JP2020075833A - Cuprous oxide particles and method for producing cuprous oxide particles - Google Patents

Cuprous oxide particles and method for producing cuprous oxide particles Download PDF

Info

Publication number
JP2020075833A
JP2020075833A JP2018210071A JP2018210071A JP2020075833A JP 2020075833 A JP2020075833 A JP 2020075833A JP 2018210071 A JP2018210071 A JP 2018210071A JP 2018210071 A JP2018210071 A JP 2018210071A JP 2020075833 A JP2020075833 A JP 2020075833A
Authority
JP
Japan
Prior art keywords
cuprous oxide
oxide particles
copper
particle size
copper sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018210071A
Other languages
Japanese (ja)
Other versions
JP7012630B2 (en
Inventor
翼 米村
Tsubasa Yonemura
翼 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018210071A priority Critical patent/JP7012630B2/en
Publication of JP2020075833A publication Critical patent/JP2020075833A/en
Application granted granted Critical
Publication of JP7012630B2 publication Critical patent/JP7012630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide cuprous oxide particles effective for producing copper powder having a relatively small and appropriate particle size and to provide a method for producing the cuprous oxide particles.SOLUTION: Cuprous oxide particles have a crystallite diameter of 8 nm to 35 nm and a particle diameter of 0.3 μm to 1.5 μm. The cuprous oxide particles are produced by adding an alkali to a copper sulfate solution containing a reducing sugar. In a method for producing cuprous oxide particles, the reaction temperature is 50°C or higher and lower than 90°C, the concentration of the copper sulfate is 10% to 100% of a saturated concentration at the reaction temperature, and an alkali is added at a rate of 1.0% to 180% of a volume of the copper sulfate per 1 minute so that the pH is 7.5 or more and less than 10.0.SELECTED DRAWING: None

Description

この発明は、亜酸化銅粒子および、亜酸化銅粒子の製造方法に関するものであり、特には、比較的微細な銅粒子の製造等に用いて好適な亜酸化銅粒子を得る技術に関するものである。   The present invention relates to cuprous oxide particles and a method for producing cuprous oxide particles, and particularly to a technique for obtaining suitable cuprous oxide particles for use in producing relatively fine copper particles and the like. ..

いわゆるサブミクロンサイズの銅粉は、一般に粒径が1μm以下である微細な銅粒子からなる粉末であり、たとえば、積層セラミックコンデンサないしインダクタその他の電子部品の内外電極用材料や、インクジェット配線の用途等に用いることが期待されている。
この種の銅粒子は、たとえば、亜酸化銅粒子を含む亜酸化銅粉が分散したスラリーから、化学還元法または不均化法を利用して作製できることが知られている。
The so-called submicron-sized copper powder is a powder composed of fine copper particles having a particle size of 1 μm or less, and is used, for example, as a material for internal / external electrodes of multilayer ceramic capacitors, inductors and other electronic parts, and for inkjet wiring. It is expected to be used for.
It is known that copper particles of this type can be produced from a slurry in which cuprous oxide powder containing cuprous oxide particles is dispersed, by using a chemical reduction method or a disproportionation method.

上記の銅粉の作製等に用いられ得る亜酸化銅粒子に関し、たとえば、特許文献1には、「炭素数6〜20の有機酸又は有機アミンの少なくとも一種によって表面処理されていることを特徴とする亜酸化銅粒子」が開示されている。ここでは、「走査型電子顕微鏡観察による平均粒子径Dと、結晶子径DCとの比率D/DCが1〜10である」こと、「走査型電子顕微鏡観察による平均粒子径Dが10〜200nmである」ことが好ましいとされている。
また特許文献1では、亜酸化銅粒子を製造する方法として、「水溶性銅化合物、水及びアルコールを含み、かつ銅以外に金属を含まない反応液と、ヒドラジン又はその誘導体からなる還元剤とを混合して亜酸化銅粒子を生成させ、次いで前記反応液に、炭素数6〜20の有機酸又は有機アミンを少なくとも一種添加して、亜酸化銅粒子の表面に該有機酸又は該有機アミンの少なくとも一種を付着させ、」と記載されている。
そして、「本発明によれば、耐酸化性や保存安定性に優れた亜酸化銅粒子及びその製造方法が提供される。また、本発明の製造方法においては、本発明の亜酸化銅粒子を合成する際に残留不純物として残りにくい原料を用いている。そのことから本発明の亜酸化銅粒子は、不純物等の残存が少なく、導電性の高い導体膜を製造することができる。」とされている。
Regarding the cuprous oxide particles that can be used for producing the above-mentioned copper powder, for example, Patent Document 1 states that "a surface treatment is performed with at least one of an organic acid having 6 to 20 carbon atoms or an organic amine. Cuprous oxide particles are disclosed. Here, "the average particle diameter D with a scanning electron microscope, the ratio D / D C for the crystallite diameter D C is from 1 to 10" that, "average particle diameter D with a scanning electron microscope observation of 10 .About.200 nm "is preferred.
Further, in Patent Document 1, as a method for producing cuprous oxide particles, "a reaction solution containing a water-soluble copper compound, water and an alcohol, and containing no metal other than copper, and a reducing agent containing hydrazine or a derivative thereof Mixing to produce cuprous oxide particles, and then adding at least one organic acid or organic amine having 6 to 20 carbon atoms to the reaction solution, and adding the organic acid or organic amine to the surface of the cuprous oxide particles. At least one of them is attached. ”
And, according to the present invention, there are provided a cuprous oxide particle excellent in oxidation resistance and storage stability and a manufacturing method thereof. Further, in the manufacturing method of the present invention, the cuprous oxide particle of the present invention is provided. A raw material that does not easily remain as a residual impurity during synthesis is used. Therefore, the cuprous oxide particles of the present invention can produce a conductive film having less impurities and having high conductivity. " ing.

