JP6947081B2 - 電池の充放電制御方法および電池システム - Google Patents

電池の充放電制御方法および電池システム Download PDF

Info

Publication number
JP6947081B2
JP6947081B2 JP2018033589A JP2018033589A JP6947081B2 JP 6947081 B2 JP6947081 B2 JP 6947081B2 JP 2018033589 A JP2018033589 A JP 2018033589A JP 2018033589 A JP2018033589 A JP 2018033589A JP 6947081 B2 JP6947081 B2 JP 6947081B2
Authority
JP
Japan
Prior art keywords
temperature
battery
charge
battery module
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033589A
Other languages
English (en)
Other versions
JP2019149300A (ja
Inventor
誉幸 赤石
誉幸 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018033589A priority Critical patent/JP6947081B2/ja
Priority to US16/275,742 priority patent/US10992153B2/en
Priority to CN201910122555.6A priority patent/CN110197931B/zh
Priority to DE102019104732.3A priority patent/DE102019104732A1/de
Publication of JP2019149300A publication Critical patent/JP2019149300A/ja
Application granted granted Critical
Publication of JP6947081B2 publication Critical patent/JP6947081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両等に搭載される電池システムに関する。
車両等に搭載される電池においては、電池の劣化抑制や安全性確保のため温度上昇を抑制することが好ましい。そこで、例えば、特許文献1は、電池温度に対して放電電力および充電電力の制限値を定めた制御マップを用意して、電池温度が所定の制限温度に近づくほど放電電力および充電電力の制限を強化し、制限温度に達すると、充放電を停止する制御装置を開示している。
図6にこのような制御マップの例を示す。制御マップの横軸は電池の内部温度であり、縦軸が充電電力および放電電力である。この例では、電池の内部温度の制限温度が110℃である。制限マップは、充放電可能な最大温度が制限温度以下となっており、制限マップが表わす制限値以内で充放電を行う限り、電池の内部温度が制限温度を超えることがないように設定される。このように、電池の制限温度は内部温度に対して設けられ、制限マップは本来内部温度に対して設定されるものである。しかし、実際には、電池の内部温度は測定困難であるため、例えば電池セル表面に取り付けられた電池温度センサの測定値に所定のオフセットを加算した値を内部温度として、電池温度センサの測定値に対して制限マップを設定する。図7は、図6に示す制御マップにおいて、横軸を電池温度センサの測定値に置換した制御マップである。電池温度センサの測定値は、一般的には、空冷等による熱拡散の効果によって、内部温度未満となっており、図7に示す制御マップは、図6に示す制御マップから、オフセット(>0)分だけ制御マップが温度軸の低温方向にシフトされている。図7に示す例では、オフセットは110−58=52(℃)である。
特開2007−221885号公報
図7に示す制御マップを用いた制御において、所定の固定値を初期オフセットとした初期制御マップを用い続けると、実際の内部温度と電池温度センサの測定値との差の変動によって、内部温度を実際より高く判定したり、低く判定したりした状態で制御を行うことになる。とくに、電池に電流が多く流れ発熱量が大きいが、空冷の効果が高く電池セル表面が効率的に冷却されており、実際の電池の内部温度と表面温度との温度差が大きい場合は、内部温度を実際より低く判定することにつながり、初期制御マップを使用し続けると内部温度が制限温度を超えるおそれがある。
