによる操作を受け付ける入力装置によって実現される。他の局面において、入力部570は、カメラや各種センサのように信号を出力する機器としても実現され得る。
表示部580は、I/Oインターフェイス560から出力される信号に基づく表示を実現する。表示部580は、例えば、モニター装置、インジケータ、ランプ等により実現される。ある局面において、表示部580は、データ表示部103および判定結果出力部110の一実施例に相当する。表示部580は、診断対象の設備または機器から取得された時系列データおよび異常判定部109による当該設備または機器における異常の有無の判定結果などを表示し得る。
コンピュータシステム500における処理は、各ハードウェアおよびCPU510により実行されるソフトウェアによって実現される。このようなソフトウェアは、HDD540に予め記憶されている場合がある。また、ソフトウェアは、CD-ROM(Compact Disc - Read Only Memory)その他の記憶媒体に格納されて、プログラム製品として流通している場合もある。あるいは、ソフトウェアは、いわゆるインターネットに接続されている情報提供事業者によってダウンロード可能なプログラム製品として提供される場合もある。このようなソフトウェアは、光ディスク駆動装置(図示しない)その他の読取装置によりその記憶媒体から読み取られて、あるいは、通信インターフェイス550を介してダウンロードされた後、HDD540に一旦格納される。そのソフトウェアは、CPU510によってHDD540から読み出され、RAM530に実行可能なプログラムの形式で格納される。CPU510は、そのプログラムを実行する。
図5に示されるコンピュータシステム500を構成する各構成要素は、一般的なものである。したがって、本発明の本質的な部分は、ROM520、RAM530、HDD540その他の記憶媒体に格納されたソフトウェア、あるいはネットワークを介してダウンロード可能なソフトウェアであるともいえる。なお、コンピュータシステム500の各ハードウェアの動作は周知であるので、詳細な説明は繰り返さない。
なお、記録媒体としては、CD-ROM、FD(Flexible Disk)、ハードディスク装置540に限られず、磁気テープ、カセットテープ、光ディスク(MO(Magnetic Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc))、IC(Integrated Circuit)カード(メモリカードを含む)、光カード、マスクROM、EPROM(Electronically Programmable Read-Only Memory)、EEPROM(Electronically Erasable Programmable Read-Only Memory)、フラッシュROM、SSD(Secure Socket Disc)などの半導体メモリ等の固定的にプログラムを担持する媒体でもよい。
ここでいうプログラムとは、CPU510により直接実行可能なプログラムだけでなく、ソースプログラム形式のプログラム、圧縮処理されたプログラム、暗号化されたプログラム等を含む。
[実施の形態1の効果]
発明者は、学習モデルを構成するパラメータによって、誤判定なく診断するために必要となる学習データ数が異なることを見出した。さらに、学習モデルを構成する複数のパラメータ値の一部を、運転状態が異なるデータ群から求めた同一のパラメータのパラメータ値を用いて作成した学習モデルであっても、誤判定なく診断可能であること、すなわち、異なる運転状態間で一部のパラメータ値を流用し学習モデルを作成することができることを見い出した。また、学習データ数が相対的に多く必要な(データ収集に時間を要する)パラメータは、すでにパラメータ値が算出・保持されている他の運転状態の学習データから求めたパラメータ値を流用できるため、当該運転状態のパラメータ値の算出に必要となるデータの収集を省略できることがわかった。
そこで、実施の形態1に記載のように、パラメータ毎に、学習データの十分性評価結果に応じてパラメータ値の算出・保持処理を実施し、診断対象データと同じ運転状態のパラメータ値の一部が保持されていない(学習データ数が十分でない)場合は他の運転状態の同一パラメータのパラメータ値を流用して学習モデルを作成し診断する構成により、正常な運転状態変化があっても、最小の学習データ数で、すなわち従来よりも短い学習データ収集期間で誤判定のない診断が可能となる。また、学習データの十分性評価がOKであるパラメータ値を用いて学習モデルを作成するため、異常判定のための閾値は一つの値に決めることができ、診断対象データ毎に異常判定のための閾値を決定する計算処理を行う必要がなく計算量を削減できる。
さらに、十分性評価の結果、学習モデルを構成するすべてのパラメータ値を算出しない(誤判定なく診断可能な学習モデルを作成できない)場合には学習モデルを作成せず、診断を見送る構成としたことで、誤判定を低減させることができる。
実施の形態2.
