JP7119524B2 - 電源制御装置 - Google Patents

電源制御装置 Download PDF

Info

Publication number
JP7119524B2
JP7119524B2 JP2018078991A JP2018078991A JP7119524B2 JP 7119524 B2 JP7119524 B2 JP 7119524B2 JP 2018078991 A JP2018078991 A JP 2018078991A JP 2018078991 A JP2018078991 A JP 2018078991A JP 7119524 B2 JP7119524 B2 JP 7119524B2
Authority
JP
Japan
Prior art keywords
power supply
power
charge
temperature
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078991A
Other languages
English (en)
Other versions
JP2019187189A (ja
Inventor
真市 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018078991A priority Critical patent/JP7119524B2/ja
Publication of JP2019187189A publication Critical patent/JP2019187189A/ja
Application granted granted Critical
Publication of JP7119524B2 publication Critical patent/JP7119524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、出力型電源及び容量型電源を備える電源システムに適用される電源制御装置に関する。
従来、出力が相対的に大きい出力型電源と、蓄積可能な電力量が相対的に大きい容量型電源とを双方向電力変換器により電力授受可能に接続した電源システムにおいて、電力変換器の作動を制御する電源制御装置が知られている。例えば特許文献1に開示された電源制御装置は、高圧電源に出力型電源を用い、中圧電源に容量型電源を用いるハイブリッド車両の電源システムに適用される。
特許文献1の電源制御装置は、車両の走行路面が上り勾配であるとき、中圧電源のSOCが低下して中圧電源SOC下限値に到達するまで、容量型の中圧電源から出力型の高圧電源へ電力が供給されるように電力変換器を制御する。また、この電源制御装置は、車両の走行路面が下り勾配であるとき、中圧電源のSOCが上昇して中圧電源SOC上限値に到達するまで、出力型の高圧電源から容量型の中圧電源へ電力が供給されるように電力変換器を制御する。
特開2017-73934号公報
引用文献1の技術において車両の走行路面が上り勾配のときは高負荷状態であり、下り勾配のときは低負荷状態である。引用文献1の技術では、下り勾配の低負荷状態のとき、出力型電源への電力供給は行われない。例えば、ハイブリッド車両が短い下り坂を走行した後に長い上り坂を走行する状況を想定する。引用文献1の技術では、車両が上り坂にさしかかった時点で容量型電源から出力型電源への電力供給が開始されるため、充電の対応が遅れ、出力型電源のSOC(すなわち充電量)が十分に上昇しないおそれがある。その結果、高負荷状態の登板走行開始時に出力型電源のSOCが低いと、エンジンが早掛かりし、燃費悪化に繋がるという問題がある。
本発明はこのような点に鑑みて創作されたものであり、その目的は、次回走行時に備えて出力型電源の充電量を適切に確保する電源制御装置を提供することにある。
本発明の電源制御装置は、車両に搭載され、第1電源(50)、第2電源(30)、及び電力変換器(40)を備える電源システムに適用され、電力変換器の作動を制御する。第1電源は、モータジェネレータ(65)を駆動する駆動システム(600)に接続される。第2電源は第1電源より電圧が低い。電力変換器は、駆動システム及び第1電源と第2電源との間で双方向に電力授受を行う。
第1電源は、第2電源に比べ出力が大きい出力型電源である。第2電源は、第1電源に比べ蓄積可能な電力量が大きい容量型電源である。例えば第1電源はリチウムイオンキャパシタであり、第2電源はリチウムイオン電池である。
電源制御装置は、走行状態取得部(87)と、充電判定部(83)と、電力変換器操作部(84)と、を有する。走行状態取得部は、車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する。充電判定部は、第1電源電力検出器(75)が検出した第1電源の充電量、第2電源電力検出器(73)が検出した第2電源の充電量、及び、走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、第2電源から第1電源への充電実施を判定する。電力変換器操作部は、充電判定部の判定結果に従って電力変換器を操作する。
両の走行状態又は走行設定状態が、(1)車速が所定の判定車速以下の低車速時、又は、アクセルオフ時、(2)シフトレンジがPレンジの時、又は、Pレンジへの若しくはPレンジからのレンジ変更時、(3)パワースイッチオフ操作時、(4)レディオフから判定時間経過後、のうちいずれか一つ以上であるとき、充電判定部は、第1電源の充電量が充電量閾値未満の場合、電力変換器を作動させて第2電源から第1電源への充電を行い、第1電源の充電量が充電量閾値以上の場合、第2電源から第1電源への充電を停止するように判定する。「充電量」として、代表的にはSOCが用いられる。
本発明では、駐停車時等に、次回走行時に備えて、第1電源の充電量が充電量閾値に達するまで(例えば満充電になるまで)、第2電源から第1電源へ充電する。これにより、次回走行開始時に出力型電源を高SOC状態とし、出力型電源の出力可能電力が高い状態をなるべく長い時間維持する。したがって、ハイブリッド車両では、エンジンの早掛かりを防止し、燃費を向上させることができる。
第1~第5実施形態による電源制御装置が適用される電源システムの全体構成図。 リチウムイオンキャパシタ及びEDLCの自己放電特性を比較する図。 第1実施形態による出力型電源の充電制御を説明する図。 第1実施形態による充電制御のフローチャート。 第1実施形態による充電制御のタイムチャート。 第2実施形態による充電制御のタイムチャート。 第3実施形態による充電制御のタイムチャート。 第4実施形態による充電制御のタイムチャート。 第5実施形態による出力型電源及び補機電源の充電制御を説明する図。 第5実施形態による充電制御のフローチャート。 電源温度と電力との関係を示す特性図。 第6実施形態による電源制御装置が適用される電源システムの全体構成図。 第6実施形態による充電制御のフローチャート。 電源温度の予測を説明するタイムチャート。 低温判定値の設定を説明する図。 第6実施形態による充電制御のタイムチャート。
以下、電源制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成、又は、フローチャートの実質的に同一のステップには、同一の符号又は同一のステップ番号を付して説明を省略する。また、第1~第6実施形態を包括して「本実施形態」という。本実施形態の電源制御装置は、エンジン及びモータジェネレータ(以下「MG」)を動力源とするハイブリッド車両に搭載された電源システムに適用される。以下、本実施形態が適用される電源システムの包括符号を「10」とする。各実施形態で電源システムを区別する場合、電源システムの符号に、「10」に続く3桁目に実施形態の番号を付す。
