JP6920154B2 - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP6920154B2
JP6920154B2 JP2017186554A JP2017186554A JP6920154B2 JP 6920154 B2 JP6920154 B2 JP 6920154B2 JP 2017186554 A JP2017186554 A JP 2017186554A JP 2017186554 A JP2017186554 A JP 2017186554A JP 6920154 B2 JP6920154 B2 JP 6920154B2
Authority
JP
Japan
Prior art keywords
lead member
core wire
pair
main surface
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017186554A
Other languages
Japanese (ja)
Other versions
JP2019062112A (en
Inventor
靖人 藤井
靖人 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017186554A priority Critical patent/JP6920154B2/en
Publication of JP2019062112A publication Critical patent/JP2019062112A/en
Application granted granted Critical
Publication of JP6920154B2 publication Critical patent/JP6920154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、熱電モジュールに関し、例えば、恒温槽、冷蔵庫、自動車用のシートクーラー、半導体製造装置、レーザーダイオードもしくは燃料電池、電池等の温度調節または廃熱発電等の熱電発電に使用される熱電モジュールに関するものである。 The present disclosure relates to thermoelectric modules, for example, thermoelectric modules used for thermoelectric power generation such as constant temperature baths, refrigerators, seat coolers for automobiles, semiconductor manufacturing equipment, laser diodes or fuel cells, temperature control of batteries, etc. or waste heat power generation. It is about.

熱電モジュールは、例えば熱電素子に電力を供給することによって、一方の主面と他方の主面との間に温度差を生じさせることができる。また、熱電モジュールは、例えば一方の主面と他方の主面との間に温度差を与えることによって、熱電素子によって電力を生じさせることができる。これらの性質を活かして、熱電モジュールは温度調節または熱電発電等に用いられている。 The thermoelectric module can generate a temperature difference between one main surface and the other main surface, for example, by supplying electric power to a thermoelectric element. Further, the thermoelectric module can generate electric power by the thermoelectric element by giving a temperature difference between one main surface and the other main surface, for example. Taking advantage of these properties, thermoelectric modules are used for temperature control, thermoelectric power generation, and the like.

このような熱電モジュールは、例えば、互いに対向する領域を有する一対の支持基板と、一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、一対の支持基板の一方主面間に配置された複数の熱電素子と、一対の支持基板のうちの一方の支持基板に設けられた配線導体と接合されたリード部材とを備え、該リード部材は、芯線と、芯線が露出する先端部よりも後端側で芯線を覆う弾性を有する被覆層とを含んでいる(特許文献1を参照)。 Such a thermoelectric module is, for example, between a pair of support substrates having regions facing each other, wiring conductors provided on one of the opposing main surfaces of the pair of support substrates, and one main surface of the pair of support substrates. A plurality of arranged thermoelectric elements and a lead member joined to a wiring conductor provided on one of the support substrates of the pair of support substrates are provided, and the lead member includes a core wire and a tip portion where the core wire is exposed. It includes an elastic coating layer that covers the core wire on the rear end side (see Patent Document 1).

特開2008−244239号公報Japanese Unexamined Patent Publication No. 2008-244239

従来、支持基板に設けられた配線導体にリード部材をはんだ付けする場合、リード部材は支持基板の主面に平行に配置されていた。このとき、リード部材の被覆層は、先端が支持基板の側面に垂直に接触していた。 Conventionally, when a lead member is soldered to a wiring conductor provided on a support substrate, the lead member is arranged parallel to the main surface of the support substrate. At this time, the tip of the coating layer of the lead member was in vertical contact with the side surface of the support substrate.

熱電モジュールの放熱面(一方の支持基板)からの放熱は、例えば放熱面にヒートシンクを設け、必要により空冷ファンや水冷機構等を用いて行われる。また、放熱の一部は、リード部材の被覆層を通しても行われる。 Heat dissipation from the heat dissipation surface (one support substrate) of the thermoelectric module is performed by, for example, providing a heat sink on the heat dissipation surface and using an air cooling fan, a water cooling mechanism, or the like if necessary. Part of the heat dissipation is also performed through the coating layer of the lead member.

しかしながら、上記従来の形態にあっては、支持基板と配線導体との熱膨張差によって、リード部材が動いて被覆層の先端が支持基板の側面から離れ、被覆層を通して熱伝導されずに放熱性が悪くなるという問題があった。 However, in the above-mentioned conventional form, due to the difference in thermal expansion between the support substrate and the wiring conductor, the lead member moves and the tip of the coating layer is separated from the side surface of the support substrate, and heat is not conducted through the coating layer and heat is dissipated. There was a problem that it got worse.

本開示は、上記の事情に鑑みてなされたもので、リード部材の被覆層が支持基板から離れにくい熱電モジュールを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a thermoelectric module in which the coating layer of a lead member does not easily separate from a support substrate.