特開2013−144615号公報JP, 2013-144615, A

ところで、上述したような電子部品の小型化が進む近年では、そこに用いる銅粉の銅粒子の粒径をさらに小さくすることが求められており、それに伴い、該銅粉の原料になる亜酸化銅粉の亜酸化銅粒子もまた、さらなる小径化が希求されている。
この一方で、粒径が過度に小さい銅粒子を含む銅粉は、その大きな表面積の故に酸化されやすく、このことが、粉体間での酸化層の成長に起因する凝集を招く等といったような懸念がある。
By the way, in recent years, where the miniaturization of electronic parts as described above is progressing, it is required to further reduce the particle size of the copper particles of the copper powder used therein, and along with this, the suboxidation that is the raw material of the copper powder. The cuprous oxide particles of copper powder are also required to have a smaller diameter.
On the other hand, copper powder containing copper particles having an excessively small particle size is easily oxidized due to its large surface area, which causes aggregation due to growth of an oxide layer between the powders. I have a concern.

この発明は、このような問題を解決することを課題とするものであり、その目的は、比較的小さい適切な粒径を有する銅粉の作製に有効に用いることができる亜酸化銅粒子および、亜酸化銅粒子の製造方法を提供することにある。   The present invention is intended to solve such a problem, and an object thereof is cuprous oxide particles that can be effectively used for producing copper powder having a relatively small appropriate particle size, and It is to provide a method for producing cuprous oxide particles.

発明者は鋭意検討の結果、亜酸化銅粒子の粒径及び結晶子径を所定の範囲とすることにより、亜酸化銅粒子の活性が適度に高くなり、そのような亜酸化銅粒子を用いて作製した銅粉の銅粒子が適切な大きさの粒径になることを見出した。また、かかる亜酸化銅粒子を製造するには、硫酸銅溶液に還元糖及びアルカリを添加する際に、液温、硫酸銅の濃度、アルカリの添加速度および、pHを適切に制御することが重要であるとの知見を得た。   The inventor, as a result of diligent studies, by controlling the particle size and crystallite size of the cuprous oxide particles within a predetermined range, the activity of the cuprous oxide particles is appropriately increased, and such cuprous oxide particles are used. It was found that the copper particles of the produced copper powder had an appropriate particle size. In addition, in order to produce such cuprous oxide particles, it is important to appropriately control the liquid temperature, the concentration of copper sulfate, the addition rate of alkali, and pH when adding reducing sugar and alkali to the copper sulfate solution. We obtained the knowledge that

このような知見の下、この発明の亜酸化銅粒子は、結晶子径が8nm〜35nmであり、粒径が0.3μm〜1.5μmであるものである。   Under such knowledge, the cuprous oxide particles of the present invention have a crystallite size of 8 nm to 35 nm and a particle size of 0.3 μm to 1.5 μm.

ここで、この発明の亜酸化銅粒子は、燃焼法により測定した炭素付着量が0.01質量%〜2.0質量%であることが好ましい。   Here, the cuprous oxide particles of the present invention preferably have a carbon deposition amount measured by a combustion method of 0.01% by mass to 2.0% by mass.

またここで、この発明の亜酸化銅粒子は、結晶子径が10nm〜25nmであること、粒径が0.7μm〜1.4μmであることがそれぞれ好ましい。   The cuprous oxide particles of the present invention preferably have a crystallite size of 10 nm to 25 nm and a particle size of 0.7 μm to 1.4 μm.

この発明の亜酸化銅粒子は、たとえば不均化反応による銅粉の製造に供されるものとすることができる。   The cuprous oxide particles of the present invention can be used for producing copper powder by a disproportionation reaction, for example.

この発明の亜酸化銅粒子の製造方法は、還元糖を含む硫酸銅溶液にアルカリを添加して、亜酸化銅粒子を製造する方法であって、反応温度を50℃以上かつ90℃未満とし、前記硫酸銅の濃度を、前記反応温度における飽和濃度の10%〜100%とし、アルカリを、一分当たりに前記硫酸銅溶液の体積に対して1.0%〜180%の量が添加される速度で添加して、pHを7.5以上かつ10.0未満に到達させることにある。   The method for producing cuprous oxide particles of the present invention is a method for producing cuprous oxide particles by adding an alkali to a copper sulfate solution containing a reducing sugar, and the reaction temperature is 50 ° C. or higher and lower than 90 ° C., The concentration of the copper sulfate is set to 10% to 100% of the saturated concentration at the reaction temperature, and the alkali is added in an amount of 1.0% to 180% with respect to the volume of the copper sulfate solution per minute. It is added at a rate to reach a pH of 7.5 or more and less than 10.0.

この発明の亜酸化銅粒子によれば、比較的小さい適切な粒径を有する銅粒子からなる銅粉の作製が可能になる。また、この発明の亜酸化銅粒子の製造方法によれば、所定の亜酸化銅粒子を有効に製造することができる。   According to the cuprous oxide particles of the present invention, it is possible to produce a copper powder composed of copper particles having a relatively small and appropriate particle size. Further, according to the method for producing cuprous oxide particles of the present invention, it is possible to effectively produce predetermined cuprous oxide particles.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態の亜酸化銅粒子は、たとえば後述する方法により製造され得るものであり、結晶子径が8nm〜35nmであるとともに、粒径が0.3μm〜1.5μmである。
Hereinafter, embodiments of the present invention will be described in detail.
The cuprous oxide particles of one embodiment of the present invention can be produced, for example, by the method described below, and have a crystallite size of 8 nm to 35 nm and a particle size of 0.3 μm to 1.5 μm.

