JP6891375B2 - 光学距離測定のためのシステム及び方法 - Google Patents

光学距離測定のためのシステム及び方法 Download PDF

Info

Publication number
JP6891375B2
JP6891375B2 JP2019566942A JP2019566942A JP6891375B2 JP 6891375 B2 JP6891375 B2 JP 6891375B2 JP 2019566942 A JP2019566942 A JP 2019566942A JP 2019566942 A JP2019566942 A JP 2019566942A JP 6891375 B2 JP6891375 B2 JP 6891375B2
Authority
JP
Japan
Prior art keywords
fpga
digital signal
item
time
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019566942A
Other languages
English (en)
Other versions
JP2020523568A (ja
Inventor
リウ、シャン
ガオ、ミンミン
ホン、シャオピン
ウ、ディ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Publication of JP2020523568A publication Critical patent/JP2020523568A/ja
Application granted granted Critical
Publication of JP6891375B2 publication Critical patent/JP6891375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017581Coupling arrangements; Interface arrangements programmable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本開示は一般に距離測定に関し、より具体的には、光検出と測距(LIDAR:light detection and ranging)を用いた距離測定のためのシステムと方法に関する。
無人航空機(UAV)等の無人機は、作物調査、写真撮影、建物及びその他の構造物の検査、火災及び安全関連のミッション、国境警備、ならびに製品配達その他を含む多くの用途で使用できる。このような無人機は、周囲の環境中の障害物やその他の物体を検出するためのセンサを備えている。LIDARシステムは、3次元障害物検出及び環境マッピングのための距離測定を提供するために使用できる。しかしながら、既存のLIDARシステムの測定精度は、複雑な環境で使用するのには十分でないかもしれない。したがって、無人機及びその他の可動物体に搭載されたLIDARシステムを実現するための改良された技術が必要である。
本開示は、LIDAR及びその他の光学技法を用いた距離測定のためのシステムと方法に関する。
1つの態様において、物体までの距離を測定するシステムが提供される。システムは、射出光パルスを発生させるように構成された発光素子を含む。システムはまた、物体から反射された戻り光パルスを受け取り、戻り光パルスを表すアナログパルス信号を出力するように構成された光センサも含む。システムはまた、光センサに連結されたFPGAも含む。FPGAは、アナログパルス信号を複数のデジタル信号値に変換し、各デジタル信号値をサンプリングすることによって複数のデジタル信号値に対応する複数の時間測定値を生成するように構成されている。サンプリングの時間分解能はFPGAのクロック周期より短い。システムはまた、物体までの距離を複数のデジタル信号値と複数の時間測定値に基づいて計算するように構成されたコントローラも含む。
他の態様において、物体までの距離を測定する方法が提供される。方法は、発光素子によって射出光パルスを発生させるステップを含む。物体から反射された戻り光パルスは光センサで受け取られる。戻り光パルスを表すアナログパルス信号は、光センサにより出力される。アナログパルス信号は、FPGAを使って複数のデジタル信号値に変換される。FPGAは、各デジタル信号値をサンプリングすることによって複数のデジタル信号値に対応する複数の時間測定値を生成するために使用され、サンプリングの時間分解能はFPGAのクロック周期より短い。物体までの距離は、複数のデジタル信号値と複数の時間測定値に基づいて計算される。
他の態様において、物体までの距離を測定するシステムが提供される。システムは、射出光パルスを発生させるように構成された発光素子を含む。システムはまた、物体から反射された戻り光パルスを受け取り、戻り光パルスを表すアナログパルス信号を出力するように構成された光センサも含む。システムはまた、光センサに連結されたFPGAも含む。FPGAは、(1)アナログパルス信号を複数の閾値と比較し、(2)比較に基づいて複数のデジタル信号値を生成することにより、アナログパルス信号を複数のデジタル信号値に変換するように構成される。FPGAはまた、複数のデジタル信号値に対応する複数の時間測定値を生成するように構成される。システムはまた、物体までの距離を複数のデジタル信号値と複数の時間測定値に基づいて計算するように構成されたコントローラも含む。
他の態様において、物体までの距離を測定する方法が提供される。方法は、発光素子によって射出光パルスを発生させるステップを含む。物体から反射された戻り光パルスは光センサで受け取られる。戻り光パルスを表すアナログパルス信号は、光センサにより出力される。アナログパルス信号は、FPGAを使って、(1)アナログパルス値を複数の閾値と比較し、(2)比較に基づいて複数のデジタル値を生成することによって複数のデジタル信号値に変換される。FPGAはまた、複数のアナログ信号値に対応する複数の時間測定値を生成するためにも使用される。物体までの距離は、複数のデジタル信号値と複数の時間測定値に基づいて計算される。
他の態様において、距離測定装置を校正する方法が提供される。方法は、複数の差動入力ポートを含むFPGAを提供するステップを含み、複数の差動入力ポートの各々はオフセット電圧に関連付けられる。FPGAは、物体から反射された戻り光パルスを表すアナログパルス信号を受け取るように構成される。FPGAはまた、(1)複数の差動入力ポートを使ってアナログパルス値を複数の閾値と比較し、(2)比較に基づいて複数のデジタル信号値を生成することによって、アナログパルス信号を複数のデジタル信号値に変換するようにも構成される。FPGAはまた、複数のデジタル信号値に対応する複数の時間測定値を生成するようにも構成される。方法はまた、アナログパルス信号を変換する際に、複数の差動入力ポートの各々に関連付けられたオフセット電圧を補償するためにFPGAを校正するステップも含む。