本開示の熱電モジュールは、互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、前記一対の支持基板の一方主面間に配置された複数の熱電素子と、前記一対の支持基板のうちの一方の支持基板に設けられた前記配線導体と接合されたリード部材とを備えている。リード部材は、芯線と、該芯線が露出する先端部よりも後端側で前記芯線を覆う弾性を有する被覆層とを含んでいる。リード部材は、前記一方主面に垂直な断面で見たときに、前記一方主面に平行な方
向から傾いて配置されるとともに、前記一方の支持基板の側面に前記被覆層の先端が押し付けられて縮んでいる。
The thermoelectric module of the present disclosure is between a pair of support substrates having regions facing each other, wiring conductors provided on one of the facing main surfaces of the pair of support substrates, and one main surface of the pair of support substrates. It includes a plurality of arranged thermoelectric elements and a lead member joined to the wiring conductor provided on one of the support substrates of the pair of support substrates. The lead member includes a core wire and an elastic coating layer that covers the core wire on the rear end side of the tip portion where the core wire is exposed. The lead member is arranged so as to be inclined from a direction parallel to the one main surface when viewed in a cross section perpendicular to the one main surface, and the tip of the coating layer is pressed against the side surface of the one support substrate. Is shrinking.

また、本開示の他の熱電モジュールは、互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、前記一対の支持基板の一方主面間に配置された複数の熱電素子と、前記一対の支持基板のうちの一方の支持基板に設けられた前記配線導体と接合されたリード部材とを備えている。リード部材は、芯線と、該芯線が露出する先端部よりも後端側で前記芯線を覆う弾性を有する被覆層とを含んでいる。リード部材は、前記一方主面に垂直な断面で見たときに、前記一方主面に平行な方向から傾いて配置されるとともに、前記一方の支持基板の稜部に前記被覆層が押し付けられて凹んでいる。 Further, the other thermoelectric modules of the present disclosure include a pair of support substrates having regions facing each other, wiring conductors provided on one of the facing main surfaces of the pair of support substrates, and one of the pair of support substrates. It includes a plurality of thermoelectric elements arranged between the main surfaces and a lead member joined to the wiring conductor provided on one of the support substrates of the pair of support substrates. The lead member includes a core wire and an elastic coating layer that covers the core wire on the rear end side of the tip portion where the core wire is exposed. The lead member is arranged so as to be inclined from a direction parallel to the one main surface when viewed in a cross section perpendicular to the one main surface, and the coating layer is pressed against the ridge portion of the one support substrate. It is dented.

本開示の熱電モジュールによれば、被覆層が支持基板の側面から離れそうになったとしても、被覆層の縮んだ部分または凹んだ部分がもとに戻って離れるのを抑制できるので、放熱性が向上する。 According to the thermoelectric module of the present disclosure, even if the coating layer is about to separate from the side surface of the support substrate, it is possible to prevent the shrunk or recessed portion of the coating layer from returning to its original position and thus dissipating heat. Is improved.

熱電モジュールの例を示す概略斜視図である。It is a schematic perspective view which shows the example of a thermoelectric module. 図1に示す熱電モジュールの平面図である。It is a top view of the thermoelectric module shown in FIG. 図2に示す熱電モジュールの一部透過側面図である。It is a partial transmission side view of the thermoelectric module shown in FIG. 図2に示すIV−IV線で切断した概略断面図である。It is a schematic cross-sectional view cut along line IV-IV shown in FIG. 熱電モジュールの他の例を示す概略斜視図である。It is a schematic perspective view which shows another example of a thermoelectric module. 図5に示す熱電モジュールの平面図である。It is a top view of the thermoelectric module shown in FIG. 図6に示す熱電モジュールの一部透過側面図である。It is a partial transmission side view of the thermoelectric module shown in FIG. 図6に示すVIII−VIII線で切断した概略断面図である。It is a schematic cross-sectional view cut along line VIII-VIII shown in FIG. 熱電モジュールの他の例の要部拡大断面図である。It is an enlarged sectional view of the main part of another example of a thermoelectric module. 熱電モジュールの他の例の要部拡大断面図である。It is an enlarged sectional view of the main part of another example of a thermoelectric module.

以下、熱電モジュールの例について、図面を参照して説明する。 Hereinafter, an example of the thermoelectric module will be described with reference to the drawings.

図1は熱電モジュールの例の概略斜視図であり、図2は図1に示す熱電モジュールの平面図、図3は図2に示す熱電モジュールの一部透過側面図、図4は図2に示すIV−IV線で切断した概略断面図である。 1 is a schematic perspective view of an example of a thermoelectric module, FIG. 2 is a plan view of the thermoelectric module shown in FIG. 1, FIG. 3 is a partially permeated side view of the thermoelectric module shown in FIG. 2, and FIG. 4 is shown in FIG. It is a schematic cross-sectional view cut along the IV-IV line.

図1〜図4に示す熱電モジュール10は、互いに対向する領域を有する一対の支持基板11、12と、一対の支持基板11、12の対向する一方主面にそれぞれ設けられた配線導体21、22と、一対の支持基板11、12の一方主面間に配置された複数の熱電素子3と、一対の支持基板11、12のうちの一方の支持基板11に設けられた配線導体21と接合されたリード部材4とを備えている。 In the thermoelectric modules 10 shown in FIGS. 1 to 4, the pair of support substrates 11 and 12 having regions facing each other and the wiring conductors 21 and 22 provided on one of the opposing main surfaces of the pair of support substrates 11 and 12, respectively. , And a plurality of thermoelectric elements 3 arranged between one main surface of the pair of support boards 11 and 12, and a wiring conductor 21 provided on one of the support boards 11 and 12 of the pair of support boards 11 and 12. It is provided with a lead member 4.