上記の亜酸化銅粒子を含む亜酸化銅粉は、銅粉の原材料として好適に用いられるものである。そのような銅粉は、積層セラミックコンデンサ、いわゆるMLCC等の電子機器の製造に用いられ得るところ、該電子機器の小型化を実現するため、銅粉の銅粒子の小径化が望まれている。比較的小径の銅粒子を作製するには、その原料として、上記のような活性の高い亜酸化銅粒子を用いることが有効である。   The cuprous oxide powder containing the above cuprous oxide particles is preferably used as a raw material for copper powder. Such copper powder can be used for manufacturing electronic devices such as monolithic ceramic capacitors, so-called MLCCs. However, in order to realize downsizing of the electronic devices, it is desired to reduce the diameter of copper particles of the copper powder. In order to produce copper particles having a relatively small diameter, it is effective to use the above-mentioned highly active cuprous oxide particles as the raw material.

(結晶子径及び粒径)
亜酸化銅粒子の結晶子径は、8nm〜35nm、好ましくは10nm〜25nmとする。また、亜酸化銅粒子の粒径は、0.3μm〜1.5μm、好ましくは0.7μm〜1.4μmとする。
(Crystallite size and grain size)
The crystallite diameter of the cuprous oxide particles is 8 nm to 35 nm, preferably 10 nm to 25 nm. The particle size of the cuprous oxide particles is 0.3 μm to 1.5 μm, preferably 0.7 μm to 1.4 μm.

亜酸化銅粒子の結晶子径が8nm未満である場合は、活性が高くなりすぎて、それを用いて作製される銅粒子の粒径が小さくなる。その結果、銅粒子の活性が高くなりすぎて、耐酸化性・長期保存性の点で不利になる。結晶子径が35nmを超える場合または、粒径が1.5μmを超える場合は、活性が十分でなく、得られる銅粒子の粒径が大きくなる。粒径が0.3μm未満である場合は、亜酸化銅粒子同士が凝集しやすくなる結果、実質的な表面積が低下し、活性が却って減少し得る。   When the crystallite size of the cuprous oxide particles is less than 8 nm, the activity becomes too high, and the particle size of the copper particles produced using the particles becomes small. As a result, the activity of the copper particles becomes too high, which is disadvantageous in terms of oxidation resistance and long-term storage stability. When the crystallite size exceeds 35 nm or the particle size exceeds 1.5 μm, the activity is insufficient and the resulting copper particles have a large particle size. When the particle size is less than 0.3 μm, the cuprous oxide particles are likely to aggregate with each other, and as a result, the substantial surface area is decreased and the activity may be decreased.

亜酸化銅粒子の結晶子径及び粒径を上記範囲内に制御することによって、当該亜酸化銅粒子を用いて製造される銅粒子の粒径を、たとえば0.1μm〜0.5μmに制御することができる。なお、銅粒子の粒径が0.1μm未満になると、大きな表面積に起因して耐酸化性の点で不利になり、また、銅粒子同士が凝集して電子部品の小型化が困難になる傾向がある。銅粒子の粒径が0.5μmを超えると、電子部品の小型化が難しくなる。   By controlling the crystallite size and the particle size of the cuprous oxide particles within the above range, the particle size of the copper particles produced by using the cuprous oxide particles is controlled to, for example, 0.1 μm to 0.5 μm. be able to. If the particle size of the copper particles is less than 0.1 μm, it is disadvantageous in terms of oxidation resistance due to the large surface area, and the copper particles tend to aggregate to make it difficult to miniaturize electronic parts. There is. If the particle size of the copper particles exceeds 0.5 μm, it becomes difficult to miniaturize the electronic component.

亜酸化銅粒子の粒径、および銅粒子の粒径は、レーザ回折/散乱式粒径分布測定装置で測定して得られる粒径分布グラフで、体積基準の頻度の累積が50%になる平均粒径D50を意味し、JIS Z8825(2013)に基いて測定する。また、亜酸化銅粒子の結晶子径は、単結晶とみなせる結晶子の平均直径を意味する。
具体的には、粒径を測定するには、Malvern製のMASTERSIZER3000を用いて、分散媒:ヘキサメタりん酸ナトリウム水溶液、光学パラメーター:粒子吸収率5.90、粒子吸収率(青)0.92、粒子屈折率3.00、粒子屈折率(青)0.52、散乱強度:6−8%の条件とすることができる。結晶子径は、装置として株式会社リガク製のRINT−2200Ultimaを用いて、測定条件を2θ=20−90°とし、結晶子サイズ算出ソフトPDXL2を用いて測定することができる。
The particle size of the cuprous oxide particles and the particle size of the copper particles are a particle size distribution graph obtained by measuring with a laser diffraction / scattering particle size distribution measuring device, and the average of volume-based frequency accumulation is 50%. It means a particle diameter D50, and is measured based on JIS Z8825 (2013). The crystallite diameter of the cuprous oxide particles means the average diameter of crystallites that can be regarded as a single crystal.
Specifically, in order to measure the particle diameter, using MASTERSIZER3000 manufactured by Malvern, a dispersion medium: sodium hexametaphosphate aqueous solution, optical parameters: particle absorption rate 5.90, particle absorption rate (blue) 0.92, The conditions can be as follows: particle refractive index 3.00, particle refractive index (blue) 0.52, scattering intensity: 6-8%. The crystallite diameter can be measured by using RINT-2200Ultima manufactured by Rigaku Co., Ltd. as a device under measurement conditions of 2θ = 20-90 ° and using the crystallite size calculation software PDXL2.