上記及びその他の態様とそれらの実現は、図面、説明、及び特許請求の範囲の中でより詳しく説明する。
本発明の技術の実施形態による、可動物体を含む代表的なシステムの略図である。 本発明の技術の実施形態による例示的なLIDARシステムの略図である。 本発明の技術の実施形態によるコンパレータに基づくサンプリング構成の略図である。 本発明の技術の実施形態による図2Aのコンパレータの入力及び出力波形を示す。 本発明の技術の実施形態によるマルチコンパレータサンプリング構成の略図である。 本発明の技術の実施形態によるFPGAを用いた距離測定システムの略図である。 本発明の技術の実施形態によるパルスデジタル化のために構成されたFPGAの略図である。 本発明の技術の実施形態による図5AのFPGAを用いたアナログパルス信号のデジタル化を示す。 本発明の技術の実施形態によるオフセット校正を実行するための台形波信号を示す。 本発明の技術の実施形態によるポート遅延を測定する方法の略図である。 本発明の技術の実施形態による高時間分解能時間−デジタル変換のために構成されたFPGAの略図である。 本発明の技術の実施形態による立上りエッジ信号の時間−デジタル変換を示す。 本発明の技術の実施形態による立下りエッジ信号の時間−デジタル変換を示す。 本発明の技術の実施形態による時間−デジタル変換に使用される複数のPLLクロック信号を示す。 本発明の技術の実施形態による物体までの距離を測定する方法を示す。 本発明の技術の実施形態による距離測定装置を校正する方法を示す。
本開示は、光等の電磁放射を使って物体までの距離を測定するシステムと方法に関する。いくつかの実施形態において、本明細書に記載のシステムと方法は、検出された光パルスを表すアナログパルス信号を処理するためにFPGAを使用することにより、測定精度を向上させるのと同時に(例えば、センチメートル単位の精度)、コスト、消費電力、及び処理負荷を削減する。本発明の技術のFPGAに基づくアプローチは、アナログパルス信号を正確にデジタル化し、その信号に関するタイミング情報をより高い時間分解能(例えば、ピコ秒単位の分解能)で測定するために使用できる。それに加えて、本発明の技術は、様々な可動物体に組み込むことができ、これには無人機、自律走行車、及びロボットが含まれるがこれらに限定されない。したがって、本明細書に記載の実施形態は、自律又は半自律走行車により実行される障害物検出及び環境マッピング等の複雑で動的な環境において高精度距離測定に依存する用途にとって特に有利である。
以下に、数値による具体的な詳細事項が本願で開示される技術を十分に理解するために示されている。他の実施形態において、本明細書で紹介される技術はこれらの具体的な詳細事項がなくても実行できる。他の例において、具体的な製造技術等のよく知られた特徴は、本開示を不必要に不明瞭としないように、詳しくは説明しない。「ある実施形態」、「1つの実施形態」、又はその他への言及は、記載されている特定の特徴、構造、材料、又は特性が本開示の少なくとも1つの実施形態が含まれることを意味する。それゆえ、本明細書におけるこのような語句の出現は、必ずしもすべて同じ実施形態を指しているとはかぎらない。他方で、このような言及は必ずしも相互に排他的ともかぎらない。さらに、特定の特徴、構造、材料、又は特性は、1つ又は複数の実施形態において、何れの適当な方法で組み合わせることもできる。また、図に示される各種の実施形態は、単に例示的な表現であり、必ずしも正確な縮尺によって描かれているとはかぎらないことを理解すべきである。
本開示において、「例示的な」という単語は、例、事例、又は例示の役割を意味するために使用される。本明細書において「例示的な」と説明されている実施形態又は設計は、必ずしも他の実施形態又は設計より好ましい、又は有利であると解釈されるわけではない。むしろ、例示的なという単語の使用は、具体的な方法で概念を示そうとするものである。
本明細書において使用されるかぎり、A及び/又はBは、A又はBのうちの1つ以上と、AとB等、その組み合わせを含む。
以下の説明の中で、特定の実施形態はUAVに関連して紹介されているが、他の実施形態において、本明細書における技術は、他の種類の可動物体にも同様に適用され、これには他の種類の無人機(例えば地上車両)、自律走行車(例えば自動運転車)、携帯機器、又はロボットが含まれるが、これらに限定されない。
図1Aは、本発明の技術の実施形態による要素を有する代表的なシステム150の略図である。システム150は、可動物体160(例えばUAV)と制御システム170と、を含む。可動物体160は、各種の実施形態の中で使用可能な、無人機、自律走行車、又はロボット等、何れの適当な種類の可動物体とすることもできる。
可動物体160は本体161(例えば機体)を含むことができ、これは搭載物162を担持できる。本明細書に記載の実施形態では、様々な種類の搭載物を使用できる。いくつかの実施形態において、搭載物は、イメージング装置又は光電子スキャニング装置(例えば、LIDAR装置)等の1つ又は複数のセンサを含む。例えば、搭載物162は、カメラ、ビデオカメラ、及び/又はスチールカメラとすることができる。カメラは、各種の適当なバンドのうちの何れの波長に感応するものとすることもでき、これには可視、紫外、赤外及び/又はその他のバンドが含まれる。搭載物162はまた、その他の種類のセンサ及び/又はその他の種類の貨物(例えば、荷物又はその他の配送品)を含むこともできる。
いくつかの実施形態において、搭載物162は、支持機構163(例えばジンバル)によって本体161に関して支持される。支持機構163により、搭載物162を独立して本体161に関して位置付けることができる。例えば、支持機構163によって、搭載物162を1つ、2つ、3つ、又はそれ以上の軸の周囲で回転させることができる。支持機構163によって、搭載物162を1つ、2つ、3つ、又はそれ以上の軸に沿って直線移動させることもできる。回転又は並進移動のための軸は、相互に垂直でもそうでなくてもよい。例えば、搭載物162がイメージング装置を含む場合、このイメージング装置は、支持機構163を介して本体161に関して移動させて、標的の写真、ビデオの撮影や追跡を行うことができる。
可動物体160は1つ又は複数の推進ユニット180を含むことができ、これは可動物体160を最大で並進3自由度及び/又は最大で回転3自由度に関して移動させるように構成される。例えば、可動物体160がUAVである実施形態において、推進ユニット180により、可動物体160は離陸し、着陸し、ホバリングし、及び/又は最大で並進3自由度及び最大で回転3自由度に関して空中で移動できる。