[電源システムの構成]
最初に、第1~第5実施形態の電源制御装置に共通する全体構成について、図1を参照する。図1では、各実施形態が適用される電源システムの符号として包括符号「10」を用いる。電源システム10は、駆動システム600等を含む高電圧系統と、補機負荷15等を含む低電圧系統との間に設けられる。
駆動システム600は、車両の動力源であるMG65をインバータ60が変換した電力により駆動するシステムである。MG65の力行動作時には、電源システム10から供給される直流電力がインバータ60で交流電力に変換されてMG65に供給される。また、MG65の回生動作時には、MG65で発生した交流電力がインバータ60で直流電力に変換されて電源システム10に回生される。システムによっては、インバータの入力側に昇圧コンバータが設けられてもよい。
補機負荷15は、電動パワーステアリング装置、パワーウインドウ装置、ブロワ、ファン等、主機とは異なる各種機能を担う装置であり、補機電源20の低圧直流電力で駆動される。
電源システム10は、基本要素として、第1電源50、第2電源30、双方向DCDCコンバータ(以下「双方向DDC」)、電源電力検出器75、73、及び電源制御装置80を含む。第1電源50は、高電圧系統の駆動システム600に接続され、駆動システム600との電力授受を行う。第2電源30は、第1電源50より電圧が低い。
「電力変換器」としての双方向DDC40は、駆動システム600及び第1電源50と第2電源30との間で双方向に電力授受を行う。第1電源電力検出器75及び第2電源電力検出器73は、それぞれ第1電源50及び第2電源30の電力を、例えば電流及び電圧の積により検出する。電源制御装置80は、双方向DDC40の作動を制御する。
本実施形態では、第1電源50としてリチウムイオンキャパシタ(以下「LiC」)等の出力型電源が用いられ、第2電源30としてリチウムイオン電池(以下「LiB」)等の容量型電源が用いられる。出力型電源は容量型電源に比べて出力が大きく、容量型電源は出力型電源に比べて蓄積可能な電力量が大きい。出力型電源である第1電源50の電圧は例えば200Vであり、容量型電源である第2電源30の電圧は例えば48Vである。図中、及び明細書中の一部の箇所では、「出力型第1電源50」、「容量型第2電源30」というように記載する。
このように電源システム10は、出力型電源である第1電源50に、蓄電性能が優れたLiC等のキャパシタを用いる構成を前提とする。図2に、LiCとEDLC(すなわち電気二重層キャパシタ)との自己放電特性の比較を示す。EDLCは、早期に電荷が放電し、500Hr程度でSOCが約半分にまで低下するという問題があるため、放置前にEDLCのエネルギーを移送させたりして用いられる。
一方、LiCの自己放電特性は、約3か月でのSOC低下が5%程度と少ない。このようにLiCは蓄電性能が優れ、放置中も蓄電量を維持でき、LiBよりも蓄電性能が優れる。また、LiCは化学反応なく放電できるため、低温時の出力性能も優れる。LiCの優れた出力、蓄電性能に注目すれば、放置前にLiCに蓄電させることで次回走行の性能を向上させることができる。
さらに電源システム10は、補機負荷15に接続される補機電源20、第2電源30の電圧を降圧して補機電源20に供給する補機用降圧DDC25、及び、補機電源20の電力を検出する補機電源電力検出器72を含む。補機電源20は、例えば電圧14V程度の鉛電池(PbB)やリチウム電池(LiB)等が用いられる。
本明細書では、便宜上、第1電源50の200V級の電圧を「高電圧」、第2電源30の48V級の電圧を「中電圧」、補機電源20の14V級の電圧を「低電圧」という。双方向DDC40は、高電圧系統に接続された第1電源50側と、中低電圧系統に接続された第2電源30及び補機電源20側との間で電力授受を行う。
電源制御装置80は、走行状態取得部87、充電判定部83、及び、「電力変換器操作部」としてのDDC操作部84を有する。走行状態取得部87は、車両停止を含む車両の走行状態又は走行設定状態に関する情報として、車速情報、シフトレンジ情報、パワースイッチ情報等を取得する。
充電判定部83は、電源電力検出部75、73から取得した第1電源50及び第2電源30の充電量、及び、走行状態取得部87から取得した車両の走行状態又は走行設定状態に基づき、第2電源30から第1電源50への充電実施を判定する。DDC操作部84は、充電判定部83の判定結果に従って双方向DDC40を操作する。第5実施形態では、充電判定部83は、さらに補機電源電力検出部72から補機電源20の充電量を取得し、DDC操作部44は、さらに補機用降圧DDC25を操作する。
また、電源システム10は、電源制御装置80を自動で起動及び停止させる自動起動装置90をさらに備える。例えば自動起動装置90は、車両の駐車中に電源制御装置80を起動及び停止させる。
ところで、駐停車中の車両が次回走行開始するとき、第1電源50のSOCが低いと、早い段階で出力可能電力が制限されてしまい、エンジンの早掛かりが発生するなど、燃費悪化に繋がる問題がある。そこで本実施形態の電源システム10は、次回走行開始時に出力型第1電源50(すなわちキャパシタ)の出力性能を損なわないように、電源間の電力供給を制御することを目的とする。
そのために電源制御装置80は、次回走行開始までの期間において、出力型第1電源50(すなわちキャパシタ)が満充電状態でなければ、双方向DDC40を作動させ、容量型第2電源30(すなわち電池)から出力型第1電源50へ電力供給して第1電源50を充電する。したがって、第1電源50は、駐停車中(すなわち電源の放置中)にも蓄電される。以下、第2電源30から第1電源50への充電(或いは補充電)を行う制御を「充電制御」という。続いて、各実施形態の「充電制御」の構成及び作用効果について順に説明する。
(第1実施形態)
第1実施形態の電源システムについて、図3~図5を参照して説明する。まず、電源システム101で実施される第1実施形態の充電制御について、図3を参照する。図3において、実線の矢印は、積極的に実施される電力供給を示す。前回走行終了時から駐停車中の期間、第1電源50が満充電状態でなければ、第2電源30から第1電源50に充電するように制御される。
次に、第1実施形態による充電制御について、図4のフローチャートを参照して説明する。以下のフローチャートの説明で、記号Sは「ステップ」を表す。S71で充電判定部83は、走行状態取得部87から取得した「走行状態又は走行設定状態に関する情報」に基づき、充電制御を開始するか否か判定する。例えば充電判定部83は、パワースイッチのオフ操作を充電制御開始トリガーとして、S71でYESと判定する。一方、パワースイッチのオフ操作がされない場合、充電判定部83はS71でNOと判定し、待機する。
S72Aで充電判定部83は、第1電源50のSOCが満充電閾値未満であるか否かにより、充電要求があるか否か判定する。第1電源50が満充電状態でなければ、電源システム10の停止前に充電しておいた方が良いため、S72AでYESと判定し、S73に移行する。一方、第1電源50が満充電である場合、充電要求が発生しないため、S72AでNOと判定し、処理を終了する。
