JP7178454B2 - 銅合金板材およびその製造方法、ならびに電気・電子部品用部材 - Google Patents

銅合金板材およびその製造方法、ならびに電気・電子部品用部材 Download PDF

Info

Publication number
JP7178454B2
JP7178454B2 JP2021097283A JP2021097283A JP7178454B2 JP 7178454 B2 JP7178454 B2 JP 7178454B2 JP 2021097283 A JP2021097283 A JP 2021097283A JP 2021097283 A JP2021097283 A JP 2021097283A JP 7178454 B2 JP7178454 B2 JP 7178454B2
Authority
JP
Japan
Prior art keywords
less
copper alloy
average
alloy sheet
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021097283A
Other languages
English (en)
Other versions
JP2021143428A (ja
Inventor
俊太 秋谷
貴大 佐々木
紳悟 川田
優 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2021097283A priority Critical patent/JP7178454B2/ja
Publication of JP2021143428A publication Critical patent/JP2021143428A/ja
Application granted granted Critical
Publication of JP7178454B2 publication Critical patent/JP7178454B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/10Incompletely punching in such a manner that the parts are still coherent with the work
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)
  • Punching Or Piercing (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、銅合金板材およびその製造方法、ならびに電気・電子部品用部材に関する。
一般に、電子機器用のコネクタや自動車車載用のシールドケースなどに用いられる銅合金板材には、打ち抜き、曲げ、絞り、張り出しなどのプレス加工やバーリング加工(穴フランジ加工)が施される。
また、近年の電子機器や自動車車載機器の高性能化に伴い、電気・電子機器を構成する電気・電子部品用部材に用いられる銅合金板材の機械的特性および電気的特性と、電気・電子部品用部材の軽量化や複雑形状化に伴い、銅合金板材の目的形状への加工性とがより高いレベルで両立することが求められている。
例えば特許文献1には、Crを0.1~0.6質量%、ZrおよびTiのうちの1種または2種を合計で0.01~0.30質量%含有し、残部が銅及び不可避的不純物からなり、母相中に存在する第2相粒子のうち、粒径が0.1μm以上の第2相粒子が1000~10000000個/mm存在する銅合金板が記載されている。
特許文献1では、Cu-Cr系合金の第2相粒子数を制御することで、高強度、高導電性、曲げ加工性を兼ね備えている。しかしながら、円形の穴を拡大する加工を行うバーリング加工は、曲げ加工と全く異なる加工であるため、特許文献1のようなCu-Cr系合金の第2相粒子数を制御した銅合金板では、バーリング加工性が不十分である。
また、従来の方法で製造される銅合金板材については、難条件でバーリング加工を行うことができるものの、機械的特性や電気的特性を犠牲にする必要がある。難条件での加工とは、例えば、バーリング加工穴の穴フランジ高さを大きくするために、バーリング加工穴の穴拡げ率を大きくすることや、パンチストロークを短くして生産性を向上させるために、穴拡げ用パンチの先端角度をパンチストロークに対して大きくすることなどである。
このように、近年の電気・電子部品用部材に求められる強度および導電率のバランスを犠牲にすることなく、目的形状への加工の過程において、難条件でのバーリング加工が施されても、優れたバーリング加工性を有する銅合金板材が求められている。
特開2018-154910号公報
本発明の目的は、強度および導電性を十分に発揮しつつ、難加工条件でバーリング加工を行っても、バーリング加工性に優れた銅合金板材およびその製造方法、ならびに電気・電子部品用部材を提供することである。
本発明の要旨構成は、以下のとおりである。
[1] Crを0.10質量%以上0.80質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、引張強さは350MPa以上800MPa以下、導電率は55%IACS以上90%IACS以下、圧延方向に対して、0°方向に切り出した断面S0°における板厚方向の平均結晶粒径A0°、45°方向に切り出した断面S45°における板厚方向の平均結晶粒径A45°、および90°方向に切り出した断面S90°における板厚方向の平均結晶粒径A90°は、いずれも10.0μm以下で、かつA0°の標準偏差、A45°の標準偏差およびA90°の標準偏差の平均値は、2.0μm以下、下記式(1)で表される、前記平均結晶粒径A0°の異方度B0°、前記平均結晶粒径A45°の異方度B45°、および前記平均結晶粒径A90°の異方度B90°は、いずれも10.0%以下であることを特徴とする銅合金板材。
=100×(A-C)/C ・・・式(1)
ただし、前記式(1)中、mは、0°、45°または90°であり、Cは、A0°、A45°およびA90°の平均値((A0°+A45°+A90°)/3)である。
[2] 前記断面S0°における圧延方向の平均結晶粒径D0°は15.0μm以下である、上記[1]に記載の銅合金板材。
[3] 前記断面S0°における平均KAM値E0°、前記断面S45°における平均KAM値E45°、および前記断面S90°における平均KAM値E90°は、いずれも10.0°以下で、かつE0°の標準偏差、E45°の標準偏差およびE90°の標準偏差の平均値は、3.0°以下、下記式(2)で表される、前記平均KAM値E0°の異方度F0°、前記平均KAM値E45°の異方度F45°、および前記平均KAM値E90°の異方度F90°は、いずれも10.0%以下であることを特徴とする上記[1]または[2]に記載の銅合金板材。
=100×(E-G)/G ・・・式(2)
ただし、前記式(2)中、mは、0°、45°または90°であり、Gは、E0°、E45°およびE90°の平均値((E0°+E45°+E90°)/3)である。
[4] Crを0.10質量%以上0.80質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、引張強さは350MPa以上800MPa以下、導電率は55%IACS以上90%IACS以下、圧延方向に対して、0°方向に切り出した断面S0°における平均KAM値E0°、45°方向に切り出した断面S45°における平均KAM値E45°、および90°方向に切り出した断面S90°における平均KAM値E90°は、いずれも10.0°以下で、かつE0°の標準偏差、E45°の標準偏差およびE90°の標準偏差の平均値は、3.0°以下、下記式(2)で表される、前記平均KAM値E0°の異方度F0°、前記平均KAM値E45°の異方度F45°、および前記平均KAM値E90°の異方度F90°は、いずれも10.0%以下であることを特徴とする銅合金板材。