本明細書の実施形態への使用には、様々な種類の推進ユニットが適している。いくつかの実施形態において、推進ユニット180は1つ又は複数のロータを含むことができる。ロータは、シャフトに連結された1つ又は複数のロータブレードを含むことができる。ロータブレードとシャフトは、適当な駆動機構により回転させることができる。例えば、推進ユニット180は、DCモータ(例えば、ブラシ付き又はブラシなし)又はACモータ等、何れの適当なモータでも駆動できる。モータは、ロータブレードを取り付け、駆動させるように構成できる。可動物体160の推進ユニット180はプロペラ式として描かれており、4つのロータを有することができるが、何れの適当な数、種類、及び/又は配置の推進ユニットを使用することもできる。例えば、ロータの数は1、2、3、4、5、又はそれ以上とすることができる。ロータの向きは、可動物体160に対して垂直、水平、又は他の何れの適当な角度とすることもできる。ロータの角度は固定でも可変でもよい。
可動物体160は、制御システム170からの制御コマンドを受け取り、及び/又は制御システム170にデータを送信するように構成される。図1Aに示される実施形態において、制御システム170は可動物体160の上に担持されているいくつかのコンポーネント及び可動物体160の外に位置付けられているいくつかのコンポーネントを含む。例えば、制御システム170は、可動物体110により担持されている第一のコントローラ171と、可動物体160から離れた場所に位置付けられ、通信リンク176(例えば、無線周波数(RF)型リンク等の無線リンク)を介して接続された第二のコントローラ172(例えば、人間が操作するリモートコントローラ)を含むことができる。第一のコントローラ171はコンピュータ読取可能媒体173を含むことができ、これは可動物体160の動作を指示する命令を実行するものであり、これには推進ユニット180及び搭載物162(例えばカメラ)の動作を含むがこれらに限定されない。第二のコントローラ172は、1つ又は複数の入力/出力装置、例えばディスプレイ及び制御ボタンを含むことができる。いくつかの実施形態において、オペレータは第二のコントローラ172を操作して、可動物体160を遠隔的に制御し、第二のコントローラ172上のディスプレイ及び/又はその他のインタフェースを介して可動物体160からのフィードバックを受け取る。他の実施形態において、可動物体160は自律的に動作することができ、その場合、第二のコントローラ172は除外でき、又はオペレータのオーバライド機能のためだけに使用できる。
安全で効率的な動作を確保するために、UAV及びその他の種類の無人機を自律的又は半自律的に障害物を検出し、及び/又は障害物を避けるための回避動作に従事できることが有利であるかもしれない。それに加えて、環境物体の感知は、ナビゲーション、標的追跡、及びマッピング等のUAVの機能にとって、特にUAVが半自律的又は全自律的に動作しているときに有益となりうる。
したがって、本明細書に記載されているUAVは、UAVの周囲の環境の中の物体を検出するように構成された1つ又は複数のセンサを含むことができる。いくつかの実施形態において、UAVは物体とUAVとの間の距離を測定するように構成されたセンサを含み、これを本明細書の中で「距離測定装置」と呼ぶ。距離測定装置は、UAVの本体の上、下、又は側面、あるいはその中等、様々な方法でUAVの上に位置付けることができる。任意選択により、距離測定装置は、装置をUAVに関して並進移動及び/又は回転させることのできるジンバル又はその他の支持機構を介してUAVに連結できる。
いくつかの実施形態において、距離測定装置はLIDAR装置又はレーザ距離計である。LIDAR装置及びレーザ距離計は装置と物体との間の距離を、光信号(例えばレーザパルス)を発生させ、物体から反射されて戻った光信号を検出し、光の速度と送信から検出までの経過時間に基づいて物体までの距離を判断することによって測定する。レーザ距離計は1次元の距離データを提供し、その一方でLIDAR装置は複数の異なる角度で光信号を発生させることにより、周囲環境の3次元データを提供できる。本明細書における特定の例示的実施形態はLIDAR装置に関して説明されているが、これは例示を目的としているにすぎず、本発明の技術は、レーザ距離計等、他の種類の光による距離測定装置にも適用できる。それに加えて、本明細書における特定の技法は、LIDARシステムにおいてレーザダイオードにより生成されるレーザビームに特に適用可能であるが、他の実施形態においては、他の種類の光源(例えば他の種類のレーザ、又は発光ダイオード(LED))を使用できる。
図1Bは、本発明の技術の実施形態による例示的なLIDARセンサシステム100の略図である。LIDARシステム100は、光がLIDARシステム100と物体104との間を移動するのに必要な時間、すなわち飛行時間(TOF)を測定することによって物体104までの距離を検出する。システム100は、光信号、例えばレーザビームを生成できる発光素子101を含む。レーザビームは、1つのレーザパルスとすることも、連続するレーザパルスとすることもできる。レンズ102は、発光素子101により発生されたレーザビームをコリメートするために使用できる。コリメート光は、ビーム分割装置103に向かって誘導できる。ビーム分割装置103により、光源101からのコリメート光を透過させることができる。あるいは、ビーム分割装置103は、異なる案が採用された場合(例えば、発光素子が検出器の前に位置付けられたとき)には不要としてもよい。
システム100はまた、ビームステアリング装置110も含み、これはプリズム、ミラー、回折格子、光フェイズドアレイ(例えば液晶制御回折格子)等、各種の光学素子を含むことができる。これらの様々な光学素子は共通軸109の周囲で回転して、光を方向111及び111'等の異なる方向に誘導できる。射出ビーム111が物体104に当たると、反射又は散乱光が大きい角度120にわたって広がるかもしれず、エネルギーうち反射されてシステム100に向かうのは一部のみかもしれない。戻りビーム112は、ビーム分割装置103により受光レンズ106に向かって反射させることができ、それが戻りビームを収集して検出器105上に集束させることができる。
検出器105は、戻り光を受け取り、この光を電気信号に変換する。TOFユニット107等の測定回路を含むコントローラを使ってTOFを測定し、物体104までの距離を測定することかできる。それゆえ、システム100は、光源101による光パルス111の生成と検出器105による戻りビーム112の受光との間の時間差に基づいて物体104までの距離を測定できる。