電池の内部温度は、電池に供給される冷却用の空気の温度である吸気温度と、電池の電流値の2乗で表される電流負荷とによって、推定することができる。そこで、この推定値に基づいて、内部温度と電池温度センサの測定値との差が初期オフセットより大きいと判断できる場合には、初期オフセットから制御マップをさらに低温方向にシフトする補正を行うことにより、内部温度を実際より低く判定した制御を回避することが従来検討されている。図8に、初期制御マップと、このような補正を行った制御マップとを示す。補正制御マップではオフセット70℃となっており、初期オフセットの52℃より18℃大きい。
しかし、吸気温度と電流負荷とに基づいて推定される内部温度は、その吸気温度と電流負荷が長時間継続して、内部温度が一定値に収束した後の飽和値であり、ただちにその内部温度に達するものではないため、図8に示す補正後の制御マップに基づいた制御を行うと、こんどは内部温度を実際より高く判定しすぎた制御を行うことになるため、好適でなく、充放電を不必要に制限し、電池の効率的な利用を妨げるおそれがある。
本発明は、上記課題に鑑み、電池の制限温度を超えずかつ効率的な充放電制御を行うことができる、電池の充放電制御方法および電池システムを提供することを目的とする。
上記課題を解決するために、本発明の一局面は、電池モジュールと、電池モジュールの温度を測定する電池温度センサと、電池モジュールの電流を測定する電流センサと、冷却ダクトと、冷却ダクトに設けられ電池モジュールに供給される空気の温度である吸気温度を測定する吸気温度センサと、電池モジュールの充放電電力を制御する充放電制御部とを備えた電池システムの充放電制御部が実行する電池の充放電制御方法であって、電池温度センサの測定値である電池温度を取得するステップと、吸気温度センサの測定値である吸気温度を取得するステップと、電流センサの測定値である電流を取得するステップと、取得した吸気温度および電流に対応する、電池モジュールの内部温度および内部温度に達するまでの時間を規定する時定数を、所定のマップを参照して算出するステップと、電池温度に対する充放電電力の制限値を定めた所定の制御マップを、少なくとも内部温度と時定数とに基づいて補正するステップと、取得した電池温度と補正した制御マップとに基づいて、電池モジュールの充放電制御を行うステップとを含む、電池の充放電制御方法である。
これにより、充放電の制限のために用いる制御マップを、時定数を用いて好適に補正するため、電池の内部温度が制限温度を超えないように充放電を制御する際、必要以上に充放電を制限することなく電池の効率的な利用を図ることができる。
また、充放電制御部は、補正するステップにおいて、内部温度が所定の制限温度より大きい場合に、内部温度と時定数とに基づいて、所定時間経過後の電池モジュール内部の温度の予測増分値を算出し、算出した予測増分値だけ制御マップを電池温度に対して低温側にシフトすることにより補正してもよい。
これにより、とくに好適な補正量だけ制御マップを補正することができる。
本発明の他の局面は、電池モジュールと、電池モジュールの温度を測定する電池温度センサと、電池モジュールの電流を測定する電流センサと、冷却ダクトと、冷却ダクトに設けられ、電池モジュールに供給される空気の温度である吸気温度を測定する吸気温度センサと、電池モジュールの充放電電力を制御する充放電制御部とを備え、充放電制御部は、電池温度センサの測定値である電池温度、吸気温度センサの測定値である吸気温度、および、電流センサの測定値である電流を取得し、取得した吸気温度および電流に対応する、電池モジュールの内部温度および内部温度に達するまでの時間を規定する時定数を、所定のマップを参照して算出し、電池温度に対する充放電電力の制限値を定めた所定の制御マップを、少なくとも内部温度と時定数とに基づいて補正し、取得した電池温度と補正した制御マップとに基づいて、電池モジュールの充放電制御を行う、電池システムである。
これにより、充放電の制限のために用いる制御マップを、時定数を用いて好適に補正するため、電池の内部温度が制限温度を超えないように充放電を制御する際、必要以上に充放電を制限することなく電池の効率的な利用を図ることができる。
本発明によれば、上述のように、充放電の制限のために用いる制御マップを、時定数を用いて好適に補正することができる。とくに内部温度の収束後の推定値でなく、時定数を用いて算出した所定期間経過後の推定値を用いて補正するため、電池の制限温度を超えずかつ必要以上に充放電を制限しない、効率的な充放電制御を行うことができる、電池の充放電制御方法および電池システムを提供することができる。
本発明の一実施形態に係る電池システムの機能ブロック図 本発明の一実施形態に係る充放電制御部の処理を示すフローチャート 本発明の一実施形態に係る初期制御マップを示す図 本発明の一実施形態に係る初期制御マップの許容上限温度値に対応する電池内部温度の上昇モデルを示す図 本発明の一実施形態に係る補正制御マップの一例を示す図 従来の制御マップを示す図 従来の制御マップを示す図 従来の補正制御マップを示す図
(概要)
