JP7084730B2 - Silver alloy powder and its manufacturing method - Google Patents

Silver alloy powder and its manufacturing method Download PDF

Info

Publication number
JP7084730B2
JP7084730B2 JP2018009365A JP2018009365A JP7084730B2 JP 7084730 B2 JP7084730 B2 JP 7084730B2 JP 2018009365 A JP2018009365 A JP 2018009365A JP 2018009365 A JP2018009365 A JP 2018009365A JP 7084730 B2 JP7084730 B2 JP 7084730B2
Authority
JP
Japan
Prior art keywords
alloy powder
silver alloy
silver
mass
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009365A
Other languages
Japanese (ja)
Other versions
JP2018123427A (en
Inventor
昌弘 吉田
良幸 道明
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Publication of JP2018123427A publication Critical patent/JP2018123427A/en
Application granted granted Critical
Publication of JP7084730B2 publication Critical patent/JP7084730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銀合金粉末およびその製造方法に関し、特に、焼成型導電性ペーストの材料として使用するのに適した銀合金粉末およびその製造方法に関する。 The present invention relates to a silver alloy powder and a method for producing the same, and more particularly to a silver alloy powder suitable for use as a material for a calcined conductive paste and a method for producing the same.

従来、太陽電池の電極、低温焼成セラミック(LTCC)を使用した電子部品や積層セラミックインダクタ(MLCI)などの積層セラミック電子部品の内部電極、積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成する焼成型導電性ペーストの材料として、銀粉などの金属粉末が使用されている。 Conventionally, electrodes of solar cells, internal electrodes of electronic parts using low temperature fired ceramics (LTCC) and laminated ceramic electronic parts such as laminated ceramic inductors (MLCI), external electrodes such as laminated ceramic capacitors and laminated ceramic inductors are formed. Metallic powder such as silver powder is used as a material for the calcined conductive paste.

しかし、銀の融点は961℃と高く、銀粉を比較的低温で焼結する焼成型導電性ペーストに使用する場合には、十分に焼結が進まず、所望の電気特性が得られないおそれがある。また、銀粉は高価であり、さらに安価な金属粉末を使用することが望まれている。 However, the melting point of silver is as high as 961 ° C., and when it is used for a calcined conductive paste that sinters silver powder at a relatively low temperature, the sintering may not proceed sufficiently and the desired electrical characteristics may not be obtained. be. Further, silver powder is expensive, and it is desired to use a cheaper metal powder.

銀よりも焼結温度が低く且つ安価な金属として、銀およびSn、Sb、Zn、Biよりなる群から選ばれた1種または2種以上を主成分とし、かつ600℃以下の融点を有する、薄板状の溶湯急冷材、細線材、微粒材からなるろう材が提案されている(例えば、特許文献1参照)。 As a metal having a lower sintering temperature than silver and being inexpensive, one or more selected from the group consisting of silver and Sn, Sb, Zn, and Bi are the main components, and the metal has a melting point of 600 ° C. or lower. A brazing material composed of a thin plate-shaped molten metal quenching material, a fine wire material, and a fine grain material has been proposed (see, for example, Patent Document 1).

特開昭58-6793号公報(第2頁)Japanese Unexamined Patent Publication No. 58-6793 (page 2)

しかし、特許文献1のろう材では、粒子径が小さい金属粉末でないため、焼結温度を十分に低下させることができず、良好な導電性を得ることができない。 However, since the brazing material of Patent Document 1 is not a metal powder having a small particle size, the sintering temperature cannot be sufficiently lowered and good conductivity cannot be obtained.

一方、金属粉末を焼成型導電性ペーストに使用する場合に、金属粉末の焼結温度が低過ぎると、焼成型導電性ペーストを焼成して形成される導電膜内にクラックが生じる可能性がある。 On the other hand, when the metal powder is used for the firing type conductive paste, if the sintering temperature of the metal powder is too low, cracks may occur in the conductive film formed by firing the firing type conductive paste. ..

したがって、本発明は、このような従来の問題点に鑑み、焼結温度が適度に低く且つ安価な銀合金粉末およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, it is an object of the present invention to provide a silver alloy powder having a moderately low sintering temperature and inexpensive, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、錫と銀との合金粉末において、平均粒径を0.5~20μmとし、酸素含有量を2.0~6.0質量%にすることにより、焼結温度が適度に低く且つ安価な銀合金粉末を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have set the average particle size to 0.5 to 20 μm and the oxygen content to 2.0 to 6.0 mass in the alloy powder of tin and silver. %, It was found that a silver alloy powder having an appropriately low sintering temperature and inexpensive can be produced, and the present invention has been completed.

すなわち、本発明による銀合金粉末は、錫と銀との合金粉末において、平均粒径が0.5~20μmであり、酸素含有量が2.0~6.0質量%であることを特徴とする。 That is, the silver alloy powder according to the present invention is characterized by having an average particle size of 0.5 to 20 μm and an oxygen content of 2.0 to 6.0% by mass in the alloy powder of tin and silver. do.

この銀合金粉末は、熱機械的分析において、収縮率0.5%のときの温度が170~300℃であるのが好ましく、収縮率1.0%のときの温度が220~400℃であるのが好ましく、収縮率1.5%のときの温度が250~450℃であるのが好ましい。また、銀合金粉末中の銀含有量が23~85質量%、錫含有量が13~75質量%であり、銀と錫の合計の含有量が93.5~98質量%であるのが好ましい。また、銀合金粉末中の炭素含有量が0.5質量%以下であるのが好ましい。また、銀合金粉末のBET比表面積が0.1~3.5m/gであるのが好ましく、タップ密度が2.5g/cm以上であるのが好ましい。 In the thermomechanical analysis, the temperature of this silver alloy powder is preferably 170 to 300 ° C. when the shrinkage rate is 0.5%, and the temperature is 220 to 400 ° C. when the shrinkage rate is 1.0%. The temperature is preferably 250 to 450 ° C. when the shrinkage rate is 1.5%. Further, it is preferable that the silver content in the silver alloy powder is 23 to 85% by mass, the tin content is 13 to 75% by mass, and the total content of silver and tin is 93.5 to 98% by mass. .. Further, the carbon content in the silver alloy powder is preferably 0.5% by mass or less. Further, the BET specific surface area of the silver alloy powder is preferably 0.1 to 3.5 m 2 / g, and the tap density is preferably 2.5 g / cm 3 or more.

また、本発明による銀合金粉末の製造方法は、錫と銀を溶解した溶湯を落下させながら、高圧水を吹き付けて急冷凝固させて得られた粉末を、酸化処理することを特徴とする。 Further, the method for producing a silver alloy powder according to the present invention is characterized in that the powder obtained by quenching and solidifying by spraying high-pressure water while dropping a molten metal in which tin and silver are dissolved is subjected to an oxidation treatment.

