JP7012630B2 - Copper oxide particles - Google Patents

Copper oxide particles Download PDF

Info

Publication number
JP7012630B2
JP7012630B2 JP2018210071A JP2018210071A JP7012630B2 JP 7012630 B2 JP7012630 B2 JP 7012630B2 JP 2018210071 A JP2018210071 A JP 2018210071A JP 2018210071 A JP2018210071 A JP 2018210071A JP 7012630 B2 JP7012630 B2 JP 7012630B2
Authority
JP
Japan
Prior art keywords
oxide particles
cuprous oxide
copper
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018210071A
Other languages
Japanese (ja)
Other versions
JP2020075833A (en
Inventor
翼 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018210071A priority Critical patent/JP7012630B2/en
Publication of JP2020075833A publication Critical patent/JP2020075833A/en
Application granted granted Critical
Publication of JP7012630B2 publication Critical patent/JP7012630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、亜酸化銅粒子に関するものであり、特には、比較的微細な銅粒子の製造等に用いて好適な亜酸化銅粒子を得る技術に関するものである。 The present invention relates to cuprous oxide particles , and more particularly to a technique for obtaining suitable cuprous oxide particles for production of relatively fine copper particles and the like.

いわゆるサブミクロンサイズの銅粉は、一般に粒径が1μm以下である微細な銅粒子からなる粉末であり、たとえば、積層セラミックコンデンサないしインダクタその他の電子部品の内外電極用材料や、インクジェット配線の用途等に用いることが期待されている。
この種の銅粒子は、たとえば、亜酸化銅粒子を含む亜酸化銅粉が分散したスラリーから、化学還元法または不均化法を利用して作製できることが知られている。
The so-called submicron-sized copper powder is a powder composed of fine copper particles having a particle size of 1 μm or less. It is expected to be used for.
It is known that this type of copper particles can be produced, for example, from a slurry in which cuprous oxide powder containing cuprous oxide particles is dispersed, by using a chemical reduction method or a disproportionation method.

上記の銅粉の作製等に用いられ得る亜酸化銅粒子に関し、たとえば、特許文献1には、「炭素数6~20の有機酸又は有機アミンの少なくとも一種によって表面処理されていることを特徴とする亜酸化銅粒子」が開示されている。ここでは、「走査型電子顕微鏡観察による平均粒子径Dと、結晶子径DCとの比率D/DCが1~10である」こと、「走査型電子顕微鏡観察による平均粒子径Dが10~200nmである」ことが好ましいとされている。
また特許文献1では、亜酸化銅粒子を製造する方法として、「水溶性銅化合物、水及びアルコールを含み、かつ銅以外に金属を含まない反応液と、ヒドラジン又はその誘導体からなる還元剤とを混合して亜酸化銅粒子を生成させ、次いで前記反応液に、炭素数6~20の有機酸又は有機アミンを少なくとも一種添加して、亜酸化銅粒子の表面に該有機酸又は該有機アミンの少なくとも一種を付着させ、」と記載されている。
そして、「本発明によれば、耐酸化性や保存安定性に優れた亜酸化銅粒子及びその製造方法が提供される。また、本発明の製造方法においては、本発明の亜酸化銅粒子を合成する際に残留不純物として残りにくい原料を用いている。そのことから本発明の亜酸化銅粒子は、不純物等の残存が少なく、導電性の高い導体膜を製造することができる。」とされている。
Regarding the cuprous oxide particles that can be used for producing the above-mentioned copper powder and the like, for example, Patent Document 1 is characterized in that "the surface is treated with at least one of an organic acid or an organic amine having 6 to 20 carbon atoms. Sub-copper oxide particles are disclosed. Here, "the ratio D / DC of the average particle diameter D by the scanning electron microscope observation and the crystallite diameter DC is 1 to 10", and "the average particle diameter D by the scanning electron microscope observation is 10". It is said that it is preferably about 200 nm.
Further, in Patent Document 1, as a method for producing cuprous oxide particles, "a reaction solution containing a water-soluble copper compound, water and alcohol and containing no metal other than copper, and a reducing agent composed of hydrazine or a derivative thereof are used. The mixture is mixed to generate cuprous oxide particles, and then at least one organic acid or organic amine having 6 to 20 carbon atoms is added to the reaction solution, and the organic acid or the organic amine is added to the surface of the cuprous oxide particles. Attach at least one type, "is described.
Then, "According to the present invention, cuprous oxide particles having excellent oxidation resistance and storage stability and a method for producing the same are provided. Further, in the production method of the present invention, the cuprous oxide particles of the present invention are used. A raw material that does not easily remain as residual impurities during synthesis is used. Therefore, the cuprous oxide particles of the present invention have little residual impurities and can produce a highly conductive conductor film. " ing.

特開2013-144615号公報Japanese Unexamined Patent Publication No. 2013-144615

ところで、上述したような電子部品の小型化が進む近年では、そこに用いる銅粉の銅粒子の粒径をさらに小さくすることが求められており、それに伴い、該銅粉の原料になる亜酸化銅粉の亜酸化銅粒子もまた、さらなる小径化が希求されている。
この一方で、粒径が過度に小さい銅粒子を含む銅粉は、その大きな表面積の故に酸化されやすく、このことが、粉体間での酸化層の成長に起因する凝集を招く等といったような懸念がある。
By the way, in recent years as the miniaturization of electronic parts as described above has progressed, it has been required to further reduce the particle size of the copper particles of the copper powder used therein, and accordingly, suboxidation as a raw material for the copper powder has been required. Sub-copper oxide particles of copper powder are also required to have a smaller diameter.
On the other hand, copper powder containing copper particles having an excessively small particle size is easily oxidized due to its large surface area, which causes aggregation due to the growth of an oxide layer between the powders. There are concerns.