以下、実施の形態2について説明する。実施の形態1に係る異常診断装置100は、予め設定された任意の期間の学習データを用いて、データ分類、パラメータ算出・保持、パラメータ取得、学習モデル作成、異常度算出、判定の一連の診断の処理を実施するのに対して、実施の形態2に従う異常診断装置は、診断を長期間実施することで、追加の学習データが取得できるようになった場合に各運転状態で保持しているパラメータ値を更新し、診断を行う点で、実施の形態1に従う異常診断装置100と異なる。
なお、実施の形態2に従う異常診断装置の主たる機能構成およびハードウェア構成は、実施の形態1に従う異常診断装置100の主たる機能構成およびハードウェア構成と同じである。したがって、これらの説明は繰り返さない。また、実施の形態2の説明は、実施の形態1に従う異常診断装置100の構成を適宜参照して行なう。
実施の形態2に従うデータ分類部104は、追加の学習データが入手できるようになった時点において、追加の学習データを運転状態毎に分類する。分類の方法は実施の形態1と同様に実施することができる。
パラメータ算出・保持部105は、分類後のデータ群を用いて、分類後のデータの十分性評価を実施する。このとき、パラメータ算出・保持部105は、追加分の学習データのみで十分性評価を実施ししてもよく、既にパラメータ算出・保持に用いた学習データと追加の学習データとを合わせたデータ群、またはこのデータ群から一部を選択したデータ群に対して十分性評価を実施してもよい。
パラメータ算出・保持部105は、各パラメータのデータ十分性評価結果に基づいて、保持するパラメータ値を算出し(もしくは「値なし」と設定し)、これらの値を、現状の学習モデル作成に用いるために各運転状態で保持しているパラメータ値に上書きする。なお、パラメータ値を算出するために用いられるデータの数は、十分性評価に使用されるデータの数と同様とされ得る。
また、パラメータ算出・保持部105は、追加の学習データとして、新たに設備から取得されるデータや、異常判定部109において正常であると判定されたデータを用いることができる。
そこで、図6を参照して、実施の形態2に従う異常診断装置100の制御構造について説明する。図6は、実施の形態2に従う異常診断装置100を実現するコンピュータシステム500のCPU510が実行する処理の一部を表わすフローチャートである。
ステップS610にて、CPU510は、診断対象である設備または機器から受信したデータを、運転状態毎に分類する。これはデータ分類部104で行われる処理である。その後、パラメータ算出・保持用の学習データのフローは、S620(パラメータ算出・保持部105)へ進み、診断対象となるデータのフローは、S630(パラメータ取得部106)へと進む。
ステップS620にて、CPU510は、パラメータ算出・保持部105として、学習データからパラメータ値を算出し、その値を保持する。実施の形態1と同様に、CPU510は、全ての運転状態の学習データに対して、各パラメータの十分性評価を実施し、評価結果に応じて、各運転状態に紐づけてパラメータ値を算出し保持する。またはパラメータ値がないことを保持する。
ステップS630にて、CPU510は、パラメータ取得部106として、診断対象データの運転状態と同じ運転状態に紐づけられたパラメータ値を取得する。実施の形態1と同様に、一部のパラメータのみが保持されている場合は、CPU510は、残りのパラメータを他の運転状態の同一種のパラメータ値から取得する。また全てのパラメータ値が保持されていない場合は、すべてのパラメータ値を取得しない。
ステップS640にて、CPU510は、学習モデル作成部107として、取得した各パラメータ値を用いて学習モデルを作成する。CPU510は、全てのパラメータ値を取得しない場合は学習モデルを作成せずに、当該診断対象データの診断を一時保留する。
ステップS650にて、CPU510は、異常度算出部108として、作成した学習モデルと、診断対象データとを用いて、当該設備または機器の異常度を算出する。
ステップS660にて、CPU510は、異常判定部109として、算出した異常度と、異常判定のために予め設定されている閾値とを比較して、設備または機器の状態を診断する異常判定を実行する。
ステップS670にて、ステップS660の異常判定結果が正常である場合には(ステップS670にてYES)、CPU510は制御をステップS680に切り換える。ステップS660の異常判定結果が異常である場合には(ステップS670にてNO)、CPU510は、制御をステップS690に切り換える。
ステップS680にて、CPU510は、正常であると判断された診断対象データを学習データとして使用する。その後、制御はステップS620に戻される。すなわち、学習データとなった当該データは、パラメータ算出・保持部105における十分性評価やパラメータ算出・保持処理の対象となる。
ステップS690にて、CPU510は、診断結果が異常であると判断された診断対象データを破棄し、学習データの対象から除外する。
[実施の形態2の効果]
以上のようにして、実施の形態2に従う異常診断装置100は、定期的に設備の最新のデータを含むデータ群から、パラメータの最新値を算出し、保持する値を更新するので、最新の設備状態を反映した診断が可能となる。
また、実施の形態1で例示された、学習データの十分性評価の結果がNGとなり、学習モデルを構成する全てのパラメータ値を算出または取得できず診断を一時保留する場合において、実施の形態2に従う異常診断装置100は、上記の機能を用いて、追加の学習データが得られた際に十分性評価を実施し、評価結果がOKとなった場合には、全てのパラメータ値もしくは一部のパラメータ値を算出および保持できるようになる。そして、診断対象データと同じの運転状態に紐づけられたパラメータ値を取得し、誤判定なく診断可能な学習モデルを作成することができ、診断精度が確保できるようになった時点で、保留されていた診断を再開することができる。このように、設備の診断を長期にわたって実施することで学習用のデータが充実し、様々な運転状態の診断対象データに対して誤判定のない診断が実施できるようになる。また、実施の形態1と同様に、相対的に学習データ数が少ないパラメータ値が1つ以上算出できた時点で診断を再開することができるため、診断精度を保ちながら学習データの収集期間を最大限に短くすることができる。
実施の形態3.