=100×(E-G)/G ・・・式(2)
ただし、前記式(2)中、mは、0°、45°または90°であり、Gは、E0°、E45°およびE90°の平均値((E0°+E45°+E90°)/3)である。
[5] 前記合金組成は、さらに、Mg、Ti、Co、Zr、Zn、SnおよびSiからなる群より選択される1種以上の元素を合計で0.05質量%以上2.50質量%以下含有する、上記[1]~[4]のいずれか1つに記載の銅合金板材。
[6] 厚さが0.05mm以上0.50mm以下である、上記[1]~[5]のいずれか1つに記載の銅合金板材。
[7] 上記[1]~[6]のいずれか1つに記載の銅合金板材の製造方法であって、銅合金素材に、鋳造工程(工程1)、均質化熱処理工程(工程2)、熱間圧延工程(工程3)、面削工程(工程4)、冷間圧延工程(工程5)、中間熱処理工程(工程6)、仕上げ冷間圧延工程(工程7)および調質焼鈍工程(工程8)をこの順に施し、前記冷間圧延工程(工程5)における圧延材の加工率R5(%)に対する、前記中間熱処理工程(工程6)における熱処理材の最高温度T6(℃)の比(T6/R5)は、8.0以上20.0以下、前記最高温度T6は400℃以上650℃以下、前記仕上げ冷間圧延工程(工程7)の各パスに設けられる、一対のワークロールにおける、下記式(3)で表されるロール間隙形状比の各パスの平均値M7に対する、前記調質焼鈍工程(工程8)における焼鈍材の最高温度T8(℃)の比(T8/M7)は、10.0以上100.0以下、前記最高温度T8は250℃以上700℃以下であることを特徴とする銅合金板材の製造方法。
M7=3×{r(h-h)}1/2/{n(h+2h)}・・・式(3)
ただし、前記式(3)中、rは、ワークロールの半径(mm)であり、hは、前記仕上げ冷間圧延工程(工程7)の各パス前の圧延材の厚さ(mm)であり、hは、前記仕上げ冷間圧延工程(工程7)の各パス後の圧延材の厚さ(mm)であり、nは、前記仕上げ冷間圧延工程(工程7)のパス数の合計である。
[8] 上記[1]~[6]のいずれか1つに記載の銅合金板材にバーリング加工穴を有することを特徴とする電気・電子部品用部材。
[9] 前記バーリング加工穴は、下記式(4)で表される穴拡げ率λが20%以上である上記[8]に記載の電気・電子部品用部材。
λ=100×(d―d)/d ・・・式(4)
ただし、前記式(4)中、dは、穴拡げ加工前の穴の直径(mm)であり、dは、穴拡げ加工後のバーリング加工穴の直径(mm)である。
本発明によれば、強度および導電性を十分に発揮しつつ、難加工条件でバーリング加工を行っても、バーリング加工性に優れた銅合金板材およびその製造方法、ならびに電気・電子部品用部材を提供することができる。
図1は、銅合金板材の断面S0°、断面S45°および断面S90°を説明するための図である。 図2は、仕上げ冷間圧延工程(工程7)におけるロール間隙形状比の平均値M7を説明するための図である。 図3は、バーリング加工における打ち抜きの一例を示す概略断面図である。 図4は、バーリング加工における穴拡げの一例を示す概略断面図である。
以下、本発明を実施形態に基づき詳細に説明する。
本発明者らは、鋭意研究を重ねた結果、銅合金板材の結晶粒径や局所ひずみ量に相当するKAM値、ならびにこれらの均一性および異方度を高精度に制御することによって、強度および導電性のバランスを損なうことなく、難加工条件でバーリング加工を行っても、優れたバーリング加工性を得られることを見出し、かかる知見に基づき本発明を完成させるに至った。
実施形態の銅合金板材は、Crを0.10質量%以上0.80質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、引張強さは350MPa以上800MPa以下、導電率は55%IACS以上90%IACS以下、圧延方向に対して、0°方向に切り出した断面S0°における板厚方向の平均結晶粒径A0°、45°方向に切り出した断面S45°における板厚方向の平均結晶粒径A45°、および90°方向に切り出した断面S90°における板厚方向の平均結晶粒径A90°は、いずれも10.0μm以下で、かつA0°の標準偏差、A45°の標準偏差およびA90°の標準偏差の平均値は、2.0μm以下、下記式(1)で表される、前記平均結晶粒径A0°の異方度B0°、前記平均結晶粒径A45°の異方度B45°、および前記平均結晶粒径A90°の異方度B90°は、いずれも10.0%以下である。
=100×(A-C)/C ・・・式(1)
上記式(1)中、mは、0°、45°または90°であり、Cは、A0°、A45°およびA90°の平均値((A0°+A45°+A90°)/3)である。
また、実施形態の銅合金板材は、Crを0.10質量%以上0.80質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、引張強さは350MPa以上800MPa以下、導電率は55%IACS以上90%IACS以下、圧延方向に対して、0°方向に切り出した断面S0°における平均KAM値E0°、45°方向に切り出した断面S45°における平均KAM値E45°、および90°方向に切り出した断面S90°における平均KAM値E90°は、いずれも10.0°以下で、かつE0°の標準偏差、E45°の標準偏差およびE90°の標準偏差の平均値は、3.0°以下、下記式(2)で表される、前記平均KAM値E0°の異方度F0°、前記平均KAM値E45°の異方度F45°、および前記平均KAM値E90°の異方度F90°は、いずれも10.0%以下である。
=100×(E-G)/G ・・・式(2)
上記式(2)中、mは、0°、45°または90°であり、Gは、E0°、E45°およびE90°の平均値((E0°+E45°+E90°)/3)である。
まず、銅合金板材の合金組成について説明する。
上記実施形態の銅合金板材は、Crを0.10質量%以上0.80質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有する。
<Cr:0.10質量%以上0.80質量%以下>
Cr(クロム)は、銅合金板材の強度を高めるために必要な元素であり、Crを0.10質量%以上0.80質量%以下含有することが必要である。Crの含有量が0.10質量%以上であると、銅合金板材の強度が増加し、バーリング加工性が向上する。また、Crの含有量が0.80質量%以下であると、Crを含む粗大な晶出物が鋳造工程時に生じにくくなり、バーリング加工性が向上する。このため、Crの含有量の下限値は、0.10質量%、好ましくは0.2質量%、より好ましくは0.3質量%であり、Crの含有量の上限値は、0.80質量%、好ましくは0.7質量%、より好ましくは0.6質量%である。
<銅合金板材の副成分:0.05質量%以上2.50質量%以下>
銅合金板材の合金組成は、さらに、Mg、Ti、Co、Zr、Zn、SnおよびSiからなる群より選択される1種以上の元素を合計で0.05質量%以上2.50質量%以下含有することができる。すなわち、銅合金板材は、必須の基本成分であるCrに加えて、任意成分である副成分として、さらに、Mg、Ti、Co、Zr、Zn、SnおよびSiからなる群より選択される1種以上の成分を合計で0.05質量%以上2.50質量%以下含有することができる。副成分の含有量が0.05質量%以上であると、銅合金板材の強度を向上させると共に、熱間圧延工程での再結晶や中間熱処理工程での再結晶を遅らせる効果を発揮し、銅合金板材の結晶状態である結晶粒径やKAM値、ならびにこれらの均一性および異方度を所定範囲内に容易に制御することができ、バーリング加工性を向上することができる。また、副成分の含有量が2.50質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、副成分の含有量の下限値は、好ましくは0.05質量%、より好ましくは0.30質量%、さらに好ましくは0.50質量%であり、副成分の含有量の上限値は、好ましくは2.50質量%、より好ましくは2.20質量%、さらに好ましくは1.90質量%である。