本発明に係る電池の充放電制御方法においては、電池温度センサ値に対して、充電電力および放電電力の制限値を定めた制御マップを用いて、電池の内部温度が制限温度を超えないように充放電制御を行う。制御マップは、吸気温度と電流負荷とに基づいて定まる内部温度の推定値に基づいて補正する。補正量を、従来のように収束後の推定値ではなく、所定の時定数に基づいて算出した所定時間経過後の推定値によって定めるため、必要以上に充放電を制御することを抑制する。
(実施形態)
以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。
<構成>
図1に、本実施形態に係る電池システム100の機能ブロック図を示す。電池システム100は、一例として、電池モジュール10、電圧センサ3、電池温度センサ4、電流センサ5、冷却ダクト11、吸気温度センサ14、電池監視ECU20を備える。電池モジュール10は、一例として、直列接続された複数のn個の並列回路2(2_(1)〜2_(n))を含む。各並列回路2は並列接続された複数のセル1(1_(1,1)〜1_(1,m),…,1_(n,1)〜1_(n,m))をm個ずつ含む。電圧センサ3(3_(1)〜3_(n))は各並列回路2の電圧を測定する。電池温度センサ4(4_(1)〜4_(n))は、例えば各並列回路2のセル1のいずれかの表面の、セル1の最大表面温度を取得可能な位置に備えられ、各並列回路2の温度を測定する。電池温度センサ4は1つの並列回路2に複数設けられてもよい。電流センサ5は電池モジュール10の電流を測定する。また、冷却ダクト11は、冷却用に吸気を取り込み、電池モジュール10に供給する。吸気温度センサ14は吸気温度を測定する。電池モジュール10の構成は例示であってセル1の個数や配列構造はとくに限定されない。また、電圧センサ3はなくてもよい。
電池監視ECU20は、一例として電池モジュール10を制御するECU(Electronic Control Unit)である。電池監視ECU20は、電圧センサ3、電池温度センサ4、電流センサ5、吸気温度センサ14から測定値を取得し、これらに基づいて、電池モジュール10の充放電制御を行う充放電制御部21を含む。電池監視ECU20は、他にも電池モジュール10の各種機能を制御するための他の制御部を有してもよい。
<処理>
以下に、電池システム100の充放電制御部21が実行する充放電制御処理を説明する。図2は充放電制御処理を説明するフローチャートである。本処理は、例えば、車両が走行を開始し、電池モジュール10の充放電が開始されたことにより開始される。
(ステップS101):充放電制御部21は、各電池温度センサ4からセンサ値を取得し、一例として、その最大値を電池温度センサ値Tとする。また、充放電制御部21は、吸気温度センサ14から吸気温度センサ値Tを取得する。また、充放電制御部21は、電流センサ5から電流センサ値Iを取得する。
(ステップS102):充放電制御部21は、電流センサ値Iの2乗で表される電流負荷Iと、吸気温度センサ値Tとに基づいて、各セル1における推定飽和内部温度値Tを算出する。推定飽和内部温度値Tは、例えば各セル1の表面温度が後述する許容上限温度値TBMAX_INTである場合に、一定の電流負荷Iおよび吸気温度センサ値Tのもと、内部温度が一定値に収束したときの推定値であり、例えば、以下の表1に示すような表を予め測定等により用意し、これを参照することによって算出することができる。なお、表1に示す数値は一例である。
Figure 0006947081
(ステップS103):充放電制御部21は、推定飽和内部温度値Tが、制限温度Tより大きいか否かを判定する。制限温度Tは、各セル1の内部温度の許容上限値である。推定飽和内部温度値Tが、制限温度Tより大きい場合、ステップS105に進み、推定飽和内部温度値Tが、制限温度T以下である場合ステップS104に進む。
(ステップS104):充放電制御部21は、所定の初期制御マップを用いた電池モジュール10の充放電制御を行う。初期制御マップは、図3に示すように、電池温度センサ値Tに対して、充電電力および放電電力の制限値を定めた制御マップである。初期制御マップにおいては、充放電が可能な電池温度センサ値の上限値である許容上限温度値TBMAX_INTに対応する内部温度が、例えば、電池モジュール10の一般的な使用状況において、制限温度Tあるいは制限温度T未満で制限温度Tに近い値となるように、暫定の初期オフセットが与えられている。本ステップでは、推定飽和内部温度値Tが、制限温度T以下であるため、充放電制御部21は、初期制御マップに基づく充放電制御を継続する。そして、ステップS101に戻る。
(ステップS105):充放電制御部21は、推定飽和内部温度値Tが、上昇中であるか、下降中であるか、あるいは、変化なしであるかを判定する。本処理は後述するように繰り返し実行されるため、2回目以降の実行時には、最後に算出した推定飽和内部温度値Tと前回算出した推定飽和内部温度値Tとを比較することで、判定を行うことができる。1回目の実行時には、例えば、上昇中であると判定すればよい。推定飽和内部温度値Tが、上昇中である場合、ステップS106に進み、下降中である場合、ステップS107に進み、変化なしの場合、ステップS112に進む。