次に、実施の形態3に従う異常診断について説明する。なお、実施の形態3に従う異常診断装置のハードウェア構成は、実施の形態1または2に従う異常診断装置100が備えるハードウェア構成と同じである。また、実施の形態3に従う異常診断装置に固有な機能および制御構造以外の機能および制御構造は、実施の形態1または2に従う異常診断装置100の機能および制御構造と同じである。したがって、同じハードウェア構成、機能および制御構造の説明は繰り返さない。以下では、実施の形態1または2に従う異常診断装置100のハードウェア構成、機能および制御構造を用いて、実施の形態3に従う異常診断装置100を説明する。
実施の形態1および2に従う異常診断装置100は、診断対象データが分類される運転状態は、学習データの運転状態の分類において予め決定したいずれかの運転状態に該当する場合に異常診断を実施する。他の局面において、データ分類部104にて、診断対象データの運転状態を決定する際に、当該診断対象データの運転状態が、学習データの運転状態の分類において予め決定した運転状態のいずれにも該当しない場合があり得る。実施の形態3に従う異常診断装置は、このような場合でも異常診断を行う点で、実施の形態1または2に従う異常診断装置100と異なる。
まず、診断対象データの運転状態が、学習データの運転状態の分類のいずれかに該当するか否かは、実施の形態1で示されたデータ分類部104における各分類手法およびその判定閾値に基づき決定される。例として、クラスタリング処理によって決定した分類ルールを用いて運転状態の分類を行う場合を説明する。データ分類部104は、クラスタリング処理で決定した各クラスタに所属するデータから各クラスタの重心を算出し、各クラスタの重心と分類対象データの距離を求める。データ分類部104は、この各クラスタ重心と分類対象データの距離と、予め定めた各クラスタに分類するか否かを判定するのための閾値とを比較する際に、各クラスタの重心と分類対象データとの距離が、予め定めた判定閾値以下となるクラスタが一つも存在しない場合に、診断対象データの運転状態は、学習データの運転状態の分類において予め決定した運転状態のいずれにも該当しないと判断する。また、1つ以上の評価項目の時系列データの変化の有無を判定する処理に基づく運転状態の分類方法においても同様に、各運転状態に分類するための条件(評価項目またはその統計量および判定のための閾値からなる)のいずれにも該当しない場合は、データ分類部104は、診断対象データの運転状態は、学習データの運転状態の分類において予め決定した運転状態のいずれにも該当しないと判断する。
実施の形態3に従う異常診断処理方法は、診断対象である設備または機器の運転特性に応じて以下の2つから選択され得る。第1の方法として、診断対象データの運転状態が学習データの運転状態分類のいずれにも該当しない場合には、実施の形態3に従う異常診断装置100は、以降の処理を実施せず、当該診断対象データを異常と判定する。この第1の方法は、診断対象である設備または機器が予め決められたいくつかの運転状態のみで動作するものである場合に有効である。
第2の方法として、実施の形態3に従う異常診断装置100は、診断対象データの運転状態が、学習データの運転状態の分類において予め決定した運転状態のいずれにも該当しない場合も、当該診断対象データの運転状態を一連の異常診断処理を行う対象の運転状態として追加する。すなわち、当該診断対象データおよび当該診断対象データと同じ運転状態と判定されるデータを学習データとして用い、パラメータ算出・保持部105にて十分性評価とパラメータ値の算出、保持処理を実行する。また、異常診断装置100は、当該診断対象データと同じ運転状態と判定されるデータを診断対象データとして、パラメータ取得部106におけるパラメータ値の取得処理、学習モデル作成部107における学習モデル作成処理、異常度算出部108における異常度算出処理、異常判定部109における異常判定処理を実行する。この第2の方法は、診断対象となる設備が、周辺機器や環境に応じてその都度最適な運転状態を決定し動作するために、予め取りうる運転状態の数やその状態を予測できない場合に有効である。
第2の方法について、データ分類部104において、診断対象データの運転状態が、学習データの運転状態の分類において予め決定した運転状態のいずれにも該当しない場合、すなわちパラメータ算出・保持部105における処理の対象となっている運転状態のいずれにも該当しない場合は、当該診断対象データは、学習データとして、パラメータ算出・保持部105に入力される。パラメータ算出・保持部105では、当該診断対象データが所属する運転状態を新たに追加して学習する運転状態として、この運転状態に保持するパラメータ値の算出・保持を行う。
次に、パラメータ算出・保持部105では、入力されたデータに対して実施の形態1と同様の処理がなされる。具体的には、パラメータ算出・保持部105にて、学習モデルを構成する複数のパラメータに対して、データ数の十分性評価を実施し、十分性評価がOKである場合には当該パラメータのパラメータ値を算出して、新たに学習する運転状態と紐づけて保持する。十分性評価がNGである場合には、パラメータ算出・保持部105は、パラメータ値は値なしとして保持する。次に、パラメータ取得部106では、新たに学習した運転状態に紐づけられたパラメータ値を取得する。実施の形態1と同様に、学習モデルを構成する複数のパラメータのうち、すべてが取得可能である場合には、すべてのパラメータ値を取得する。また、一部のパラメータ値が取得可能である場合には、パラメータ取得部106は、取得可能な一部のパラメータ値を取得し、残りのパラメータ値を、異なる運転状態で保持されている同一種のパラメータ値から取得する。また、パラメータ取得部106は、すべてのパラメータ値が値なしの場合はすべてのパラメータ値を取得しない。このように値ありとしてパラメータ値が取得できる場合には、学習モデル作成部107にて学習モデルを作成し、異常度算出部108および異常判定部109においてそれぞれの処理を実行し、異常有無を判定する。すべてのパラメータ値が取得できない場合は、学習モデル作成部107は、学習モデルを作成せず、異常診断装置100は、診断を一時保留する。