センチメートル単位の精度の距離測定値を得るために、LIDAR装置により受け取られた光パルスは、数百ピコ秒又は、さらには数百ピコ秒未満の時間分解能でサンプリングする必要がある。高分解能サンプリングはまた、ごく短いパルスの信号(例えば、わずか数十ナノ秒〜数ナノ秒のパルス持続時間のもの)をうまく捕捉するためにも必要である。多くのLIDARシステムは、光パルス信号のデジタル化を行うために、高速アナログ−デジタル変換器(ADC)(例えば、1ギガサンプル/秒(GSPS)を超えるサンプリングレートを有する)に依存する。しかしながら、高速ADCは典型的に、高コストであり、高い電力消費を必要とする。さらに、高速ADCサンプリングは、同じ時間間隔での異なる電圧によるアナログ信号のサンプリングに基づく(すなわち、時間軸に関するサンプリング)。そのため、サンプリングのタイミングは、パルス信号に関係なく、時間の相関がない。アナログ信号のタイミング情報を抽出するために、抽出アルゴリズムが必要である。
本発明の技術は、高速ADCの使用に依存しない高精度距離測定を実現するための方法を提供する。いくつかの実施形態において、本明細書中のシステムと装置は、コンパレータに基づくサンプリングを用いてアナログパルス信号をデジタル化するように構成される。1つのコンパレータを使って、アナログパルス信号が特定の閾値(例えば、本明細書では「基準閾値」又は「トリガ閾値」という)を超えるタイミングを判断でき、複数のコンパレータを使って複数の閾値に関するタイミングを判断できる。
図2Aは、本発明の技術の実施形態によるコンパレータに基づくサンプリング構成の略図である。コンパレータ240は演算増幅器とすることができ、これは、その非反転入力(PIN3)とその反転入力(PIN4)との間で電圧を比較して、比較に基づいて高い、又は低い論理電圧を出力するように構成される。例えば、アナログパルス信号202(例えば、標的物体から反射により戻る光パルスを表す)が非反転入力PIN3で受けら取られると、コンパレータ240は、信号202の電圧レベルを反転入力PIN4の基準閾値206と比較する。信号202は2つの区間、すなわち振幅が増大する前方区間と振幅が減少する後方区間を有する。信号202の前方区間の振幅が基準閾値206を超えると、コンパレータ202の出力は高くなる(例えばVDD)。同様に、信号の後方区間の振幅が基準閾値206を下回ると、コンパレータ202の出力は低くなる(例えばGND)。その結果、デジタル化された(例えばバイナリ)方形パルス信号204が得られる。
図2Bは、図2Aのコンパレータ240の入力及び出力波形の図である。方形パルス信号204が時間−デジタル変換器(TDC)250に出力されると、信号204のうちの関係するタイミング情報(例えば時間t1及び時間t2)を抽出できる。サンプリングポイントと時間との間に相関があるため(ADCに基づく方法と対照的である)、高速コンパレータはパルスタイミング情報をより直接的に有効に捕捉できる。
図3は、本発明の技術の実施形態によるマルチコンパレータサンプリング構成300の略図である。マルチコンパレータ構成300は、2つ又はそれ以上のコンパレータ(例えば、コンパレータ340a〜340d)を含む。コンパレータの各々は同じ入力に連結されて、同じ光パルス上でタイミング測定を実行するが、コンパレータの各々は異なるトリガ閾値を有する。この例において、コンパレータ構成300は、合計4つのコンパレータ340a〜340dを含む。各コンパレータは、そのそれぞれの個別の時間−デジタル変換器(TDC)350a〜350dに接続されている。それに加えて、各コンパレータは異なるトリガ閾値を受け取る。図のように、コンパレータ340aはその個別のトリガ閾値Vf01を受け取り、コンパレータ340bはVf02を受け取り、コンパレータ340cはVf03を受け取り、コンパレータ340dはVf04を受け取る。それゆえ、タイミング情報は4つの異なる閾値、例えばVf01〜Vf04で取得できる。
いくつかの実施形態において、本明細書に記載のシステムと装置は、FPGA又はCPLD(complex programmable logic device)等のフィールドプログラマブルデバイスを使って高精度距離測定を提供するために構成される。本明細書における特定の例示的実施形態はFPGAに関して説明されているが、本発明の技術はまた、CPLD等の他の種類のフィールドプログラマブルデバイスを使っても実行できる。
FPGAは、FPGAの製造後に様々な機能を提供するように使用者がプログラムできる複数の論理ブロックを含む集積回路である。いくつかの実施形態において、FPGAは、プログラム可能論理ブロックアレイ(例えば、CLB(configurable logic block)又はLAB(logic array block))及び入力/出力(I/O)ブロックを含む。論理ブロックとI/Oブロックは、プログラム可能ルーティングを介して相互に連結できる。各論理ブロックは、複数の論理セル又はスライスを含むことができる。論理セル又はスライスは、使用者が論理機能を実装するために構成できる複数のコンポーネントを含むことができ、これには1つ又は複数のLUT(例えば3入力又は4入力LUT)、フリップフロップ、マルタプレクサ、及び/又はキャリーロジックが含まれるが、これらに限定されない。例えば、本発明の技術は、Altera Corporation(San Jose,California)製のEP4CE22U256又はEP4CE30F324等、又はXilinx,Inc.(San Jose,California)製のXC7Z030−1SBG485C又はXC7Z007S−1CLG400C等をはじめとするFPGAを使用できる。
例えば、FPGAは、光学距離測定に関わる動作のいくつかを実行するように構成でき、例えば、アナログパルス信号を複数のデジタル信号値にデジタル化し(パルスデジタル化)、複数のデジタル信号値に対応する複数の時間測定値を判断し(時間−デジタル変換)、及びデジタル信号値と時間測定値を使って物体距離を計算する。FPGAに基づくシステムと方法は、比較的低コストと低消費電力で、距離測定におけるセンチメートル単位の精度を提供するために使用できる。
図4は、本発明の技術の実施形態による、FPGAを用いた距離測定のためのシステム400の略図である。システム400は発光素子402を含み、これは図1Bの発光素子101と同様に、射出光パルス(例えばレーザパルス)を発生させるように構成される。システム400はまた、光センサ404も含み、これは、図1Bの光検出器105と同様に、物体(例えば、システム400の周囲の環境中の物体)から反射された戻り光パルスを受け取るように構成される。光センサ404は、例えば光エネルギーを電気信号に変換する光検出器を使って、戻り光パルスを表すアナログパルス信号を出力するように構成される。
システム400はFPGA408を含む。FPGA408は、光センサ404に連結され、光センサ404により生成されたアナログパルス信号を受け取るように構成される。FPGA408は、それをデジタル信号に変換し、タイミング情報を抽出するために、アナログパルス信号を処理するように構成できる。いくつかの実施形態において、FPGA408は、アナログパルス信号を複数のデジタル信号値にデジタル化するように構成されたデジタイザ410と、複数のデジタル信号値に対応する複数の時間測定値を判断するように構成されたTDC412と、を含む。各デジタル信号値はアナログパルス信号の電圧レベルを表すことができ、対応する時間測定値はアナログパルス信号がその電圧レベルにある時点を表すことができる。デジタイザ410とTDC412は、各種のFPGAコンポーネントを使って実装できる。デジタイザ410とTDC412の例示的な構成を本明細書の中でさらに詳しく説明する。