この発明は、このような問題を解決することを課題とするものであり、その目的は、比較的小さい適切な粒径を有する銅粉の作製に有効に用いることができる亜酸化銅粒子を提供することにある。 An object of the present invention is to solve such a problem, and an object thereof is to obtain cuprous oxide particles which can be effectively used for producing copper powder having a relatively small and appropriate particle size. To provide.

発明者は鋭意検討の結果、亜酸化銅粒子の粒径及び結晶子径を所定の範囲とすることにより、亜酸化銅粒子の活性が適度に高くなり、そのような亜酸化銅粒子を用いて作製した銅粉の銅粒子が適切な大きさの粒径になることを見出した。また、かかる亜酸化銅粒子を製造するには、硫酸銅溶液に還元糖及びアルカリを添加する際に、液温、硫酸銅の濃度、アルカリの添加速度および、pHを適切に制御することが重要であるとの知見を得た。 As a result of diligent studies, the inventor made the activity of the cuprous oxide particles moderately high by setting the particle size and the crystallite diameter of the cuprous oxide particles within a predetermined range, and using such cuprous oxide particles. It was found that the copper particles of the produced copper powder had an appropriate particle size. Further, in order to produce such cuprous oxide particles, it is important to appropriately control the liquid temperature, the concentration of copper sulfate, the rate of addition of alkali, and the pH when adding reducing sugars and alkalis to the copper sulfate solution. I got the finding that it is.

このような知見の下、この発明の亜酸化銅粒子は、結晶子径が10nm~25nmであり、レーザ回折/散乱式粒径分布測定装置で測定して得られる粒径分布グラフで、体積基準の頻度の累積が50%になる粒径D50が0.3μm~1.5μmであるものである。 Based on these findings, the cuprous oxide particles of the present invention have a crystallite diameter of 10 nm to 25 nm, and are obtained by measuring with a laser diffraction / scattering type particle size distribution measuring device in the particle size distribution graph. The particle size D50 at which the cumulative frequency of the volume basis is 50% is 0.3 μm to 1.5 μm.

ここで、この発明の亜酸化銅粒子は、燃焼法により測定した炭素付着量が0.01質量%~2.0質量%であることが好ましい。 Here, the cuprous oxide particles of the present invention preferably have a carbon adhesion amount of 0.01% by mass to 2.0% by mass as measured by a combustion method.

またここで、この発明の亜酸化銅粒子は、前記粒径D50が0.7μm~1.4μmであることが好ましい。
Further, here, the cuprous oxide particles of the present invention preferably have a particle size D50 of 0.7 μm to 1.4 μm.

この発明の亜酸化銅粒子は、たとえば不均化反応による銅粉の製造に供されるものとすることができる。 The cuprous oxide particles of the present invention can be used for producing copper powder by, for example, a disproportionation reaction.

酸化銅粒子の製造方法は、たとえば、還元糖を含む硫酸銅溶液にアルカリを添加して、亜酸化銅粒子を製造する方法であって、反応温度を50℃以上かつ90℃未満とし、前記硫酸銅の濃度を、前記反応温度における飽和濃度の10%~100%とし、アルカリを、一分当たりに前記硫酸銅溶液の体積に対して1.0%~180%の量が添加される速度で添加して、pHを7.5以上かつ10.0未満に到達させる。 The method for producing cuprous oxide particles is, for example, a method for producing cuprous oxide particles by adding an alkali to a copper sulfate solution containing a reducing sugar, wherein the reaction temperature is 50 ° C. or higher and lower than 90 ° C., as described above. The rate at which the concentration of copper sulfate is 10% to 100% of the saturation concentration at the reaction temperature and the amount of alkali is added in an amount of 1.0% to 180% with respect to the volume of the copper sulfate solution per minute. Add in to bring the pH above 7.5 and below 10.0.

この発明の亜酸化銅粒子によれば、比較的小さい適切な粒径を有する銅粒子からなる銅粉の作製が可能になる According to the cuprous oxide particles of the present invention, it is possible to produce a copper powder composed of copper particles having a relatively small and appropriate particle size .

以下に、この発明の実施の形態について詳細に説明する。
酸化銅粒子は、たとえば後述する方法により製造され得るものであり、結晶子径が8nm~35nmであるとともに、粒径が0.3μm~1.5μmである。
Hereinafter, embodiments of the present invention will be described in detail.
The cuprous oxide particles can be produced, for example, by a method described later, and have a crystallite diameter of 8 nm to 35 nm and a particle size of 0.3 μm to 1.5 μm.