ここまでの処理について、具体的な運用の流れを示す。パラメータ算出・保持部105は、新たに追加された運転状態においてパラメータ算出に必要なデータを、新規に収集することになる。そのため、学習データ収集の初期の段階では、学習モデルを構成するすべてのパラメータ値に対する十分性評価がNGとなり、パラメータ算出・保持部105がパラメータ値を算出しないため、学習モデル作成部107は、学習モデルを作成しない。この処理により、パラメータ算出・保持部105に入力されたデータ数が誤判定なく診断可能なパラメータ算出に必要なデータ数に満たない間は、異常診断装置100は、診断を一時保留することができ、誤判定を回避することができる。
さらに時間が経過すると、入力される学習データ数が増えることで、パラメータ値の算出に必要なデータ数が最も少ないパラメータの十分性評価がOKとなり、このパラメータ値を算出する。するとこの段階で、パラメータ取得部106および学習モデル作成部107は、残りのパラメータ値を、異なる運転状態で算出・保持している同一種のパラメータ値から取得して学習モデルを作成することができるので、異常診断装置100は診断を再開できるようになる。異なる運転状態から流用するパラメータは、誤判定なく診断するのに必要なデータ数が他のパラメータに比べて多く、データ収集に時間を要するが、本発明の構成とすることにより、従来このデータ収集に要していた期間を短縮することができる分、異常診断装置100は、短いデータ収集期間で誤判定のない診断を実施することが可能となる。
以上のようにして、上記で開示された異常診断装置100は、診断対象となる設備が、周辺機器や環境に応じてその都度最適な運転状態を決定し動作するために、予め取り得る運転状態の数やその状態を予測できない場合でも、最短のデータ収集期間で誤判定のない学習モデルを作成し異常診断を行うことができる。
さらに、異常診断装置100は、パラメータ算出・保持部105において、データ数の十分性評価を実施する構成としたことで、診断対象データ毎に異常判定するための閾値を算出する必要がなくなる。したがって、異常診断装置100による演算量が削減されるので、計算リソースの増大が抑制され得る。
上記で開示された技術的特徴の一部は、以下のように要約され得る。
[構成1]ある実施の形態に従うと、コンピュータ(たとえば、コンピュータシステム500)で実行される異常診断方法が提供される。この異常診断方法は、CPU510が、データ読取部102として、通信インターフェイス550を介して、診断対象から単一または複数の評価項目の状態量を有するデータを取得するステップと、CPU510が、データ分類部104として、単一または複数の評価項目の状態量を有するデータを、診断対象である設備または機器の運転状態毎に分類するステップと、CPU510が、パラメータ算出・保持部105として、分類した各データ群のデータ数の十分性を評価するステップと、CPU510が、パラメータ算出・保持部105として、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し(導出し)、このパラメータ値を運転状態に紐づけて保持するステップと、CPU510が、パラメータ取得部106として、診断対象データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値をパラメータ毎に重複のないように取得するステップと、CPU510が、学習モデル作成部107として、取得したパラメータ値を用いて学習モデルを作成するステップと、CPU510が、異常度算出部108として、学習モデルに基づき異常を判定するための異常度を算出するステップと、CPU510が、異常判定部109として、算出された異常度に基づき、診断対象の異常の有無を判定するステップとを含む。
上記の構成によれば、診断対象となるデータの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値がパラメータ毎に重複のないように取得される。学習モデルは、取得されたパラメータ値を用いて作成される。作成された学習モデルに基づき異常を判定するための異常度が算出されて、当該算出された異常度に基づき、診断対象の異常の有無が判定される。これにより、メンテナンスや運転モード変化などによる正常な運転状態の変化を異常と誤判定せず、診断精度を向上させることができる。さらに、設備の運転状態の変化が予め予測できない場合であっても、診断に必要となる学習データを新たに収集する期間を短縮することができる。また、これらの計算処理に必要な計算量を低減させることができる。
[構成2]ある局面に従う異常診断方法は、上記の構成に加えて、単一または複数の評価項目の状態量を有するデータを、設備の運転状態毎に分類するステップは、クラスタリング処理、または1つ以上の評価項目のデータの変化の有無を判定する処理に基づき実施するステップを含む。
[構成3]ある局面に従う異常診断方法は、上記の構成に加えて、データの変化の有無を判定するステップは、データの任意の時間範囲から求めた平均、分散、標準偏差、最大、最小、尖度、歪度の少なくとも一つを判定指標として、変化の有無を判定するステップを含む。