S73では、充電が実施可能であるか否か判断される。充電が実施可能である場合、S73でYESと判定され、S74に移行する。典型的には第2電源30のSOCが下限値を超えており、余剰SOCがある場合に充電実施可能と判断される。一方、第2電源30のSOCが下限値以下である場合、第2電源30に十分なエネルギーが無く充電実施が不可であるため、S73でNOと判定され、処理を終了する。S75でのNO判定からS73へのループが繰り返される場合、第2電源30のSOCが下限値まで低下した時点で、充電判定部83は充電を終了する。
また、第2電源30から第1電源50への充電が実施不可と判断されるその他の場合として、過度の電力制限がなされる場合がある。例えば加減速走行後には電池劣化の抑制のため電力が制限される。或いは、第2電源30や双方向DDC40が所定範囲より低温又は高温の場合にも電力が制限される。なお、第2電源30や双方向DDC40が高温の場合、冷えるのを待ってから充電が実施されてもよい。また、システム異常発生時にも充電が実施不可と判断される。
S73で充電実施可能と判定された場合、S74でDDC操作部84は、双方向DDC40を作動させ、第2電源30から第1電源50に電力供給して充電する。S75では、充電により第1電源50が満充電に達したか否か判断される。第1電源50が満充電になれば、DDC操作部84は双方向DDC40の作動を停止して充電を終了し、通常のシステム停止シーケンスに移行する。第1電源50が満充電に達していなければS73の前に戻り、充電を継続する。
続いて、この充電制御を構成するパラメータの設定や制御方法について補足する。
[1]「上限SOC/下限SOC」及び「満充電閾値」
制御用SOCの範囲は、制御余裕度を考慮して、上限SOCから下限SOCまでの範囲とされることが多い。なお、SOCの数値は定義によって変わる。例えば上限SOCがSOC100%の値と定義される場合もある。したがって、定義が明確でない限り、SOCの数値のみでは電源の充電状態を適確に把握できない点に注意が必要である。満充電閾値は、上限SOCと同じ値に設定されてもよいし、上限SOCに所定の余裕分を加えた値に設定されてもよい。
[2]SOC推定
周知技術では一般に、電池の充電量として、電池の残容量[Ah]を電池の満充電容量[Ah]で除した値を百分率で表したSOCが用いられる。電池のSOCは、電池に充放電を行う前には、起電圧とSOCとの関係マップから求められる。しかし、電池の充放電を行うことにより一時的に化学反応量が低下するなどで見かけ上の内部抵抗変化が生じるため、様々なSOC推定方法が提案されている。例えば,電荷移動量を追跡する電流積算法、電池反応モデル、電池の適応フィルタモデル等が知られている。また、キャパシタのSOCは、電池のような化学反応による影響はほとんどないため,一般に電圧を用いて推定される。本実施形態では、周知技術のSOC推定方法が用いられればよい。
[3]満充電容量
SOC推定に用いられる電池の満充電容量は、出荷時には設計諸元値により把握されるが、電池劣化によって低下するため、都度、満充電容量を推定して更新する必要がある。満充電容量推定方法について、周知技術では、上下限電圧から広範囲で連続放電/充電等を行って満充電容量を計測する方法、電池反応モデルや適応フィルタモデルを用いて求める方法等が知られている。
電池には、「劣化」以外に「充電深度」という考え方がある。例えば電池が冷えている場合、電池の内部抵抗の増加が顕著となり、所定時間で充電が進まない特性があるため、見かけ上で電池温度によって満充電容量が低下するものとして扱われる。この方法では、所定条件の充放電試験が実施され、電池温度に応じた満充電容量マップが作成される。本実施形態では、周知技術の満充電容量推定方法が用いられればよい。そして、電池劣化に応じて都度更新された満充電容量に基づいて電池のSOCが推定されればよい。
[4]充電方法
電源制御装置80は、次の順序で第1電源50の充電を行うことができる。
<1>例えば駐車中にパワースイッチオフ操作がなされたことをトリガーとして、第1電源50のSOCが満充電閾値より低い場合、充電判定部83は、第2電源30の余剰分のSOCを利用して、第2電源30から第1電源50への充電を開始する。この充電は、前の走行で第2電源30及び第1電源50が暖機された後に実施されるため、ジュール損失が少なくなり、充電効率を維持できる利点がある。
<2>双方向DDC40によって第2電源30から第1電源50へ電力が供給される。供給電力は、第2電源30(すなわち電池)や双方向DDC40等の機器の状態に応じて可変とする。ただし、所定の供給電力となるように指令していても第1電源50が満充電閾値に近づけば、過充電防止の電力制限によって供給電力が制限される。したがって、満充電閾値に達した時点での供給電力は略0kWとなる。
<3>第2電源30のSOCが下限SOCより低い場合、充電判定部83は、第2電源30から第1電源50への充電を中断する。
<4>第1電源50のSOCが満充電閾値に到達したとき、充電判定部83は充電完了と判定し、レディオフする。ただし、充電期間内に異常が生じた場合、充電判定部83は充電を中断してレディオフする。
次に、図5のタイムチャートを参照する。図5には、レディ(図中「READY」)状態、充電制御開始要求、双方向DDC出力電力、第1電源50及び第2電源30のSOCの経時変化を示す。双方向DDC出力電力の「+」は、容量型第2電源30から出力型第1電源50への電力供給(すなわち第1電源50の充電)を意味し、「-」は、出力型第1電源50から容量型第2電源30への電力供給(すなわち第1電源50の放電)を意味する。充電制御開始時における第1電源SOCの現在値と満充電閾値との差は、充電要求量を示す。また、充電制御開始時における第2電源SOCの現在値と下限値との差は、充電可能量(すなわち余剰SOC分)を示す。
時刻ts1以前の初期には、レディ状態はオン、充電制御開始要求はオフであり、双方向DDC出力電力は、0よりも少し「+」側の値である。また、第1電源SOCは下限値より少し高い程度の値であり、第2電源SOCは下限値より十分高い値である。第1実施形態では、走行状態取得部87にてパワースイッチ情報が取得される。そして、パワースイッチがオフされた時刻ts1に充電開始制御要求がオンし、双方向DDC40の作動が開始され、第2電源30から第1電源50への充電が開始される。
これにより、制御開始時刻ts1から第1電源SOCは上昇し、第2電源SOCは低下する。その後、第1電源SOCが満充電閾値に到達する時刻te2に充電制御開始要求がオフし、充電が終了する。ここで、破線で示す比較例では、パワースイッチオフ操作と同時にレディオフするのに対し、第1実施形態では、パワースイッチオフ操作後、充電完了時刻te1までレディオン状態が継続され、充電制御が実行される。なお、双方向DDC出力電力は、充電完了時刻te1の少し前から徐々に低下する。
このように第1実施形態では、駐車開始時のパワースイッチオフ操作を制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。充電時期は駐車開始直後となり、効果として、回生取りこぼしの頻度が低い。また、充電時間を確保でき、駐車中に第1電源50を満充電にすることができる。