この銀合金粉末の製造方法において、溶解を窒素雰囲気中において行うのが好ましい。また、高圧水が純水またはアルカリ水であるのが好ましく、高圧水が大気中または窒素雰囲気中において吹き付けられるのが好ましい。また、急冷凝固させて得られた粉末を大気雰囲気中で加熱することによって酸化処理を行うのが好ましい。 In this method for producing a silver alloy powder, it is preferable to dissolve the silver alloy powder in a nitrogen atmosphere. Further, the high-pressure water is preferably pure water or alkaline water, and the high-pressure water is preferably sprayed in an atmosphere or a nitrogen atmosphere. Further, it is preferable to perform an oxidation treatment by heating the powder obtained by quenching and solidifying in an air atmosphere.

また、本発明による導電性ペーストは、上記の銀合金粉末が有機成分中に分散していることを特徴とする。この導電性ペーストは、焼成型導電性ペーストであるのが好ましい。 Further, the conductive paste according to the present invention is characterized in that the silver alloy powder described above is dispersed in an organic component. The conductive paste is preferably a baking type conductive paste.

さらに、本発明による導電膜の製造方法は、上記の焼成型導電性ペーストを基板上に塗布した後に焼成して導電膜を製造することを特徴とする。 Further, the method for producing a conductive film according to the present invention is characterized in that the above-mentioned firing type conductive paste is applied onto a substrate and then fired to produce a conductive film.

なお、本明細書中において、「平均粒径」とは、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)をいう。 In the present specification, the "average particle size" means a cumulative 50% particle size (D 50 diameter) based on the volume measured by a laser diffraction type particle size distribution measuring device (by the Heros method).

本発明によれば、焼結温度が適度に低く且つ安価な銀合金粉末およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a silver alloy powder having a moderately low sintering temperature and inexpensive, and a method for producing the same.

実施例1~2と比較例2~3の銀合金粉末および比較例1の銀粉の熱機械的分析(TMA)における温度に対する膨張率の関係を示す図である。It is a figure which shows the relationship of the expansion coefficient with respect to the temperature in the thermomechanical analysis (TMA) of the silver alloy powder of Examples 1 and 2, the silver alloy powder of Comparative Examples 2 and 3, and the silver powder of Comparative Example 1.

本発明による銀合金粉末の実施の形態では、錫と銀との合金の粉末において、平均粒径が0.5~20μm(銀合金粉末の焼結温度をさらに低くするために、好ましくは0.5~15μm、さらに好ましくは0.5~10μm)であり、酸素含有量は、2.0~6.0質量%(好ましくは2.3~5.0質量%)である。この銀合金粉末は、銀粉よりも焼結温度が低くなるが、焼結温度が低過ぎないので、焼成型導電性ペーストに使用する場合に、焼成型導電性ペーストを焼成する際に急激な焼結が起こり難く、焼成により形成される導電膜内にクラックが生じ難くなると考えられる。 In the embodiment of the silver alloy powder according to the present invention, in the powder of the alloy of tin and silver, the average particle size is 0.5 to 20 μm (in order to further lower the sintering temperature of the silver alloy powder, preferably 0. It is 5 to 15 μm, more preferably 0.5 to 10 μm), and the oxygen content is 2.0 to 6.0% by mass (preferably 2.3 to 5.0% by mass). This silver alloy powder has a lower sintering temperature than the silver powder, but the sintering temperature is not too low. Therefore, when it is used for a firing type conductive paste, it is rapidly baked when the firing type conductive paste is fired. It is considered that formation is unlikely to occur and cracks are unlikely to occur in the conductive film formed by firing.

この銀合金粉末は、熱機械的分析において、収縮率0.5%のときの温度が好ましくは170~300℃(好ましくは180~290℃)であり、収縮率1.0%のときの温度が好ましくは220~400℃(さらに好ましくは240~390℃)であり、収縮率1.5%のときの温度が好ましくは250~450℃(さらに好ましくは270~430℃)である。また、この銀合金粉末を導電性ペーストの材料に使用して導電膜を製造する場合に、焼結温度を(導電膜の抵抗に悪影響を与えない程度に)適度に低くしながら導電膜の導電性を向上させるために、銀合金粉末中の銀含有量は、好ましくは23~85質量%、さらに好ましくは33~74.7質量%であり、錫含有量は、好ましくは13~75質量%、さらに好ましくは23~64.7質量%であり、銀と錫の合計の含有量は、好ましくは93.5~98質量%、さらに好ましくは94.8~97.7質量%である。また、銀合金粉末中の炭素含有量は、銀合金粉末を焼成型導電性ペーストに使用する場合に、焼成時のガスの発生を抑制して、焼成により基板上に形成される導電膜と基板との密着性を向上させるために、0.5質量%以下であるのが好ましく、0.2質量%以下であるのがさらに好ましい。銀合金粉末のBET比表面積は、0.1~3.5m/gであるのが好ましく、1~3.5m/gであるのがさらに好ましい。銀合金粉末のタップ密度は、銀合金粉末を導電性ペーストに使用する場合に、銀合金粉末の充填性を高めて、焼成により形成される導電膜の導電性を向上させるために、2.5g/cm以上であるのが好ましく、3~5g/cmであるのがさらに好ましい。銀合金粉末の形状は、球状やフレーク状などのいずれの形状でもよく、形状が揃っていない不定形状でもよい。 In the thermomechanical analysis, the temperature of this silver alloy powder is preferably 170 to 300 ° C. (preferably 180 to 290 ° C.) when the shrinkage rate is 0.5%, and the temperature when the shrinkage rate is 1.0%. Is preferably 220 to 400 ° C. (more preferably 240 to 390 ° C.), and the temperature when the shrinkage rate is 1.5% is preferably 250 to 450 ° C. (more preferably 270 to 430 ° C.). Further, when a conductive film is produced by using this silver alloy powder as a material for a conductive paste, the conductivity of the conductive film is conducted while the sintering temperature is appropriately lowered (to the extent that the resistance of the conductive film is not adversely affected). In order to improve the properties, the silver content in the silver alloy powder is preferably 23 to 85% by mass, more preferably 33 to 74.7% by mass, and the tin content is preferably 13 to 75% by mass. , More preferably 23 to 64.7% by mass, and the total content of silver and tin is preferably 93.5 to 98% by mass, even more preferably 94.8 to 97.7% by mass. In addition, the carbon content in the silver alloy powder suppresses the generation of gas during firing when the silver alloy powder is used for the firing type conductive paste, and the conductive film and the substrate formed on the substrate by firing. It is preferably 0.5% by mass or less, and more preferably 0.2% by mass or less in order to improve the adhesion with. The BET specific surface area of the silver alloy powder is preferably 0.1 to 3.5 m 2 / g, and more preferably 1 to 3.5 m 2 / g. The tap density of the silver alloy powder is 2.5 g in order to increase the filling property of the silver alloy powder and improve the conductivity of the conductive film formed by firing when the silver alloy powder is used for the conductive paste. It is preferably 3 to cm 3 or more, and more preferably 3 to 5 g / cm 3 . The shape of the silver alloy powder may be any shape such as a spherical shape or a flake shape, or may be an indefinite shape in which the shapes are not uniform.