[構成4]ある局面に従う異常診断方法は、上記の構成に加えて、データ数の十分性を評価するステップは、過去の診断実績から誤判定なく診断可能なデータ数を予め決定し、このデータ数に基づき評価する方法、または、各データ群の任意の時間範囲から求めた任意の複数の評価項目間の相関係数や任意の評価項目の基本統計量の変化量に基づき評価する方法、の少なくとも一つによって実施するステップを含む。
[構成5]ある局面に従う異常診断方法は、上記の構成に加えて、診断対象データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップは、診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する全てのパラメータ値が保持されていることに基づいて、全てのパラメータの値を取得するステップと、診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する一部のパラメータの値のみが保持されていることに基づいて、一部のパラメータ値のみを取得し、残りのパラメータ値を他の運転状態で保持されている同一種のパラメータ値から取得するステップとを含む。
[構成6]ある局面に従う異常診断方法は、上記の構成に加えて、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、パラメータ値を運転状態に紐づけて保持するステップは、定期的に、設備から取得する最新のデータを含むデータ群から、パラメータの最新値を算出し、保持するパラメータ値を更新するステップを含む。定期的とは、予め設定された時間間隔であり、たとえば、一日のうちの予め指定された時間、毎週特定の時間、各月の一定の日時等である。
[構成7]ある局面に従う異常診断方法は、上記の構成に加えて、学習モデルは、マハラノビス・タグチ法の単位空間である。複数のパラメータ値は、単位空間を構成するデータの平均、標準偏差、相関行列の逆行列である。
[構成8]ある局面に従う異常診断方法は、上記の構成に加えて、CPU510が、判定結果出力部110として、診断対象の判定結果を出力するステップをさらに含む。出力先は、モニター装置その他の表示部580、あるいは、通信インターフェイスに接続されて遠隔に配置されているサーバコンピュータその他の情報管理装置などである。
[構成9]他の実施の形態に従うと、診断対象の異常の有無を診断する異常診断装置100(またはコンピュータシステム500)が提供される。この異常診断装置100は、プログラムを格納したメモリ(たとえば、EOM520、RAM530、HDD540)と、当該メモリに結合されてプログラムを実行するプロセッサ(たとえば、CPU510)とを備える。このプログラムはプロセッサに、診断対象からら単一または複数の評価項目の状態量を有するデータを取得するステップと、単一または複数の評価項目の状態量を有するデータを、診断対象の運転状態毎に分類するステップと、分類した各データ群のデータ数の十分性を評価するステップと、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し(導出し)、このパラメータ値を運転状態に紐づけて保持するステップと、診断対象データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値をパラメータ毎に重複のないように取得するステップと、取得したパラメータ値を用いて学習モデルを作成するステップと、学習モデルに基づき異常を判定するための異常度を算出するステップと、異常度に基づき、診断対象の異常の有無を判定するステップとを実行させる。
[構成10]ある局面に従う異常診断装置は、上記の構成に加えて、プログラムはプロセッサに、診断対象の判定結果を出力するステップをさらに実行させる。
[構成11]さらに他の実施の形態に従うと、診断対象の異常の有無を診断する異常診断プログラムが提供される。この異常診断プログラムは、プロセッサ(たとえば、CPU510)に、診断対象から単一または複数の評価項目の状態量を有するデータを取得するステップと、単一または複数の評価項目の状態量を有するデータを、診断対象の運転状態毎に分類するステップと、分類した各データ群のデータ数の十分性を評価するステップと、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し(導出し)、このパラメータ値を運転状態に紐づけて保持するステップと、診断対象データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値をパラメータ毎に重複のないように取得するステップと、取得したパラメータ値を用いて学習モデルを作成するステップと、学習モデルに基づき異常を判定するための異常度を算出するステップと、異常度に基づき、診断対象の異常の有無を判定するステップとを実行させる。
[構成12]ある局面に従う異常診断プログラムは、上記の構成に加えて、プロセッサに、診断対象の判定結果を出力するステップをさらに実行させる。
[構成13]さらに他の実施の形態に従うと、診断対象の異常の有無を診断する異常診断システムが提供される。この異常診断システムは、プロセッサ(たとえば、CPU510)に、診断対象から単一または複数の評価項目の状態量を有するデータを取得するステップと、単一または複数の評価項目の状態量を有するデータを、診断対象の運転状態毎に分類するステップと、分類した各データ群のデータ数の十分性を評価するステップと、データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し(導出し)、このパラメータ値を運転状態に紐づけて保持するステップと、診断対象データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値をパラメータ毎に重複のないように取得するステップと、取得したパラメータ値を用いて学習モデルを作成するステップと、学習モデルに基づき異常を判定するための異常度を算出するステップと、異常度に基づき、診断対象の異常の有無を判定するステップとを実行させる。