システム400は、コントローラ406を含むことができる。いくつかの実施形態において、コントローラ406は、例えば射出光パルスの発生を制御し、射出光パルスが発せられる時間測定値を記録するために、発光素子402に連結される。コントローラ406はまた、FPGA408にも連結されて、FPGA408により生成されたデジタル信号値と時間測定値を受け取り、デジタル信号値と時間測定値に基づいて物体までの距離を計算できる。例えば、コントローラ406は、デジタル信号値と時間測定値を関数に入力し、その関数を使って戻り光パルスに関する予測時間値を導き出すように構成できる。その後、予測時間値をTOF計算の中で使用して、物体までの距離を判断できる。
コントローラ406は、予測時間値を計算するために異なる種類の多くの関数を使用できる。いくつかの実施形態において、関数は、多項式又は三角関数モデル等のパルス信号モデルである。コントローラ406は、デジタル信号値と時間測定値をパルス信号モデルに適合させ、モデルの形状に基づいて予測される時間値を導き出す。例えば、コントローラ406は、いつ信号振幅がその最大値に到達したかに基づいて予測時間値を判断できる。いくつかの実施形態において、コントローラ406は、方形信号モデルにおける信号の幅等、その他の基準を使ってパルス信号に関連付けられる予測時間値を導き出すことができる。
いくつかの実施形態において、コントローラ406は、検索関数を使って予測時間値を導き出す。コントローラ406は、データベース又はルックアップテーブル(LUT)の中を検索して、デジタル信号値と時間測定値に最も密接に一致する値の集合を見つけることができる。値の集合は、(t,Vf)の形態を有していてもよく、このうちVfは電圧レベルであり、tはその電圧レベルに対応する時間測定値である。値の集合は、出力時間値又は(T,V)の形態の出力タプルにマッピングでき、こればデータベース又はルックアップテーブルに保存される。Vは、後述のように、アナログパルス信号をデジタル化するために使用される閾値のうちの1つに対応していてもよい。いくつかの実施形態において、Vは閾値とは異なる所定の信号振幅であってもよい。すると、コントローラはマッピングされた出力時間値、すなわちTをVに対応するマッピングされた出力タプルから選択して、システムから対応する物体までの距離を判断するためのTOF計算を容易にすることができる。
システム400のコンポーネントのいくつか又は全部は、無人機(例えばUAV)、自律走行車(例えば自動運転車)又はロボット等の可動物体により担持できる。それゆえ、システム400は、可動物体が環境内で動作する間に可動物体と周囲の物体との間の距離を測定するために使用できる。いくつかの実施形態において、システム400は、複雑で動的な環境、例えばシステム400を取り囲む多くの物体がある環境、障害物がシステム400に関して高速で移動する環境、温度等の条件が変動する環境等で使用するのに特に適している。システム400はまた、複数の自由度に関して高速で移動できる可動物体と共に使用するのにも特に適している。
図4は、FPGAを用いて距離を測定するシステムの例示的実施形態を示しているが、システム400のまた別の構成も使用できる。例えば、図4は、1つのデジタイザ410と1つのTDC412を示しているが、FPGA408はまた、複数のデジタイザ及び/又は複数のTDCを含むことができる。デジタイザとTDCの様々な組み合わせを使用でき、例えば、各デジタイザをそれぞれのTDCに連結でき、1つのデジタイザを複数のTDCに連結でき、又は1つのTDCを複数のデジタイザに連結できる。
他の例として、いくつかの実施形態において、デジタイザ410又はTDC412の何れかは任意選択であってもよく、それによってパルスデジタル化ステップ又は時間−デジタル変換ステップはFPGA408以外の装置により実行される。例えば、パルスデジタル化は、1つ又は複数のコンパレータにより実行でき(例えば、図2A又は図3に示されている)、その一方で、時間−デジタル変換はFPGA408のTDC412により実行される。あるいは、パルスデジタル化はFPGA408のデジタイザ410により実行でき、その一方で、FPGA408以外の装置(例えば別のTDC)が時間−デジタル変換を実行する。
また別の例において、コントローラ406は図4の中でFPGA408とは別の装置として描かれているが、別の実施形態において、コントローラ406はFPGA408の一部とすることができる。このような実施形態において、FPGA408はコントローラ406の機能の一部又は全部を実行するように構成される。例えば、FPGA408は、デジタイザ410により生成されるデジタル信号値とTDC412により生成される時間測定値を使って距離計算を実行するように構成できる。
前述のように、本明細書に記載のシステムと装置は、アナログパルス信号を複数のデジタル信号値に変換するように構成された1つ又は複数のデジタイザ(例えばFPGA408のデジタイザ410)を有するFPGAを含むことができる。デジタイザは、FPGAを使って様々な方法で実装できる。例えば、デジタイザは、FPGAの1つ又は複数の差動入力ポートを使って実装できる。低電圧作動信号(LVDS:low−voltage differential signaling)インタフェース又はエミッタ結合論理(ECL:emitter−coupled logic)インタフェース等、何れの適当な種類の差動入力ポートも使用できる。差動入力ポートは、第一の電圧と第二の電圧を比較し、比較に基づいて、例えば第一の電圧が第二の電圧より高いか、低いか、等しいかに基づいて異なるデジタル信号値を出力するように構成できる。
図5Aは、本発明の技術の実施形態によるパルスデジタル化のために構成されたFPGA500の略図である。FPGA500は、複数の差動入力ポート504a〜504dを介してアナログパルス信号502を受け取るように構成される。各差動入力ポートは、第一のピン(P)と第二のピン(N)を含む。各差動入力ポートの第一のピンは、アナログパルス信号502を受け取るように構成できる。各差動入力ポートの第二のピンは、閾値を受け取るように構成できる。例えば、図の実施形態において、差動入力ポート504aは閾値Vf01を受け取り、差動入力ポート504bは閾値Vf02を受け取り、差動入力ポート504cは閾値Vf03を受け取り、差動入力ポート504dは閾値Vf04を受け取る。閾値Vf01〜Vf04は異なる電圧とすることができ、それによって各差動入力ポートは異なる閾値を受け取る。