上記の亜酸化銅粒子を含む亜酸化銅粉は、銅粉の原材料として好適に用いられるものである。そのような銅粉は、積層セラミックコンデンサ、いわゆるMLCC等の電子機器の製造に用いられ得るところ、該電子機器の小型化を実現するため、銅粉の銅粒子の小径化が望まれている。比較的小径の銅粒子を作製するには、その原料として、上記のような活性の高い亜酸化銅粒子を用いることが有効である。 The cuprous oxide powder containing the above-mentioned cuprous oxide particles is suitably used as a raw material for the copper powder. Such copper powder can be used in the manufacture of electronic devices such as multilayer ceramic capacitors, so-called MLCCs, and in order to realize miniaturization of the electronic devices, it is desired to reduce the diameter of the copper particles of the copper powder. In order to produce copper particles having a relatively small diameter, it is effective to use highly active cuprous oxide particles as a raw material thereof.

(結晶子径及び粒径)
亜酸化銅粒子の結晶子径は、8nm~35nm、好ましくは10nm~25nmとする。また、亜酸化銅粒子の粒径は、0.3μm~1.5μm、好ましくは0.7μm~1.4μmとする。
(Crystalline diameter and particle size)
The crystallite diameter of the cuprous oxide particles is 8 nm to 35 nm, preferably 10 nm to 25 nm. The particle size of the cuprous oxide particles is 0.3 μm to 1.5 μm, preferably 0.7 μm to 1.4 μm.

亜酸化銅粒子の結晶子径が8nm未満である場合は、活性が高くなりすぎて、それを用いて作製される銅粒子の粒径が小さくなる。その結果、銅粒子の活性が高くなりすぎて、耐酸化性・長期保存性の点で不利になる。結晶子径が35nmを超える場合または、粒径が1.5μmを超える場合は、活性が十分でなく、得られる銅粒子の粒径が大きくなる。粒径が0.3μm未満である場合は、亜酸化銅粒子同士が凝集しやすくなる結果、実質的な表面積が低下し、活性が却って減少し得る。 When the crystallite diameter of the cuprous oxide particles is less than 8 nm, the activity becomes too high and the particle size of the copper particles produced by using the crystallite particles becomes small. As a result, the activity of the copper particles becomes too high, which is disadvantageous in terms of oxidation resistance and long-term storage stability. When the crystallite diameter exceeds 35 nm or the particle size exceeds 1.5 μm, the activity is not sufficient and the particle size of the obtained copper particles becomes large. When the particle size is less than 0.3 μm, the cuprous oxide particles tend to aggregate with each other, and as a result, the substantial surface area is reduced and the activity may be rather reduced.

亜酸化銅粒子の結晶子径及び粒径を上記範囲内に制御することによって、当該亜酸化銅粒子を用いて製造される銅粒子の粒径を、たとえば0.1μm~0.5μmに制御することができる。なお、銅粒子の粒径が0.1μm未満になると、大きな表面積に起因して耐酸化性の点で不利になり、また、銅粒子同士が凝集して電子部品の小型化が困難になる傾向がある。銅粒子の粒径が0.5μmを超えると、電子部品の小型化が難しくなる。 By controlling the crystallite size and particle size of the cuprous oxide particles within the above range, the particle size of the copper particles produced by using the cuprous oxide particles is controlled to, for example, 0.1 μm to 0.5 μm. be able to. If the particle size of the copper particles is less than 0.1 μm, it is disadvantageous in terms of oxidation resistance due to the large surface area, and the copper particles tend to aggregate with each other, making it difficult to reduce the size of electronic components. There is. If the particle size of the copper particles exceeds 0.5 μm, it becomes difficult to miniaturize the electronic components.

亜酸化銅粒子の粒径、および銅粒子の粒径は、レーザ回折/散乱式粒径分布測定装置で測定して得られる粒径分布グラフで、体積基準の頻度の累積が50%になる平均粒径D50を意味し、JIS Z8825(2013)に基いて測定する。また、亜酸化銅粒子の結晶子径は、単結晶とみなせる結晶子の平均直径を意味する。
具体的には、粒径を測定するには、Malvern製のMASTERSIZER3000を用いて、分散媒:ヘキサメタりん酸ナトリウム水溶液、光学パラメーター:粒子吸収率5.90、粒子吸収率(青)0.92、粒子屈折率3.00、粒子屈折率(青)0.52、散乱強度:6-8%の条件とすることができる。結晶子径は、装置として株式会社リガク製のRINT-2200Ultimaを用いて、測定条件を2θ=20-90°とし、結晶子サイズ算出ソフトPDXL2を用いて測定することができる。
The particle size of the cuprous oxide particles and the particle size of the copper particles are averaged in the particle size distribution graph obtained by measuring with a laser diffraction / scattering type particle size distribution measuring device, in which the cumulative frequency based on the volume is 50%. It means the particle size D50 and is measured based on JIS Z8825 (2013). Further, the crystallite diameter of the cuprous oxide particles means the average diameter of the crystallites that can be regarded as a single crystal.
Specifically, in order to measure the particle size, MASTERSIZER 3000 manufactured by Malvern is used, dispersion medium: sodium hexametaphosphate aqueous solution, optical parameters: particle absorption rate 5.90, particle absorption rate (blue) 0.92, The conditions can be set to a particle refractive index of 3.00, a particle refractive index (blue) of 0.52, and a scattering intensity of 6-8%. The crystallite diameter can be measured by using RINT-2200 Ultima manufactured by Rigaku Co., Ltd. as an apparatus, setting the measurement condition to 2θ = 20-90 °, and using the crystallite size calculation software PDXL2.