[構成14]ある局面に従う異常診断システムは、上記の構成に加えて、プロセッサに、診断対象の判定結果を出力するステップをさらに実行させる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 設備または機器、100 異常診断装置、102 データ読取部、103 データ表示部、104 データ分類部、105 パラメータ算出・保持部、106 パラメータ取得部、107 学習モデル作成部、108 異常度算出部、109 異常判定部、110 判定結果出力部、500 コンピュータシステム、510 CPU、520 ROM、530 RAM、540 ハードデイスク装置、550 通信インターフェイス、560 入出力インターフェイス、570 入力部、580 表示部。

Claims (9)

  1. 診断対象の設備の異常の有無を診断する異常診断方法であって、
    前記設備から単一または複数の評価項目の状態量を有するデータを取得するステップと、
    前記設備から取得する前記データを前記設備の運転状態毎に分類するステップと、
    分類したデータ群毎にデータ数の十分性を評価するステップと、
    前記データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、前記パラメータ値を前記運転状態に紐づけて保持するステップと、
    診断対象となる前記データの運転状態と、各運転状態に紐づけられた前記パラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップと、
    取得したパラメータ値を用いて前記診断対象となるデータを診断する学習モデルを作成するステップと、
    前記学習モデルに基づいて異常を判定するための異常度を算出するステップと、
    前記異常度に基づき診断対象の異常の有無を判定するステップとを含み、
    診断対象となる前記データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップは、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する全てのパラメータ値が保持されていることに基づいて、前記全てのパラメータの値を取得するステップと、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する一部のパラメータの値のみが保持されていることに基づいて、前記一部のパラメータ値のみを取得し、残りのパラメータ値を他の運転状態で保持されている同一種のパラメータ値から取得するステップとを含む、異常診断方法。
  2. 前記データを前記設備の運転状態毎に分類するステップは、
    クラスタリング処理、または1つ以上の評価項目の前記データの変化の有無を判定する処理に基づき実施するステップを含む、請求項1に記載の異常診断方法。
  3. 前記データの変化の有無を判定するステップは、
    前記データの任意の時間範囲から求めた平均、分散、標準偏差、最大、最小、尖度、歪度の少なくとも一つを判定指標として、前記変化の有無を判定するステップを含む、請求項2に記載の異常診断方法。
  4. 前記データ数の十分性を評価するステップは、
    過去の診断実績から誤判定なく診断可能なデータ数を予め決定し、前記データ数に基づき評価する方法、または、
    各データ群の任意の時間範囲から求めた任意の複数の評価項目間の相関係数や任意の評価項目の基本統計量の変化量に基づき評価する方法、の少なくとも一つによって実施するステップを含む、請求項1~3のいずれかに記載の異常診断方法。
  5. 前記データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、前記パラメータ値を前記運転状態に紐づけて保持するステップは、
    定期的に、前記設備から取得する最新のデータを含むデータ群から、パラメータの最新値を算出し、保持するパラメータ値を更新するステップを含む、請求項1~3のいずれかに記載の異常診断方法。
  6. 前記学習モデルは、マハラノビス・タグチ法の単位空間であり、前記複数のパラメータ値は、単位空間を構成するデータの平均、標準偏差、相関行列の逆行列である、請求項1~3のいずれかに記載の異常診断方法。
  7. 診断対象の設備の異常の有無を診断する異常診断装置であって、
    前記設備から単一または複数の評価項目の状態量を有するデータを取得するデータ読取部と、
    前記設備から取得する前記データを前記設備の運転状態毎に分類するデータ分類部と、
    分類したデータ群毎にデータ数の十分性を評価し、前記データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、前記パラメータ値を前記運転状態に紐づけて保持するパラメータ算出・保持部と、
    診断対象となる前記データの運転状態と、各運転状態に紐づけられた前記パラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するパラメータ取得部と、
    取得したパラメータ値を用いて前記診断対象となるデータを診断する学習モデルを作成する学習モデル作成部と、