(炭素付着量)
亜酸化銅粒子には炭素が付着していることがある。亜酸化銅粒子の表面に炭素が付着することで、耐酸化性を向上させることができる。亜酸化銅粒子の炭素付着量は、0.01質量%〜2.0質量%とすること、さらに0.1質量%〜2.0質量%が好ましい。炭素付着量が2.0質量%を超えると、最終的に得られる銅粉に含まれる不純物が多くなることが懸念される。
(Amount of carbon deposited)
Carbon may be attached to the cuprous oxide particles. By attaching carbon to the surface of the cuprous oxide particles, the oxidation resistance can be improved. The carbon deposition amount of the cuprous oxide particles is preferably 0.01% by mass to 2.0% by mass, and more preferably 0.1% by mass to 2.0% by mass. When the carbon deposition amount exceeds 2.0 mass%, there is a concern that impurities contained in the finally obtained copper powder will increase.

亜酸化銅粒子の炭素付着量は、燃焼法により測定する。燃焼法とは、酸素を吹き込んで定量の亜酸化銅粒子を燃焼させ、発生したCO、CO2の量からC量を求める方法である。この測定には、たとえば、LECOジャパン合同会社製のCS844型を用いることができる。 The carbon deposition amount of cuprous oxide particles is measured by a combustion method. The combustion method is a method in which oxygen is blown in to burn a certain amount of cuprous oxide particles and the amount of C is determined from the amounts of CO and CO 2 generated. For this measurement, for example, Model CS844 manufactured by LECO Japan LLC can be used.

(用途)
上述した亜酸化銅粒子は、銅粉の作製に用いることができる。具体的には、亜酸化銅粒子を純水等に分散させ、これに公知の化学還元法または不均化法等を適用することにより、銅粒子を含む銅粉を作製することができる。なお、このような銅粉は、特に、積層セラミックコンデンサないしインダクタ等の電子部品の内外電極用材料や、インクジェット配線の用途に適している。
(Use)
The cuprous oxide particles described above can be used for producing copper powder. Specifically, the cuprous oxide particles are dispersed in pure water or the like, and a known chemical reduction method, disproportionation method, or the like is applied to this to produce a copper powder containing the copper particles. In addition, such a copper powder is particularly suitable for use as a material for inner and outer electrodes of electronic parts such as a monolithic ceramic capacitor or an inductor, and for an inkjet wiring.

この実施形態の亜酸化銅粒子は、なかでも、不均化反応による銅粉の作製に供することが好ましい。一般に不均化法では、反応速度が速いほど、銅粒子の粒径を小さくすることができるが、反応速度を速くすると、銅粒子の粒径のコントロールが難しくなる。この実施形態の亜酸化銅粒子は、結晶子径及び粒径を所定の範囲としたことにより、不均化反応で製造する銅粒子の粒径の制御が可能になる。   Among them, the cuprous oxide particles of this embodiment are preferably used for producing copper powder by a disproportionation reaction. Generally, in the disproportionation method, the faster the reaction rate, the smaller the particle size of the copper particles, but if the reaction rate is fast, it becomes difficult to control the particle size of the copper particles. In the cuprous oxide particles of this embodiment, the particle size of the copper particles produced by the disproportionation reaction can be controlled by setting the crystallite size and the particle size within predetermined ranges.

(製造方法)
以上に述べた亜酸化銅粒子は、たとえば次のようにして製造することができる。
一の実施形態の製造方法では、還元糖を含む硫酸銅溶液にアルカリを添加し、当該アルカリの添加によりpHを所定の範囲に到達させる。ここでは、反応温度、硫酸銅の濃度、アルカリの添加速度および、pHの範囲をコントロールすることが重要である。これにより、所定の結晶子径及び粒径を有する亜酸化銅粒子を製造することができる。なお、「還元糖を含む硫酸銅水溶液にアルカリを添加」とは、例えば、加温された溶媒に硫酸銅を添加した後に還元糖を添加してもよいし、加温された溶媒に還元糖を添加した後に硫酸銅を添加してもよく、あるいは、溶媒に還元糖を添加した後に加温し、そこに硫酸銅を添加してもよいことを意味する。
(Production method)
The cuprous oxide particles described above can be manufactured, for example, as follows.
In the manufacturing method of one embodiment, an alkali is added to a copper sulfate solution containing a reducing sugar, and the addition of the alkali causes the pH to reach a predetermined range. Here, it is important to control the reaction temperature, the concentration of copper sulfate, the addition rate of alkali, and the pH range. As a result, cuprous oxide particles having a predetermined crystallite size and particle size can be produced. It should be noted that “adding an alkali to a copper sulfate aqueous solution containing a reducing sugar” means, for example, that reducing sugar may be added after adding copper sulfate to a heated solvent, or reducing sugar may be added to a heated solvent. Means that copper sulfate may be added after the addition of, or the reducing sugar may be added to the solvent and then heated, and the copper sulfate may be added thereto.