(炭素付着量)
亜酸化銅粒子には炭素が付着していることがある。亜酸化銅粒子の表面に炭素が付着することで、耐酸化性を向上させることができる。亜酸化銅粒子の炭素付着量は、0.01質量%~2.0質量%とすること、さらに0.1質量%~2.0質量%が好ましい。炭素付着量が2.0質量%を超えると、最終的に得られる銅粉に含まれる不純物が多くなることが懸念される。
(Amount of carbon adhered)
Carbon may be attached to the cuprous oxide particles. The adhesion of carbon to the surface of the cuprous oxide particles can improve the oxidation resistance. The carbon adhering amount of the cuprous oxide particles is preferably 0.01% by mass to 2.0% by mass, more preferably 0.1% by mass to 2.0% by mass. If the amount of carbon adhered exceeds 2.0% by mass, there is a concern that the amount of impurities contained in the finally obtained copper powder will increase.

亜酸化銅粒子の炭素付着量は、燃焼法により測定する。燃焼法とは、酸素を吹き込んで定量の亜酸化銅粒子を燃焼させ、発生したCO、CO2の量からC量を求める方法である。この測定には、たとえば、LECOジャパン合同会社製のCS844型を用いることができる。 The amount of carbon adhered to the cuprous oxide particles is measured by the combustion method. The combustion method is a method in which oxygen is blown to burn a fixed amount of cuprous oxide particles, and the amount of C is obtained from the amount of CO and CO 2 generated. For this measurement, for example, CS844 type manufactured by LECO Japan GK can be used.

(用途)
上述した亜酸化銅粒子は、銅粉の作製に用いることができる。具体的には、亜酸化銅粒子を純水等に分散させ、これに公知の化学還元法または不均化法等を適用することにより、銅粒子を含む銅粉を作製することができる。なお、このような銅粉は、特に、積層セラミックコンデンサないしインダクタ等の電子部品の内外電極用材料や、インクジェット配線の用途に適している。
(Use)
The above-mentioned cuprous oxide particles can be used for producing copper powder. Specifically, copper powder containing copper particles can be produced by dispersing the cuprous oxide particles in pure water or the like and applying a known chemical reduction method or disproportionation method to the particles. It should be noted that such copper powder is particularly suitable for materials for internal and external electrodes of electronic parts such as multilayer ceramic capacitors and inductors, and applications for inkjet wiring.

この実施形態の亜酸化銅粒子は、なかでも、不均化反応による銅粉の作製に供することが好ましい。一般に不均化法では、反応速度が速いほど、銅粒子の粒径を小さくすることができるが、反応速度を速くすると、銅粒子の粒径のコントロールが難しくなる。この実施形態の亜酸化銅粒子は、結晶子径及び粒径を所定の範囲としたことにより、不均化反応で製造する銅粒子の粒径の制御が可能になる。 Among them, the cuprous oxide particles of this embodiment are preferably used for producing copper powder by a disproportionation reaction. Generally, in the disproportionation method, the faster the reaction rate, the smaller the particle size of the copper particles, but the faster the reaction rate, the more difficult it is to control the particle size of the copper particles. By setting the crystallite diameter and the particle size of the cuprous oxide particles of this embodiment within a predetermined range, it is possible to control the particle size of the copper particles produced by the disproportionation reaction.

(製造方法)
以上に述べた亜酸化銅粒子は、たとえば次のようにして製造することができる。
一の実施形態の製造方法では、還元糖を含む硫酸銅溶液にアルカリを添加し、当該アルカリの添加によりpHを所定の範囲に到達させる。ここでは、反応温度、硫酸銅の濃度、アルカリの添加速度および、pHの範囲をコントロールすることが重要である。これにより、所定の結晶子径及び粒径を有する亜酸化銅粒子を製造することができる。なお、「還元糖を含む硫酸銅水溶液にアルカリを添加」とは、例えば、加温された溶媒に硫酸銅を添加した後に還元糖を添加してもよいし、加温された溶媒に還元糖を添加した後に硫酸銅を添加してもよく、あるいは、溶媒に還元糖を添加した後に加温し、そこに硫酸銅を添加してもよいことを意味する。
(Production method)
The cuprous oxide particles described above can be produced, for example, as follows.
In the production method of one embodiment, an alkali is added to a copper sulfate solution containing a reducing sugar, and the pH is brought to a predetermined range by adding the alkali. Here, it is important to control the reaction temperature, the concentration of copper sulfate, the rate of addition of alkali, and the range of pH. This makes it possible to produce cuprous oxide particles having a predetermined crystallite diameter and particle size. The phrase "adding an alkali to a copper sulfate aqueous solution containing a reducing sugar" means, for example, that the reducing sugar may be added after adding copper sulfate to a heated solvent, or the reducing sugar may be added to the heated solvent. It means that copper sulfate may be added after the addition of copper sulfate, or copper sulfate may be added thereto by heating after adding the reducing sugar to the solvent.