各差動入力ポートは、受け取った閾値をアナログパルス信号と比較し、比較に基づいてデジタル信号値を生成するように構成できる。デジタル信号値は、アナログパルス信号が特定の時点で閾値より大きいか、小さいかを示すことができる。例えば、差動入力ポートは、第一のピンで受け取った電圧(例えばアナログパルス信号)が第二のピンの電圧(例えば閾値)より高ければ「1」を出力でき、第一のピンの電圧が第二のピンの電圧より低ければ「0」を出力できる。それゆえ、差動入力ポート504a〜504dにより生成されるデジタル信号値をまとめて使用して、特定の時点でアナログパルス信号502の電圧レベルを判断できる。例えば、ポート504a〜504dにわたる「1000」の出力は、信号502が電圧Vf01にあることに対応でき、「1100」の出力は、信号502がVf02にあることに対応でき、「1110」の出力は、信号502がVf03にあることに対応でき、「1111」の出力は、信号502がVf04にあることに対応できる。
アナログパルス信号502の電圧レベルは時間とともに変化するため、差動入力ポート504a〜504dにより生成されるデジタル信号値もまた、方形波信号506a〜506dにより示されるように、時間とともに変化する。デジタル信号値における「0」から「1」への変化は、方形波信号の立上りエッジに対応し、アナログパルス信号502がその差動入力ポートに関する閾値より上へと変化したことを示す。デジタル信号値における「1」から「0」への変化は、方形波信号の立下りエッジに対応し、信号502が閾値より下へと変化したことを示す。それゆえ、アナログパルス信号502の電圧レベルは、差動入力ポート504a〜504dにより出力される方形波信号506a〜506dのエッジを検出することによって判断できる。
差動入力ポート504a〜504dにより生成されるデジタル信号値及び/又は方形波信号506a〜506dは、複数のTDC508a〜508dにより受け取られて、対応する時間測定値を判断でき、これについては本明細書中でより詳しく説明する。それゆえ、FPGA500は、アナログパルス信号502が各閾値に到達し、それを上回り、又はそれを下回った時点を判断し、それによってアナログパルス信号のデジタル化表現を提供するデータサンプルの集合を生成できる。
図5Bは、本発明の技術の実施形態によるアナログパルス信号502のデジタル化を示す。この例において、アナログパルス信号502は、FPGA500の差動入力ポート504a〜504dを使って4つの異なる閾値Vf01〜Vf04と比較され、TDC508a〜508dは、いつアナログパルス信号502が最初に各閾値を上回った、又は下回ったかに対応する時間測定値t1〜t8を生成するために使用される。それゆえ、アナログパルス信号502は、8つのデータサンプル(t1、Vf01)、(t2、Vf02)、(t3、Vf03)、(t4、Vf04)、(t5、Vf04)、(t6、Vf03)、(t7、Vf02)、及び(t8、Vf01)の集合にデジタル化できる。
図5A及び5Bは4つの差動入力ポートと4つの閾値を使ったパルスデジタル化を示しているが、それ以外の数の差動入力ポート及び閾値も使用できる。例えば、いくつかの実施形態において、パルスデジタル化は、1つの差動入力ポートと1つの閾値、少なくとも2つの差動入力ポートと少なくとも2つの閾値、少なくとも4つの差動入力ポートと少なくとも4つの閾値、少なくとも8つの差動入力ポートと少なくとも8つの閾値、又は少なくとも12の差動入力ポートと少なくとも12の閾値を使って実行できる。差動入力ポートの数と閾値の数は、サンプリング精度の所望の程度に応じて変化させることができる。
いくつかの実施形態において、差動入力ポートの一部又は全部は、第一及び第二のピン間のオフセット電圧を有していてもよく、これはパルスデジタル化の精度に影響を与えるかもしれない。オフセット電圧とは、第一及び第二のピン間の電圧差を指すことができ、これは差動入力ポートの出力信号を変化させる。これらのオフセット電圧を補償することによって測定精度を高めるために、FPGAを校正することが有利であるかもしれない。
いくつかの実施形態において、校正手順には、各差動入力ポートのオフセット電圧を測定することを含む。差動入力ポートのオフセット電圧の測定に適した何れの方法でも使用できる。例えば、オフセット電圧は、可変電圧信号(例えば、増大又は減少する電圧信号)を第一のピンに印加し、定電圧信号を第二のピンに印加することによって測定できる。第一のピンに印加される電圧は、差動入力ポートの出力信号の変化が検出されるまで、それゆえ第一のピンに印加された電圧が第二のピンに印加された定電圧を上回ったか、下回ったことが示されるまで変化させることができる。その時点で、第一及び第二のピン間の電圧差を(例えば直接測定により)判断し、差動入力ポートのオフセット電圧として使用できる。
他の例として、オフセット電圧は、既知の波形を有する可変電圧信号(例えば、三角又は台形波信号)を第一のピンに印加し、定電圧信号を第二のピンに印加することによって測定できる。第一のピンに印加される電圧は、差動入力ポートの出力信号の変化が検出されるまで、それゆえ第一のピンに印加された電圧が第二のピンに印加された定電圧を上回ったか、下回ったことが示されるまで変化させることができる。この工程中に、差動入力ポートの出力信号の変化が検出された時点を判断できる。差動入力ポートのオフセット電圧に対応する第一及び第二のピン間の電圧差は、この時点と可変電圧信号の既知の波形に基づいて計算できる。
図6は、本発明の技術の実施形態によるオフセット校正を実行するための台形波信号600を示す。信号600の波形(例えば、前方及び後方区間の傾斜)はわかっており、差動入力ポートのオフセット電圧を判断するために使用できる。例えば、台形波信号600は差動入力ポートの第一のピンに印加でき、Vfの電圧を有する定電圧信号は差動入力ポートの第二のピンに印加できる。電圧Vf_cは、差動入力ポートの出力が変化したときに第一のピンに印加された電圧を表す。それゆえ、電圧Vf_cとVfとの差は差動入力ポートのオフセット電圧を表す。
電圧Vf_cとVfとの差は、様々な方法で判断できる。例えば、この差は、信号600を差動入力ポートに印加し、そのポートの出力が(例えば「0」から「1」へと)変化した時間tを測定し、及び/又はそのポートの出力が(例えば「1」から「0」へと)変化した時間tを測定することによって判断できる。tとtとの間の時間間隔は、信号600の既知の波形に基づいて判断できる。電圧Vf_cは、t、t及び信号600の既知の波形に基づいて判断できる。電圧Vfもすでにわかっているため、オフセット電圧はVf_cとVfとの間の差を計算することによって判断できる。