(ステップS106):充放電制御部21は、電流負荷Iと、吸気温度センサ値Tとに基づいて、温度上昇時の時定数KUPを算出する。時定数KUPは、電流負荷Iおよび吸気温度センサ値Tのもと、上述の初期マップの許容上限温度値TBMAX_INTに対応する内部温度が上昇し、推定飽和内部温度値Tに到達するまでの速さを規定する定数であり、例えば、以下の表2に示すような表を予め測定等により用意し、これを参照することによって算出することができる。なお、表2に示す数値は一例である。
Figure 0006947081
(ステップS107):充放電制御部21は、推定飽和内部温度値Tと制限温度Tとの差ΔT=T−Tを計算する。充放電制御部21は、これと時定数KUPとに基づいて、所定時間経過後の、許容上限温度値TBMAX_INTに対応する内部温度の、制限温度Tからの増分値の予測値ΔTUPを算出する。このΔTUPは、図4に示す温度上昇モデルが示すように、内部温度の収束時の増分ΔTより小さな値となる。ΔTUPは、初期制御マップによる充放電制御のもと、電流負荷Iおよび吸気温度センサ値Tが継続した場合に、所定時間経過後に、許容上限温度値TBMAX_INTに対応する内部温度の、制限温度Tからの超過分を表している。
(ステップS108):充放電制御部21は、図5に示すように、初期制御マップを低温側に、ΔTUPだけシフトすることによって補正制御マップを生成する。補正制御マップにおいては、所定時間経過後の、許容上限温度値TBMAXに対応する内部温度が、最大でも制限温度Tとなる。そして、充放電制御部21は、電池温度センサ値Tと、生成した補正制御マップとに基づいて充放電制御を行う。これにより、充放電の制限が初期制御マップより厳しくなるため、各セル1の内部温度の上昇が抑制され、現在から所定時間経過後の内部温度が、制限温度T以下となる。そして、ステップS101に戻る。図5に、推定飽和内部温度値Tと制限温度Tとの差ΔTだけ初期制御マップをシフトした制御マップを合わせて示す。これは、図8に示した、従来の補正制御マップと同じである。図5に示すように、本実施形態に係る補正制御マップは、従来案に比べて補正のためのマップシフト量が抑制されており、充放電を必要以上に制限することがなく、電池の効率的な利用を行うことができる。
(ステップS109):充放電制御部21は、電流負荷Iと、吸気温度センサ値Tとに基づいて、温度下降時の時定数KDOWNを算出する。時定数KDOWNは、上述のKUPと同様に、電流負荷Iおよび吸気温度センサ値Tのもと、初期マップの許容上限温度値TBMAX_INTに対応する内部温度が上昇し、推定飽和内部温度値Tに到達するまでの速さを規定する定数であり、例えば、上述のKUPと同様に表を用意して参照することによって算出することができる。ただし、推定飽和内部温度値Tが下降中である場合と、上昇中である場合とでは、一般に、同じ電流負荷Iおよび吸気温度センサ値Tに対しても、推定飽和内部温度値Tに到達するまでの速さが異なるため、KDOWNの値は、例示を省略するが、KUPの値とは異なる。
(ステップS110):充放電制御部21は、ステップS107と同様に、推定飽和内部温度値Tと制限温度Tとの差ΔT=T−Tを計算する。充放電制御部21は、ΔTと時定数KDOWNとに基づいて、現在から所定時間経過後の、許容上限温度値TBMAX_INTに対応する内部温度の、制限温度Tからの増分値の予測値ΔTDOWNを算出する。このΔTDOWNは、図示を省略するが、ΔTUPと同様、内部温度の収束時の増分ΔTより小さな値となる。
(ステップS111):充放電制御部21は、初期制御マップを低温側に、ΔTDOWNだけシフトすることによって、ステップS108と同様に、補正制御マップを生成する。補正制御マップにおいては、所定時間経過後の、許容上限温度値TBMAXに対応する内部温度が、最大でも制限温度Tとなる。そして、充放電制御部21は、電池温度センサ値Tと、生成した補正制御マップに基づいて充放電制御を行う。これにより、充放電の制限が初期制御マップより厳しくなるため、各セル1の内部温度の上昇が抑制され、所定時間経過後の内部温度が、制限温度T以下となる。そして、ステップS101に戻る。なお、本ステップにおける補正制御マップは、図示を省略するが、ステップS108での補正制御マップ同様、従来案に比べて補正のためのマップシフト量が抑制されており、充放電を必要以上に制限することがなく、電池の効率的な利用を行うことができる。
(ステップS112):本ステップでは、推定飽和内部温度値Tが前回から変化がないため、初期制御マップからのシフト量を、前回ステップS107またはステップS110において算出したΔTUPまたはΔTDOWNと同様としてよい。したがって、本ステップでは、充放電制御部21は、電池温度センサ値Tと、前回制御に用いた補正制御マップを用いて充放電制御を行う。これにより、充放電の制限が前回と同程度、初期制御マップより厳しくなるため、各セル1の内部温度の上昇が抑制され、所定時間経過後の内部温度が、制限温度T以下となる。そして、ステップS101に戻る。また、ステップS108、S111と同様、充放電を必要以上に制限することがなく、電池の効率的な利用を行うことができる。