上述した銀合金粉末の実施の形態は、本発明による銀合金粉末の製造方法の実施の形態により製造することができる。 The embodiment of the silver alloy powder described above can be produced by the embodiment of the method for producing a silver alloy powder according to the present invention.

本発明による銀合金粉末の製造方法の実施の形態では、錫と銀を(好ましくは窒素雰囲気中において)溶解した溶湯を落下させながら、(好ましくは、大気中または窒素雰囲気中において水圧30~200MPaで純水またはアルカリ水である)高圧水を吹き付けて急冷凝固させて得られた粉末を、(好ましくは、大気雰囲気などの酸化性雰囲気中において150~250℃の温度で5~15時間加熱することにより)酸化処理する。 In the embodiment of the method for producing a silver alloy powder according to the present invention, a molten metal in which tin and silver are dissolved (preferably in a nitrogen atmosphere) is dropped, and the water pressure is 30 to 200 MPa (preferably in the atmosphere or in a nitrogen atmosphere). The powder obtained by quenching and solidifying by spraying high-pressure water (preferably pure water or alkaline water) is heated at a temperature of 150 to 250 ° C. for 5 to 15 hours in an oxidizing atmosphere such as an air atmosphere. (By) Oxidation treatment.

高圧水を吹き付ける、所謂水アトマイズ法により銀合金粉末を製造すると、粒子径が小さい銀合金粉末を得ることができるので、銀合金粉末を(焼成型導電性ペーストなどの)導電性ペーストの材料に使用した場合に、焼結温度が低くなり、例えば500℃程度の低温でも十分に焼結して、良好な導電性を得ることができる。なお、窒素雰囲気中において錫と銀を溶解したり、窒素雰囲気中において高圧水を吹き付けると、急冷凝固後に得られる銀合金粉末の内部の酸素量が少なくなり、このような銀合金粉末を導電性ペーストの材料に使用して導電膜を製造した場合に、導電膜の抵抗が低くなることが期待される。一方、急冷凝固後に得られる銀合金粉末を酸化処理すると、銀合金粉末の表面の酸素量が増加し、このような銀合金粉末を導電性ペーストの材料に使用して導電膜を製造した場合に、焼結温度が(導電膜の抵抗に悪影響を与えない程度に)適度に低くなると考えられる。 When silver alloy powder is produced by the so-called water atomization method in which high-pressure water is sprayed, silver alloy powder having a small particle size can be obtained. Therefore, the silver alloy powder can be used as a material for conductive paste (such as calcined conductive paste). When used, the sintering temperature becomes low, and good conductivity can be obtained by sufficiently sintering even at a low temperature of, for example, about 500 ° C. When tin and silver are dissolved in a nitrogen atmosphere or high-pressure water is sprayed in a nitrogen atmosphere, the amount of oxygen inside the silver alloy powder obtained after quenching and solidification decreases, and such silver alloy powder becomes conductive. It is expected that the resistance of the conductive film will be low when the conductive film is manufactured by using it as a material for the paste. On the other hand, when the silver alloy powder obtained after quenching and solidification is subjected to an oxidation treatment, the amount of oxygen on the surface of the silver alloy powder increases, and when such a silver alloy powder is used as a material for a conductive paste to produce a conductive film. It is considered that the sintering temperature is moderately low (to the extent that the resistance of the conductive film is not adversely affected).

本発明による銀合金粉末の実施の形態は、(銀合金粉末を有機成分中に分散させた)導電性ペーストの材料などに使用することができる。特に、本発明による銀合金粉末の実施の形態は、焼結温度が低いことから、焼成温度が低い(好ましくは300~800℃程度、さらに好ましくは400~700℃程度の低温で焼成する)焼成型導電性ペーストの材料として使用するのが好ましい。なお、本発明による銀合金粉末の実施の形態は、焼成温度が低い焼成型導電性ペーストの材料として使用することができるので、(従来の焼成型導電性ペーストの焼成温度より低温で加熱して導電膜を形成する)樹脂硬化型導電性ペーストの材料として使用してもよい。 The embodiment of the silver alloy powder according to the present invention can be used as a material for a conductive paste (in which the silver alloy powder is dispersed in an organic component). In particular, in the embodiment of the silver alloy powder according to the present invention, since the sintering temperature is low, the firing temperature is low (preferably about 300 to 800 ° C., more preferably about 400 to 700 ° C.). It is preferable to use it as a material for a mold conductive paste. In addition, since the embodiment of the silver alloy powder according to the present invention can be used as a material for a baking type conductive paste having a low firing temperature (heated at a temperature lower than the firing temperature of the conventional firing type conductive paste). It may be used as a material for a resin-curable conductive paste (which forms a conductive film).

本発明による銀合金粉末の実施の形態を(焼成型導電性ペーストなどの)導電性ペーストの材料として使用する場合、導電性ペーストの構成要素として、銀合金粉末と、(飽和脂肪族炭化水素類、不飽和脂肪族炭化水素類、ケトン類、芳香族炭化水素類、グリコールエーテル類、エステル類、アルコール類などの)有機溶剤が含まれ、必要に応じて、(エチルセルロースやアクリル樹脂などの)バインダ樹脂を有機溶剤に溶解したビヒクル、ガラスフリット、無機酸化物、分散剤などを含んでもよい。 When the embodiment of the silver alloy powder according to the present invention is used as a material for a conductive paste (such as a calcined conductive paste), silver alloy powder and saturated aliphatic hydrocarbons (saturated aliphatic hydrocarbons) are used as components of the conductive paste. Contains organic solvents (such as unsaturated aliphatic hydrocarbons, ketones, aromatic hydrocarbons, glycol ethers, esters, alcohols, etc.) and, if necessary, binders (such as ethyl cellulose and acrylic resins). It may contain a vehicle in which a resin is dissolved in an organic solvent, a glass frit, an inorganic oxide, a dispersant, or the like.