反応温度は、50℃以上かつ90℃未満とする。反応温度を50度未満とすれば、予想に反して亜酸化銅粒子の粒径が小さくなる。この一方で、反応温度が90℃以上になると、銅まで還元してしまうおそれがある。この観点から、反応温度の好ましい範囲は、50℃〜85℃である。なお、硫酸銅及び還元糖の添加前に予め、溶媒を当該反応温度に加熱しておくことができる他、たとえば還元糖添加後かつ硫酸銅添加前などの所定の時期に、溶媒を加熱してもよい。   The reaction temperature is 50 ° C or higher and lower than 90 ° C. If the reaction temperature is less than 50 degrees, the particle size of the cuprous oxide particles becomes smaller than expected. On the other hand, if the reaction temperature is 90 ° C. or higher, copper may be reduced. From this viewpoint, the preferable range of the reaction temperature is 50 ° C to 85 ° C. The solvent can be preheated to the reaction temperature before the addition of copper sulfate and reducing sugar, or the solvent can be heated at a predetermined time, for example, after the addition of reducing sugar and before the addition of copper sulfate. Good.

上記の範囲内の所定の反応温度とする場合、硫酸銅の濃度が、その反応温度における硫酸銅の飽和濃度の10%〜100%になるように、溶媒中に硫酸銅を溶解させる。硫酸銅の濃度を、飽和濃度の10%未満とすれば、予想に反して亜酸化銅粒子の粒径の増大を招くこととなった。硫酸銅の濃度は、当該反応温度における飽和濃度の15%〜90%とすることが好ましい。   When the reaction temperature is within the above range, copper sulfate is dissolved in the solvent so that the concentration of copper sulfate is 10% to 100% of the saturated concentration of copper sulfate at the reaction temperature. If the concentration of copper sulfate is less than 10% of the saturation concentration, unexpectedly, the particle size of cuprous oxide particles increases. The concentration of copper sulfate is preferably 15% to 90% of the saturated concentration at the reaction temperature.

アルカリの添加速度については、アルカリの毎分添加量が、硫酸銅溶液の体積に対して1.0%〜180%となる速度とする。アルカリの添加速度をこのように比較的速くすることにより、中間生成物である水酸化銅粒子が小さくなると推定されるので、亜酸化銅粒子の粒径が小さくなる。アルカリを一分当たりに1.0%未満の量で添加することとすれば、結晶子が大きくなる。一方、毎分180%を超える量とすると、pHの制御が困難になる。   Regarding the addition rate of alkali, the addition rate of alkali per minute is 1.0% to 180% with respect to the volume of the copper sulfate solution. By making the addition rate of the alkali relatively high in this way, it is estimated that the copper hydroxide particles as an intermediate product become small, and therefore the particle size of the cuprous oxide particles becomes small. If the alkali is added in an amount of less than 1.0% per minute, the crystallite becomes large. On the other hand, if the amount exceeds 180% per minute, it becomes difficult to control the pH.

そして、このような所定の速度でアルカリを添加し、pHを7.5以上かつ10.0未満に到達させる。この際に到達するpHが7.5未満である場合は、結晶子が大きくなり、またpHが10.0以上である場合は、銅粉まで還元してしまうおそれがある。   Then, the alkali is added at such a predetermined rate to bring the pH to 7.5 or more and less than 10.0. If the pH reached at this time is less than 7.5, the crystallites become large, and if the pH is 10.0 or more, the copper powder may be reduced.

アルカリの添加は、pHが実質的に変動しなくなる時点で終了させる。ここで、「実質的に変動しなくなる」とは、pHを5分おきに測定した場合に直前のpHとの差が0.2以内になることを意味する。   The addition of alkali is terminated when the pH no longer fluctuates substantially. Here, “substantially no longer changes” means that the difference from the immediately preceding pH is within 0.2 when the pH is measured every 5 minutes.

この実施形態の製造方法をより詳しく述べると、はじめに、純水などの溶媒に硫酸銅を添加して溶解させて硫酸銅溶液とする。なお、硫酸銅の添加前もしくは後に、還元糖や、亜酸化銅が酸化銅に変性することを防止する変性防止剤を添加することができる。還元糖としては、亜酸化銅に還元することのできるものであれば、その種類は特に問わない。たとえば、グルコース、フルクトース、グリセルアルデヒド、ラクトース、アラビノース、マルトース等の還元糖を挙げることができる。また、スクロース自体は還元糖ではないが、スクロースが加水分解して生成される転化糖も、還元糖として利用可能である。変性防止剤は、多糖類、ニカワ及びコラーゲンペプチドからなる群から選択される少なくとも一種を含むものとすることができる。このうち多糖類としては、たとえば、アラビアゴム、デキストリン等を挙げることができる。但し、変性防止剤の添加は必ずしも必要ではない。   To describe the manufacturing method of this embodiment in more detail, first, copper sulfate is added and dissolved in a solvent such as pure water to prepare a copper sulfate solution. Before or after the addition of copper sulfate, a reducing sugar or a modification inhibitor that prevents modification of cuprous oxide into copper oxide can be added. The reducing sugar may be of any type as long as it can be reduced to cuprous oxide. Examples thereof include reducing sugars such as glucose, fructose, glyceraldehyde, lactose, arabinose and maltose. Although sucrose itself is not a reducing sugar, invert sugar produced by hydrolysis of sucrose can also be used as a reducing sugar. The denaturation inhibitor may include at least one selected from the group consisting of polysaccharides, glue and collagen peptides. Among them, examples of the polysaccharides include gum arabic and dextrin. However, the addition of the denaturing inhibitor is not always necessary.