<Mg:0.05質量%以上0.20質量%以下>
Mg(マグネシウム)の含有量が0.05質量%以上であると、銅合金板材を固溶強化する効果を発揮する。Mgの含有量が0.20質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Mgの含有量の下限値は、好ましくは0.05質量%であり、Mgの含有量の上限値は、好ましくは0.20質量%である。
<Ti:0.05質量%以上0.20質量%以下>
Ti(チタン)の含有量が0.05質量%以上であると、銅合金板材中に固溶し、銅合金板材の再結晶温度を上昇させることで、熱間圧延工程での動的再結晶粒の粗大化を抑制する効果を発揮する。Tiの含有量が0.20質量%以下であると、銅合金板材の導電率の低下量は、シールドケース等に必要な放熱性を最低限確保できる水準に抑えることができる。このため、Tiの含有量の下限値は、好ましくは0.05質量%であり、Tiの含有量の上限値は、好ましくは0.20質量%である。
<Co:0.05質量%以上1.50質量%以下>
Co(コバルト)の含有量が0.05質量%以上であると、銅合金板材の強度が増加する。Coの含有量が1.50質量%超であると、銅合金板材の導電率が低下することに加え、地金コストの上昇を招く。このため、Coの含有量の下限値は、好ましくは0.05質量%であり、Coの含有量の上限値は、好ましくは1.50質量%である。
<Zr:0.05質量%以上0.20質量%以下>
Zr(ジルコニウム)の含有量が0.05質量%以上であると、熱間圧延中の動的再結晶粒の粗大化を抑制し、銅合金板材の強度の向上に寄与する。Zrの含有量が0.20質量%超であると、鋳造工程時に粗大な晶出物が生じて、バーリング加工時の破断の起点になることがある。このため、Zrの含有量の下限値は、好ましくは0.05質量%であり、Zrの含有量の上限値は、好ましくは0.20質量%である。
<Zn:0.05質量%以上0.60質量%以下>
Zn(亜鉛)の含有量が0.05質量%以上であると、Snめっきやはんだめっきの密着性やマイグレーション特性を改善できる。Znの含有量が0.60質量%以下であると、銅合金板材の導電率の低下を抑制でき、十分な放熱性が得られる。このため、Znの含有量の下限値は、好ましくは0.05質量%であり、Znの含有量の上限値は、好ましくは0.60質量%である。
<Sn:0.05質量%以上0.30質量%以下>
Sn(スズ)の含有量が0.05質量%以上であると、銅合金板材を固溶強化する効果を発揮する。Snの含有量が0.30質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Snの含有量の下限値は、好ましくは0.05質量%であり、Snの含有量の上限値は、好ましくは0.30質量%である。
<Si:0.02質量%以上0.40質量%以下>
Si(ケイ素)の含有量が0.02質量%以上であると、他の添加元素、例えば、Co、Mg、Cr、とSi化合物を形成し、銅合金板材の強度が増加する。Siの含有量が0.40質量%以下であると、銅合金板材の熱伝導率の低下を抑制でき、十分な放熱性が得られる。このため、Siの含有量の下限値は、好ましくは0.02質量%であり、Siの含有量の上限値は、好ましくは0.40質量%である。
<残部:Cuおよび不可避不純物>
上述した成分以外の残部は、Cu(銅)および不可避不純物である。なお、不可避不純物は、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅合金板材の特性に影響を及ぼさないため許容されている不純物成分である。不可避不純物の含有量は少ないほど好ましい。不可避不純物としては、例えば、Bi(ビスマス)、Se(セレン)、As(ヒ素)、Ag(銀)などが挙げられる。これらの成分含有量の上限は、上記成分毎に0.03質量%であることが好ましく、上記成分の総量で0.10質量%であることが好ましい。
次に、銅合金板材の引張強さについて説明する。
銅合金板材の引張強さは、350MPa以上800MPa以下である。銅合金板材の引張強さが350MPa以上であると、強度が向上するため、銅合金板材を具備したシールドケース、カメラモジュール、電池パックケースなどの電気・電子機器の保護も兼ねることができると共に、放熱性が向上する。また、銅合金板材の引張強さが800MPa以下であると、銅合金板材の放熱性および加工性の低下を抑制できる。このため、引張強さの下限値は、350MPa、好ましくは370MPa、より好ましくは400MPaであり、引張強さの上限値は、800MPa、好ましくは750MPa、より好ましくは700MPaである。
銅合金板材の引張強さは、JIS 13B号試験片を用いて、JIS Z 2241:2011に基づき、引張試験を行うことによって測定することができる。銅合金板材の引張強さは、圧延平行方向の引張強さとする。
次に、銅合金板材の導電率について説明する。
銅合金板材の導電率は、55%IACS以上90%IACS以下である。熱伝導率は、ウィーデマン・フランツの法則(Wiedemann-Franz law)によって、導電率から算出することができ、温度が一定であれば、金属の種類によらず、導電率と比例関係にあることが知られている。このため、銅合金板材の導電率が55%IACS以上であると、高い熱伝導率を有することができる結果、銅合金板材を具備したシールドケース、カメラモジュール、電池パックケースなどの電気・電子機器は放熱性に優れる。また、銅合金板材の導電率が90%IACS以下であると、それらの電気・電子機器に搭載される電気・電子部品用部材として要求される銅合金板材の強度を最低限確保することができる。このため、導電率の下限値は、55%IACS、好ましくは60%IACSであり、導電率の上限値は、90%IACSである。このように、銅合金板材の導電率は高いほど好ましい。
銅合金板材の導電率は、端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で、4端子法により比抵抗を計測して算出することができる。
次に、銅合金板材の平均結晶粒径Aおよび異方度Bについて説明する。
図1に示すように、銅合金板材10について、圧延方向に対して0°方向に切り出した断面S0°における板厚方向の平均結晶粒径A0°は10.0μm以下である。また、圧延方向に対して45°方向に切り出した断面S45°における板厚方向の平均結晶粒径A45°は10.0μm以下である。また、圧延方向に対して90°方向に切り出した断面S90°における板厚方向の平均結晶粒径A90°は10.0μm以下である。平均結晶粒径A0°、平均結晶粒径A45°または平均結晶粒径A90°が10.0μmより大きいと、プレス打ち抜きで形成される貫通穴の破面におけるせん断面と破断面との界面が不均一になり、穴拡げ加工時のクラックを誘発する。バーリング加工性の向上の観点から、平均結晶粒径A0°、平均結晶粒径A45°および平均結晶粒径A90°は、いずれも、10.0μm以下、好ましくは8.0μm以下、より好ましくは5.0μm以下である。このように、上記の平均結晶粒径は小さいほど好ましい。
また、平均結晶粒径A0°の標準偏差と平均結晶粒径A45°の標準偏差と平均結晶粒径A90°の標準偏差との平均値は、2.0μm以下である。これらの平均結晶粒径の標準偏差を平均して算出した平均値が2.0μmより大きいと、結晶粒径のばらつきが大きく、プレス打ち抜きで形成される貫通穴の破面におけるせん断面と破断面との界面が不均一になり、穴拡げ加工時のクラックを誘発する。バーリング加工性の向上の観点から、上記平均結晶粒径の標準偏差の平均値は、2.0μm以下、好ましくは1.8μm以下、より好ましくは1.0μm以下である。このように、上記の標準偏差の平均値は小さいほど好ましい。