以上のように、本処理は、例えば電池モジュール10の充放電中は、繰り返し実行されるが、繰返し周期は、ΔTUPやΔTDOWNの算出に用いる所定時間より短くし、所定時間より短い周期で、制御マップのシフト量を更新できるようにすることが好ましい。また、上述の例では時定数は、KUP、KDOWNの2種類を用いたが、これに限定されず1種類の時定数を用いてもよいし、他の条件に基づいて異なる時定数を使い分けてもよい。
本発明は、以上の実施形態に限定されず適宜変更して実施可能である。例えば電池の内部温度と電池温度センサ値との差が拡大すると判断できる場合に、時定数に基づいて、差の適切な予測増分値が算出でき、所定の制御マップを、電池温度センサ軸上で予測増分値に応じた好適な量のみ低温側にシフトする等の補正ができれば、上述の各ステップは適宜変更してもよい。
<効果>
本発明によれば、充放電の制限のために用いる制御マップを、時定数を用いて好適に補正することができる。とくに内部温度の収束後の推定値でなく、所定期間経過後の推定値を用いて補正するため、電池の内部温度が制限温度を超えないように充放電を制御する際、必要以上に充放電を制限することなく電池の効率的な利用を図ることができる。
なお、本発明は、電池の充放電制御方法だけでなく、コンピューターが実行する充放電制御プログラム、または、このようなコンピューターを含む電池システム、車両として捉えることも可能である。
本発明は、電池を搭載した車両等に有用である。
1 セル
2 並列回路
3 電圧センサ
4 電池温度センサ
5 電流センサ
10 電池モジュール
11 冷却ダクト
14 吸気温度センサ
20 電池監視ECU
21 充放電制御部
100 電池システム

Claims (3)

  1. 電池モジュールと、
    前記電池モジュールの温度を測定する電池温度センサと、
    前記電池モジュールの電流を測定する電流センサと、
    冷却ダクトと、
    前記冷却ダクトに設けられ前記電池モジュールに供給される空気の温度である吸気温度を測定する吸気温度センサと、
    前記電池モジュールの充放電電力を制御する充放電制御部とを備えた電池システムの充放電制御部が実行する電池の充放電制御方法であって、
    前記電池温度センサの測定値である電池温度を取得するステップと、
    前記吸気温度センサの測定値である吸気温度を取得するステップと、
    前記電流センサの測定値である電流を取得するステップと、
    取得した前記吸気温度および前記電流に対応する、前記電池モジュールの内部温度および前記内部温度に達するまでの時間を規定する時定数を、所定のマップを参照して算出するステップと、
    前記電池温度に対する充放電電力の制限値を定めた所定の制御マップを、少なくとも前記内部温度と前記時定数とに基づいて補正するステップと、
    取得した前記電池温度と補正した前記制御マップとに基づいて、前記電池モジュールの充放電制御を行うステップとを含む、電池の充放電制御方法。
  2. 前記充放電制御部は、前記補正するステップにおいて、前記内部温度が所定の制限温度より大きい場合に、前記内部温度と前記時定数とに基づいて、所定時間経過後の前記電池モジュール内部の温度の予測増分値を算出し、算出した前記予測増分値だけ前記制御マップを前記電池温度に対して低温側にシフトすることにより補正する、請求項1に記載の電池の充放電制御方法。
  3. 電池モジュールと、
    前記電池モジュールの温度を測定する電池温度センサと、
    前記電池モジュールの電流を測定する電流センサと、
    冷却ダクトと、
    前記冷却ダクトに設けられ、前記電池モジュールに供給される空気の温度である吸気温度を測定する吸気温度センサと、
    前記電池モジュールの充放電電力を制御する充放電制御部とを備え、
    前記充放電制御部は、
    前記電池温度センサの測定値である電池温度、前記吸気温度センサの測定値である吸気温度、および、前記電流センサの測定値である電流を取得し、
    取得した前記吸気温度および前記電流に対応する、前記電池モジュールの内部温度および前記内部温度に達するまでの時間を規定する時定数を、所定のマップを参照して算出し、
    前記電池温度に対する充放電電力の制限値を定めた所定の制御マップを、少なくとも前記内部温度と前記時定数とに基づいて補正し、
    取得した前記電池温度と補正した前記制御マップとに基づいて、前記電池モジュールの充放電制御を行う、電池システム。
JP2018033589A 2018-02-27 2018-02-27 電池の充放電制御方法および電池システム Active JP6947081B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018033589A JP6947081B2 (ja) 2018-02-27 2018-02-27 電池の充放電制御方法および電池システム