反応温度は、50℃以上かつ90℃未満とする。反応温度を50度未満とすれば、予想に反して亜酸化銅粒子の粒径が小さくなる。この一方で、反応温度が90℃以上になると、銅まで還元してしまうおそれがある。この観点から、反応温度の好ましい範囲は、50℃~85℃である。なお、硫酸銅及び還元糖の添加前に予め、溶媒を当該反応温度に加熱しておくことができる他、たとえば還元糖添加後かつ硫酸銅添加前などの所定の時期に、溶媒を加熱してもよい。 The reaction temperature is 50 ° C. or higher and lower than 90 ° C. If the reaction temperature is less than 50 degrees, the particle size of the cuprous oxide particles becomes smaller than expected. On the other hand, when the reaction temperature is 90 ° C. or higher, copper may be reduced. From this point of view, the preferred range of reaction temperature is 50 ° C to 85 ° C. The solvent can be heated to the reaction temperature in advance before the addition of copper sulfate and the reducing sugar, and the solvent can be heated at a predetermined time such as after the addition of the reducing sugar and before the addition of the reducing sugar. May be good.

上記の範囲内の所定の反応温度とする場合、硫酸銅の濃度が、その反応温度における硫酸銅の飽和濃度の10%~100%になるように、溶媒中に硫酸銅を溶解させる。硫酸銅の濃度を、飽和濃度の10%未満とすれば、予想に反して亜酸化銅粒子の粒径の増大を招くこととなった。硫酸銅の濃度は、当該反応温度における飽和濃度の15%~90%とすることが好ましい。 When the reaction temperature is within the above range, the copper sulfate is dissolved in the solvent so that the concentration of copper sulfate is 10% to 100% of the saturated concentration of copper sulfate at the reaction temperature. If the concentration of copper sulfate is less than 10% of the saturated concentration, the particle size of the cuprous oxide particles is unexpectedly increased. The concentration of copper sulfate is preferably 15% to 90% of the saturation concentration at the reaction temperature.

アルカリの添加速度については、アルカリの毎分添加量が、硫酸銅溶液の体積に対して1.0%~180%となる速度とする。アルカリの添加速度をこのように比較的速くすることにより、中間生成物である水酸化銅粒子が小さくなると推定されるので、亜酸化銅粒子の粒径が小さくなる。アルカリを一分当たりに1.0%未満の量で添加することとすれば、結晶子が大きくなる。一方、毎分180%を超える量とすると、pHの制御が困難になる。 The rate of addition of alkali is such that the amount of alkali added per minute is 1.0% to 180% with respect to the volume of the copper sulfate solution. By increasing the rate of addition of the alkali in this way, it is presumed that the copper hydroxide particles, which are intermediate products, become smaller, so that the particle size of the cuprous oxide particles becomes smaller. If the alkali is added in an amount of less than 1.0% per minute, the crystallites become large. On the other hand, if the amount exceeds 180% per minute, it becomes difficult to control the pH.

そして、このような所定の速度でアルカリを添加し、pHを7.5以上かつ10.0未満に到達させる。この際に到達するpHが7.5未満である場合は、結晶子が大きくなり、またpHが10.0以上である場合は、銅粉まで還元してしまうおそれがある。 Then, the alkali is added at such a predetermined rate to bring the pH to 7.5 or more and less than 10.0. If the pH reached at this time is less than 7.5, the crystallites become large, and if the pH is 10.0 or more, the copper powder may be reduced.

アルカリの添加は、pHが実質的に変動しなくなる時点で終了させる。ここで、「実質的に変動しなくなる」とは、pHを5分おきに測定した場合に直前のpHとの差が0.2以内になることを意味する。 The addition of alkali is terminated when the pH is substantially free of fluctuations. Here, "substantially unchanged" means that when the pH is measured every 5 minutes, the difference from the immediately preceding pH is within 0.2.

この実施形態の製造方法をより詳しく述べると、はじめに、純水などの溶媒に硫酸銅を添加して溶解させて硫酸銅溶液とする。なお、硫酸銅の添加前もしくは後に、還元糖や、亜酸化銅が酸化銅に変性することを防止する変性防止剤を添加することができる。還元糖としては、亜酸化銅に還元することのできるものであれば、その種類は特に問わない。たとえば、グルコース、フルクトース、グリセルアルデヒド、ラクトース、アラビノース、マルトース等の還元糖を挙げることができる。また、スクロース自体は還元糖ではないが、スクロースが加水分解して生成される転化糖も、還元糖として利用可能である。変性防止剤は、多糖類、ニカワ及びコラーゲンペプチドからなる群から選択される少なくとも一種を含むものとすることができる。このうち多糖類としては、たとえば、アラビアゴム、デキストリン等を挙げることができる。但し、変性防止剤の添加は必ずしも必要ではない。 To describe the production method of this embodiment in more detail, first, copper sulfate is added to a solvent such as pure water and dissolved to obtain a copper sulfate solution. Before or after the addition of copper sulfate, a reducing sugar or a modification inhibitor that prevents cuprous oxide from being modified to copper oxide can be added. The type of reducing sugar is not particularly limited as long as it can be reduced to cuprous oxide. For example, reducing sugars such as glucose, fructose, glyceraldehyde, lactose, arabinose, and maltose can be mentioned. Further, although sucrose itself is not a reducing sugar, invert sugar produced by hydrolysis of sucrose can also be used as a reducing sugar. The denaturation inhibitor can include at least one selected from the group consisting of polysaccharides, glue and collagen peptides. Among these, examples of the polysaccharide include gum arabic, dextrin and the like. However, it is not always necessary to add an inhibitor of denaturation.