    前記学習モデルに基づいて異常を判定するための異常度を算出する異常度算出部と、
    前記異常度に基づき診断対象の異常の有無を判定する異常判定部とを備え
    前記パラメータ取得部は、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する全てのパラメータ値が保持されていることに基づいて、前記全てのパラメータの値を取得し、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する一部のパラメータの値のみが保持されていることに基づいて、前記一部のパラメータ値のみを取得し、残りのパラメータ値を他の運転状態で保持されている同一種のパラメータ値から取得する、異常診断装置。
  8. 診断対象の設備の異常の有無を診断する処理を、コンピュータに実行させるための異常診断プログラムであって、
    前記設備から単一または複数の評価項目の状態量を有するデータを取得するステップと、
    前記設備から取得する前記データを前記設備の運転状態毎に分類するステップと、
    分類したデータ群毎にデータ数の十分性を評価するステップと、
    前記データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、前記パラメータ値を前記運転状態に紐づけて保持するステップと、
    診断対象となる前記データの運転状態と、各運転状態に紐づけられた前記パラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップと、
    取得したパラメータ値を用いて前記診断対象となるデータを診断する学習モデルを作成するステップと、
    前記学習モデルに基づいて異常を判定するための異常度を算出するステップと、
    前記異常度に基づき診断対象の異常の有無を判定するステップとを、
    前記コンピュータに実行させ
    診断対象となる前記データの運転状態と、各運転状態に紐づけられたパラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するステップは、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する全てのパラメータ値が保持されていることに基づいて、前記全てのパラメータの値を取得するステップと、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する一部のパラメータの値のみが保持されていることに基づいて、前記一部のパラメータ値のみを取得し、残りのパラメータ値を他の運転状態で保持されている同一種のパラメータ値から取得するステップとを含む、異常診断プログラム。
  9. 診断対象の設備の異常の有無を診断する異常診断システムであって、
    前記設備から単一または複数の評価項目の状態量を有するデータを取得するデータ読取部と、
    前記設備から取得する前記データを前記設備の運転状態毎に分類するデータ分類部と、
    分類したデータ群毎にデータ数の十分性を評価し、前記データ数の十分性に応じて、学習モデルを構成する複数のパラメータ値を算出し、前記パラメータ値を前記運転状態に紐づけて保持するパラメータ算出・保持部と、
    診断対象となる前記データの運転状態と、各運転状態に紐づけられた前記パラメータ値の保持状況とに応じて、学習モデルを構成する複数のパラメータ値を、パラメータ毎に重複のないように取得するパラメータ取得部と、
    取得したパラメータ値を用いて前記診断対象となるデータを診断する学習モデルを作成する学習モデル作成部と、
    前記学習モデルに基づいて異常を判定するための異常度を算出する異常度算出部と、
    前記異常度に基づき診断対象の異常の有無を判定する異常判定部とを備え
    前記パラメータ取得部は、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する全てのパラメータ値が保持されていることに基づいて、前記全てのパラメータの値を取得し、
    診断対象となるデータの運転状態と同じ運転状態に、学習モデルを構成する一部のパラメータの値のみが保持されていることに基づいて、前記一部のパラメータ値のみを取得し、残りのパラメータ値を他の運転状態で保持されている同一種のパラメータ値から取得する、異常診断システム。
JP2022551748A 2022-04-25 2022-04-25 異常診断方法、異常診断装置、異常診断プログラム、および、異常診断システム Active JP7199609B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018740 WO2023209774A1 (ja) 2022-04-25 2022-04-25 異常診断方法、異常診断装置、および、異常診断プログラム

Publications (3)

Publication Number Publication Date
JP7199609B1 true JP7199609B1 (ja) 2023-01-05
JPWO2023209774A1 JPWO2023209774A1 (ja) 2023-11-02
JPWO2023209774A5 JPWO2023209774A5 (ja) 2024-04-05

Family

ID=84784204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022551748A Active JP7199609B1 (ja) 2022-04-25 2022-04-25 異常診断方法、異常診断装置、異常診断プログラム、および、異常診断システム