US16/275,742 US10992153B2 (en) 2018-02-27 2019-02-14 Method for correcting a control map defining a limiting value of the charge/discharge electric power of a battery and battery system
CN201910122555.6A CN110197931B (zh) 2018-02-27 2019-02-19 电池的充电/放电控制方法及电池***
DE102019104732.3A DE102019104732A1 (de) 2018-02-27 2019-02-25 Lade-/entladesteuerungsverfahren für eine batterie und batteriesystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033589A JP6947081B2 (ja) 2018-02-27 2018-02-27 電池の充放電制御方法および電池システム

Publications (2)

Publication Number Publication Date
JP2019149300A JP2019149300A (ja) 2019-09-05
JP6947081B2 true JP6947081B2 (ja) 2021-10-13

Family

ID=67550237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033589A Active JP6947081B2 (ja) 2018-02-27 2018-02-27 電池の充放電制御方法および電池システム

Country Status (4)

Country Link
US (1) US10992153B2 (ja)
JP (1) JP6947081B2 (ja)
CN (1) CN110197931B (ja)
DE (1) DE102019104732A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271328B2 (ja) * 2019-06-13 2023-05-11 本田技研工業株式会社 制御装置、制御方法、及びプログラム
DE102019125396B3 (de) * 2019-09-20 2021-02-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Aufladen einer Traktionsbatterie eines Elektrofahrzeugs auf einen Ziel-Ladezustand
CN111913111B (zh) * 2020-07-24 2023-05-05 蜂巢能源科技股份有限公司 放电功率校正方法、装置、存储介质及电子设备
FR3114163B1 (fr) * 2020-09-15 2022-08-26 Commissariat Energie Atomique Procédé et dispositif de gestion du comportement thermique d'une batterie
CN112600284B (zh) * 2021-03-04 2021-08-10 苏州宝时得电动工具有限公司 电池包的充放电调控装置及方法
DE102022121394A1 (de) * 2022-08-24 2024-02-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Batteriezelle für ein Kraftfahrzeug, Computerprogramm, Datenverarbeitungsvorrichtung, Batteriesteuerungseinheit und Kraftfahrzeug

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222370A (ja) * 1994-01-28 1995-08-18 Sanyo Electric Co Ltd 温度センサーを有する充電器
JP4435327B2 (ja) * 1999-05-14 2010-03-17 パナソニック株式会社 組電池の充電制御装置
JP4129109B2 (ja) * 2000-03-09 2008-08-06 松下電器産業株式会社 充電制御装置および方法
TW468299B (en) * 2000-05-19 2001-12-11 Acer Inc Charging apparatus and its method