溶媒に硫酸銅を溶解させる際には、好ましくは50rpm~1000rpm、より好ましくは200rpm~1000rpmで攪拌することができる。これにより、硫酸銅を容易に溶解させることができる。なお、後述のアルカリ添加後の反応終了まで、この速度で攪拌することができる。 When the copper sulfate is dissolved in the solvent, it can be stirred at preferably 50 rpm to 1000 rpm, more preferably 200 rpm to 1000 rpm. Thereby, copper sulfate can be easily dissolved. It should be noted that stirring can be performed at this speed until the reaction is completed after the addition of alkali, which will be described later.

次いで、硫酸銅溶液の温度を先述した反応温度に維持して、アルカリを添加し、アルカリの添加によりpHを先述した範囲内に到達させる。
還元糖及びアルカリの添加順序については、いずれが先でもかまわないが、還元糖を添加した後にアルカリを添加することが好ましい。仮に、アルカリを先に添加した場合、硫酸銅が水酸化銅の凝集体になり、その後に還元糖を添加しても凝集体として存在する水酸化銅の表面だけが還元される。この場合、水酸化銅が不純物として残留するとともに、亜酸化銅の歩留りが低下する。一方、還元糖を先に添加した場合、このような不都合が生じない。
Next, the temperature of the copper sulfate solution is maintained at the above-mentioned reaction temperature, an alkali is added, and the pH is brought into the above-mentioned range by adding the alkali.
The order of adding the reducing sugar and the alkali may be any first, but it is preferable to add the alkali after the reducing sugar is added. If the alkali is added first, copper sulfate becomes an aggregate of copper hydroxide, and even if a reducing sugar is added after that, only the surface of copper hydroxide existing as an aggregate is reduced. In this case, copper hydroxide remains as an impurity and the yield of cuprous oxide decreases. On the other hand, when the reducing sugar is added first, such an inconvenience does not occur.

ここで、pHの調整のために添加するアルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水、アミノ基を分子末端に有するカップリング剤、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等を挙げることができる。 Here, examples of the alkali added for adjusting the pH include sodium hydroxide, potassium hydroxide, aqueous ammonia, a coupling agent having an amino group at the molecular terminal, monoethanolamine, diethanolamine, triethanolamine and the like. Can be done.

pHが所定の値に到達した後は、当該pHを反応終了まで保持する。なお、他の局面において、pHが所定の値に到達した後に当該pHを、好ましくは10時間、より好ましくは5時間にわたって保持してもよい。先に述べたように、反応温度を上昇させるとともにpHを高くしたことにより、銅イオンとグルコースとの接触頻度が高まり、反応時間を短縮し、生産性を向上させることができる。 After the pH reaches a predetermined value, the pH is maintained until the end of the reaction. In another aspect, the pH may be maintained for preferably 10 hours, more preferably 5 hours after the pH reaches a predetermined value. As described above, by raising the reaction temperature and the pH, the frequency of contact between copper ions and glucose can be increased, the reaction time can be shortened, and the productivity can be improved.

しかる後は、デカンテーション等による固液分離、純水を用いた洗浄等を行い、亜酸化銅粒子スラリーとし、これを乾燥させることにより、亜酸化銅粒子を得ることができる。 After that, solid-liquid separation by decantation, washing with pure water, or the like is performed to obtain a cuprous oxide particle slurry, which is dried to obtain cuprous oxide particles.

次に、この発明の亜酸化銅粒子を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示であり、これに限定されることを意図するものではない。 Next, the cuprous oxide particles of the present invention were prototyped and their effects were confirmed, which will be described below. However, the description here is merely an example and is not intended to be limited thereto.

硫酸銅・5水和物を349.0g、D-グルコースを138.5g、純水を544mL、5wt%NaOH水溶液を4L、アラビアゴムを0.9g準備した。5Lビーカーに純水を544mL、アラビアゴムを0.9g添加し、回転羽を使って350rpmで撹拌した。ビーカーを加熱し、液温が70℃に到達した後、ビーカーに硫酸銅・5水和物を349.0g添加して、硫酸銅溶液を作製した。 349.0 g of copper sulfate pentahydrate, 138.5 g of D-glucose, 544 mL of pure water, 4 L of 5 wt% NaOH aqueous solution, and 0.9 g of Arabic rubber were prepared. 544 mL of pure water and 0.9 g of gum arabic were added to a 5 L beaker, and the mixture was stirred at 350 rpm using a rotary blade. After the beaker was heated and the liquid temperature reached 70 ° C., 349.0 g of copper sulfate pentahydrate was added to the beaker to prepare a copper sulfate solution.