また、上記式(1)で表される平均結晶粒径A0°の異方度B0°は10.0%以下である。上記式(1)で表される平均結晶粒径A45°の異方度B45°は10.0%以下である。上記式(1)で表される平均結晶粒径A90°の異方度B90°は10.0%以下である。異方度B0°、異方度B45°または異方度B90°が10.0%より大きいと、プレス打ち抜きで形成される貫通穴の破面におけるせん断面と破断面との界面が不均一になり、穴拡げ加工時のクラックを誘発する。バーリング加工性の向上の観点から、異方度B0°、異方度B45°および異方度B90°は、いずれも、10.0%以下、好ましくは8.0%以下、より好ましくは5.0%以下である。このように、上記の異方度は小さいほど好ましい。
また、図1に示すように、銅合金板材10について、圧延方向に対して0°方向に切り出した断面S0°における圧延方向の平均結晶粒径D0°は、好ましくは15.0μm以下、より好ましくは13.0μm以下である。平均結晶粒径D0°が15.0μmより大きいと、穴拡げ加工後に形成される穴フランジの付け根部(屈曲部)に圧延方向の深いシワを生じやすくなり、クラックを誘発する。このように、上記の平均結晶粒径D0°は小さいほど好ましい。
結晶粒径は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、JSM-7001FA)に付属するEBSD検出器を用いて連続して測定した結晶方位データから解析ソフト(TSL社製、OIM Analysis)を用いて算出した結晶方位解析データから得ることができる。「EBSD」とは、Electron BackScatter Diffractionの略で、走査型電子顕微鏡(SEM)内で試料である銅合金板材に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。「OIM Analysis」とは、EBSDにより測定されたデータの解析ソフトである。測定領域は、図1に示すように、圧延方向に対して0°方向に切り出した断面S0°、圧延方向に対して45°方向に切り出した断面S45°、圧延方向に対して90°方向に切り出した断面S90°について、電解研磨で鏡面仕上げされた表面である。測定は、板厚全長×幅150μmの視野において、ステップサイズ0.1μmで行う。15°以上の方位差を結晶粒界とし、2ピクセル以上からなる結晶粒を解析の対象とする。
そして、得られたIPF画像(Inverse Pole Figure)において、板厚方向に平行で板厚を横断するラインを50μm間隔で2本引き、切断法により結晶粒径を測定して平均したものを、それぞれ平均結晶粒径A0°、平均結晶粒径A45°、平均結晶粒径A90°とする。また、得られたIPF画像において、板厚方向に対して長さ150μmの垂直のラインを25μm間隔で2本引き、切断法により結晶粒径を測定して平均したものを平均結晶粒径D0°とする。各平均結晶粒径の標準偏差は、各ライン上のそれぞれの結晶粒を対象に算出する。
次に、銅合金板材の平均KAM値Eおよび異方度Fについて説明する。
図1に示すように、銅合金板材10について、圧延方向に対して0°方向に切り出した断面S0°における平均KAM値E0°は10.0°以下である。また、圧延方向に対して45°方向に切り出した断面S45°における平均KAM値E45°は10.0°以下である。また、圧延方向に対して90°方向に切り出した断面S90°における平均KAM値E90°は10.0°以下である。平均KAM値E0°、平均KAM値E45°または平均KAM値E90°が10.0°より大きいと、銅合金板材には歪が多く蓄積していることを意味し、バーリング加工性が低下する。バーリング加工性の向上の観点から、平均KAM値E0°、平均KAM値E45°および平均KAM値E90°は、いずれも、10.0°以下、好ましくは7.0°以下、より好ましくは3.0°以下である。また、材料強度の観点から、平均KAM値E0°、平均KAM値E45°および平均KAM値E90°は、いずれも、好ましくは1.0°以上である。
また、平均KAM値E0°の標準偏差と平均KAM値E45°の標準偏差と平均KAM値E90°の標準偏差との平均値は、3.0°以下である。これらの平均KAM値の標準偏差を平均して算出した平均値が3.0°より大きいと、歪分布にばらつきがあり、穴拡げ加工時に変形が局所的に集中しやすくなるために、クラックを誘発する。バーリング加工性の向上の観点から、上記平均KAM値の標準偏差の平均値は、3.0°以下、好ましくは1.0°以下、より好ましくは0.5°以下である。このように、上記の標準偏差の平均値は小さいほど好ましい。
また、上記式(2)で表される平均KAM値E0°の異方度F0°は10.0%以下である。上記式(2)で表される平均KAM値E45°の異方度F45°は10.0%以下である。上記式(2)で表される平均KAM値E90°の異方度F90°は10.0%以下である。異方度F0°、異方度F45°または異方度F90°が10.0%より大きいと、歪分布の円周状の異方性が大きく、円形に穴拡げ加工を行う際にクラックを誘発する。バーリング加工性の向上の観点から、異方度F0°、異方度F45°および異方度F90°は、いずれも、10.0%以下、好ましくは5.0%以下である。
KAM(Kernel Average Misorientation)値とは、測定点とその隣接する全ての測定点との間の結晶方位差の平均値である。KAM値は、転位密度と相関があり、結晶の格子歪量に対応するものである。
KAM値は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、JSM-7001FA)に付属するEBSD検出器を用いて連続して測定した結晶方位データから解析ソフト(TSL社製、OIM Analysis)を用いて算出した結晶方位解析データから得ることができる。測定領域は、図1に示すように、圧延方向に対して0°方向に切り出した断面S0°、圧延方向に対して45°方向に切り出した断面S45°、圧延方向に対して90°方向に切り出した断面S90°について、電解研磨で鏡面仕上げされた表面である。測定は、板厚全長×幅150μmの視野において、ステップサイズ0.1μmで行う。15°以上の方位差を結晶粒界とし、2ピクセル以上からなる結晶粒を解析の対象とする。
そして、得られたKAM画像において、板厚方向に平行で板厚を横断するラインを50μm間隔で2本引き、各ライン上の結晶粒内のKAM値を測定して平均したものを、それぞれ平均KAM値E0°、平均KAM値E45°、平均KAM値E90°とする。各平均KAM値の標準偏差は、各ライン上のそれぞれの結晶粒を対象に算出する。
上記のように、平均結晶粒径Aおよびその異方度Bをそれぞれ所定範囲内に制御した銅合金板材は良好なバーリング加工性を有する。また、平均KAM値Eおよびその異方度Fをそれぞれ所定範囲内に制御した銅合金板材は良好なバーリング加工性を有する。さらに、平均結晶粒径Aおよびその異方度Bをそれぞれ所定範囲内に制御すると共に平均KAM値Eおよびその異方度Fをそれぞれ所定範囲内に制御した銅合金板材は、さらに向上したバーリング加工性を有する。
また、銅合金板材の厚さについて、上限値は0.50mmであることが好ましく、下限値は0.05mmであることが好ましい。銅合金板材の板厚が0.50mmより大きいと、バーリング加工後に形成される穴フランジの付け根部の外側や内側に深いシワが形成されやすく、クラックを発生および進展することがある。また、銅合金板材の板厚が0.05mmより小さいと、銅合金板材の剛性が低下する。