溶媒に硫酸銅を溶解させる際には、好ましくは50rpm〜1000rpm、より好ましくは200rpm〜1000rpmで攪拌することができる。これにより、硫酸銅を容易に溶解させることができる。なお、後述のアルカリ添加後の反応終了まで、この速度で攪拌することができる。   When dissolving the copper sulfate in the solvent, the stirring can be performed preferably at 50 rpm to 1000 rpm, more preferably at 200 rpm to 1000 rpm. Thereby, copper sulfate can be easily dissolved. It should be noted that stirring can be performed at this speed until the reaction is completed after the alkali addition described below.

次いで、硫酸銅溶液の温度を先述した反応温度に維持して、アルカリを添加し、アルカリの添加によりpHを先述した範囲内に到達させる。
還元糖及びアルカリの添加順序については、いずれが先でもかまわないが、還元糖を添加した後にアルカリを添加することが好ましい。仮に、アルカリを先に添加した場合、硫酸銅が水酸化銅の凝集体になり、その後に還元糖を添加しても凝集体として存在する水酸化銅の表面だけが還元される。この場合、水酸化銅が不純物として残留するとともに、亜酸化銅の歩留りが低下する。一方、還元糖を先に添加した場合、このような不都合が生じない。
Then, the temperature of the copper sulfate solution is maintained at the reaction temperature described above, an alkali is added, and the pH is brought to within the range described above by adding the alkali.
The reducing sugar and the alkali may be added in any order, but it is preferable to add the reducing sugar and then the alkali. If the alkali is added first, the copper sulfate becomes an aggregate of copper hydroxide, and even if a reducing sugar is added thereafter, only the surface of the copper hydroxide existing as an aggregate is reduced. In this case, copper hydroxide remains as an impurity and the yield of cuprous oxide decreases. On the other hand, when reducing sugar is added first, such inconvenience does not occur.

ここで、pHの調整のために添加するアルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水、アミノ基を分子末端に有するカップリング剤、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等を挙げることができる。   Here, examples of the alkali to be added for adjusting the pH include sodium hydroxide, potassium hydroxide, ammonia water, a coupling agent having an amino group at the molecular end, monoethanolamine, diethanolamine, triethanolamine and the like. You can

pHが所定の値に到達した後は、当該pHを反応終了まで保持する。なお、他の局面において、pHが所定の値に到達した後に当該pHを、好ましくは10時間、より好ましくは5時間にわたって保持してもよい。先に述べたように、反応温度を上昇させるとともにpHを高くしたことにより、銅イオンとグルコースとの接触頻度が高まり、反応時間を短縮し、生産性を向上させることができる。   After the pH reaches a predetermined value, the pH is maintained until the end of the reaction. In addition, in another aspect, the pH may be maintained for preferably 10 hours, more preferably 5 hours after the pH reaches a predetermined value. As described above, by increasing the reaction temperature and the pH, the contact frequency between copper ions and glucose increases, the reaction time can be shortened, and the productivity can be improved.

しかる後は、デカンテーション等による固液分離、純水を用いた洗浄等を行い、亜酸化銅粒子スラリーとし、これを乾燥させることにより、亜酸化銅粒子を得ることができる。   After that, solid-liquid separation by decantation or the like, washing with pure water, and the like are performed to form a cuprous oxide particle slurry, which is dried to obtain cuprous oxide particles.

次に、この発明の亜酸化銅粒子を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示であり、これに限定されることを意図するものではない。   Next, the cuprous oxide particles of the present invention were experimentally produced, and the effects thereof were confirmed. However, the description here is merely an example and is not intended to be limited thereto.

硫酸銅・5水和物を349.0g、D−グルコースを138.5g、純水を544mL、5wt%NaOH水溶液を4L、アラビアゴムを0.9g準備した。5Lビーカーに純水を544mL、アラビアゴムを0.9g添加し、回転羽を使って350rpmで撹拌した。ビーカーを加熱し、液温が70℃に到達した後、ビーカーに硫酸銅・5水和物を349.0g添加して、硫酸銅溶液を作製した。   349.0 g of copper sulfate pentahydrate, 138.5 g of D-glucose, 544 mL of pure water, 4 L of 5 wt% NaOH aqueous solution, and 0.9 g of gum arabic were prepared. Pure water (544 mL) and gum arabic (0.9 g) were added to a 5 L beaker, and the mixture was stirred at 350 rpm using a rotary blade. The beaker was heated, and after the liquid temperature reached 70 ° C., 349.0 g of copper sulfate pentahydrate was added to the beaker to prepare a copper sulfate solution.

さらにビーカーにD−グルコースを添加するとともに、5wt%NaOH水溶液を30ml/minで添加し、pHを7.5±0.1に調整した。この際に、5wt%NaOH水溶液の添加速度は、一分当たりに、硫酸銅溶液の体積の5.5%(30mL/min)とした。このとき、CuO生成を抑制するため、pHは10を超えないように調整する。反応が進行するとpHが下がって酸性側に変化するので、5wt%NaOH水溶液を滴下し続け、pHを8.5近傍に保持した。NaOH水溶液を添加しなくてもpHが実質的に変動しなくなるまで、NaOH水溶液を滴下し続けた。   Furthermore, D-glucose was added to the beaker, and a 5 wt% NaOH aqueous solution was added at 30 ml / min to adjust the pH to 7.5 ± 0.1. At this time, the addition rate of the 5 wt% NaOH aqueous solution was 5.5% (30 mL / min) of the volume of the copper sulfate solution per minute. At this time, in order to suppress CuO generation, the pH is adjusted so as not to exceed 10. As the reaction proceeds, the pH decreases and changes to the acidic side. Therefore, a 5 wt% NaOH aqueous solution was continuously added dropwise to maintain the pH at around 8.5. The aqueous NaOH solution was continued to be added dropwise until the pH did not substantially change without the addition of the aqueous NaOH solution.