CN1312806C (zh) * 2001-01-10 2007-04-25 杨泰和 藉结合力启动充电及充电饱和时推离断电的充电装置
US6534956B2 (en) * 2001-04-30 2003-03-18 Tai-Her Yang Thermostatic automatic cutoff charging device
CN100483892C (zh) * 2002-11-18 2009-04-29 日立工机株式会社 能够指示剩余时间的电池充电器
JP5008863B2 (ja) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 二次電池用の制御装置、二次電池の温度推定方法を用いた二次電池の劣化判定方法
JP4293182B2 (ja) * 2005-12-16 2009-07-08 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP4595829B2 (ja) 2006-02-15 2010-12-08 トヨタ自動車株式会社 二次電池の制御装置および制御方法
JP2007311065A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 電池装置、これを搭載した車両、および電池装置の異常判定方法
JP4932340B2 (ja) * 2006-06-22 2012-05-16 プライムアースEvエナジー株式会社 バッテリ冷却装置及び冷却風量制御装置
KR101269266B1 (ko) * 2006-10-10 2013-05-29 엘지전자 주식회사 배터리온도 상승에 따른 휴대용 전자기기 손상 방지 장치및 방법
CN101883972B (zh) * 2008-03-27 2014-03-05 松下电器产业株式会社 环境温度测量方法、液体试料测量方法以及测量器
JP4715881B2 (ja) * 2008-07-25 2011-07-06 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP5470961B2 (ja) * 2009-03-26 2014-04-16 株式会社豊田中央研究所 二次電池の制御装置
WO2011111949A2 (ko) * 2010-03-08 2011-09-15 (주)브이이엔에스 자동차 및 그의 제어방법
JP5402792B2 (ja) * 2010-04-02 2014-01-29 トヨタ自動車株式会社 電池パック入出力制御装置
WO2012017936A1 (ja) * 2010-08-05 2012-02-09 三菱自動車工業株式会社 電力需給平準化システムのバッテリ情報出力装置
CN102771003B (zh) * 2010-09-27 2014-11-26 丰田自动车株式会社 电池控制***
US9331507B2 (en) * 2010-10-18 2016-05-03 The Johns Hopkins University Control apparatus and method for conducting fast battery charge
JP5732873B2 (ja) * 2011-01-31 2015-06-10 株式会社日立製作所 太陽電池の特性演算方法及び太陽光発電システム
JP2012210083A (ja) * 2011-03-30 2012-10-25 Toyota Motor Corp 電池の制御装置
JP5396428B2 (ja) * 2011-05-16 2014-01-22 三菱電機株式会社 車載バッテリの満充電制御装置
JP2013005663A (ja) * 2011-06-21 2013-01-07 Toyota Motor Corp 電池パック入出力制御装置
JP5461602B2 (ja) * 2012-02-20 2014-04-02 三菱重工業株式会社 電力管理システム
US9641009B2 (en) * 2012-08-20 2017-05-02 Nissan Motor Co., Ltd. Charging device for secondary battery and charging method for secondary battery
JP6107349B2 (ja) * 2013-04-11 2017-04-05 スズキ株式会社 バッテリ充放電制御装置
KR101519780B1 (ko) * 2014-03-14 2015-05-13 현대자동차주식회사 차량 배터리의 예약 충전을 위한 제어 방법
JP6176223B2 (ja) * 2014-11-04 2017-08-09 トヨタ自動車株式会社 バッテリシステム
CN107078537B (zh) * 2014-11-04 2018-10-12 本田技研工业株式会社 充电控制装置和充电控制方法