以上のように第1実施形態では、電源制御装置80は、パワースイッチオフ操作を制御開始トリガーとして、前回走行終了時から駐停車中の期間、第1電源50が満充電状態でなければ、第2電源30から第1電源50に充電するように制御する。これにより、電源制御装置80は、次回走行開始時に出力型第1電源50を高SOC状態にし、第1電源50の出力可能電力が高い状態をなるべく長い時間維持することで、エンジンの早掛かりを遅らせることができる。その結果、車両の燃費が改善される。
(第2、3、4実施形態)
S72の充電開始判定において、第1実施形態でのパワースイッチオフ操作以外の情報を充電制御開始トリガーとして用いる第2、3、4実施形態について、それぞれ、図6、図7、図8のタイムチャートを参照して説明する。
図6に示す第2実施形態では、走行状態取得部87にてシフト位置情報が取得される。例えばシフトレンジがPレンジからDレンジに変更された時刻ts2に、第2電源30から第1電源50への充電が開始される。その後、第1電源SOCが満充電閾値に到達する時刻te2に充電が終了する。
このように第2実施形態では、シフトレンジがPレンジであること、又は、Pレンジへ若しくはPレンジからシフトレンジが変更されたことを制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。充電時期は、駐車前のDレンジからPレンジへの操作時からレディオフまでの期間、又は、起動後のPレンジからDレンジへの操作時である。効果としては、回生取りこぼしの頻度が低い。
図7に示す第3実施形態では、走行状態取得部87にて車速情報が取得され、判定車速と比較される。図7の初期には車速が比較的大きい中高速状態である。双方向DDC出力電力は「-」であり、電力は第1電源50から第2電源30へ回生される。減速中には、さらに回生電力が大きくなり、第1電源SOC及び第2電源SOCはいずれも上昇する。時刻tj3に車速が判定車速を下回り、その後、判定期間Tjの間、車速が判定車速未満の状態が継続すると、時刻ts3に、第2電源30から第1電源50への充電が開始される。その後、第1電源SOCが満充電閾値に到達する時刻te3に充電が終了する。
このように第3実施形態では、判定車速以下の低車速時であること、又は、アクセルオフ時であることを制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。なお、判定期間Tjに車速変化や出力変化が大きい場合、充電判定部83は充電を待機してもよい。充電時期は、減速回生時から駐停車前の期間、又は、起動後の発進時までの期間である。効果として、走行中に充電可能であり、減速回生後に残量を補充電できる。また、充電時間を長く確保することができる。
図8に示す第4実施形態では、走行状態取得部87にて、レディオフによる駐車開始時刻tp4から起算した駐車時間が取得され、判定時間と比較される。図8の初期にはレディオン状態で、第1電源SOC及び第2電源SOCは、ほぼ満充電状態である。駐車開始時刻tp4後の駐車中、第1電源SOC及び第2電源SOCは、自己放電により徐々に低下する。駐車時間が判定時間に達した時刻ts4に、自動起動装置90が電源システム10の電源制御装置80を自動で起動し、第2電源30から第1電源50への充電が開始される。
その後、第1電源SOCが満充電閾値に到達する時刻te4に双方向DDC40の出力電力がオフされ、充電が終了すると共に駐車時間がリセットされる。時刻te4から再び判定時間が経過したとき、再び充電が開始される。このように第4実施形態では、レディオフから所定の判定時間が経過したことを制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。充電時期は駐車中である。効果として、第1実施形態と同様の効果の他、長期間の駐車中の自己放電に対しても補充電ができる。また、自動起動装置90を備えることで、駐車中に自動で第1電源50を充電することができる。
第1~第4実施形態で充電制御開始トリガーとして用いられる「車両の走行状態又は走行設定状態」を、車両走行中の減速から駐車までの時間の流れに沿って並べると、以下のようになる。これらの充電タイミングを選択し組み合わせることで自由に制御を構成し、充電頻度を確保することができる。
(1)車速が所定の判定車速以下の低車速時、又は、アクセルオフ時(第2実施形態)
(2)シフトレンジがPレンジの時、又は、Pレンジへの若しくはPレンジからのレンジ変更時(第3実施形態)
(3)パワースイッチオフ操作時(第1実施形態)
(4)レディオフから判定時間経過後(第4実施形態)
(第5実施形態)
次に第5実施形態について、図9、図10を参照して説明する。電源システム105で実施される第5実施形態の充電制御を図9に示す。電源制御装置80は、容量型第2電源30から第1電源50へ充電すると同時に、第2電源30から補機用降圧DDC25を経由して補機電源20へも充電を行う。
車両の長期放置中に補機電池20のSOCが枯渇するおそれがある。この問題に対し、駐車中に自動起動装置90により電源システム10を起動させ、補機電池20を充電する制御技術がある。しかし、駐車中に、第4実施形態による第1電源50の充電制御と補機電源20の充電制御とが別々に作動すると、駐車中の起動時間が長くなるなど、効率面で望ましくないことになる。
そこで第5実施形態では、上記問題に関し、第1電源50及び補機電源20の両方の充電を同時に行う。これにより、起動時間の短縮により損失が低減する。また、充電電力が増えることで第2電源30(すなわち電池)が暖機されるため、充電効率が有利となる。さらに、第2電源30(すなわち電池)のSOCを減らすことで保存劣化の抑制効果が得られる、などの利点が得られる。
具体的に電源制御装置80は、第1電源50又は補機電源20の充電要求があるとき、双方向DDC40を作動させて第2電源30から第1電源50に電力供給して充電すると同時に、第2電源30から補機電源20に電力供給して充電を行う。特に駐停車時に充電を行う場合、自動起動装置90は、第1電源50又は補機電源20の少なくとも一方の充電要求があるとき電源制御装置80を起動させる。そして、自動起動装置90は、両方の電源50、20の充電が終了したとき電源制御装置80を停止する。これにより、無駄な起動時間が長くなることの損失を低減することができる。
図10のフローチャートに第5実施形態による充電制御を示す。S71の充電制御開始トリガーによる充電開始判定は、図4に示す第1実施形態と同様である。S72Bで充電判定部83は、第1電源50の充電要求、又は補機電源20の充電要求があるか否か判定する。S72BでYESの場合、充電判定部83は両方の電源50、20の充電制御を開始すると判定し、S73及びS76に移行する。第1電源50への充電に関するS73、S74、S75については、図4と同様であるため、省略する。
補機電源20への充電に関し、S76では、S73と同様に、第2電源30の余剰SOCがあるか否か判定される。S76でYESと判定された場合、S77で、第2電源30から補機電源20への充電が実施される。一方、S76でNOと判定された場合、充電が禁止され、S79へ移行する。
S78では、補機電源20のSOCが満充電閾値に達したか否か判定される。NOの場合、S76の前に戻って充電を継続し、YESの場合、補機電源20の充電を完了する。S79では、第1電源50及び補機電源20の両方の充電が完了したか判定される。NOの場合、待機し、YESの場合、電源システム105の停止が許可される。
(第6実施形態)