次に、実施形態の銅合金板材の製造方法について説明する。実施形態の銅合金板材の製造方法は、銅合金素材に、鋳造工程(工程1)、均質化熱処理工程(工程2)、熱間圧延工程(工程3)、面削工程(工程4)、冷間圧延工程(工程5)、中間熱処理工程(工程6)、仕上げ冷間圧延工程(工程7)および調質焼鈍工程(工程8)をこの順に施し、冷間圧延工程(工程5)における圧延材の加工率R5(%)に対する、中間熱処理工程(工程6)における熱処理材の最高温度T6(℃)の比(T6/R5)は、8.0以上20.0以下、最高温度T6は400℃以上650℃以下、仕上げ冷間圧延工程(工程7)の各パスに設けられる、一対のワークロールにおける、下記式(3)で表されるロール間隙形状比の各パスの平均値M7に対する、調質焼鈍工程(工程8)における焼鈍材の最高温度T8(℃)の比(T8/M7)は、10.0以上100.0以下、最高温度T8は250℃以上700℃以下である。
M7=3×{r(h-h)}1/2/{n(h+2h)}・・・式(3)
上記式(3)中、rは、ワークロールの半径(mm)であり、hは、前記仕上げ冷間圧延工程(工程7)の各パス前の圧延材の厚さ(mm)であり、hは、前記仕上げ冷間圧延工程(工程7)の各パス後の圧延材の厚さ(mm)であり、nは、前記仕上げ冷間圧延工程(工程7)のパス数の合計である。
鋳造工程(工程1)では、合金成分を溶解し、鋳造することによって、所定形状の銅合金鋳塊を得る。例えば、溶解は高周波溶解炉を用いて大気下で行う。合金成分の種類、鋳造条件などは適宜設定される。
均質化熱処理工程(工程2)では、鋳造工程(工程1)で得られた銅合金鋳塊に対して、所定の加熱条件(例えば1000℃以下で1時間)で均質化熱処理を施す。均質化熱処理工程(工程2)は、例えば大気下で行う。
熱間圧延工程(工程3)では、所定の板厚(例えば15mm)とした直後に冷却する。
面削工程(工程4)では、熱間圧延板の表面から所定の厚さ(例えば2.5mm以上5.0mm以下)の面削を行い、酸化膜を除去する。
冷間圧延工程(工程5)では、圧延材の加工率R5が25%以上70%以下となるように、冷間圧延を施す。
中間熱処理工程(工程6)では、熱処理材の最高温度T6を400℃以上650℃以下、最高温度T6での保持時間を1分以上10時間以内で熱処理を施す。中間熱処理工程(工程6)は、例えばアルゴンなどの非酸化性雰囲気下で行う。中間熱処理工程(工程6)における熱処理材の最高温度T6の下限値は400℃である。中間熱処理工程(工程6)における熱処理材の最高温度T6が400℃以上であると、熱処理材の回復により、バーリング加工性が向上することと、Cr粒子が析出し、強度および導電率が上昇する。一方で、最高温度T6が650℃より高い場合、材料の軟化が進行する。
冷間圧延工程(工程5)における圧延材の加工率R5(%)に対する、中間熱処理工程(工程6)における熱処理材の最高温度T6(℃)の比(T6/R5)は、8.0以上20.0以下である。比(T6/R5)が上記範囲内であると、強度および導電性をバランス良く発現できる。
上記の加工率R5が高いほど、Crを含有する化合物が第2相として銅合金板材中に生成するための駆動力は低下し、それにより当該第2相の生成に起因した銅合金板材の強度増加量がピークとなる中間熱処理工程(工程6)の最高温度T6は低温化する。また、中間熱処理工程(工程6)の最高温度T6が高いほど、当該第2相の生成が促進され、銅合金板材の導電性は向上する。一方で、最高温度T6が高すぎると、結晶粒が再結晶の後に粗大化し、バーリング加工性が低下する。したがって、加工率R5と最高温度T6とのバランスが重要であると共に、最高温度T6自体の制御も重要である。
仕上げ冷間圧延工程(工程7)では、各パスに設けられる一対のワークロールによって、冷間圧延が施される。仕上げ冷間圧延時の圧延材の最高温度は、例えば75℃以上150℃以下である。仕上げ冷間圧延工程(工程7)は、所定の板厚への加工、銅合金板材の強度の向上、結晶粒径やKAM値などの結晶状態の制御のために行う。
仕上げ冷間圧延工程(工程7)における、式(3)で表されるロール間隙形状比の各パスの平均値M7について、図2を参照して説明する。
M7=3×{r(h-h)}1/2/{n(h+2h)}・・・式(3)
図2に示すように、仕上げ冷間圧延工程(工程7)では、各パスにおいて、一対のワークロール20が設けられている。半径rを有する一対のワークロール20は、互いに反対方向に回転する。圧延材が圧延方向に向かって移動すると、厚さhを有する各パス前の圧延材21がワークロール20の回転によって冷却圧延されて、厚さhを有する各パス後の圧延材22に加工される。
調質焼鈍工程(工程8)では、焼鈍材の最高温度T8を250℃以上700℃以下、最高温度T8での保持時間を10秒以上1時間以内で熱処理を施す。このような熱処理条件の調質焼鈍工程(工程8)は、銅合金板材の伸びを回復させること、伸びを含めて機械的特性の異方性を低減させることのために行う。調質焼鈍工程(工程8)は、例えばアルゴンなどの非酸化性雰囲気下で行う。
仕上げ冷間圧延工程(工程7)におけるロール間隙形状比の各パスの平均値M7に対する、調質焼鈍工程(工程8)における焼鈍材の最高温度T8(℃)の比(T8/M7)について、下限値は10.0であり、上限値は100.0である。比(T8/M7)が上記範囲内であると、KAM値およびKAM値の異方性が制御され、バーリング加工性が向上する。また、比(T6/R5)および比(T8/M7)を制御することで、結晶粒径、その異方性、標準偏差を制御することができる。
一般的に、圧延材では、ワークロールからの距離の近い表層付近と距離の遠い内部とでメタルフロー(鍛流線)が異なることにより、変形組織が異なる。ロール間隙形状比の平均値M7を適宜調整して、調質焼鈍工程(工程8)における熱処理後の結晶粒径、KAM値、並びにそれらの異方性および標準偏差を制御することができる。
仕上げ冷間圧延工程(工程7)におけるロール間隙形状比の平均値M7が大きい場合、すなわち1パス当たりの圧下量が大きいまたはワークロールの半径が大きい場合、圧延材料の表層から内部まで全体的に均一な変形組織となりやすく、調質焼鈍工程(工程8)によって歪取りを行った銅合金板材は、均一な組織になりやすい。そのため、調質焼鈍工程(工程8)の最高温度T8および最高温度T8での保持時間は、歪取りと軟化のバランスから決定される。例えば、比(T8/M7)が100.0より大きいと、歪取りを行った銅合金板材の内部の軟化を招く。
また、上記実施形態の銅合金板材の製造方法は、面削工程(工程4)と冷間圧延工程(工程5)との間に、冷間圧延工程(工程A1)および中間熱処理工程(工程A2)をさらに有することが好ましい。具体的には、冷間圧延工程(工程A1)は面削工程(工程4)の後に行われ、中間熱処理工程(工程A2)は冷間圧延工程(工程A1)の後に行われ、冷間圧延工程(工程5)は中間熱処理工程(工程A2)の後に行われる。
中間熱処理工程(工程A2)は、冷間圧延工程(工程5)における圧延材の加工率を容易に調整するために行う工程であり、例えば、熱処理材の最高温度を300℃以上1000℃以下、当該最高温度での保持時間を10秒以上3時間以内で熱処理を施す。また、冷間圧延工程(工程A1)では、冷間圧延工程(工程5)において圧延材を所定の加工率になるように、圧延材の加工率を適宜調整する。中間熱処理工程(工程A2)を行わない場合、冷間圧延工程(工程A1)は、行わず、冷間圧延工程(工程5)に集約することができる。なお、工程時の板厚や製造する銅合金板材の板厚に応じて、冷間圧延工程(工程A1)および中間熱処理工程(工程A2)は省略できる。
次に、実施形態の電気・電子部品用部材について説明する。実施形態の電気・電子部品用部材は、上記実施形態の銅合金板材にバーリング加工穴を有するものである。
バーリング加工で形成されるバーリング加工穴について図3~4を参照して説明する。