その後、静置し、上澄み液を捨てた。遠心分離を1500rpm、15分の条件で実施した。それにより得られたスラリーを保存瓶に移し、亜酸化銅を浸漬するため、適量の純水を添加した。
これにより実施例1の亜酸化銅粒子を得た。
Then, it was left to stand and the supernatant was discarded. Centrifugation was performed at 1500 rpm for 15 minutes. The slurry thus obtained was transferred to a storage bottle, and an appropriate amount of pure water was added in order to immerse the cuprous oxide.
Thus, the cuprous oxide particles of Example 1 were obtained.

実施例1〜20及び比較例1〜4の亜酸化銅粒子はそれぞれ、表1に示すように、所定の条件を変化させたことを除いて、実施例1と同様にして製造した。比較例5の亜酸化銅粒子は、エヌシー・テック株式会社製のNC−301とした。   The cuprous oxide particles of Examples 1 to 20 and Comparative Examples 1 to 4 were each manufactured in the same manner as in Example 1 except that predetermined conditions were changed as shown in Table 1. The cuprous oxide particles of Comparative Example 5 were NC-301 manufactured by NC Tech Co., Ltd.

(銅粉)
実施例1〜20及び比較例1〜5の各亜酸化銅粒子を用いて、次のようにして銅粉を作製した。亜酸化銅粒子50g、アラビアゴム0.16g、純水310mLからなるスラリーに、32vol%の希硫酸108mLを瞬間的に添加し、500rpmで10分間撹拌した。この操作で得られた銅粒子が十分に沈降した後に上澄み液を取り除き、純水を310mL加え500rpm、10分間撹拌した。上澄み液中のCu2+由来のCu濃度が1g/Lを下回るまでこの操作を繰り返した。
(Copper powder)
Copper powder was produced as follows using each cuprous oxide particle of Examples 1-20 and Comparative Examples 1-5. 108 mL of 32 vol% dilute sulfuric acid was instantaneously added to a slurry composed of 50 g of cuprous oxide particles, 0.16 g of gum arabic, and 310 mL of pure water, and stirred at 500 rpm for 10 minutes. After the copper particles obtained by this operation were sufficiently settled, the supernatant was removed, 310 mL of pure water was added, and the mixture was stirred at 500 rpm for 10 minutes. This operation was repeated until the Cu concentration derived from Cu 2+ in the supernatant liquid fell below 1 g / L.

実施例1〜20及び比較例1〜5のそれぞれについて、先に述べた方法にて、亜酸化銅粒子の粒径、結晶子径及び炭素付着量ならびに、銅粉の銅粒子の粒径を測定した。その結果も表1に示す。   For each of Examples 1 to 20 and Comparative Examples 1 to 5, the particle size of the cuprous oxide particles, the crystallite size and the carbon deposition amount, and the particle size of the copper particles of the copper powder were measured by the method described above. did. The results are also shown in Table 1.

Figure 2020075833
Figure 2020075833

実施例1〜20では、所定の条件としたことにより、所定の粒径及び結晶子径の亜酸化銅粒子を製造することができた。また、当該亜酸化銅粒子を用いて作製した銅粉では、銅粒子の粒径が所定の範囲内となった。
比較例1では、反応温度が低かったことにより、亜酸化銅粒子の粒径が小さくなった。比較例2では、pHが低かったことで、結晶子が大きくなった。比較例3では、添加速度が遅すぎたことに起因して、結晶子が大きくなった。比較例4では、硫酸銅濃度が低かったことにより、亜酸化銅粒子の粒径が大きくなった。比較例5の亜酸化銅粒子は、粒径が大きく、また結晶子径が大きかった。
In Examples 1 to 20, cuprous oxide particles having a predetermined particle size and crystallite size could be produced under the predetermined conditions. Moreover, in the copper powder produced by using the cuprous oxide particles, the particle diameter of the copper particles was within a predetermined range.
In Comparative Example 1, the particle size of the cuprous oxide particles was small due to the low reaction temperature. In Comparative Example 2, the crystallite was large due to the low pH. In Comparative Example 3, the crystallite became large due to the addition rate being too slow. In Comparative Example 4, the particle size of the cuprous oxide particles was large due to the low copper sulfate concentration. The cuprous oxide particles of Comparative Example 5 had a large particle size and a large crystallite size.

以上より、この発明によれば、所定の良好な亜酸化銅粒子の製造及び、それを用いた良好な銅粉の作製が可能になることが解かった。   From the above, it was found that according to the present invention, it is possible to manufacture predetermined good cuprous oxide particles and to manufacture good copper powder using the particles.