JP6354685B2 (ja) * 2015-07-10 2018-07-11 トヨタ自動車株式会社 電池の制御装置
US10436127B2 (en) * 2015-12-03 2019-10-08 Mitsubishi Electric Corporation Combustion-stabilizing device and combustion-stabilizing method for internal combustion engine
US20170271984A1 (en) * 2016-03-04 2017-09-21 Atigeo Corp. Using battery dc characteristics to control power output
KR101936465B1 (ko) * 2016-09-21 2019-01-08 현대자동차주식회사 배터리 충전 시스템 및 방법
JP6992411B2 (ja) * 2017-11-01 2022-01-13 株式会社デンソー 機器冷却装置
JP6950604B2 (ja) * 2018-03-26 2021-10-13 トヨタ自動車株式会社 電圧変換装置、電圧変換装置を用いた車両および電圧変換装置の制御方法
JP7087610B2 (ja) * 2018-04-11 2022-06-21 株式会社デンソー 電池制御装置
US11148546B2 (en) * 2018-08-07 2021-10-19 Toyota Jidosha Kabushiki Kaisha Power supply control device

Also Published As

Publication number Publication date
CN110197931A (zh) 2019-09-03
JP2019149300A (ja) 2019-09-05
CN110197931B (zh) 2022-03-04
US20190267826A1 (en) 2019-08-29
DE102019104732A1 (de) 2019-08-29
US10992153B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
JP6947081B2 (ja) 電池の充放電制御方法および電池システム
JP6844683B2 (ja) 蓄電素子管理装置、socのリセット方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体
EP3064952B1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
US7514904B2 (en) System and method for determining battery temperature
CN111430845B (zh) 一种电池包热管理方法、装置、存储介质及电子设备
JP4925060B2 (ja) 電池状態推定装置
JP5682433B2 (ja) 充電制御システム
CN1311860A (zh) 电池充电状态的估计装置及电池恶化估计方法
RU2690724C1 (ru) Устройство оценки коэффициента емкости или способ оценки коэффициента емкости
JP2005332777A (ja) バッテリのウォームアップ制御装置
JP5942882B2 (ja) 電池システム
WO2018061449A1 (ja) 電池制御装置、電池システム及び車両
JP2018189579A (ja) 二次電池の劣化推定装置
WO2016199455A1 (ja) 蓄電池制御装置
CN111532097B (zh) 空调器的控制方法、装置、空调器和存储介质
JP2010231968A (ja) 二次電池の制御装置
CN110736929B (zh) 一种电池能力计算方法及装置
US10998585B2 (en) Determination method of smoke emission in battery, and battery system
KR101393575B1 (ko) 온도 제어 방법 및 이를 수행하는 차량 전력 제어 시스템
JP2006112944A (ja) 電池温度検出装置
JP2021156638A (ja) バッテリ診断装置、方法、プログラムおよび車両
JP2011175859A (ja) 二次電池の満充電判定方法およびこれを用いる二次電池の充電制御方法
JP2005345135A (ja) バッテリ充電状態演算方法
JP2017117755A (ja) 入力上限電圧値決定方法及び制御装置
JP4441213B2 (ja) バッテリ充電状態演算装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6947081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151