まず、図3に示すように、打ち抜き方向に向かって打ち抜き用パンチ31で銅合金板材32を打ち抜く打ち抜き加工を行うことによって、直径dの貫通穴33を銅合金板材32に開ける。続いて、図4に示すように、挿入方向に向かって穴拡げ用パンチ34を貫通穴33に挿入し、貫通穴33を広げるように貫通穴33の周辺を塑性変形させる穴拡げ加工を行うことによって、穴拡げ用パンチ34の挿入方向に向かって突出する、直径dの凸形状のバーリング加工穴35を形成することができる。こうして、バーリング加工穴35が銅合金板材32に形成された電気・電子部品用部材30を得ることができる。
ここでは、打ち抜き加工および穴拡げ加工を実施するバーリング加工の一例を示したが、バーリング加工はバーリング加工穴を形成できれば特に限定されるものではない。例えば、バーリング加工は、打ち抜き加工を行わず、既に形成された貫通穴を備える銅合金板材に対して穴拡げ加工のみを行うものでもよい。
また、バーリング加工穴の下記式(4)で表される穴拡げ率λは、20%以上であることが好ましい。穴拡げ率λが20%以上であると、電気・電子部品用部材を電気・電子機器等の部品として使用する際には、十分に形状を設計することが可能である。
λ=100×(d―d)/d ・・・式(4)
上記式(4)中、dは、穴拡げ加工前の穴の直径(mm)であり、dは、穴拡げ加工後のバーリング加工穴の直径(mm)である。すなわち、dは、打ち抜き加工で形成される貫通穴の直径であり、dは、穴拡げ加工で貫通穴を拡げることによって形成されるバーリング加工穴の直径である。
上記電気・電子部品用部材は、優れた強度や導電性と共に高いバーリング加工性が求められている、電子機器用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、液晶補強板、液晶のシャーシ、有機ELディスプレイの補強板、カメラモジュール、電池パックケース、自動車車載用のコネクタ、シールドケース、シールドキャンなどの電気・電子機器に好適に用いられる。
以上説明した実施形態によれば、所定の引張強さや導電率を有すると共に、結晶粒径やKAM値、その標準偏差と異方度を所定範囲内になるように制御された銅合金板材を製造することができる。こうして得られた銅合金板材は、従来のような結晶粒径やKAM値、その標準偏差と異方度を制御していない銅合金板材に比べて、強度、導電性、バーリング加工性に優れている。そのため、バーリング加工穴が銅合金板材に形成されてなる電気・電子部品用部材は、強度および導電率のバランスと高いバーリング加工性とを要求する様々な電気・電子機器に用いることができる。
以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1~17および比較例1~11)
大気下で高周波溶解炉により、各合金成分を溶解し、これを金型モールドで鋳造して、表1に示す合金組成で、厚さ30mmの銅合金鋳塊を得た。次に、大気中、1000℃、1時間の均質化熱処理を行った後、直ちに厚さ15mmまで熱間圧延し、水冷した。次に、圧延板の表層から2.5mm以上5.0mm以下の面削により酸化膜を除去し、厚さ5.0mm以上10.0mm以下とした。次に、厚さが1.25mm以上2.50mm以下となるように冷間圧延を行い、300℃以上1000℃以下で10秒の中間熱処理を行った。次に、表2に示すように、加工率R5、厚さ0.25mm以上1.25mm以下の冷間圧延(工程5)を行い、アルゴン雰囲気中、最高温度T6、最高温度T6での保持時間1分以上360分以内の中間熱処理(工程6)を行い、ロール間隙形状比の各パスの平均値M7の仕上げ冷間圧延(工程7)を行い、アルゴン雰囲気中、最高温度T8、最高温度T8での保持時間1分以上60分以内の調質焼鈍(工程8)を行った。こうして、表2に示す厚さを有する銅合金板材を得た。なお、表1に示す銅合金板材には、不可避不純物としてBi、Se、As、Agが含まれ、不可避不純物の含有量は、成分毎に0.03質量%以下、成分の総量で0.10質量%以下であった。
Figure 0007178454000001
Figure 0007178454000002
[測定および評価]
上記実施例および比較例で得られた銅合金板材について、下記の測定および評価を行った。結果を表3~5に示す。
[1] 結晶粒径およびKAM値
結晶粒径およびKAM値は、上記実施例および比較例で得られた銅合金板材に対して、高分解能走査型分析電子顕微鏡(日本電子株式会社製、JSM-7001FA)に付属するEBSD検出器を用いて連続して測定した結晶方位データから解析ソフト(TSL社製、OIM Analysis)を用いて算出した結晶方位解析データから得た。
測定領域は、図1に示すように、圧延方向に対して0°方向に切り出した断面S0°、圧延方向に対して45°方向に切り出した断面S45°、圧延方向に対して90°方向に切り出した断面S90°について、電解研磨で鏡面仕上げされた表面とした。測定は、板厚全長×幅150μmの視野において、ステップサイズ0.1μmで行った。そして、15°以上の方位差を結晶粒界とし、2ピクセル以上からなる結晶粒を解析の対象とした。
結晶粒径については、得られたIPF画像において、板厚方向に平行で板厚を横断するラインを50μm間隔で2本引き、切断法により結晶粒径を測定して平均することで、平均結晶粒径A0°、平均結晶粒径A45°、平均結晶粒径A90°をそれぞれ算出した。また、得られたIPF画像において、板厚方向に対して長さ150μmの垂直のラインを25μm間隔で2本引き、切断法により結晶粒径を測定して平均することで、平均結晶粒径D0°を算出した。各平均結晶粒径の標準偏差は、各ライン上のそれぞれの結晶粒を対象に算出した。そして、これらの平均結晶粒径の標準偏差の平均を算出した。
KAM値については、得られたKAM画像において、板厚方向に平行で板厚を横断するラインを50μm間隔で2本引き、各ライン上の結晶粒内のKAM値を測定して平均することで、平均KAM値E0°、平均KAM値E45°、平均KAM値E90°をそれぞれ算出した。各平均KAM値の標準偏差は、各ライン上のそれぞれの結晶粒を対象に算出した。そして、これらの平均KAM値の標準偏差の平均を算出した。
[2] 引張強さ(TS)
上記実施例および比較例で得られた銅合金板材に対して、JIS 13B号試験片を3つ(n=3)用いて、JIS Z 2241:2011に基づき、引張試験を行い、3つの測定値を平均することで、引張強さ(TS)を算出した。引張強さは、圧延平行方向の引張強さとする。
[3] 導電率(EC)
上記実施例および比較例で得られた銅合金板材に対して、端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で、4端子法により比抵抗を計測することによって、導電率(EC)を算出した。
[4] バーリング加工性
上記実施例および比較例で得られた銅合金板材に対して、銅合金板材の厚さの1/2のクリアランスとし、プレス打ち抜きにより、直径dが10mmの円形の貫通穴を開けた後、先端角度が60°で直径が10~20mmのパンチにより、貫通穴を拡げる穴拡げ加工を行った。そして、割れが生じたときの穴拡げ率を穴拡げ率λとした。また、バーリング加工性について、以下のランク付けをした。穴拡げ率λが高いほど、バーリング加工性は良好である。
◎:λが50%以上
○:λが20%以上50%未満
×:λが20%未満
Figure 0007178454000003
Figure 0007178454000004
Figure 0007178454000005
表1~5に示すように、実施例1~17では、Cr含有量、引張強さ、導電率、結晶粒径、KAM値、異方度がそれぞれ所定範囲内に制御されていたため、強度、導電率、バーリング加工性がいずれも良好であった。特に、実施例1および8は、加工率R5、最高温度T6、ロール間隙形状比の平均値M7、最高温度T8、比(T6/R5)、比(T8/M7)をそれぞれ好適範囲内に調整することによって、結晶粒径、KAM値、異方度がさらに良好であるため、バーリング加工性はさらに向上した。