差動入力ポートのオフセット電圧が測定されたら、FPGAはオフセット電圧を補償するために校正できる。測定されたオフセット電圧に基づくFPGAの校正には様々な方法を使用できる。例えば、FPGAは、差動入力ポート(例えば、差動入力ポートの第一又は第二のピン)に調整電圧を印加することによって校正でき、これは測定されたオフセット電圧を補償するように構成される。調整電圧の振幅は、測定されたオフセット電圧の振幅と等しく、又はほぼ等しくすることができる。調整電圧は、デジタル−アナログ変換器(DAC)等の調節可能電圧源により印加できる。
他の例として、測定されたオフセット電圧は、戻り光パルスの予測時間値を計算するために使用される関数の入力パラメータとして使用できる。前述のように、FPGA及び/又は別のコントローラは、ある関数を使って、それぞれデジタイザとTDCにより生成されたデジタル信号値と時間測定値に基づいて戻り光パルスのための予測時間値を計算できる。測定されたオフセット電圧は、関数への追加の入力の役割を果たすことができる。予測時間値をデジタル信号値、時間測定値、及び測定されたオフセット電圧に関係付ける関数は、何れの適当な技法を使って導き出すこともできる。例えば、オフセット電圧は測定距離と無関係であるため、関数は、複数の既知の距離にわたり複数の距離測定を実行し、これらの距離に対応する距離及び/又は予想TOFを関数の入力パラメータ(例えば、デジタル信号値、時間測定値、及び測定されたオフセット電圧)に関連付けるモデルを決定することによって導き出すことができる。
あるいは、FPGAは、オフセット電圧を測定することなく、差動入力ポートのオフセット電圧を補償するために校正できる。このような実施形態において、オフセット電圧は、1つ又は複数のオフセット調整パラメータとしてまとめて表現でき、予測時間値は、予測時間値をデジタル信号値、時間測定値、及びオフセット調整パラメータに関係付ける関数を使って判断できる。1つ又は複数のオフセット調整パラメータは測定距離と無関係であるため、関数は、複数の既知の距離にわたり複数の距離測定を実行し、これらの距離に対応する距離及び/又は予想TOFを関数の入力パラメータ(例えば、デジタル信号値、時間測定値、及びオフセット調整パラメータ)に関係付けるモデルを決定することによって導き出すことができる。
いくつかの実施形態において、FPGAの差動入力ポートは、アナログパルス信号を受け取ってから対応するデジタル信号値を出力するまでの遅延時間を示すかもしれず、それによってデジタル信号値のタイミングはアナログパルス信号のタイミングに関して遅延する。測定精度を高めるために、これらのポート遅延を補償するためにFPGAを校正することが有益であるかもしれない。いくつかの実施形態において、FPGAは、各差動入力ポートに関連する遅延時間を測定し、戻り光パルスに関する予測時間値を計算する際に、例えば遅延時間をFPGAにより生成された時間測定値から差し引くことによってこれらの測定された遅延時間を補償することにより校正できる。
図7は、本発明の技術の実施形態によるポート遅延を測定する方法の略図である。FPGA700は複数の差動入力ポート704a〜704d及び複数のTDC708a〜708dを含み、これらはそれぞれ図5Aの差動入力ポート504a〜504d及びTDC508a〜508dと同様であってもよい。各差動入力ポートは、既知のタイミングを有する方形波信号702を閾値Vf01〜Vf04のうちの1つと比較する。いくつかの実施形態において、方形波信号702のタイミングは、差動入力ポート704a〜704dにより出力される遅延時間によって、差動入力ポート704a〜704dにより出力されるデジタル信号値のタイミングと異なる。遅延時間の振幅は、方形波信号702の既知のタイミングをTDC708a〜708dにより生成される時間測定値と比較することによって判断できる。
前述のように、本明細書に記載のシステムと装置は、時間測定値を生成するように構成された1つ又は複数のTDC(例えばFPGA408のTDC412)を有するFPGAを含むことができる。TDCは、FPGAを使って様々な方法で実装できる。例えば、TDCは、(例えば、デジタイザ410により生成される)デジタルアナログパルス信号を表す複数のデジタル信号値を受け取るようにFPGAを構成し、各デジタル信号値をサンプリングして対応する時間測定値を生成することによって実装できる。いくつかの実施形態において、FPGAは時間に伴うデジタル信号の値の変化を表す方形波信号を受け取ってサンプリングし、信号の立上り及び立下りエッジの時間測定値を判断する。方形波信号の立上り及び立下りエッジの時間測定値は、前述のように、アナログパルス信号が特定の閾値に到達し、それを上回り、又はそれを下回った時点を表すことができる。
いくつかの実施形態において、サンプリングは高い時間分解能で、例えば数百ピコ秒又は数百ピコ秒未満のオーダの時間分解能で実行される。例えば、サンプリングの時間分解能は、約5ピコ秒〜約2000ピコ秒、約10ピコ秒〜約1000ピコ秒、約1ピコ秒〜約500ピコ秒、又は約1ピコ秒〜約100ピコ秒の範囲とすることができる。いくつかの実施形態において、サンプリングの時間分解能(例えばピコ秒単位)は、FPGAのクロックのクロック周期(例えばナノ秒単位)より短い。例えば、時間分解能はFPGAのクロック周期より少なくとも2倍、5倍、10倍、20倍、又は100倍短くすることができる。
デジタル信号の高時間分解能サンプリングは、FPGAを使って様々な方法で実現できる。いくつかの実施形態において、FPGAは、複数の遅延ユニットを使って高時間分解能サンプリングを実行するように構成される。遅延ユニットは相互に連続的に連結でき、それによって、デジタル信号値は連続的に遅延ユニットを通って伝搬され、連続する各遅延ユニットは1つ前の遅延ユニットからデジタル信号値の時間遅延版を受け取る。それゆえ、デジタル信号値に関する時間測定値は、既知の時間間隔中にデジタル信号値を受け取った遅延ユニットの数をカウントすることによって判断できる。
図8Aは、本発明の技術の実施形態による高時間分解能の時間−デジタル変換のために構成されたFPGA800の略図である。FPGA800は複数の遅延ユニット802a〜802nを含み、これらは相互に連続的に連結されている。少なくとも10、少なくとも25、少なくとも50、少なくとも100、又は少なくとも200の遅延ユニット等、何れの適当な数の遅延ユニットも使用できる。各遅延ユニットは、信号送信におけるピコ秒単位の遅延tを生成できる。例えば、各遅延ユニットは、約5ピコ秒〜約2000ピコ秒、約10ピコ秒〜約1000ピコ秒、約1ピコ秒〜約500ピコ秒、約1ピコ秒〜約100ピコ秒の範囲内の遅延を生成するように構成できる。いくつかの実施形態において、各遅延ユニットにより生成される遅延は同じである。他の実施形態において、遅延ユニットのいくつか又は全部は、異なる遅延時間を生成し、それによって、tはすべてのユニットの平均遅延時間を表す。遅延ユニット802a〜802nは、FPGA内の論理コンポーネントを使って様々な方法で構成できる。例えば、複数の遅延ユニット802a〜802nはキャリーチェーン又はLUTを含むことができる。