熱電モジュール10を構成する一対の支持基板11、12は、例えば矩形状の互いに対向する領域を有し、この領域で複数の熱電素子3を挟んで支持している。この矩形状の互いに対向する領域を平面視したときの寸法は、例えば、縦40〜80mm、横20〜40mmに設定することができる。 The pair of support substrates 11 and 12 constituting the thermoelectric module 10 have, for example, rectangular regions facing each other, and a plurality of thermoelectric elements 3 are sandwiched and supported in this region. The dimensions of the rectangular regions facing each other in a plan view can be set to, for example, 40 to 80 mm in length and 20 to 40 mm in width.

支持基板11は上面が支持基板12に対向する一方主面となるように配置され、支持基板12は下面が支持基板11に対向する一方主面となるように配置されている。例えば、支持基板11が相対的に高温となる高温側支持基板であり、支持基板12が相対的に低温
となる低温側支持基板である。
The support substrate 11 is arranged so that the upper surface is one main surface facing the support substrate 12, and the lower surface of the support substrate 12 is arranged so as to be one main surface facing the support substrate 11. For example, the support substrate 11 is a high temperature side support substrate having a relatively high temperature, and the support substrate 12 is a low temperature side support substrate having a relatively low temperature.

支持基板11は支持基板12に対向する一方主面である上面に配線導体21が設けられ、支持基板12は支持基板11に対向する一方主面である下面に配線導体22が設けられることから、支持基板11の上面側および支持基板12の下面側は絶縁材料からなる。例えば、一対の支持基板11、12は、アルミナフィラーを添加してなる厚み50〜200μmのエポキシ樹脂からなる基板本体の外側の主面に厚み50〜500μmの銅板を貼り合わせた構成である。また、一対の支持基板11、12としては、アルミナ、窒化アルミニウムなどのセラミック材料からなる基板本体の外側の主面に銅などの金属板を貼り合わせた構成であってもよく、銅、銀、銀−パラジウムなどの導電性材料からなる基板本体の内側の主面にエポキシ樹脂、ポリイミド樹脂、アルミナ、窒化アルミニウムなどからなる絶縁層を設けた構成であってもよい。 Since the support substrate 11 is provided with the wiring conductor 21 on the upper surface which is one main surface facing the support substrate 12, and the support substrate 12 is provided with the wiring conductor 22 on the lower surface which is the one main surface facing the support substrate 11. The upper surface side of the support substrate 11 and the lower surface side of the support substrate 12 are made of an insulating material. For example, the pair of support substrates 11 and 12 have a configuration in which a copper plate having a thickness of 50 to 500 μm is bonded to an outer main surface of a substrate body made of an epoxy resin having a thickness of 50 to 200 μm to which an alumina filler is added. Further, the pair of support substrates 11 and 12 may have a configuration in which a metal plate such as copper is bonded to the outer main surface of the substrate body made of a ceramic material such as alumina or aluminum nitride. An insulating layer made of epoxy resin, polyimide resin, alumina, aluminum nitride or the like may be provided on the inner main surface of the substrate body made of a conductive material such as silver-palladium.

一対の支持基板11、12の対向する内側の一方主面には、それぞれ配線導体21、22が設けられている。この配線導体21、22は、例えば支持基板11、12の内側の対向する主面に銅板を貼り付けておき、配線導体21、22となる部分にマスキングを施して、マスキングを施した領域以外の領域をエッチングで取り除くことによって得ることができる。また、打ち抜き加工によって配線導体21、22の形状に成形したものでもよい。配線導体21、22の形成材料としては、銅に限られず、例えば銀、銀−パラジウムなどの材料でもよい。 Wiring conductors 21 and 22 are provided on one of the inner main surfaces of the pair of support substrates 11 and 12 facing each other, respectively. For the wiring conductors 21 and 22, for example, a copper plate is attached to the opposite main surfaces inside the support substrates 11 and 12, and the portion to be the wiring conductors 21 and 22 is masked to other than the masked area. It can be obtained by removing the region by etching. Further, it may be formed into the shapes of the wiring conductors 21 and 22 by punching. The material for forming the wiring conductors 21 and 22 is not limited to copper, and may be, for example, a material such as silver or silver-palladium.

一対の支持基板11、12の対向する内側の一方主面間には、配線導体21、22によって電気的に接続されるように、複数の熱電素子3が配置されている。複数の熱電素子3は、p型熱電素子31およびn型熱電素子32である。この熱電素子3は、例えばペルチェ効果によって温度調節を行なうための部材である。熱電素子3は、例えば熱電素子3の直径の0.5〜2倍の間隔で縦横の並びに複数設けられ、配線導体21、22とはんだで接合されている。具体的には、p型熱電素子31およびn型熱電素子32が隣接して交互に配置され、配線導体21、22およびはんだを介して直列に電気的に接続され、全ての熱電素子3が直列に接続されている。 A plurality of thermoelectric elements 3 are arranged so as to be electrically connected by wiring conductors 21 and 22 between one main surface on the inner side of the pair of support substrates 11 and 12 facing each other. The plurality of thermoelectric elements 3 are a p-type thermoelectric element 31 and an n-type thermoelectric element 32. The thermoelectric element 3 is a member for adjusting the temperature by, for example, the Perche effect. A plurality of thermoelectric elements 3 are provided vertically and horizontally at intervals of 0.5 to 2 times the diameter of the thermoelectric element 3, and are joined to the wiring conductors 21 and 22 by soldering. Specifically, the p-type thermoelectric element 31 and the n-type thermoelectric element 32 are arranged adjacent to each other and electrically connected in series via the wiring conductors 21, 22 and solder, and all the thermoelectric elements 3 are connected in series. It is connected to the.