導電性ペースト中の銀合金粉末の含有量は、導電性ペーストの製造コストおよび導電膜の導電性の観点から、5~98質量%であるのが好ましく、70~95質量%であるのがさらに好ましい。また、導電性ペースト中の銀合金粉末は、1種以上の他の金属粉末(銀粉、銀と錫の合金粉末、錫粉などの金属粉末)と混合して使用してもよい。この金属粉末は、本発明による銀合金粉末の実施の形態と形状や粒径が異なる金属粉末でもよい。この金属粉末の平均粒径は、導電性ペーストを低温で焼成するために、0.5~20μmであるのが好ましい。また、この金属粉末の導電性ペースト中の含有量は、1~94質量%であるのが好ましく、4~29質量%であるのがさらに好ましい。なお、導電性ペースト中の銀合金粉末と金属粉末の含有量の合計は、60~99質量%であるのが好ましい。また、導電性ペースト中のバインダ樹脂の含有量は、導電性ペースト中の銀合金粉末の分散性や導電性ペーストの導電性の観点から、0.1~10質量%であるのが好ましく、0.1~6質量%であるのがさらに好ましい。このバインダ樹脂を有機溶剤に溶解したビヒクルは、2種以上を混合して使用してもよい。また、導電性ペースト中のガラスフリットの含有量は、導電性ペーストの焼結性の観点から、0.1~20質量%であるのが好ましく、0.1~10質量%であるのがさらに好ましい。このガラスフリットは、2種以上を混合して使用してもよい。また、導電性ペースト中の有機溶剤の含有量(導電性ペースト中にビヒクルが含まれる場合は、ビヒクルの有機溶剤を含む合計の有機溶剤の含有量)は、導電性ペースト中の銀合金粉末の分散性や導電性ペーストの適切な粘度を考慮して、0.8~20質量%であるのが好ましく、0.8~15質量%であるのがさらに好ましい。この有機溶剤は、2種以上を混合して使用してもよい。 The content of the silver alloy powder in the conductive paste is preferably 5 to 98% by mass, more preferably 70 to 95% by mass, from the viewpoint of the production cost of the conductive paste and the conductivity of the conductive film. preferable. Further, the silver alloy powder in the conductive paste may be mixed with one or more other metal powders (silver powder, silver and tin alloy powder, metal powder such as tin powder) and used. This metal powder may be a metal powder having a different shape and particle size from the embodiment of the silver alloy powder according to the present invention. The average particle size of this metal powder is preferably 0.5 to 20 μm in order to bake the conductive paste at a low temperature. The content of this metal powder in the conductive paste is preferably 1 to 94% by mass, more preferably 4 to 29% by mass. The total content of the silver alloy powder and the metal powder in the conductive paste is preferably 60 to 99% by mass. The content of the binder resin in the conductive paste is preferably 0.1 to 10% by mass, preferably 0 to 10% by mass, from the viewpoint of the dispersibility of the silver alloy powder in the conductive paste and the conductivity of the conductive paste. .1 to 6% by mass is more preferable. Two or more kinds of vehicles in which this binder resin is dissolved in an organic solvent may be mixed and used. Further, the content of the glass frit in the conductive paste is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, from the viewpoint of the sinterability of the conductive paste. preferable. This glass frit may be used by mixing two or more kinds. Further, the content of the organic solvent in the conductive paste (when the vehicle is contained in the conductive paste, the total content of the organic solvent including the organic solvent in the vehicle) is the content of the silver alloy powder in the conductive paste. Considering the dispersibility and the appropriate viscosity of the conductive paste, it is preferably 0.8 to 20% by mass, more preferably 0.8 to 15% by mass. This organic solvent may be used by mixing two or more kinds.

このような導電性ペーストは、例えば、各構成要素を計量して所定の容器に入れ、らいかい機、万能攪拌機、ニーダーなどを用いて予備混練した後、3本ロールで本混練することによって作製することができる。また、必要に応じて、その後、有機溶剤を添加して、粘度調整を行ってもよい。また、ガラスフリットや無機酸化物とビヒクルのみを混練して粒度を下げた後、最後に銀合金粉末を追加して本混練してもよい。 Such a conductive paste is produced, for example, by weighing each component, putting it in a predetermined container, pre-kneading it using a raker, a universal stirrer, a kneader, etc., and then main-kneading it with three rolls. can do. Further, if necessary, an organic solvent may be added thereafter to adjust the viscosity. Further, after kneading only the glass frit or the inorganic oxide and the vehicle to reduce the particle size, silver alloy powder may be added at the end for the main kneading.

この導電性ペーストをディッピングや(メタルマスク印刷、スクリーン印刷、インクジェット印刷などの)印刷などにより基板上に所定パターン形状に塗布した後に焼成して導電膜を形成することができる。導電性ペーストをディッピングにより塗布する場合には、導電性ペースト中に基板をディッピングして塗膜を形成し、レジストを利用したフォトリソグラフィなどにより塗膜の不要な部分を除去することによって、基板上に所定パターン形状の塗膜を形成した後、基板上に所定パターン形状の導電膜を形成することができる。なお、塗膜の不要な部分を除去する代わりに、導電膜の不要な部分を除去して、基板上に所定パターン形状の導電膜を形成してもよい。 This conductive paste can be applied to a predetermined pattern shape on a substrate by dipping or printing (metal mask printing, screen printing, inkjet printing, etc.) and then fired to form a conductive film. When the conductive paste is applied by dipping, the substrate is dipped in the conductive paste to form a coating film, and unnecessary parts of the coating film are removed by photolithography using a resist on the substrate. After forming a coating film having a predetermined pattern shape on the substrate, a conductive film having a predetermined pattern shape can be formed on the substrate. Instead of removing the unnecessary portion of the coating film, the unnecessary portion of the conductive film may be removed to form a conductive film having a predetermined pattern shape on the substrate.

基板上に塗布した導電性ペーストの焼成は、大気雰囲気下で行ってもよいし、窒素、アルゴン、水素、一酸化炭素などの非酸化性雰囲気下で行ってもよい。なお、本発明による銀合金粉末の実施の形態は、熱機械的分析において所定の収縮率のときの温度が低く、焼結温度が低いため、導電性ペーストの焼成温度を低く(好ましくは300~700℃程度、さらに好ましくは400~600℃程度の低温に)することができる。一方、本発明による銀合金粉末の実施の形態は、熱機械的分析において所定の収縮率のときの温度が低過ぎず、焼結温度が低過ぎないので、導電性ペーストを焼成する際に急激な焼結が起こり難く、焼成により形成される導電膜内にクラックが生じ難くなると考えられる。なお、導電性ペーストの焼成温度を一般的な焼成温度(700~900℃程度)にしてもよい。また、導電性ペーストの焼成の前に、真空乾燥などにより予備乾燥を行うことにより、導電性ペースト中の有機溶剤などの揮発成分を除去してもよい。 The conductive paste applied on the substrate may be calcined in an atmospheric atmosphere, or may be calcined in a non-oxidizing atmosphere such as nitrogen, argon, hydrogen, or carbon monoxide. In the embodiment of the silver alloy powder according to the present invention, the firing temperature of the conductive paste is low (preferably 300 to 300) because the temperature at a predetermined shrinkage rate is low and the sintering temperature is low in the thermomechanical analysis. The temperature can be lowered to about 700 ° C., more preferably about 400 to 600 ° C.). On the other hand, in the embodiment of the silver alloy powder according to the present invention, the temperature at a predetermined shrinkage rate is not too low and the sintering temperature is not too low in the thermomechanical analysis. It is considered that such sintering is unlikely to occur, and cracks are unlikely to occur in the conductive film formed by firing. The firing temperature of the conductive paste may be a general firing temperature (about 700 to 900 ° C.). Further, the volatile components such as the organic solvent in the conductive paste may be removed by performing pre-drying by vacuum drying or the like before firing the conductive paste.