一方、比較例1では、Cr含有量が少なく、平均KAM値の異方度が大きく、最高温度T6が低く、比(T6/R5)が大きく、引張強さが小さく、バーリング加工性が不良であった。比較例2では、最高温度T6が低く、引張強さが小さかった。比較例3では、平均結晶粒径およびその異方度と標準偏差の平均値とが大きく、最高温度T6が高く、引張強さが小さく、バーリング加工性が不良であった。比較例4では、Cr含有量が高く、鋳造時にCrを含む粗大な晶出物が生成し、割れを誘発したため、バーリング加工性が不良であった。比較例5では、平均KAM値の異方度が大きく、導電率が低く、バーリング加工性が不良であった。比較例6では、平均KAM値およびその異方度が大きく、最高温度T6が低く、最高温度T8が低く、比(T6/R5)が小さく、バーリング加工性が不良であった。比較例7では、平均結晶粒径およびその標準偏差の平均値が大きく、最高温度T8が高く、比(T8/M7)が大きく、引張強さが小さく、バーリング加工性が不良であった。比較例8では、比(T6/R5)が小さく、引張強さが小さかった。比較例9では、比(T8/M7)が大きく、引張強さが小さかった。比較例10では、平均KAM値の異方度が大きく、比(T6/R5)が大きく、引張強さが小さく、バーリング加工性が不良であった。比較例11では、平均結晶粒径の異方度と標準偏差の平均値とが大きく、平均KAM値の異方度が大きく、比(T6/R5)が大きく、比(T8/M7)が小さく、バーリング加工性が不良であった。
10 銅合金板材
20 ワークロール
21 パス前の圧延材
22 パス後の圧延材
30 電気・電子部品用部材
31 打ち抜き用パンチ
32 銅合金板材
33 貫通穴
34 穴拡げ用パンチ
35 バーリング加工穴

Claims (5)

  1. Crを0.10質量%以上0.80質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、
    引張強さは350MPa以上800MPa以下、
    導電率は55%IACS以上90%IACS以下、
    圧延方向に対して、0°方向に切り出した断面S0°における平均KAM値E0°、45°方向に切り出した断面S45°における平均KAM値E45°、および90°方向に切り出した断面S90°における平均KAM値E90°は、いずれも10.0°以下で、かつE0°の標準偏差、E45°の標準偏差およびE90°の標準偏差の平均値は、3.0°以下、
    下記式(2)で表される、前記平均KAM値E0°の異方度F0°、前記平均KAM値E45°の異方度F45°、および前記平均KAM値E90°の異方度F90°は、いずれも10.0%以下、
    厚さが0.05mm以上0.50mm以下
    であることを特徴とする銅合金板材。
    =100×(E-G)/G ・・・式(2)
    ただし、前記式(2)中、mは、0°、45°または90°であり、Gは、E0°、E45°およびE90°の平均値((E0°+E45°+E90°)/3)である。
  2. 前記合金組成は、さらに、Mg、Ti、Co、Zr、Zn、SnおよびSiからなる群より選択される1種以上の元素を合計で0.05質量%以上2.50質量%以下含有する、請求項1に記載の銅合金板材。
  3. 請求項1または2に記載の銅合金板材の製造方法であって、
    銅合金素材に、鋳造工程(工程1)、均質化熱処理工程(工程2)、熱間圧延工程(工程3)、面削工程(工程4)、冷間圧延工程(工程5)、中間熱処理工程(工程6)、仕上げ冷間圧延工程(工程7)および調質焼鈍工程(工程8)をこの順に施し、
    前記冷間圧延工程(工程5)における圧延材の加工率R5(%)に対する、前記中間熱処理工程(工程6)における熱処理材の最高温度T6(℃)の比(T6/R5)は、8.0以上20.0以下、
    前記最高温度T6は400℃以上650℃以下、
    前記仕上げ冷間圧延工程(工程7)の各パスに設けられる、一対のワークロールにおける、下記式(3)で表されるロール間隙形状比の各パスの平均値M7に対する、前記調質焼鈍工程(工程8)における焼鈍材の最高温度T8(℃)の比(T8/M7)は、10.0以上100.0以下、
    前記最高温度T8は250℃以上700℃以下
    であることを特徴とする銅合金板材の製造方法。
    M7=3×{r(h-h)}1/2/{n(h+2h)}・・・式(3)
    ただし、前記式(3)中、rは、ワークロールの半径(mm)であり、hは、前記仕上げ冷間圧延工程(工程7)の各パス前の圧延材の厚さ(mm)であり、hは、前記仕上げ冷間圧延工程(工程7)の各パス後の圧延材の厚さ(mm)であり、nは、前記仕上げ冷間圧延工程(工程7)のパス数の合計である。
  4. 請求項1または2に記載の銅合金板材にバーリング加工穴を有することを特徴とする電気・電子部品用部材。
  5. 前記バーリング加工穴は、下記式(4)で表される穴拡げ率λが20%以上である請求項4に記載の電気・電子部品用部材。
    λ=100×(d―d)/d ・・・式(4)
    ただし、前記式(4)中、dは、穴拡げ加工前の穴の直径(mm)であり、dは、穴拡げ加工後のバーリング加工穴の直径(mm)である。
JP2021097283A 2020-01-14 2021-06-10 銅合金板材およびその製造方法、ならびに電気・電子部品用部材 Active JP7178454B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021097283A JP7178454B2 (ja) 2020-01-14 2021-06-10 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020003733A JP6900137B1 (ja) 2020-01-14 2020-01-14 銅合金板材およびその製造方法、ならびに電気・電子部品用部材
JP2021097283A JP7178454B2 (ja) 2020-01-14 2021-06-10 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020003733A Division JP6900137B1 (ja) 2020-01-14 2020-01-14 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Publications (2)

Publication Number Publication Date
JP2021143428A JP2021143428A (ja) 2021-09-24
JP7178454B2 true JP7178454B2 (ja) 2022-11-25

Family

ID=76649971

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020003733A Active JP6900137B1 (ja) 2020-01-14 2020-01-14 銅合金板材およびその製造方法、ならびに電気・電子部品用部材
JP2021097283A Active JP7178454B2 (ja) 2020-01-14 2021-06-10 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020003733A Active JP6900137B1 (ja) 2020-01-14 2020-01-14 銅合金板材およびその製造方法、ならびに電気・電子部品用部材

Country Status (4)

Country Link