複数の熱電素子3は、A型結晶(AはBiおよび/またはSb、BはTeおよび/またはSe)からなる熱電材料、好ましくはBi(ビスマス)およびTe(テルル)系の熱電材料で本体部が構成されている。具体的には、p型熱電素子31は、例えば、BiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体からなる熱電材料で構成される。また、n型熱電素子32は、例えば、BiTe(テルル化ビスマス)とBiSe(セレン化ビスマス)との固溶体からなる熱電材料で構成される。 The plurality of thermoelectric elements 3 are thermoelectric materials composed of A 2 B 3 type crystals (A is Bi and / or Sb, B is Te and / or Se), preferably Bi (bismuth) and Te (tellurium) -based thermoelectric materials. The main body is composed of. Specifically, the p-type thermoelectric element 31 is composed of, for example, a thermoelectric material composed of a solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride). Further, the n-type thermoelectric element 32 is composed of, for example, a thermoelectric material made of a solid solution of Bi 2 Te 3 (bismuth tellurized) and Bi 2 Se 3 (bismuth selenized).

熱電素子3の形状は、例えば円柱状、四角柱状、多角柱状等にすることができる。特に、熱電素子3の形状を円柱状にすることにより、使用時のヒートサイクル下において熱電素子3に生じる熱応力の影響を低減できる。熱電素子3を円柱状とする場合には、寸法は、例えば直径が0.5〜3mm、高さが0.3〜5mmに設定される。 The shape of the thermoelectric element 3 can be, for example, a columnar shape, a square columnar shape, a polygonal columnar shape, or the like. In particular, by making the shape of the thermoelectric element 3 cylindrical, the influence of thermal stress generated on the thermoelectric element 3 under the heat cycle during use can be reduced. When the thermoelectric element 3 has a columnar shape, the dimensions are set to, for example, a diameter of 0.5 to 3 mm and a height of 0.3 to 5 mm.

ここで、p型熱電素子31となる熱電材料は一度溶融させて固化したBi、SbおよびTeからなるp型の熱電材料を、ブリッジマン法により一方向に凝固させ、例えば直径0.5〜3mmの断面円形の棒状体としたものである。また、n型熱電素子32となる熱電材料は、一度溶融させて固化したBi、TeおよびSeからなるn型の熱電材料を、ブリッジマン法により一方向に凝固させ、例えば直径0.5〜3mmの断面円形の棒状体としたものである。 Here, the thermoelectric material to be the p-type thermoelectric element 31 is a p-type thermoelectric material composed of Bi, Sb and Te that has been once melted and solidified, and is solidified in one direction by the Bridgeman method, for example, having a diameter of 0.5 to 3 mm. It is a rod-shaped body with a circular cross section. Further, in the thermoelectric material to be the n-type thermoelectric element 32, an n-type thermoelectric material composed of Bi, Te and Se once melted and solidified is solidified in one direction by the Bridgeman method, for example, having a diameter of 0.5 to 3 mm. It is a rod-shaped body with a circular cross section.

必要により、これらの熱電材料の側面にメッキが付着することを防止するレジストをコーティングした後、ワイヤーソーを用いて例えば0.3〜5.0mmの長さ(厚さ)に切断する。ついで、必要により、切断面のみに、例えば電気メッキでNi層を形成し、その上にSn層を形成し、p型熱電素子31およびn型熱電素子32を得ることができる。 If necessary, the sides of these thermoelectric materials are coated with a resist that prevents plating from adhering, and then cut to a length (thickness) of, for example, 0.3 to 5.0 mm using a wire saw. Then, if necessary, a Ni layer is formed only on the cut surface by, for example, electroplating, and a Sn layer is formed on the Ni layer, so that the p-type thermoelectric element 31 and the n-type thermoelectric element 32 can be obtained.

なお、支持基板11と支持基板12との間に配置された複数の熱電素子3の周囲には、必要により、例えばシリコーン樹脂、エポキシ樹脂などの樹脂からなるシール材を設けてもよい。外周側は支持基板11と支持基板12との間の温度差による変形が大きいが、一対の支持基板11、12の一方主面間における外周側に配置された複数の熱電素子3の隙間を埋めるようにシール材を設けることで、これが補強材となり、熱電素子3と配線導体21、22との間の剥離を抑制できる。 If necessary, a sealing material made of a resin such as a silicone resin or an epoxy resin may be provided around the plurality of thermoelectric elements 3 arranged between the support substrate 11 and the support substrate 12. The outer peripheral side is largely deformed by the temperature difference between the support substrate 11 and the support substrate 12, but fills the gap between the plurality of thermoelectric elements 3 arranged on the outer peripheral side between one main surface of the pair of support substrates 11 and 12. By providing the sealing material as described above, this serves as a reinforcing material, and peeling between the thermoelectric element 3 and the wiring conductors 21 and 22 can be suppressed.