以下、本発明による銀合金粉末およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the silver alloy powder according to the present invention and the method for producing the same will be described in detail.

[実施例1]
ショット銀1.35kgとショット錫1.65kgを窒素雰囲気中において1100℃に加熱して溶解した溶湯をタンディッシュ下部から落下させながら、水アトマイズ装置により大気中において水圧150MPa、水量160L/分で高圧水を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形物を水洗し、乾燥し、解砕し、風力分級し、得られた粉末を大気雰囲気中において180℃で10時間加熱して酸化処理することにより、銀合金粉末(Ag-Sn合金粉末)を得た。なお、高圧水として、純水21.6mに対して苛性ソーダ157.55gを添加したアルカリ水溶液(pH10.26)を使用した。
[Example 1]
While 1.35 kg of shot silver and 1.65 kg of shot tin are heated to 1100 ° C in a nitrogen atmosphere and the molten metal melted is dropped from the lower part of the tundish, a water atomizing device is used to create a high pressure in the atmosphere at a water pressure of 150 MPa and a water volume of 160 L / min. Water is sprayed to quench and solidify, the obtained slurry is solid-liquid separated, the solid is washed with water, dried, crushed, wind-classified, and the obtained powder is heated at 180 ° C. for 10 hours in an air atmosphere. Then, it was subjected to an oxidation treatment to obtain a silver alloy powder (Ag—Sn alloy powder). As the high-pressure water, an alkaline aqueous solution (pH 10.26) in which 157.55 g of caustic soda was added to 21.6 m 3 of pure water was used.

このようにして得られた銀合金粉末について、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution were determined, the alloy composition was analyzed, and thermomechanical analysis (TMA) was performed.

BET比表面積は、BET比表面積測定器(ユアサアイオニクス株式会社製の4ソーブUS)を使用して、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N:30体積%、He:70体積%)を流しながら、BET1点法により測定した。その結果、BET比表面積は1.19m/gであった。 The BET specific surface area is determined by flowing nitrogen gas into the measuring instrument at 105 ° C. for 20 minutes using a BET specific surface area measuring instrument (4 Sorb US manufactured by Yuasa Ionics Co., Ltd.) to degas, and then nitrogen and helium. The measurement was carried out by the BET 1-point method while flowing a mixed gas (N 2 : 30% by volume, He: 70% by volume). As a result, the BET specific surface area was 1.19 m 2 / g.

タップ密度(TAP)は、特開2007-263860号公報に記載された方法と同様に、内径6mm×高さ11.9mmの有底円筒形のダイにその容積の80%まで銀合金粉末を充填して銀合金粉末層を形成し、この銀合金粉末層の上面に0.160N/mの圧力を均一に加えてこれ以上銀合金粉末が密に充填されなくなるまで圧縮した後、銀合金粉末層の高さを測定し、この銀合金粉末層の高さの測定値と、充填された銀合金粉末の重量とから、銀合金粉末の密度を求めて、この密度を銀合金粉末のタップ密度とした。その結果、タップ密度は3.2g/cmであった。 The tap density (TAP) is the same as the method described in JP-A-2007-263860, in which a bottomed cylindrical die having an inner diameter of 6 mm and a height of 11.9 mm is filled with silver alloy powder up to 80% of its volume. A silver alloy powder layer is formed, and a pressure of 0.160 N / m 2 is uniformly applied to the upper surface of the silver alloy powder layer to compress the silver alloy powder until the silver alloy powder is no longer densely filled. The height of the layer is measured, and the density of the silver alloy powder is obtained from the measured value of the height of the silver alloy powder layer and the weight of the filled silver alloy powder, and this density is used as the tap density of the silver alloy powder. And said. As a result, the tap density was 3.2 g / cm 3 .

酸素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。その結果、酸素含有量は2.52質量%であった。 The oxygen content was measured with an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.). As a result, the oxygen content was 2.52% by mass.

炭素含有量は、炭素・硫黄分析装置(堀場製作所製のEMIA-220V)により測定した。その結果、炭素含有量は0.01質量%であった。 The carbon content was measured by a carbon / sulfur analyzer (EMIA-220V manufactured by HORIBA, Ltd.). As a result, the carbon content was 0.01% by mass.

粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の乾燥モジュール)))を使用して、分散圧5barで測定した。その結果、累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は4.0μmであった。 The particle size distribution was measured at a dispersion pressure of 5 bar using a laser diffraction type particle size distribution measuring device (a hellos particle size distribution measuring device (HELOS & RODOS (air flow type drying module)) manufactured by SYMPATEC). As a result, the cumulative 10% particle diameter (D 10 ) was 0.8 μm, the cumulative 50% particle diameter (D 50 ) was 1.8 μm, and the cumulative 90% particle diameter (D 90 ) was 4.0 μm.

合金組成分析は、誘導結合プラズマ(ICP)発光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)によって行った。その結果、合金粉末中のAg含有量は44質量%、Sn含有量は53質量%であった。 The alloy composition analysis was performed by an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.). As a result, the Ag content in the alloy powder was 44% by mass and the Sn content was 53% by mass.

銀合金粉末の熱機械的分析(TMA)は、銀合金粉末を直径5mm、高さ3mmのアルミナパンに詰めて、熱機械的分析(TMA)装置(セイコーインスツルメンツ株式会社製のTMA/SS6200)の試料ホルダ(シリンダ)にセットし、測定プローブにより荷重0.147Nで1分間押し固めて作製した測定試料について、200mL/分の流量で窒素ガスを流入しながら、測定荷重980mNで荷重を付与して、常温から昇温速度10℃/分で500℃まで昇温し、測定試料の収縮率(常温のときの測定試料の長さに対する収縮率)を測定した。その結果、収縮率0.5%(膨張率-0.5%)のときの温度は211℃、収縮率1.0%(膨張率-1.0%)のときの温度は255℃、収縮率1.5%(膨張率-1.5%)のときの温度は281℃であった。 Thermomechanical analysis (TMA) of silver alloy powder is performed by packing silver alloy powder in an alumina pan with a diameter of 5 mm and a height of 3 mm and using a thermomechanical analysis (TMA) device (TMA / SS6200 manufactured by Seiko Instruments Co., Ltd.). A measurement sample prepared by setting it in a sample holder (cylinder) and compacting it with a measurement probe at a load of 0.147 N for 1 minute is applied with a measurement load of 980 mN while flowing nitrogen gas at a flow rate of 200 mL / min. The temperature was raised from room temperature to 500 ° C. at a heating rate of 10 ° C./min, and the shrinkage rate of the measurement sample (shrinkage rate with respect to the length of the measurement sample at room temperature) was measured. As a result, the temperature when the shrinkage rate is 0.5% (expansion rate-0.5%) is 211 ° C, the temperature when the shrinkage rate is 1.0% (expansion rate-1.0%) is 255 ° C, and the shrinkage. The temperature at a rate of 1.5% (expansion rate −1.5%) was 281 ° C.