Country Status (3)

Country Link
JP (1) JP7199609B1 (ja)
TW (1) TW202343247A (ja)
WO (1) WO2023209774A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172945A (ja) * 2009-08-28 2015-10-01 株式会社日立製作所 設備状態監視方法およびその装置
JP2015181072A (ja) * 2015-07-23 2015-10-15 株式会社日立パワーソリューションズ 設備状態監視方法およびその装置
JP2017207904A (ja) * 2016-05-18 2017-11-24 エヌ・ティ・ティ・コミュニケーションズ株式会社 異常検知システム、モデル生成装置、異常検知装置、異常検知方法、モデル生成プログラム、および、異常検知プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172945A (ja) * 2009-08-28 2015-10-01 株式会社日立製作所 設備状態監視方法およびその装置
JP2015181072A (ja) * 2015-07-23 2015-10-15 株式会社日立パワーソリューションズ 設備状態監視方法およびその装置
JP2017207904A (ja) * 2016-05-18 2017-11-24 エヌ・ティ・ティ・コミュニケーションズ株式会社 異常検知システム、モデル生成装置、異常検知装置、異常検知方法、モデル生成プログラム、および、異常検知プログラム

Also Published As

Publication number Publication date
WO2023209774A1 (ja) 2023-11-02
TW202343247A (zh) 2023-11-01
JPWO2023209774A1 (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
JP7069269B2 (ja) デジタル・ツイン・シミュレーション・データを利用した時系列データに基づく、大規模な産業用監視システム向けの半教師あり深層異常検出のための方法およびシステム
US11521105B2 (en) Machine learning device and machine learning method for learning fault prediction of main shaft or motor which drives main shaft, and fault prediction device and fault prediction system including machine learning device
US11163277B2 (en) Abnormality detection system, support device, and model generation method
JP6810097B2 (ja) 異常検出器
US20190301979A1 (en) Abnormality detection system, support device, and abnormality detection method
JP6896432B2 (ja) 故障予知方法、故障予知装置および故障予知プログラム
JP5081998B1 (ja) 異常予兆診断装置及び異常予兆診断方法
JP5301310B2 (ja) 異常検知方法及び異常検知システム
JP7106847B2 (ja) 診断装置、診断方法、プログラム、および記録媒体
KR101948604B1 (ko) 센서 군집화 기반의 설비 건강 모니터링 방법 및 장치
JP2019185422A (ja) 故障予知方法、故障予知装置および故障予知プログラム
JP5081999B1 (ja) 異常予兆診断結果の表示方法
JP2013218725A (ja) 異常検知方法及び異常検知システム
JP6699012B2 (ja) 異常予兆検出システムおよび異常予兆検出方法
CN102265227A (zh) 用于在机器状况监视中创建状态估计模型的方法和设备
CN112534370A (zh) 用于预测工业机器故障的***和方法
JP7012888B2 (ja) 異常要因推定装置、異常要因推定方法、及びプログラム
KR20220062547A (ko) 센서 애그나스틱 기계적 기계 결함 식별
JP7131351B2 (ja) 学習方法、学習プログラムおよび学習装置
JP6898607B2 (ja) 異常予兆検出システムおよび異常予兆検出方法
JP7158624B2 (ja) 異常検知装置
JP6915693B2 (ja) システム分析方法、システム分析装置、および、プログラム
JP7199609B1 (ja) 異常診断方法、異常診断装置、異常診断プログラム、および、異常診断システム
CN111555899B (zh) 告警规则配置方法、设备状态监测方法、装置和存储介质
US11339763B2 (en) Method for windmill farm monitoring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221220

R150 Certificate of patent or registration of utility model

Ref document number: 7199609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150