次に第6実施形態について、図11~図16を参照して説明する。上記実施形態による充電制御を実施するにあたり、車両が放置されて電源が冷えた状態では、容量型第2電源30から出力型第1電源50に電力を供給し第1電源50を充電しようとしても、電力制限が作動し、充電時間が極端に長くなるという問題がある。
図11に示すように、キャパシタは、原理的にはセル内部での物質移動がないので低温時の電力特性は比較的良好である。一方、電池については、種類によって、低温時の電力特性が大幅に低下するものがある。そのため、電力不足により、両電源間での、すなわち電池からキャパシタへの充電ができなくなる問題が生じる。例えば暖機移行前の温度領域でも、両電源間の充電に使用する容量型電源の電力が確保できなくなる。つまり、容量型電源が低温になった後の状態で容量型電源から出力型電源に充電しようとすると、充電を行うことができず、燃費悪化につながる。
そこで第6実施形態では、車両放置中に容量型第2電源30が冷える前に、次回の走行に備えて第2電源30から第1電源50へ充電する。図12に示すように、第6実施形態の電源制御装置806は、図1の電源制御装置80に対し、電源温度推定部88をさらに備える。電源温度推定部88は、駐車開始時情報、走行履歴、ナビゲーション情報、気象情報のうち一つ以上の情報を用い、次回走行開始時における第2電源30の予測温度である予測電源温度を推定する。ここで、駐車開始時情報は、駐車開始時の電源温度及び駐車開始時刻を含む。走行履歴は、次回の走行開始時刻の推定に用いられる。ナビゲーション情報は、車両の駐車位置を示す。気象情報は、駐車位置での時間帯毎の予想気温を含む。
以下、第6実施形態の「電源温度」は、原則として容量型第2電源30の温度、すなわち「電池温度」を意味する。なお、第1電源50及び第2電源30の温度環境は同等であると考えられるため、「電源温度」を両電源50、30の共通温度と解釈してもよい。
第6実施形態では、第2電源30が前回の走行で暖機されて出力可能電力が高い状態を見計らって利用するために、次回走行開始時の電源温度を推定する。そして、次回走行開始時に第2電源30が低温状態になると予測される場合、電源が冷える前の所定期間内に第1電源50が満充電状態でなければ、双方向DDC40を作動させて第2電源30から第1電源50へ電力供給し、第1電源50を充電しておく。
次回走行開始時に電源が低温状態である場合、電源から電力を取り出せなくなるため、出力低下や燃費悪化等の性能低下が著しい。影響度を考慮すると、このことは着目すべき点である。考え方によっては、次回走行開始時に電源が低温状態であると予想された場合に限り、積極的に充電制御を行うようにしてもよい。
第6実施形態による充電制御を図13に示す。電源温度推定部88はS61で、次回起動時、つまり、次回走行開始時の予測電源温度を推定する。続いて電源温度推定部88は、S62で、予測電源温度に基づき、次回走行開始時に第2電源30が低温状態であるか否か判定する。S61での予測電源温度の推定方法、及び、S62での次回起動時の低温判定方法の詳細は後述する。
S62でYESと判定された場合、充電が許可され、S71の充電制御開始判定に移行する。S71~S75は、図4に示す第1実施形態の処理と同様である。充電制御が開始されない場合、S71でNOと判定され、S61の前に戻る。
次に図14を参照し、S61での「次回起動時の電源温度の推定方法」の詳細を説明する。例えば電源温度推定部88は、駐車時に、レディオフ時点の電源温度、駐車時間、駐車場所の平均温度等から次回起動時の電源温度を推定する。より具体的には、以下の方法が挙げられる。[1]の算出方法について、各段階に[S61-1]から[S61-6]までのサブステップ番号を付す。
[1]ナビ情報や走行履歴を用いた予測電源温度の算出方法
[S61-1]:駐車開始時電源温度Tb(0)、駐車開始時刻t0
現在の電源温度(例えば電源セルの最低温度)が駐車開始時電源温度Tb(0)として取得される。それと同時に、現時刻が駐車開始時刻t0として取得される。
[S61-2]:走行開始時刻tr
通勤やレジャーを想定し、曜日毎の走行開始時刻の履歴に基づいて、次回の走行開始時刻trが取得される。
[S61-3]:時間帯毎の予想気温
GPS情報を基に、駐車位置の天気予報情報又は平均気温に基づき予想気温が取得される。例えば1週間程度の時間帯毎の予想気温が取得される。
[S61-4]:予想気温の時間帯の時間幅
駐車開始時刻t0から走行開始時刻trまでの期間を幾つかの区間に区切り、予想気温の時間幅が設定される。図14の例では、τ1~τ4の時間幅が設定される。
[S61-5]:次回走行開始時の予測電源温度Tb(r)
駐車開始時刻t0から走行開始時刻trまでの期間において、駐車開始時電源温度Tb(0)を初期値とし、時間帯毎の予想気温とその時間幅とに基づいて予測電源温度Tb(r)が算出される。この算出には、電源の放置冷却に関する熱伝達差分式や、予め取得された実験データから作成されたマップ等が用いられる。
[S61-6]:予測電源温度の確定
最終的に、IGスイッチオフ時の電源温度及び時刻が判定に用いられる。図14に示す例では、走行開始時刻trにおける予測電源温度Tb(r)は低温判定値Tbchgを下回っている。
[2]予想気温の算出
電源温度推定部88は、「予想気温の計測」として、(a)カーナビを利用して、当日の気象情報による予想気温を通信で取得してもよい。(b)直近1週間の時間帯毎の気温を計測して記録し、時間帯毎の最低気温を時間帯毎の予想気温としてもよい。(c)駐車中のLi電池のセル電圧均等化処理の機会を利用して気温を取得してもよい。また、電源温度推定部88は、「予想気温の簡易計算」として、(d)夜間時間帯毎の予想気温を一晩の平均温度または最低気温として簡易的に取得してもよい。(e)日時を取得し、季節や月例気温を参照して充電可否を簡易的に判定してもよい。
[3]予測電源温度Tb(r)の算出
[3-1]電源温度推定部88は、式(1)に示す簡略化された電源周りの熱伝達差分式を用い、駐車開始時刻t0から走行開始時刻trまでのループ計算により、予測電源温度Tb(r)を算出すればよい。簡易モデルの熱伝達差分式を用いることで、システムへの実装が容易となる。なお、電源温度推定部88は、詳細な電源周りの伝熱モデルを構成して予測電源温度Tb(r)を算出してもよい。
Tb(t+Δt)
=Tb(t)-α(Tb(t)-Ta(t))+β(Ib(t))2 ・・・(1)
Tb(t):電源温度[℃] (初期値=Tb(0))
Ta(t):時間帯毎の予想気温[℃]
Ib(t):電流[A]
t:時間[s]、Δt:時間幅[s],
α,β:係数
[3-2]電源温度推定部88は、直近1週間の走行開始前の電源温度及び時刻を取得して電源制御装置806に記録し、次回走行開始時刻trに合わせて、最低電源温度を次回走行開始時trの予測電源温度Tb(r)としてもよい。
[3-3]電源の保温性能によっては、電源を一晩放置することで電源は概ね放熱して予想気温付近まで電源温度が冷やされるものと考えられる。したがって、予測電源温度Tb(r)は予想気温と同じであると仮定してよい。仮に電源が放熱しきることなく、電源温度が予想気温まで低下しなくても、予測電源温度を予想気温として仮定すれば、充電を促す安全側の設定となるため問題は無い。
次に図15を参照し、S62での「次回起動時の低温判定方法」の詳細を説明する。
[1]低温判定値の算出
[1-1]要求電力に基づく計算方法