[実施例2]
酸化処理の加熱温度を200℃とした以外は、実施例1と同様の方法により、銀合金粉末(Ag-Sn合金粉末)を得た。
[Example 2]
A silver alloy powder (Ag—Sn alloy powder) was obtained by the same method as in Example 1 except that the heating temperature of the oxidation treatment was set to 200 ° C.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are obtained by the same method as in Example 1, and the alloy composition is analyzed and the thermal machine is used. A specific analysis (TMA) was performed.

その結果、合金粉末のBET比表面積は1.39m/g、タップ密度は4.3g/cm、酸素含有量は3.62質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は2.1μm、累積90%粒子径(D90)は4.9μmであった。合金粉末中のAg含有量は44質量%、Sn含有量は53質量%であった。また、収縮率0.5%のときの温度は203℃、収縮率1.0%のときの温度は389℃、収縮率1.5%のときの温度は411℃であった。 As a result, the BET specific surface area of the alloy powder was 1.39 m 2 / g, the tap density was 4.3 g / cm 3 , the oxygen content was 3.62% by mass, and the carbon content was 0.01% by mass, which were cumulative. The 10% particle diameter (D 10 ) was 0.8 μm, the cumulative 50% particle diameter (D 50 ) was 2.1 μm, and the cumulative 90% particle diameter (D 90 ) was 4.9 μm. The Ag content in the alloy powder was 44% by mass and the Sn content was 53% by mass. The temperature when the shrinkage rate was 0.5% was 203 ° C., the temperature when the shrinkage rate was 1.0% was 389 ° C., and the temperature when the shrinkage rate was 1.5% was 411 ° C.

[比較例1]
ショット銀13kgを窒素雰囲気中において1600℃に加熱して溶解した溶湯をタンディッシュ下部から落下させながら、水アトマイズ装置により大気中において水圧150MPa、水量160L/分で高圧水(pH5.8の純水)を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形物を水洗し、乾燥し、解砕し、風力分級して、銀粉を得た。
[Comparative Example 1]
While 13 kg of shot silver is heated to 1600 ° C in a nitrogen atmosphere and the molten metal melted is dropped from the lower part of the tundish, high pressure water (pure water with a pH of 5.8) is used in the atmosphere with a water atomizing device at a water pressure of 150 MPa and a water volume of 160 L / min. ) Was sprayed to quench and solidify, and the obtained slurry was separated into solid and liquid, and the solid was washed with water, dried, crushed, and classified by wind power to obtain silver powder.

このようにして得られた銀粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)を行った。 With respect to the silver powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as in Example 1, and the alloy composition analysis is performed and the thermomechanical analysis is performed. (TMA) was performed.

その結果、銀粉のBET比表面積は0.47m/g、タップ密度は5.1g/cm、酸素含有量は0.07質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は2.1μm、累積90%粒子径(D90)は4.1μmであった。銀粉中のAg含有量は100質量%であった。また、収縮率0.5%のときの温度は479℃、収縮率1.0%のときの温度は490℃、収縮率1.5%のときの温度は500℃であった。 As a result, the BET specific surface area of the silver powder was 0.47 m 2 / g, the tap density was 5.1 g / cm 3 , the oxygen content was 0.07% by mass, the carbon content was 0.01% by mass, and the cumulative total was 10. The% particle diameter (D 10 ) was 0.7 μm, the cumulative 50% particle diameter (D 50 ) was 2.1 μm, and the cumulative 90% particle diameter (D 90 ) was 4.1 μm. The Ag content in the silver powder was 100% by mass. The temperature when the shrinkage rate was 0.5% was 479 ° C, the temperature when the shrinkage rate was 1.0% was 490 ° C, and the temperature when the shrinkage rate was 1.5% was 500 ° C.

[比較例2]
酸化処理を行わなかった以外は、実施例1と同様の方法により、銀合金粉末(Ag-Sn合金粉末)を得た。
[Comparative Example 2]
A silver alloy powder (Ag—Sn alloy powder) was obtained by the same method as in Example 1 except that the oxidation treatment was not performed.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are obtained by the same method as in Example 1, and the alloy composition is analyzed and the thermal machine is used. A specific analysis (TMA) was performed.

その結果、合金粉末のBET比表面積は1.63m/g、タップ密度は3.3g/cm、酸素含有量は0.76質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は4.0μmであった。合金粉末中のAg含有量は45質量%、Sn含有量は55質量%であった。また、収縮率0.5%のときの温度は164℃、収縮率1.0%のときの温度は202℃、収縮率1.5%のときの温度は210℃であった。 As a result, the BET specific surface area of the alloy powder was 1.63 m 2 / g, the tap density was 3.3 g / cm 3 , the oxygen content was 0.76% by mass, and the carbon content was 0.01% by mass, which were cumulative. The 10% particle size (D 10 ) was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.8 μm, and the cumulative 90% particle size (D 90 ) was 4.0 μm. The Ag content in the alloy powder was 45% by mass, and the Sn content was 55% by mass. The temperature when the shrinkage rate was 0.5% was 164 ° C, the temperature when the shrinkage rate was 1.0% was 202 ° C, and the temperature when the shrinkage rate was 1.5% was 210 ° C.

[比較例3]
ショット銀およびショット錫の量をそれぞれ1.95kgおよび1.05kgとし、大気雰囲気中において溶解した以外は、比較例2と同様の方法により、銀合金粉末(Ag-Sn合金粉末)を得た。
[Comparative Example 3]
Silver alloy powder (Ag—Sn alloy powder) was obtained by the same method as in Comparative Example 2 except that the amounts of shot silver and shot tin were set to 1.95 kg and 1.05 kg, respectively, and dissolved in the air atmosphere.

このようにして得られた銀合金粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求め、合金組成分析を行うとともに、熱機械的分析(TMA)を行った。 With respect to the silver alloy powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are obtained by the same method as in Example 1, and the alloy composition is analyzed and the thermal machine is used. A specific analysis (TMA) was performed.