JP (2) JP6900137B1 (ja)
KR (1) KR20220127235A (ja)
CN (1) CN114867875B (ja)
WO (1) WO2021145043A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445096B1 (ja) 2022-07-13 2024-03-06 古河電気工業株式会社 銅合金板材および絞り加工部品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283106A (ja) 2005-03-31 2006-10-19 Nikko Kinzoku Kk クロム含有銅合金の製造方法、クロム含有銅合金および伸銅品
JP2010126783A (ja) 2008-11-28 2010-06-10 Nippon Mining & Metals Co Ltd 電子材料用銅合金板又は条
WO2012026611A1 (ja) 2010-08-27 2012-03-01 古河電気工業株式会社 銅合金板材及びその製造方法
WO2016093349A1 (ja) 2014-12-12 2016-06-16 新日鐵住金株式会社 配向銅板、銅張積層板、可撓性回路基板、及び電子機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087307B2 (ja) * 2003-07-09 2008-05-21 日鉱金属株式会社 延性に優れた高力高導電性銅合金
JP5833892B2 (ja) * 2011-11-15 2015-12-16 三菱伸銅株式会社 曲げ加工の異方性が少なく耐応力緩和特性に優れた異形断面銅合金板及びその製造方法
JP6265582B2 (ja) * 2011-12-22 2018-01-24 古河電気工業株式会社 銅合金材およびその製造方法
JP2013194246A (ja) * 2012-03-15 2013-09-30 Mitsubishi Shindoh Co Ltd 残留応力の少ないリードフレーム用Cu−Cr−Sn系銅合金板
JP6128976B2 (ja) * 2012-09-20 2017-05-17 Jx金属株式会社 銅合金および高電流用コネクタ端子材
WO2015146981A1 (ja) * 2014-03-25 2015-10-01 古河電気工業株式会社 銅合金板材、コネクタ、および銅合金板材の製造方法
JP5972484B2 (ja) * 2014-05-30 2016-08-17 古河電気工業株式会社 銅合金板材、銅合金板材からなるコネクタ、および銅合金板材の製造方法
JP2016211054A (ja) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 銅合金
CN107406915B (zh) * 2015-05-20 2019-07-05 古河电气工业株式会社 铜合金板材及其制造方法
JP2017057476A (ja) * 2015-09-18 2017-03-23 Dowaメタルテック株式会社 銅合金板材およびその製造方法
KR101627696B1 (ko) * 2015-12-28 2016-06-07 주식회사 풍산 자동차 및 전기전자 부품용 동합금재 및 그의 제조 방법
JP6835636B2 (ja) 2017-03-21 2021-02-24 Jx金属株式会社 強度及び導電性に優れる銅合金板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283106A (ja) 2005-03-31 2006-10-19 Nikko Kinzoku Kk クロム含有銅合金の製造方法、クロム含有銅合金および伸銅品
JP2010126783A (ja) 2008-11-28 2010-06-10 Nippon Mining & Metals Co Ltd 電子材料用銅合金板又は条
WO2012026611A1 (ja) 2010-08-27 2012-03-01 古河電気工業株式会社 銅合金板材及びその製造方法
WO2016093349A1 (ja) 2014-12-12 2016-06-16 新日鐵住金株式会社 配向銅板、銅張積層板、可撓性回路基板、及び電子機器

Also Published As

Publication number Publication date
JP2021110015A (ja) 2021-08-02
CN114867875A (zh) 2022-08-05
KR20220127235A (ko) 2022-09-19
JP2021143428A (ja) 2021-09-24
WO2021145043A1 (ja) 2021-07-22
JP6900137B1 (ja) 2021-07-07
CN114867875B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
EP3040430B1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP6758746B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
JP5117604B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP3962751B2 (ja) 曲げ加工性を備えた電気電子部品用銅合金板
JP6162910B2 (ja) 銅合金板材およびその製造方法
CN114302975B (zh) 电子电气设备用铜合金﹑电子电气设备用铜合金板条材、电子电气设备用组件、端子及汇流排
JP2019178398A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
JP2017179490A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
JP2017179493A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
CN112789359B (zh) 铜合金板材及其制造方法以及拉深加工品
JP7178454B2 (ja) 銅合金板材およびその製造方法、ならびに電気・電子部品用部材
CN111971406B (zh) 铜合金板材和铜合金板材的制造方法以及使用铜合金板材的连接器
KR20140114059A (ko) 구리 합금
JP6370692B2 (ja) Cu−Zr系銅合金板及びその製造方法
JP2018062705A (ja) 電子材料用銅合金
JP2011046970A (ja) 銅合金材及びその製造方法
JP6154996B2 (ja) 高強度銅合金材およびその製造方法
JP7113039B2 (ja) 銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品
JP7328471B1 (ja) 銅合金板材およびその製造方法、ならびに電子部品および絞り加工品
JP2004323952A (ja) 成形加工用アルミニウム合金板およびその製造方法
JP7328472B1 (ja) 銅合金板材、および銅合金板材を用いて作製された絞り加工部品
JP5514762B2 (ja) 曲げ加工性に優れたCu−Co−Si系合金
JP6879971B2 (ja) 銅合金材料、電子部品、電子機器及び銅合金材料の製造方法
JP2021143350A (ja) アルミニウム合金箔及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7178454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151