容量型電源の出力可能電力を決定する変数には、電源温度、SOC、劣化度(抵抗増加率)がある。一般にこれらの電源の特性値は、電源制御装置806の内部でマップ値として記憶され、常時演算されている。電源温度をTb、SOCをθ、劣化度(抵抗増加率)をKとすると、式(2.1)に示すように、電源の出力可能電力Poutは、これらの変数の関数として表される。
out=f(Tb,θ,K) ・・・(2.1)
電源温度推定部88は、まず、電源間充電に要する容量型電源の要求出力電力Pchgを設定する。そして、式(2.1)に要求出力電力、SOC、劣化度を代入して要求出力電力Pchgを実現できる電源温度Tbを計算し、そのうちの最低電源温度を低温判定値Tbchgとする。すなわち、式(2.2)が成り立つとき、式(2.3)により、低温判定値Tbchgが算出される。この方法で算出される低温判定値Tbchgは、図15の(*1)に示すように、電源(Li電池)の温度-電力特性線が要求出力電力Pchgに交わるときの電源温度である。
max=f(Tb,θ,K)≧Pchg ・・・(2.2)
Tbchg=Min(Tbchg,Tb) ・・・(2.3)
[1-2]充電効率に基づく計算方法
低温時には電源(すなわちLi電池)の内部抵抗が増加してジュール損失が増加する。そこで、図15の(*2)に示すように、内部抵抗増加によって充電効率が下がり始める電源温度が低温判定値Tbchgとして設定されてもよい。
[2]低温判定方法
電源温度推定部88は、予測電源温度Tb(r)が低温判定値Tbchg以下となる場合、次回走行開始時に電源温度が低温判定値Tbchgより低温になると判定し、電源間の充電を許可する。
図16に、第6実施形態による充電制御を示す。図16では、図5に対し2段目の予測電源温度が追加されている。時刻ts1における予測電源温度Tb(r)は低温判定値Tbchgより低いため、次回走行開始時に第2電源30は低温状態であると推定される。したがって、時刻ts1後、図5と同様に補充電処理が開始される。
以上のように第6実施形態では、車両放置中に容量型第2電源30が冷える前に、次回の走行に備えて第2電源30から第1電源50へ充電する。これにより、前の走行後に第2電源30及び第1電源50が暖機された性能の高い状態で、充電を行うことができる。また、電源温度推定部88は、駐車開始時情報、走行履歴、ナビゲーション情報、気象情報のうち一つ以上の情報を用いることで、次回走行開始時の予測電源温度を適切に推定することができる。
ここで、電源温度推定部88は、例えば次回走行開始時を含む日または月の気温情報に基づいて、次回走行開始時の電源温度を推定してもよい。このような簡略計算によってコスト低減が可能となる。或いは、電源温度推定部88は、車両の走行開始時の電源温度及び取得時刻を都度記憶し、記憶された電源温度及び取得時刻に基づいて、次回走行開始時の電源温度を推定してもよい。通勤時等には、以前の走行開始時の電源温度を記憶しておき、次回走行開始時の温度と仮定してもよい。
或いは、電源温度推定部88は、外部の装置で推定された温度情報又は温度の関連情報を通信によって取得し、取得した情報に基づいて、次回走行開始時の電源温度を推定してもよい。これにより、電源制御装置806の負荷を低減できる。また、演算方法を更新できるため、より正確な電源温度が得られる。
(その他の実施形態)
(a)出力型第1電源50及び容量型第2電源30は、上記実施形態に例示したリチウムイオンキャパシタ及びリチウムイオン電池に限らず、それ以外のキャパシタ及び電池、或いは、キャパシタ又は電池以外の電源を用いてもよい。また、電源の種類、電圧、電力の範囲などは変更してもよい。
(b)本発明の電源制御装置は、第2電源30が補機系統に接続されない電源システムに適用されてもよい。また補機系統において補機電源20や補機用降圧DDC25が設けられず、第2電源30の電力が直接補機負荷15に供給されるようにしてもよい。
(c)上記実施形態の充電制御において、第1電源50が満充電状態でなければ、次回走行開始するまでに第1電源50を毎回充電するようにしてもよい。また、次回走行時に電源が低温状態になることを事前に予測できた時に限り、事前に第1電源50を充電するようにしてもよい。その場合でも、ある程度の効果は得られる。
(d)本発明の電源制御装置は、ハイブリッド車両でなく電気自動車の電源システムに適用されてもよい。その場合、ハイブリッド車両におけるエンジン早掛かり防止の課題を、加速性能低下防止等の課題に置き換えて、上記実施形態の作用効果を拡張適用すればよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
10(101、105)・・・電源システム、
30 ・・・(容量型)第2電源、
40 ・・・双方向DDC(電力変換器)、
50 ・・・(出力型)第1電源、
600・・・駆動システム、
65 ・・・MG(モータジェネレータ)、
73 ・・・第2電源電力検出器、 75 ・・・第1電源電力検出器、
80、806 ・・・電源制御装置、
83 ・・・充電判定部、 84 ・・・電力変換器操作部
87 ・・・走行状態取得部。

Claims (15)

  1. 車両に搭載され、モータジェネレータ(65)を駆動する駆動システム(600)に接続される第1電源(50)、前記第1電源より電圧が低い第2電源(30)、並びに、前記駆動システム及び前記第1電源と前記第2電源との間で双方向に電力授受を行う電力変換器(40)を備え、前記第1電源は、前記第2電源に比べて出力が大きい出力型電源であり、前記第2電源は、前記第1電源に比べて蓄積可能な電力量が大きい容量型電源である電源システム(10)に適用され、前記電力変換器の作動を制御する電源制御装置であって、
    車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する走行状態取得部(87)と、
    第1電源電力検出器(75)が検出した前記第1電源の充電量、第2電源電力検出器(73)が検出した前記第2電源の充電量、及び、前記走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、前記第2電源から前記第1電源への充電実施を判定する充電判定部(83)と、
    前記充電判定部の判定結果に従って前記電力変換器を操作する電力変換器操作部(84)と、
    を有し、
    両の走行状態又は走行設定状態が、
    (1)車速が所定の判定車速以下の低車速時、又は、アクセルオフ時、
    (2)シフトレンジがPレンジの時、又は、Pレンジへの若しくはPレンジからのレンジ変更時、
    (3)パワースイッチオフ操作時、
    (4)レディオフから判定時間経過後、
    のうちいずれか一つ以上であるとき、
    前記充電判定部は、
    前記第1電源の充電量が充電量閾値未満の場合、前記電力変換器を作動させて前記第2電源から前記第1電源への充電を行い、
    前記第1電源の充電量が前記充電量閾値以上の場合、前記第2電源から前記第1電源への充電を停止するように判定する電源制御装置。
  2. 当該電源制御装置を自動で起動及び停止させる自動起動装置(90)をさらに備える前記電源システムに適用され、
    車両の駐車中に前記自動起動装置により起動及び停止し、前記第2電源から前記第1電源への充電を実施及び停止する請求項に記載の電源制御装置。