さらにビーカーにD-グルコースを添加するとともに、5wt%NaOH水溶液を30ml/minで添加し、pHを7.5±0.1に調整した。この際に、5wt%NaOH水溶液の添加速度は、一分当たりに、硫酸銅溶液の体積の5.5%(30mL/min)とした。このとき、CuO生成を抑制するため、pHは10を超えないように調整する。反応が進行するとpHが下がって酸性側に変化するので、5wt%NaOH水溶液を滴下し続け、pHを8.5近傍に保持した。NaOH水溶液を添加しなくてもpHが実質的に変動しなくなるまで、NaOH水溶液を滴下し続けた。 Further, D-glucose was added to the beaker, and a 5 wt% NaOH aqueous solution was added at 30 ml / min to adjust the pH to 7.5 ± 0.1. At this time, the addition rate of the 5 wt% NaOH aqueous solution was 5.5% (30 mL / min) of the volume of the copper sulfate solution per minute. At this time, in order to suppress CuO production, the pH is adjusted so as not to exceed 10. As the reaction proceeded, the pH decreased and changed to the acidic side, so a 5 wt% NaOH aqueous solution was continuously added dropwise to maintain the pH at around 8.5. The aqueous NaOH solution was continuously added dropwise until the pH did not substantially fluctuate without the addition of the aqueous NaOH solution.

その後、静置し、上澄み液を捨てた。遠心分離を1500rpm、15分の条件で実施した。それにより得られたスラリーを保存瓶に移し、亜酸化銅を浸漬するため、適量の純水を添加した。
これにより比較例6の亜酸化銅粒子を得た。
After that, it was allowed to stand and the supernatant liquid was discarded. Centrifugation was performed at 1500 rpm for 15 minutes. The slurry thus obtained was transferred to a storage bottle, and an appropriate amount of pure water was added in order to immerse the cuprous oxide.
As a result, the cuprous oxide particles of Comparative Example 6 were obtained.

実施例3~9、11~14、16、17、20及び比較例1~4、7~11の亜酸化銅粒子はそれぞれ、表1に示すように、所定の条件を変化させたことを除いて、比較例6と同様にして製造した。比較例5の亜酸化銅粒子は、エヌシー・テック株式会社製のNC-301とした。 As shown in Table 1, the cuprous oxide particles of Examples 3 to 9, 11 to 14 , 16, 17, 20 and Comparative Examples 1 to 4 , 7 to 11 , respectively, except that the predetermined conditions were changed. It was manufactured in the same manner as in Comparative Example 6 . The cuprous oxide particles of Comparative Example 5 were NC-301 manufactured by NC Tech Co., Ltd.

(銅粉)
実施例3~9、11~14、16、17、20及び比較例1~11の各亜酸化銅粒子を用いて、次のようにして銅粉を作製した。亜酸化銅粒子50g、アラビアゴム0.16g、純水310mLからなるスラリーに、32vol%の希硫酸108mLを瞬間的に添加し、500rpmで10分間撹拌した。この操作で得られた銅粒子が十分に沈降した後に上澄み液を取り除き、純水を310mL加え500rpm、10分間撹拌した。上澄み液中のCu2+由来のCu濃度が1g/Lを下回るまでこの操作を繰り返した。
(Copper powder)
Copper powder was prepared as follows using each cuprous oxide particles of Examples 3 to 9, 11 to 14, 16, 17, 20 and Comparative Examples 1 to 11 . 108 mL of 32 vol% dilute sulfuric acid was instantaneously added to a slurry consisting of 50 g of cuprous oxide particles, 0.16 g of gum arabic, and 310 mL of pure water, and the mixture was stirred at 500 rpm for 10 minutes. After the copper particles obtained by this operation had sufficiently settled, the supernatant was removed, 310 mL of pure water was added, and the mixture was stirred at 500 rpm for 10 minutes. This operation was repeated until the Cu concentration derived from Cu 2+ in the supernatant was less than 1 g / L.

実施例3~9、11~14、16、17、20及び比較例1~11のそれぞれについて、先に述べた方法にて、亜酸化銅粒子の粒径、結晶子径及び炭素付着量ならびに、銅粉の銅粒子の粒径を測定した。その結果も表1に示す。 For each of Examples 3 to 9, 11 to 14, 16, 17, 20 and Comparative Examples 1 to 11 , the particle size, crystallite diameter and carbon adhesion amount of the cuprous oxide particles and the amount of carbon adhered were obtained by the methods described above. The particle size of the copper particles of the copper powder was measured. The results are also shown in Table 1.

Figure 0007012630000001
Figure 0007012630000001

実施例3~9、11~14、16、17、20及び比較例6~11では、所定の条件としたことにより、所定の粒径及び結晶子径の亜酸化銅粒子を製造することができた。また、当該亜酸化銅粒子を用いて作製した銅粉では、銅粒子の粒径が所定の範囲内となった。
比較例1では、反応温度が低かったことにより、亜酸化銅粒子の粒径が小さくなった。比較例2では、pHが低かったことで、結晶子が大きくなった。比較例3では、添加速度が遅すぎたことに起因して、結晶子が大きくなった。比較例4では、硫酸銅濃度が低かったことにより、亜酸化銅粒子の粒径が大きくなった。比較例5の亜酸化銅粒子は、粒径が大きく、また結晶子径が大きかった。
In Examples 3 to 9, 11 to 14, 16, 17, 20 and Comparative Examples 6 to 11 , cuprous oxide particles having a predetermined particle size and crystallite diameter can be produced under predetermined conditions. rice field. Further, in the copper powder produced using the cuprous oxide particles, the particle size of the copper particles was within a predetermined range.
In Comparative Example 1, the particle size of the cuprous oxide particles became smaller due to the lower reaction temperature. In Comparative Example 2, the low pH resulted in a large crystallite. In Comparative Example 3, the crystallites became large due to the addition rate being too slow. In Comparative Example 4, the particle size of the cuprous oxide particles became large due to the low concentration of copper sulfate. The cuprous oxide particles of Comparative Example 5 had a large particle size and a large crystallite diameter.