その結果、合金粉末のBET比表面積は1.05m/g、タップ密度は3.7g/cm、酸素含有量は0.53質量%、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は3.3μmであった。合金粉末中のAg含有量は65質量%、Sn含有量は34質量%であった。また、収縮率0.5%のときの温度は118℃、収縮率1.0%のときの温度は181℃、収縮率1.5%のときの温度は212℃であった。 As a result, the BET specific surface area of the alloy powder was 1.05 m 2 / g, the tap density was 3.7 g / cm 3 , the oxygen content was 0.53% by mass, and the carbon content was 0.01% by mass. The 10% particle diameter (D 10 ) was 0.8 μm, the cumulative 50% particle diameter (D 50 ) was 1.8 μm, and the cumulative 90% particle diameter (D 90 ) was 3.3 μm. The Ag content in the alloy powder was 65% by mass and the Sn content was 34% by mass. The temperature when the shrinkage rate was 0.5% was 118 ° C., the temperature when the shrinkage rate was 1.0% was 181 ° C., and the temperature when the shrinkage rate was 1.5% was 212 ° C.

これらの実施例1~2と比較例2~3の銀合金粉末および比較例1の銀粉の製造条件および特性を表1~表3に示す。また、実施例1~2と比較例2~3の銀合金粉末および比較例1の銀粉の熱機械的分析(TMA)における温度に対する膨張率の関係を図1に示す。 Tables 1 to 3 show the production conditions and characteristics of the silver alloy powders of Examples 1 and 2 and Comparative Examples 2 and 3 and the silver powder of Comparative Example 1. Further, FIG. 1 shows the relationship between the expansion rate of the silver alloy powders of Examples 1 and 2 and Comparative Examples 2 and 3 and the silver powder of Comparative Example 1 with respect to temperature in the thermomechanical analysis (TMA).

Figure 0007084730000001
Figure 0007084730000001

Figure 0007084730000002
Figure 0007084730000002

Figure 0007084730000003
Figure 0007084730000003

表1~表3および図1からわかるように、実施例1および2では、比較例1の銀粉と比べて低い温度で焼結する銀合金粉末を製造することができる。また、表1~表3および図1からわかるように、実施例1および2では、比較例1の銀粉と比べて低い温度で焼結し、比較例2および3と比べて焼結速度が遅い銀合金粉末を製造することができる。なお、銀合金粉末を焼成型導電性ペーストの材料として使用する場合、銀合金粉末の焼結速度が遅いと、導電膜にクラックが生じる可能性が低くなる。 As can be seen from Tables 1 to 3 and FIG. 1, in Examples 1 and 2, a silver alloy powder that is sintered at a lower temperature than the silver powder of Comparative Example 1 can be produced. Further, as can be seen from Tables 1 to 3 and FIG. 1, in Examples 1 and 2, sintering is performed at a lower temperature than the silver powder of Comparative Example 1, and the sintering speed is slower than that of Comparative Examples 2 and 3. A silver alloy powder can be produced. When the silver alloy powder is used as a material for the firing type conductive paste, if the sintering rate of the silver alloy powder is slow, the possibility of cracks in the conductive film is low.

本発明による銀合金粉末は、太陽電池の電極、低温焼成セラミック(LTCC)を使用した電子部品や積層セラミックインダクタなどの積層セラミック電子部品の内部電極、積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成するために、低温で焼結する焼成型導電性ペーストの材料として利用することができる。 The silver alloy powder according to the present invention includes electrodes of solar cells, internal electrodes of laminated ceramic electronic components such as electronic components using low temperature fired ceramics (LTCC) and laminated ceramic inductors, and external electrodes such as laminated ceramic capacitors and laminated ceramic inductors. Can be used as a material for a calcined conductive paste that is sintered at a low temperature in order to form.

Claims (15)

銀含有量が33~74.7質量%、錫含有量が23~64.7質量%であり、銀と錫の合計の含有量が93.5~97.7質量%である銀合金粉末であって、平均粒径が0.5~20μmであり、酸素含有量が2.0~6.0質量%であることを特徴とする、銀合金粉末。 A silver alloy powder having a silver content of 33 to 74.7% by mass, a tin content of 23 to 64.7% by mass, and a total content of silver and tin of 93.5 to 97.7% by mass. A silver alloy powder having an average particle size of 0.5 to 20 μm and an oxygen content of 2.0 to 6.0% by mass. 熱機械的分析において、収縮率0.5%のときの温度が170~300℃であることを特徴とする、請求項1に記載の銀合金粉末。 The silver alloy powder according to claim 1, wherein the temperature is 170 to 300 ° C. when the shrinkage rate is 0.5% in the thermomechanical analysis. 前記熱機械的分析において、収縮率1.0%のときの温度が220~400℃であることを特徴とする、請求項に記載の銀合金粉末。 The silver alloy powder according to claim 2 , wherein the temperature is 220 to 400 ° C. when the shrinkage rate is 1.0% in the thermomechanical analysis. 前記熱機械的分析において、収縮率1.5%のときの温度が250~450℃であることを特徴とする、請求項2または3に記載の銀合金粉末。 The silver alloy powder according to claim 2 or 3 , wherein in the thermomechanical analysis, the temperature at a shrinkage rate of 1.5% is 250 to 450 ° C. 炭素含有量が0.5質量%以下であることを特徴とする、請求項1乃至4のいずれかに記載の銀合金粉末。 The silver alloy powder according to any one of claims 1 to 4, wherein the carbon content is 0.5% by mass or less. BET比表面積が0.1~3.5m/gであることを特徴とする、請求項1乃至5のいずれかに記載の銀合金粉末。 The silver alloy powder according to any one of claims 1 to 5, wherein the BET specific surface area is 0.1 to 3.5 m 2 / g. タップ密度が2.5g/cm以上であることを特徴とする、請求項1乃至6のいずれかに記載の銀合金粉末。 The silver alloy powder according to any one of claims 1 to 6, wherein the tap density is 2.5 g / cm 3 or more. 錫と銀を溶解した溶湯を落下させながら、高圧水を吹き付けて急冷凝固させて得られた粉末を、酸化処理することにより、平均粒径が0.5~20μm、酸素含有量が2.0~6.0質量%、銀含有量が33~74.7質量%、錫含有量が23~64.7質量%であり、銀と錫の合計の含有量が93.5~97.7質量%である銀合金粉末を製造することを特徴とする、銀合金粉末の製造方法。 The powder obtained by spraying high-pressure water to quench and solidify while dropping the molten metal in which tin and silver are dissolved is oxidized to have an average particle size of 0.5 to 20 μm and an oxygen content of 2.0. ~ 6.0% by mass, silver content 33-74.7% by mass, tin content 23-64.7% by mass, total silver and tin content 93.5-97.7% by mass. % Is a method for producing a silver alloy powder, which comprises producing a silver alloy powder. 前記溶解を窒素雰囲気中において行うことを特徴とする、請求項8に記載の銀合金粉末の製造方法。 The method for producing a silver alloy powder according to claim 8, wherein the dissolution is carried out in a nitrogen atmosphere. 前記高圧水が純水またはアルカリ水であることを特徴とする、請求項8または9に記載の銀合金粉末の製造方法。 The method for producing a silver alloy powder according to claim 8 or 9, wherein the high-pressure water is pure water or alkaline water. 前記高圧水が大気中または窒素雰囲気中において吹き付けられることを特徴とする、請求項8乃至10のいずれかに記載の銀合金粉末の製造方法。 The method for producing a silver alloy powder according to any one of claims 8 to 10, wherein the high-pressure water is sprayed in an atmosphere or a nitrogen atmosphere. 前記急冷凝固させて得られた粉末を大気雰囲気中で加熱することによって前記酸化処理を行うことを特徴とする、請求項8乃至11のいずれかに記載の銀合金粉末の製造方法。 The method for producing a silver alloy powder according to any one of claims 8 to 11, wherein the oxidation treatment is performed by heating the powder obtained by quenching and solidifying in an atmospheric atmosphere. 請求項1乃至7のいずれかに記載の銀合金粉末が有機成分中に分散していることを特徴とする、導電性ペースト。 A conductive paste, wherein the silver alloy powder according to any one of claims 1 to 7 is dispersed in an organic component. 前記導電性ペーストが焼成型導電性ペーストであることを特徴とする、請求項13に記載の導電性ペースト。 The conductive paste according to claim 13, wherein the conductive paste is a baking type conductive paste. 請求項14の焼成型導電性ペーストを基板上に塗布した後に焼成して導電膜を製造することを特徴とする、導電膜の製造方法。 A method for manufacturing a conductive film, which comprises applying the fired conductive paste according to claim 14 onto a substrate and then firing the paste to produce a conductive film.
JP2018009365A 2017-02-01 2018-01-24 Silver alloy powder and its manufacturing method Active JP7084730B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016892 2017-02-01
JP2017016892 2017-02-01