  3. 車両に搭載され、モータジェネレータ(65)を駆動する駆動システム(600)に接続される第1電源(50)、前記第1電源より電圧が低い第2電源(30)、並びに、前記駆動システム及び前記第1電源と前記第2電源との間で双方向に電力授受を行う電力変換器(40)を備え、前記第1電源は、前記第2電源に比べて出力が大きい出力型電源であり、前記第2電源は、前記第1電源に比べて蓄積可能な電力量が大きい容量型電源である電源システム(10)に適用され、前記電力変換器の作動を制御する電源制御装置であって、前記電源システムは、当該電源制御装置を自動で起動及び停止させる自動起動装置(90)をさらに備え、
    車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する走行状態取得部(87)と、
    第1電源電力検出器(75)が検出した前記第1電源の充電量、第2電源電力検出器(73)が検出した前記第2電源の充電量、及び、前記走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、前記第2電源から前記第1電源への充電実施を判定する充電判定部(83)と、
    前記充電判定部の判定結果に従って前記電力変換器を操作する電力変換器操作部(84)と、
    を有し、
    車両が所定の走行状態又は走行設定状態のとき、
    前記充電判定部は、
    前記第1電源の充電量が充電量閾値未満の場合、前記電力変換器を作動させて前記第2電源から前記第1電源への充電を行い、
    前記第1電源の充電量が前記充電量閾値以上の場合、前記第2電源から前記第1電源への充電を停止するように判定し、
    車両の駐車中に前記自動起動装置により起動及び停止し、前記第2電源から前記第1電源への充電を実施及び停止する電源制御装置。
  4. 車両に搭載され、モータジェネレータ(65)を駆動する駆動システム(600)に接続される第1電源(50)、前記第1電源より電圧が低い第2電源(30)、前記駆動システム及び前記第1電源と前記第2電源との間で双方向に電力授受を行う電力変換器(40)、車両の補機負荷(15)に電源供給する補機電源(20)、並びに、前記第2電源の電圧を降圧し前記補機電源に電力供給する補機用電力変換器(25)を備え、前記第1電源は、前記第2電源に比べて出力が大きい出力型電源であり、前記第2電源は、前記第1電源に比べて蓄積可能な電力量が大きい容量型電源である電源システム(10)に適用され、前記電力変換器の作動を制御する電源制御装置であって、
    車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する走行状態取得部(87)と、
    第1電源電力検出器(75)が検出した前記第1電源の充電量、第2電源電力検出器(73)が検出した前記第2電源の充電量、及び、前記走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、前記第2電源から前記第1電源への充電実施を判定する充電判定部(83)と、
    前記充電判定部の判定結果に従って前記電力変換器を操作する電力変換器操作部(84)と、
    を有し、
    車両が所定の走行状態又は走行設定状態のとき、
    前記充電判定部は、
    前記第1電源の充電量が充電量閾値未満の場合、前記電力変換器を作動させて前記第2電源から前記第1電源への充電を行い、
    前記第1電源の充電量が前記充電量閾値以上の場合、前記第2電源から前記第1電源への充電を停止するように判定し、
    前記充電判定部は、さらに補機電源電力検出器(72)が検出した前記補機電源の充電量に基づいて、前記第2電源から前記第1電源又は前記補機電源への充電実施を判定し、
    前記電力変換器操作部は、前記充電判定部の判定結果に従ってさらに前記補機用電力変換器を操作する電源制御装置。
  5. 前記第2電源から前記第1電源への充電を実施すると同時に、前記第2電源から前記補機電源への充電を行う請求項に記載の電源制御装置。
  6. 前記第1電源又は前記補機電源の充電要求があるとき、前記充電判定部は、前記電力変換器を作動させて前記第2電源から前記第1電源及び前記補機電源への充電を実施するように判定し、
    前記第1電源及び前記補機電源への両方の充電が終了したとき、前記電力変換器の作動を停止すように判定する請求項に記載の電源制御装置。
  7. 前記第1電源はキャパシタであり、前記第2電源は電池である前記電源システムに適用される請求項1~6のいずれか一項に記載の電源制御装置。
  8. 前記第1電源はリチウムイオンキャパシタであり、前記第2電源はリチウムイオン電池である前記電源システムに適用される請求項に記載の電源制御装置。
  9. 前記充電判定部は、前記第2電源の充電量が所定値以下の場合、前記第2電源から前記第1電源への充電を禁止する請求項1~のいずれか一項に記載の電源制御装置。
  10. 次回走行開始時における前記第2電源の予測温度である予測電源温度を推定する電源温度推定部(88)を有し、
    前記予測電源温度が低温判定値以下の場合、前記第2電源が冷える前の所定期間内に前記第1電源への充電を実施する請求項1~9のいずれか一項に記載の電源制御装置。
  11. 前記低温判定値は、前記第2電源の出力可能電力、充電量、劣化度のうち少なくとも一つを含む特性に基づいて、前記第1電源への充電に要求される出力電力を実現できる最低電源温度として設定される請求項10に記載の電源制御装置。
  12. 前記電源温度推定部は、
    駐車開始時の電源温度及び駐車開始時刻を含む駐車開始時情報、次回の走行開始時刻の推定に用いられる走行履歴情報、車両の駐車位置を示すナビゲーション情報、及び、駐車位置での時間帯毎の予想気温を含む気象情報、のうち一つ以上の情報を用い、
    電源の放置冷却に関する熱伝達差分式または実験データに基づき、次回走行開始時の予測電源温度を推定する請求項10または11に記載の電源制御装置。
  13. 前記電源温度推定部は、
    次回走行開始時を含む日または月の気温情報に基づいて、次回走行開始時の電源温度を推定する請求項10~12のいずれか一項に記載の電源制御装置。
  14. 前記電源温度推定部は、
    車両の走行開始時の電源温度及び取得時刻を都度記憶し、記憶された電源温度及び取得時刻に基づいて、次回走行開始時の電源温度を推定する請求項10~13のいずれか一項に記載の電源制御装置。
  15. 前記電源温度推定部は、
    外部の装置で推定された温度情報又は温度の関連情報を通信によって取得し、取得した情報に基づいて、次回走行開始時の電源温度を推定する請求項10~14のいずれか一項に記載の電源制御装置。
JP2018078991A 2018-04-17 2018-04-17 電源制御装置 Active JP7119524B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018078991A JP7119524B2 (ja) 2018-04-17 2018-04-17 電源制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078991A JP7119524B2 (ja) 2018-04-17 2018-04-17 電源制御装置

Publications (2)

Publication Number Publication Date
JP2019187189A JP2019187189A (ja) 2019-10-24
JP7119524B2 true JP7119524B2 (ja) 2022-08-17

Family