Claims (6)

結晶子径が8nm〜35nmであり、粒径が0.3μm〜1.5μmである亜酸化銅粒子。   Cuprous oxide particles having a crystallite size of 8 nm to 35 nm and a particle size of 0.3 μm to 1.5 μm. 燃焼法により測定した炭素付着量が0.01質量%〜2.0質量%である、請求項1に記載の亜酸化銅粒子。   The cuprous oxide particles according to claim 1, wherein the carbon deposition amount measured by the combustion method is 0.01% by mass to 2.0% by mass. 結晶子径が10nm〜25nmである請求項1又は2に記載の亜酸化銅粒子。   The cuprous oxide particles according to claim 1 or 2, having a crystallite size of 10 nm to 25 nm. 粒径が0.7μm〜1.4μmである請求項1〜3のいずれか一項に記載の亜酸化銅粒子。   The cuprous oxide particles according to any one of claims 1 to 3, which have a particle size of 0.7 µm to 1.4 µm. 不均化反応による銅粉の製造に供される請求項1〜4のいずれか一項に記載の亜酸化銅粒子。   Cuprous oxide particles given in any 1 paragraph of Claims 1-4 used for manufacture of copper powder by a disproportionation reaction. 還元糖を含む硫酸銅溶液にアルカリを添加して、亜酸化銅粒子を製造する方法であって、
反応温度を50℃以上かつ90℃未満とし、前記硫酸銅の濃度を、前記反応温度における飽和濃度の10%〜100%とし、アルカリを、一分当たりに前記硫酸銅溶液の体積に対して1.0%〜180%の量が添加される速度で添加して、pHを7.5以上かつ10.0未満に到達させる、亜酸化銅粒子の製造方法。
A method for producing cuprous oxide particles by adding an alkali to a copper sulfate solution containing a reducing sugar,
The reaction temperature is 50 ° C. or more and less than 90 ° C., the concentration of the copper sulfate is 10% to 100% of the saturated concentration at the reaction temperature, and the alkali is 1 per minute with respect to the volume of the copper sulfate solution. A method for producing cuprous oxide particles, which comprises adding at an addition rate of 0.0% to 180% to reach a pH of 7.5 or more and less than 10.0.
JP2018210071A 2018-11-07 2018-11-07 Copper oxide particles Active JP7012630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210071A JP7012630B2 (en) 2018-11-07 2018-11-07 Copper oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210071A JP7012630B2 (en) 2018-11-07 2018-11-07 Copper oxide particles

Publications (2)

Publication Number Publication Date
JP2020075833A true JP2020075833A (en) 2020-05-21
JP7012630B2 JP7012630B2 (en) 2022-01-28

Family

ID=70723467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210071A Active JP7012630B2 (en) 2018-11-07 2018-11-07 Copper oxide particles

Country Status (1)

Country Link
JP (1) JP7012630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499664A (en) * 2020-12-07 2021-03-16 江苏汇诚医疗科技有限公司 Cuprous oxide-doped nano zinc oxide composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031491A (en) * 2006-07-26 2008-02-14 Sumitomo Metal Mining Co Ltd Fine copper powder, its manufacturing method and conductive paste
JP2013144615A (en) * 2012-01-13 2013-07-25 Mitsui Mining & Smelting Co Ltd Coprous oxide particle, and method for manufacturing the same
WO2014104032A1 (en) * 2012-12-25 2014-07-03 戸田工業株式会社 Method for producing copper powder, copper powder, and copper paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031491A (en) * 2006-07-26 2008-02-14 Sumitomo Metal Mining Co Ltd Fine copper powder, its manufacturing method and conductive paste
JP2013144615A (en) * 2012-01-13 2013-07-25 Mitsui Mining & Smelting Co Ltd Coprous oxide particle, and method for manufacturing the same
WO2014104032A1 (en) * 2012-12-25 2014-07-03 戸田工業株式会社 Method for producing copper powder, copper powder, and copper paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499664A (en) * 2020-12-07 2021-03-16 江苏汇诚医疗科技有限公司 Cuprous oxide-doped nano zinc oxide composite material and preparation method thereof
CN112499664B (en) * 2020-12-07 2023-08-01 江苏汇诚医疗科技有限公司 Cuprous oxide-doped nano zinc oxide composite material and preparation method thereof

Also Published As

Publication number Publication date
JP7012630B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
EP2103364B1 (en) Process for manufacture of nanometric, monodisperse and stable metallic silver and product obtained therefrom
JP5164379B2 (en) Copper fine particles and method for producing the same
TWI373530B (en) Production of fine particle copper powders
JP2007239077A (en) Method for producing particulate silver particle, and particulate silver particle obtained by the method
JP5892048B2 (en) Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP2007176789A (en) Barium carbonate powder and method of manufacturing the same
US7909908B2 (en) Method of improving the weatherability of copper powder
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP2020075833A (en) Cuprous oxide particles and method for producing cuprous oxide particles
JP5048556B2 (en) Method for producing particulate copper powder
JPH04325415A (en) Indium hydroxide and oxide
KR100851815B1 (en) A method of preparing nano silver powder
JP2005289668A (en) Tetragonal barium titanate particulate powder and method for manufacturing the same
JP5729926B2 (en) Gallium oxide powder
JP5895557B2 (en) Particulate composition, method for producing particulate composition, and particulate composition dispersion
JP2009052146A (en) Copper powder and its manufacturing method
JP4120007B2 (en) Method for producing copper powder
JP7383446B2 (en) Manufacturing method of vanadium compound
TW201501788A (en) Method for prepareing silver particles and core-shell silver particles
KR102061719B1 (en) Silver powder and method for manufacturing the same
TW202030033A (en) Method for producing monodispersed ag powder
JP6209631B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6687697B2 (en) Cuprous oxide particles, cuprous oxide particle slurry, and method for producing cuprous oxide particles
JP2002316818A (en) Hydroxide and oxide of indium
KR100491677B1 (en) METHOD FOR PREPARING OF CeO2 NANO POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R151 Written notification of patent or utility model registration

Ref document number: 7012630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151