一対の支持基板11、12のうちの一方の支持基板11には、必要により突出部111が設けられている。ここで、突出部111とは、平面視したときに支持基板11における支持基板12と対向する領域よりもはみ出た領域のことであり、図3において二点鎖線よりも左側の部分のことである。 If necessary, a protrusion 111 is provided on one of the support substrates 11 of the pair of support substrates 11 and 12. Here, the protruding portion 111 is a region of the support substrate 11 that protrudes from the region facing the support substrate 12 when viewed in a plan view, and is a portion on the left side of the alternate long and short dash line in FIG. ..

突出部111の突出量(突出距離)は例えば1〜5mmとされ、突出部111の支持基板11の辺に沿った方向の幅は例えば5mm〜40mm(短い辺の全域)とされる。 The protrusion amount (protrusion distance) of the protrusion 111 is, for example, 1 to 5 mm, and the width of the protrusion 111 in the direction along the side of the support substrate 11 is, for example, 5 mm to 40 mm (the entire area of the short side).

支持基板11の一方主面上にある配線導体21は突出部111まで設けられていて、突出部111の一方主面上に設けられた配線導体21にリード部材4の端部がはんだ等の接合材6で接合されている。なお、配線導体21とリード部材4との接合には、はんだの他、レーザーを用いた溶接であってもよい。 The wiring conductor 21 on one main surface of the support substrate 11 is provided up to the protruding portion 111, and the end portion of the lead member 4 is joined to the wiring conductor 21 provided on one main surface of the protruding portion 111 by solder or the like. It is joined with material 6. In addition to soldering, welding using a laser may be used to join the wiring conductor 21 and the lead member 4.

リード部材4は、熱電モジュール10と外部回路とを電気的に接続するもので、熱電素子3に電力を与えるか、または熱電素子3で生じた電力を取り出すための部材である。このリード部材4は、芯線41と、被覆層42とを含んでいる。リード部材4は、配線導体21と接合される先端部が、芯線41の露出した形状になっている。また、リード部材4は、先端部よりも後端側で芯線41を覆う、弾性を有する被覆層42を含んでいる。言い換えると、芯線41の配線導体21と電気的に接続される少なくとも先端部を除き、芯線41の側周面には被覆層42が設けられている。 The lead member 4 electrically connects the thermoelectric module 10 and an external circuit, and is a member for applying electric power to the thermoelectric element 3 or extracting electric power generated by the thermoelectric element 3. The lead member 4 includes a core wire 41 and a coating layer 42. The tip of the lead member 4 to be joined to the wiring conductor 21 has an exposed core wire 41. Further, the lead member 4 includes an elastic coating layer 42 that covers the core wire 41 on the rear end side of the tip portion. In other words, a coating layer 42 is provided on the side peripheral surface of the core wire 41 except at least the tip portion electrically connected to the wiring conductor 21 of the core wire 41.

ここで、リード部材4の先端部とは、支持基板11に設けられた配線導体21に接合される側の端部のことを意味する。リード部材4の先端部は芯線41の露出した形状になっているとは、リード部材4を配線導体21に電気的に接続するために、芯線41が被覆層442よりも先端側に突出していることを意味する。なお、リード部材4と外部回路との
接続のために、リード部材4の後端部も芯線41が露出していてもよく、リード部材4の後端部にコネクターが取り付けられていてもよい。
Here, the tip end portion of the lead member 4 means the end portion on the side joined to the wiring conductor 21 provided on the support substrate 11. The tip of the lead member 4 has an exposed shape of the core wire 41, which means that the core wire 41 protrudes toward the tip side of the coating layer 442 in order to electrically connect the lead member 4 to the wiring conductor 21. Means that. For the connection between the lead member 4 and the external circuit, the core wire 41 may also be exposed at the rear end portion of the lead member 4, or a connector may be attached to the rear end portion of the lead member 4.

芯線41は、例えば銅からなり、直径が0.15〜0.30mmの金属線を複数本束ねたもの、例えば15〜30本束ねたものである。被覆層42は、例えばポリ塩化ビニル、ポリエチレンなどからなり、厚み0.2〜0.4mmとされる。 The core wire 41 is made of copper, for example, and is a bundle of a plurality of metal wires having a diameter of 0.15 to 0.30 mm, for example, 15 to 30 wires. The coating layer 42 is made of, for example, polyvinyl chloride, polyethylene, or the like, and has a thickness of 0.2 to 0.4 mm.

そして、リード部材4は、一対の支持基板11、12の一方主面に垂直な断面で見たときに、一方主面に平行な方向から傾いて配置されるとともに、一方の支持基板11の側面に被覆層42の先端が押し付けられて縮んでいる。リード部材4の縮む量としては、例えば100μm〜800μmに設定される。 When the lead member 4 is viewed in a cross section perpendicular to one of the main surfaces of the pair of support substrates 11 and 12, the lead member 4 is arranged so as to be inclined from a direction parallel to the one main surface and a side surface of the one support substrate 11. The tip of the coating layer 42 is pressed against the surface and is shrunk. The amount of shrinkage of the lead member 4 is set to, for example, 100 μm to 800 μm.