ID=68337422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078991A Active JP7119524B2 (ja) 2018-04-17 2018-04-17 電源制御装置

Country Status (1)

Country Link
JP (1) JP7119524B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962302B2 (ja) * 2018-09-28 2021-11-05 オムロン株式会社 電源装置および電源システム
JP2021095005A (ja) * 2019-12-17 2021-06-24 株式会社デンソーテン 制御装置および制御方法
WO2021125282A1 (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体
JP7295915B2 (ja) 2021-09-22 2023-06-21 本田技研工業株式会社 車両電源システム
WO2023157278A1 (ja) * 2022-02-21 2023-08-24 日本電気株式会社 バッテリ状態推定装置、バッテリ状態推定システム、バッテリ状態推定方法、及び記録媒体
WO2024038502A1 (ja) * 2022-08-16 2024-02-22 三菱自動車工業株式会社 ハイブリッド車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336715A (ja) 2006-06-15 2007-12-27 Toyota Motor Corp 車両用の電力供給装置
JP2010154652A (ja) 2008-12-25 2010-07-08 Honda Motor Co Ltd 電源システム
CN101938155A (zh) 2010-09-16 2011-01-05 上海中科深江电动车辆有限公司 一种用于静止电动汽车蓄电池的自动充电装置
JP2014138536A (ja) 2013-01-18 2014-07-28 Toyota Motor Corp 車両電源装置
US20160089992A1 (en) 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery system bi-stable relay control
JP2018042341A (ja) 2016-09-06 2018-03-15 株式会社デンソー 電源システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192658B2 (ja) * 2003-04-09 2008-12-10 トヨタ自動車株式会社 車両の制御装置および制御方法
JP4218634B2 (ja) * 2004-12-16 2009-02-04 株式会社デンソー ハイブリッド型車両の充電制御装置
JP2009284596A (ja) * 2008-05-20 2009-12-03 Autonetworks Technologies Ltd 車両用電源装置
JP5104780B2 (ja) * 2009-02-24 2012-12-19 株式会社デンソー 車両用電源システム
JP6398276B2 (ja) * 2014-04-11 2018-10-03 株式会社ジェイテクト 電動アシスト用電源制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336715A (ja) 2006-06-15 2007-12-27 Toyota Motor Corp 車両用の電力供給装置
JP2010154652A (ja) 2008-12-25 2010-07-08 Honda Motor Co Ltd 電源システム
CN101938155A (zh) 2010-09-16 2011-01-05 上海中科深江电动车辆有限公司 一种用于静止电动汽车蓄电池的自动充电装置
JP2014138536A (ja) 2013-01-18 2014-07-28 Toyota Motor Corp 車両電源装置
US20160089992A1 (en) 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery system bi-stable relay control
JP2018042341A (ja) 2016-09-06 2018-03-15 株式会社デンソー 電源システム

Also Published As

Publication number Publication date
JP2019187189A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7119524B2 (ja) 電源制御装置
US9849793B2 (en) Electrical storage system for vehicle
US9126488B2 (en) Charging device and charging method
CN105905102B (zh) 基于预测操作的电池荷电状态的发动机关闭阈值
CN105905100B (zh) 基于预测的再生能量的电池荷电状态目标
US10461545B2 (en) Battery system
US9561792B2 (en) Control system for a plug-in hybrid vehicle
US8222862B2 (en) Electrically powered vehicle
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
JP5067611B2 (ja) 車両用バッテリの制御装置
US20140012447A1 (en) Thermal management of vehicle battery pack during charging
JP5847837B2 (ja) ハイブリッド式の自力推進する車両をコントロールするための方法およびその種の方法に適合されたハイブリッド式の車両
JP5998755B2 (ja) 車両用電源制御装置および方法
JP6183242B2 (ja) 蓄電システム
US20110221400A1 (en) Charge controller
US20170120774A1 (en) Management device for secondary battery
KR102078123B1 (ko) 적어도 하나의 전원 배터리와 결합되며 열 엔진에 의해 구동되는 교류 발전기를 관리하는 방법
US10513194B2 (en) Method for charging the starter battery of a vehicle
JP2009136109A (ja) 充電制御装置および充電制御方法
JP4984726B2 (ja) 車両用電源制御装置
JP5202576B2 (ja) 車両用電源システム
JP2007161000A (ja) 車両用電源制御装置
JP6784684B2 (ja) ハイブリッド車両の走行用バッテリの充電状態を管理するための方法
JP2020045097A (ja) 動作モード制御装置、移動体
JP2015095917A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151