Publications (2)

Publication Number Publication Date
JP2018123427A JP2018123427A (en) 2018-08-09
JP7084730B2 true JP7084730B2 (en) 2022-06-15

Family

ID=63110083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009365A Active JP7084730B2 (en) 2017-02-01 2018-01-24 Silver alloy powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7084730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164004B (en) * 2018-10-02 2023-12-19 吉林大学 Porous particle specific surface area characterization sensor and method based on BET gravimetric method
JP7447804B2 (en) 2018-12-26 2024-03-12 昭栄化学工業株式会社 Silver paste for forming internal electrodes of multilayer inductors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011652A (en) 1999-06-28 2001-01-16 Nanao Kogyo Kk Method for coating metal with noble metal or noble metal alloy
JP2002265920A (en) 2001-03-13 2002-09-18 Namics Corp Electroconductive adhesive and circuit using the same
JP2006002228A (en) 2004-06-18 2006-01-05 Dowa Mining Co Ltd Spherical silver powder and its production method
JP2006054085A (en) 2004-08-11 2006-02-23 Namics Corp Metallic paste
JP2011094236A (en) 2010-12-07 2011-05-12 Dowa Holdings Co Ltd Copper powder for low temperature firing, or copper powder for conductive paste
JP2011195888A (en) 2010-03-19 2011-10-06 Sumitomo Metal Mining Co Ltd Nickel fine powder and method for producing the same
JP2014198893A (en) 2013-03-30 2014-10-23 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method, paste, electronic circuit component, electrical product
JP2016054139A (en) 2014-04-25 2016-04-14 三菱電機株式会社 Ag-OXIDE ELECTRIC CONTACT MATERIAL, PRODUCING METHOD AND PRODUCING DEVICE THEREOF, BREAKER, AND ELECTROMAGNETIC CONTACTOR

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138046A (en) * 1979-04-13 1980-10-28 Matsushita Electric Works Ltd Electric contact material
JPS6021304A (en) * 1983-07-15 1985-02-02 Fuji Electric Corp Res & Dev Ltd Manufacture of electrical contact material
EP0440620B2 (en) * 1988-03-26 1998-06-03 DODUCO GmbH Semifinished product for electrical contacts, made of a composite material based on silver and tin oxide, and powder metallurgical process for producing it
JPH062077A (en) * 1992-06-19 1994-01-11 Kobe Steel Ltd Soft magnetic stainless steel powder for sintering
JPH10182125A (en) * 1996-12-20 1998-07-07 Kawasaki Steel Corp Production of powdery high-purity silicon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011652A (en) 1999-06-28 2001-01-16 Nanao Kogyo Kk Method for coating metal with noble metal or noble metal alloy
JP2002265920A (en) 2001-03-13 2002-09-18 Namics Corp Electroconductive adhesive and circuit using the same
JP2006002228A (en) 2004-06-18 2006-01-05 Dowa Mining Co Ltd Spherical silver powder and its production method
JP2006054085A (en) 2004-08-11 2006-02-23 Namics Corp Metallic paste
JP2011195888A (en) 2010-03-19 2011-10-06 Sumitomo Metal Mining Co Ltd Nickel fine powder and method for producing the same
JP2011094236A (en) 2010-12-07 2011-05-12 Dowa Holdings Co Ltd Copper powder for low temperature firing, or copper powder for conductive paste
JP2014198893A (en) 2013-03-30 2014-10-23 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method, paste, electronic circuit component, electrical product
JP2016054139A (en) 2014-04-25 2016-04-14 三菱電機株式会社 Ag-OXIDE ELECTRIC CONTACT MATERIAL, PRODUCING METHOD AND PRODUCING DEVICE THEREOF, BREAKER, AND ELECTROMAGNETIC CONTACTOR

Also Published As

Publication number Publication date
JP2018123427A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP7039126B2 (en) Copper powder and its manufacturing method
JP6804286B2 (en) Silver alloy powder and its manufacturing method
JP7090511B2 (en) Silver powder and its manufacturing method
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
WO2018123809A1 (en) Copper powder and method for manufacturing same
JP2021107577A (en) Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
JP7084730B2 (en) Silver alloy powder and its manufacturing method
JP7272834B2 (en) Silver powder and its manufacturing method
JP2017082327A (en) Silver powder and method for producing the same
JP6899275B2 (en) Silver alloy powder and its manufacturing method
WO2017115462A1 (en) Silver alloy powder and method for producing same
TWI755565B (en) Silver powder and method for producing same
JP7136970B2 (en) Silver powder containing phosphorus and conductive paste containing the silver powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP5969118B2 (en) Copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220603

R150 Certificate of patent or registration of utility model

Ref document number: 7084730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150