この構成によれば、リード部材4の被覆層42の先端が支持基板11の側面から離れそ
うになったとしても、被覆層42の縮んだ部分がもとに戻るように伸びるので、支持基板11の側面から離れるのを抑制でき、熱電モジュール10の放熱性が向上する。
According to this configuration, even if the tip of the coating layer 42 of the lead member 4 is about to separate from the side surface of the support substrate 11, the shrunk portion of the coating layer 42 extends so as to return to its original position. It is possible to suppress the separation from the side surface of the thermoelectric module 10, and the heat dissipation of the thermoelectric module 10 is improved.

このような形態とするには、リード部材4を支持基板11に対して傾けて、被覆層42先端を支持基板11の側面に押し付けながら接合材6などで芯線41と配線導体21とを接合すればよい。 In such a form, the lead member 4 is tilted with respect to the support substrate 11, and the core wire 41 and the wiring conductor 21 are joined by a bonding material 6 or the like while pressing the tip of the coating layer 42 against the side surface of the support substrate 11. Just do it.

また、リード部材4と支持基板11とが熱伝導性部材5で接続されていてもよい。言い換えると、リード部材4から支持基板11にかけてこれらの一部を覆うように熱伝導部材5を設けてもよい。なお、図1〜図4に示す形態では、リード部材4を配線導体21に接合する接合材6の一部が露出するように熱伝導性部材5が設けられているが、図5〜図8に示すように、リード部材4を配線導体21に接合する接合材6の全体を覆うように熱伝導性部材5が設けられてもよい。このとき、熱伝導性部材5は支持基板11の側面に接合されていてもよく、支持基板11の一方主面とは反対側の他方主面にかけて接合されていてもよい。 Further, the lead member 4 and the support substrate 11 may be connected by a heat conductive member 5. In other words, the heat conductive member 5 may be provided so as to cover a part of the lead member 4 to the support substrate 11. In the form shown in FIGS. 1 to 4, the heat conductive member 5 is provided so that a part of the joining material 6 for joining the lead member 4 to the wiring conductor 21 is exposed. However, FIGS. As shown in the above, the heat conductive member 5 may be provided so as to cover the entire joining member 6 for joining the lead member 4 to the wiring conductor 21. At this time, the heat conductive member 5 may be joined to the side surface of the support substrate 11, or may be joined to the other main surface on the side opposite to one main surface of the support substrate 11.

熱伝導性部材5の材質としては、絶縁体であり、室温での加工性に優れ、かつ硬化が容易な樹脂で熱伝導率が比較的高いエポキシ樹脂、シリコーン樹脂等が挙げられる。さらに、これらの樹脂に、当該樹脂よりも熱伝導率の大きなフィラー、例えば窒化アルミニウムなどのセラミックス、金属などの粒子を含んでもよい。熱伝導性部材5の厚みとしては、一対の支持基板11、12の間隔および熱電素子3の高さと同じ程度までの範囲内の厚みとすることができる。 Examples of the material of the heat conductive member 5 include an epoxy resin, a silicone resin, and the like, which are insulators, have excellent workability at room temperature, and are easily cured and have a relatively high thermal conductivity. Further, these resins may contain particles such as a filler having a higher thermal conductivity than the resin, for example, ceramics such as aluminum nitride, and metals. The thickness of the heat conductive member 5 can be within the range of the distance between the pair of support substrates 11 and 12 and the height of the thermoelectric element 3.

この構成によれば、支持基板11の熱が熱伝導性部材5を通じて被覆層42に伝わるとともに熱伝導性部材5の表面から放熱されるため、熱電モジュール10の冷却性能を向上させることができる。また、リード部材4の接合強度も向上する。 According to this configuration, the heat of the support substrate 11 is transferred to the coating layer 42 through the heat conductive member 5 and radiated from the surface of the heat conductive member 5, so that the cooling performance of the thermoelectric module 10 can be improved. In addition, the joint strength of the lead member 4 is also improved.

また、図4および図8に示すように、リード部材4の芯線41が、一方の支持基板11の稜部に接していてもよい。具体的には、リード部材4の芯線41が支持基板11の一方主面に平行な方向から傾いて配置されており、芯線41の露出する先端部の側面が支持基板11の稜部に斜めに当接している。これにより、被覆層42の他に芯線41からも熱伝導が行われるため、放熱性がさらに向上する。 Further, as shown in FIGS. 4 and 8, the core wire 41 of the lead member 4 may be in contact with the ridge portion of one of the support substrates 11. Specifically, the core wire 41 of the lead member 4 is arranged so as to be inclined from a direction parallel to one main surface of the support substrate 11, and the side surface of the exposed tip portion of the core wire 41 is obliquely arranged on the ridge portion of the support substrate 11. It is in contact. As a result, heat conduction is performed not only from the coating layer 42 but also from the core wire 41, so that the heat dissipation property is further improved.