以上より、この発明によれば、所定の良好な亜酸化銅粒子の製造及び、それを用いた良好な銅粉の作製が可能になることが解かった。 From the above, it was found that according to the present invention, it is possible to produce predetermined good cuprous oxide particles and to produce good copper powder using the same.

Claims (4)

結晶子径が10nm~25nmであり、レーザ回折/散乱式粒径分布測定装置で測定して得られる粒径分布グラフで、体積基準の頻度の累積が50%になる粒径D50が0.3μm~1.5μmである亜酸化銅粒子。 In the particle size distribution graph obtained by measuring with a laser diffraction / scattering type particle size distribution measuring device with a crystallite diameter of 10 nm to 25 nm, the particle size D50 at which the cumulative frequency of the volume reference is 50% is 0.3 μm. Sub-copper oxide particles of ~ 1.5 μm. 燃焼法により測定した炭素付着量が0.01質量%~2.0質量%である、請求項1に記載の亜酸化銅粒子。 The cuprous oxide particles according to claim 1, wherein the amount of carbon adhesion measured by the combustion method is 0.01% by mass to 2.0% by mass. 前記粒径D50が0.7μm~1.4μmである請求項1又は2に記載の亜酸化銅粒子。 The cuprous oxide particles according to claim 1 or 2, wherein the particle size D50 is 0.7 μm to 1.4 μm. 不均化反応による銅粉の製造に供される請求項1~3のいずれか一項に記載の亜酸化銅粒子。 The cuprous oxide particles according to any one of claims 1 to 3, which are used for producing copper powder by a disproportionation reaction.
JP2018210071A 2018-11-07 2018-11-07 Copper oxide particles Active JP7012630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210071A JP7012630B2 (en) 2018-11-07 2018-11-07 Copper oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210071A JP7012630B2 (en) 2018-11-07 2018-11-07 Copper oxide particles

Publications (2)

Publication Number Publication Date
JP2020075833A JP2020075833A (en) 2020-05-21
JP7012630B2 true JP7012630B2 (en) 2022-01-28

Family

ID=70723467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210071A Active JP7012630B2 (en) 2018-11-07 2018-11-07 Copper oxide particles

Country Status (1)

Country Link
JP (1) JP7012630B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499664B (en) * 2020-12-07 2023-08-01 江苏汇诚医疗科技有限公司 Cuprous oxide-doped nano zinc oxide composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031491A (en) 2006-07-26 2008-02-14 Sumitomo Metal Mining Co Ltd Fine copper powder, its manufacturing method and conductive paste
JP2013144615A (en) 2012-01-13 2013-07-25 Mitsui Mining & Smelting Co Ltd Coprous oxide particle, and method for manufacturing the same
WO2014104032A1 (en) 2012-12-25 2014-07-03 戸田工業株式会社 Method for producing copper powder, copper powder, and copper paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031491A (en) 2006-07-26 2008-02-14 Sumitomo Metal Mining Co Ltd Fine copper powder, its manufacturing method and conductive paste
JP2013144615A (en) 2012-01-13 2013-07-25 Mitsui Mining & Smelting Co Ltd Coprous oxide particle, and method for manufacturing the same
WO2014104032A1 (en) 2012-12-25 2014-07-03 戸田工業株式会社 Method for producing copper powder, copper powder, and copper paste

Also Published As

Publication number Publication date
JP2020075833A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
EP2103364B1 (en) Process for manufacture of nanometric, monodisperse and stable metallic silver and product obtained therefrom
JP4978242B2 (en) Method for producing silver ultrafine particles
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
WO2006019144A1 (en) Copper microparticle and process for producing the same
JP4661726B2 (en) Fine nickel powder and method for producing the same
TWI716526B (en) Nickel powder
KR20100071970A (en) Process for producing copper powder and copper powder
JP2007239077A (en) Method for producing particulate silver particle, and particulate silver particle obtained by the method
JP2007176789A (en) Barium carbonate powder and method of manufacturing the same
JP7012630B2 (en) Copper oxide particles
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP5176060B2 (en) Method for producing silver particle dispersion
WO2009087919A1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
TWI825594B (en) copper powder
JP4662760B2 (en) Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
WO2015087967A1 (en) Method for producing silver particles, and silver particles produced by said method
KR20180047527A (en) Surface treated silver powder and manufacturing method of the same
KR100851815B1 (en) A method of preparing nano silver powder
KR20180078208A (en) Surface treated silver powder and manufacturing method of the same
JP2003105402A (en) Copper powder for conductive paste, conductive paste using the copper powder and chip component containing conductive body using the conductive paste
CN114105191B (en) Nanoscale barium titanate powder and preparation process thereof
JP2009052146A (en) Copper powder and its manufacturing method
JP2011256088A (en) Gallium oxide powder
JP4352121B2 (en) Copper powder manufacturing method
JP4120007B2 (en) Method for producing copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R151 Written notification of patent or utility model registration

Ref document number: 7012630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151