また、図9に示すように、一方の支持基板11の稜部に被覆層42が押し付けられて凹んでいてもよい。具体的には、リード部材4の被覆層42が図4および図8に示す形態よりも支持基板11の上方まで延びていて、リード部材4の被覆層42が支持基板11の一方主面に平行な方向から傾いて配置されており、被覆層42の側面が支持基板11の稜部に斜めに当接し、押し付けられて凹んでいる。リード部材4の凹む量(深さ)としては、例えば100μm〜500μmに設定される。 Further, as shown in FIG. 9, the coating layer 42 may be pressed against the ridge portion of one of the support substrates 11 to be recessed. Specifically, the coating layer 42 of the lead member 4 extends above the support substrate 11 from the modes shown in FIGS. 4 and 8, and the coating layer 42 of the lead member 4 is parallel to one main surface of the support substrate 11. The side surface of the covering layer 42 is obliquely in contact with the ridge portion of the support substrate 11 and is pressed against the ridge portion of the support substrate 11 to be recessed. The amount (depth) of the lead member 4 to be recessed is set to, for example, 100 μm to 500 μm.

この構成によっても、被覆層42が支持基板11の側面から離れそうになったときに、被覆層42の凹んだ部分がもとに戻って離れるのを抑制できるので、放熱性が向上する。 Even with this configuration, when the coating layer 42 is about to separate from the side surface of the support substrate 11, it is possible to prevent the recessed portion of the coating layer 42 from returning to its original position and separating, so that the heat dissipation is improved.

また、図10に示すように、リード部材4は、一方主面に垂直な断面で見たときに、芯線41が露出する先端部の傾きのほうが、該先端部よりも後端側の部位の傾きよりも小さくてもよい。 Further, as shown in FIG. 10, when viewed in a cross section perpendicular to the main surface of the lead member 4, the inclination of the tip portion where the core wire 41 is exposed is the portion on the rear end side of the tip portion. It may be smaller than the inclination.

これにより、リード部材4の芯線41が露出する先端部の全体と支持基板11との距離が小さくなるので、支持基板11からリード部材4へ熱伝導しやすくなり、放熱性が向上する。また、芯線41の先端部が配線導体21から離れすぎず、接合材6がリード部材4
の先端部の上側まで回り込むので、芯線41の先端部の全体を接合材6でしっかりと接合でき、接合強度が向上する。
As a result, the distance between the entire tip of the lead member 4 where the core wire 41 is exposed and the support substrate 11 is reduced, so that heat can be easily conducted from the support substrate 11 to the lead member 4, and heat dissipation is improved. Further, the tip of the core wire 41 is not too far from the wiring conductor 21, and the joining material 6 is the lead member 4.
Since it wraps around to the upper side of the tip portion of the wire, the entire tip portion of the core wire 41 can be firmly joined by the joining material 6, and the joining strength is improved.

10:熱電モジュール
11、12:支持基板
111 :突出部
21、22:配線導体
3 :熱電素子
31:p型熱電素子
32:n型熱電素子
4 :リード部材
41:芯線
42:被覆層
5 :熱伝導性部材
6 :接合材
10: Thermoelectric module 11, 12: Support substrate 111: Protruding portion 21, 22: Wiring conductor 3: Thermoelectric element 31: p-type thermoelectric element 32: n-type thermoelectric element 4: Lead member 41: Core wire 42: Coating layer 5: Heat Conductive member 6: Joining material

Claims (4)

互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、前記一対の支持基板の一方主面間に配置された複数の熱電素子と、前記一対の支持基板のうちの一方の支持基板に設けられた前記配線導体と接合されたリード部材とを備え、
該リード部材は、芯線と、該芯線が露出する先端部よりも後端側で前記芯線を覆う弾性を有する被覆層とを含み、
前記リード部材は、前記一方主面に垂直な断面で見たときに、前記一方主面に平行な方向から傾いて配置されるとともに、前記一方の支持基板の側面に前記被覆層の先端が押し付けられて縮んでいることを特徴とする熱電モジュール。
A pair of support substrates having regions facing each other, wiring conductors provided on one of the opposing main surfaces of the pair of support substrates, and a plurality of thermoelectric elements arranged between one main surface of the pair of support substrates. And a lead member joined to the wiring conductor provided on one of the support boards of the pair of support boards.
The lead member includes a core wire and an elastic coating layer that covers the core wire on the rear end side of the tip portion where the core wire is exposed.
The lead member is arranged so as to be inclined from a direction parallel to the one main surface when viewed in a cross section perpendicular to the one main surface, and the tip of the coating layer is pressed against the side surface of the one support substrate. A thermoelectric module characterized by being shrunk.
前記リード部材の前記芯線が、前記一方の支持基板の稜部に接していることを特徴とする請求項1に記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the core wire of the lead member is in contact with a ridge portion of the one support substrate. 互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、前記一対の支持基板の一方主面間に配置された複数の熱電素子と、前記一対の支持基板のうちの一方の支持基板に設けられた前記配線導体と接合されたリード部材とを備え、
該リード部材は、芯線と、該芯線が露出する先端部よりも後端側で前記芯線を覆う弾性を有する被覆層とを含み、
前記リード部材は、前記一方主面に垂直な断面で見たときに、前記一方主面に平行な方向から傾いて配置されるとともに、前記一方の支持基板の稜部に前記被覆層が押し付けられて凹んでいることを特徴とする熱電モジュール。
A pair of support substrates having regions facing each other, wiring conductors provided on one of the opposing main surfaces of the pair of support substrates, and a plurality of thermoelectric elements arranged between one main surface of the pair of support substrates. And a lead member joined to the wiring conductor provided on one of the support boards of the pair of support boards.
The lead member includes a core wire and an elastic coating layer that covers the core wire on the rear end side of the tip portion where the core wire is exposed.
The lead member is arranged so as to be inclined from a direction parallel to the one main surface when viewed in a cross section perpendicular to the one main surface, and the coating layer is pressed against the ridge portion of the one support substrate. A thermoelectric module characterized by being dented.
前記リード部材は、前記一方主面に垂直な断面で見たときに、前記芯線が露出する前記先端部の傾きのほうが、該先端部よりも後端側の部位の傾きよりも小さいことを特徴とする請求項1乃至請求項3のうちのいずれかに記載の熱電モジュール。 The lead member is characterized in that the inclination of the tip portion where the core wire is exposed is smaller than the inclination of the portion on the rear end side of the tip portion when viewed in a cross section perpendicular to the one main surface. The thermoelectric module according to any one of claims 1 to 3.
JP2017186554A 2017-09-27 2017-09-27 Thermoelectric module Active JP6920154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186554A JP6920154B2 (en) 2017-09-27 2017-09-27 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186554A JP6920154B2 (en) 2017-09-27 2017-09-27 Thermoelectric module

Publications (2)

Publication Number Publication Date
JP2019062112A JP2019062112A (en) 2019-04-18
JP6920154B2 true JP6920154B2 (en) 2021-08-18

Family

ID=66177640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186554A Active JP6920154B2 (en) 2017-09-27 2017-09-27 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP6920154B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059559U (en) * 1983-09-28 1985-04-25 岡谷電機産業株式会社 External lead lead structure of electrode board
JPH06104548A (en) * 1992-09-18 1994-04-15 Fujitsu Ltd Joint structure of coaxial cable
JP2001120501A (en) * 1999-10-28 2001-05-08 Olympus Optical Co Ltd Solid image pickup device
JP2001257937A (en) * 2000-03-13 2001-09-21 Olympus Optical Co Ltd Solid-state image pickup device
JP4136453B2 (en) * 2002-05-23 2008-08-20 シチズンホールディングス株式会社 Thermoelectric element and manufacturing method thereof
JP2006073943A (en) * 2004-09-06 2006-03-16 Seiko Instruments Inc Thermoelectric conversion device
JP2008098560A (en) * 2006-10-16 2008-04-24 Mirai:Kk Connection method of lead wire to substrate, connection structure of lead wire and substrate, and illumination apparatus
JP2008159527A (en) * 2006-12-26 2008-07-10 Sumitomo Electric Ind Ltd Harness, harness with connector, and harness connection body
JP4966707B2 (en) * 2007-03-28 2012-07-04 京セラ株式会社 Thermoelectric module
BR112015005078A2 (en) * 2012-09-14 2017-07-04 Saint Gobain plate with electrical connection element
JP6114398B2 (en) * 2013-09-27 2017-04-12 京セラ株式会社 Thermoelectric module
WO2015125777A1 (en) * 2014-02-24 2015-08-27 オリンパス株式会社 Image pickup apparatus and image pickup apparatus manufacturing method
JP6881885B2 (en) * 2015-03-13 2021-06-02 株式会社Kelk Thermoelectric generation module
JP6503205B2 (en) * 2015-03-18 2019-04-17 オリンパス株式会社 Imaging device

Also Published As

Publication number Publication date
JP2019062112A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP4438489B2 (en) Semiconductor device
JP5306171B2 (en) Semiconductor device
US10461012B2 (en) Semiconductor module with reinforcing board
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
CN107342465B (en) Electrical connector assembly
US20150262917A1 (en) Semiconductor device and method of manufacturing the same
JP6818465B2 (en) Thermoelectric module
US7049171B2 (en) Electrical package employing segmented connector and solder joint
JP2006190728A (en) Electric power semiconductor device
JP6777148B2 (en) Semiconductor device
US9530713B2 (en) Cooler-integrated semiconductor module
JP6920154B2 (en) Thermoelectric module
US10833237B2 (en) Thermoelectric module
JP6884225B2 (en) Thermoelectric module
US10236430B2 (en) Thermoelectric module
JP4575106B2 (en) Thermoelectric converter
JP2006269572A (en) Thermoelectric conversion module, and method of manufacturing the same and circuit substrate
JP7147186B2 (en) semiconductor equipment
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP5124329B2 (en) Semiconductor device
JP6987656B2 (en) Thermoelectric converter
JP2014072314A (en) Semiconductor device and semiconductor device manufacturing method
JP2013149643A (en) Semiconductor device
JP2010268011A (en) Semiconductor device, and member for electrode, and method of manufacturing the same
JP2018018908A (en) Thermoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6920154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150