遅延ユニット802a〜802nは、アナログパルス信号のデジタル化に対応するデジタル信号値を受け取るように構成できる。デジタル信号値は、時間に伴うデジタル信号値の変化を表す方形波信号808として受け取られてもよい。信号808は、遅延ユニット802a〜802nの各々を通じて連続的に送信でき、それによって連続する各遅延ユニットが受け取る信号は1つ前の遅延ユニットにより受け取られた信号から遅延時間tだけ遅れる。各遅延ユニットは、それが信号808のエッジを受け取ったときに出力信号を生成するように構成できる。例えば、遅延ユニットは、信号808の立上りエッジによりトリガされると「1」を出力でき、信号808の立下りエッジによりトリガされると「0」を出力できる。
遅延ユニット802a〜802nは、ラッチユニット804に連結される。ラッチユニット804は、遅延ユニット802a〜802nが信号808によってトリガされると遅延ユニット802a〜802nの出力をラッチするように構成できる。いくつかの実施形態において、ラッチユニット804は複数のラッチを含み、その各々は対応する遅延ユニットに連結され、信号808の立上り又は立下りエッジによりトリガされるとその遅延ユニットの出力をラッチするように構成される。
FPGA800はまた、クロック信号810を生成するように構成されたクロックも含む。クロック信号810は、数百MHz〜GHzのオーダのレートを有することができ、それによって信号810はナノ秒単位のクロック周期Tckを有する。クロック信号810は、ラッチユニット804とカウンタ806によって受け取らつれるようにすることができる。カウンタ806は、測定開始からのクロックサイクルの数Cをカウントでき、それによってFPGAクロックにより提供される大まかな時間測定値はCckとなる。
各クロック周期で、FPGA800は、信号808によりトリガされた遅延ユニットの数を判断して、信号808の立上り又は立下りエッジに対応する高分解能時間測定を提供できる。時間測定方法の詳細は、図8B及び8Cに関して以下に説明する。
図8Bは、本発明の技術の実施形態による立上りエッジ信号の時間−デジタル変換を示している。図の実施形態において、立上りエッジ信号は、4つの遅延ユニットの連続を通じて送信され、第一の遅延ユニットは信号820aを受け取り、第二の遅延ユニットは信号820bを受け取り、第三の遅延ユニットは信号820cを受け取り、第四の遅延ユニットは820dを受け取る。連続する信号の各々は1つ前の信号から遅延時間tだけ遅延する。時間Tckにおいて、ラッチされた各遅延ユニットの出力がサンプリングされる。図の実施形態において、第一及び第二の遅延ユニットはそれぞれ信号820a及び820bの立上りエッジによってすでにトリガされており、これらの遅延ユニットの出力はどちらも「1」である。第三及び第四の遅延ユニットは、それぞれ信号820c及び820dの立上りエッジによりまだトリガされていないため、これらの遅延ユニットの出力はどちらも「0」である。それゆえ、時間Tckにおいてラッチユニット804によりラッチされるシーケンスは、「1100」である。立上りエッジ信号の時間測定値Trisingは「1」でラッチされた遅延ユニットの数Cr1に基づいて、Trising=Cck−Cr1の関係を使って計算できる。
図8Cは、本発明の技術の実施形態による立下りエッジ信号の時間−デジタル変換を示している。図の実施形態において、立上りエッジ信号は、4つの遅延ユニットの連続を通じて送信され、第一の遅延ユニットは信号830aを受け取り、第二の遅延ユニットは信号830bを受け取り、第三の遅延ユニットは信号830cを受け取り、第四の遅延ユニットは830dを受け取る。連続する信号の各々は1つ前の信号から遅延時間tだけ遅延する。時間Tckにおいて、ラッチされた各遅延ユニットの出力がサンプリングされる。図の実施形態において、第一及び第二の遅延ユニットはそれぞれ信号830a及び830bの立下りエッジによってすでにトリガされており、これらの遅延ユニットの出力はどちらも「0」である。第三及び第四の遅延ユニットは、それぞれ信号820c及び820dの立下りエッジによりまだトリガされていないため、これらの遅延ユニットの出力はどちらも「1」である。それゆえ、時間Tckにおいてラッチユニット804によりラッチされるシーケンスは、「0011」である。立下りエッジ信号の時間測定値Tfallingは「0」でラッチされた遅延ユニットの数Cr1に基づいて、Tfalling=Cck−Cr1の関係を使って計算できる。
いくつかの実施形態において、FPGAの遅延ユニットにより生成される遅延時間は、FPGAの温度に基づいて変化する。例えば、温度が上がると遅延時間が減少するかもしれない。動作温度範囲にわたり正確な測定が確実に行われるようにするために、FPGAは遅延時間の温度依存変化を補償するように校正できる。いくつかの実施形態において、校正方法には、温度範囲(例えば約−20℃〜約80℃の範囲内)で遅延時間を測定し、この測定データを使って、遅延時間と温度との関係を判断することが関わる。FPGAの温度は、FPGAの上、中、又は付近に位置付けられた温度センサを使って測定できる。各温度での遅延時間は、t=Tck/maxbinに基づいて判断でき、式中、maxbinはFPGAのクロック周期Tck内に信号を送信できる遅延ユニットの最大数を表す。各温度に関するmaxbinの値は、例えば、その温度で1つのクロック周期の信号によりトリガされる遅延ユニットの数をカウントすることによって測定できる。
測定された温度−遅延時間の関係は、FPGAの校正に使用できる。例えば、距離測定を行う際に、FPGAはFPGAの上、付近、又は中に位置付けられた温度センサから温度の値を受け取り、温度の値に基づいて時間測定値を計算できる。時間測定計算は、例えば測定温度−遅延時間の関係を介して受け取った温度値に関連付けられる遅延時間を判断し、この遅延時間を使って時間測定値を計算することにより、異なる温度を補償するために調整できる。
いくつかの実施形態において、校正に使用される温度−遅延時間関係は、各システムのための各FPGAについて個別に測定される。あるいは、温度依存性におけるチップごとのばらつきが大きくない実施形態においては、温度−遅延時間関係を1つのFPGAから測定して、校正のためにすべてのシステムを通じて使用できる。
いくつかの実施形態において、FPGAは、複数のフェーズロックループ(PLL)クロックを使って、高時間分解能サンプリングを行うように構成される。少なくとも2つ、少なくとも4つ、又は少なくとも10のPLLクロック等、何れの適当な数のPLLクロックも使用できる。各PLLクロックは、同じクロックレートであるが、異なる位相のクロック信号を生成するように構成できる。例えば、クロック信号は、相互にπ/8、π/4、π/2、又はπだけ位相シフトさせることができる。FPGAは、(例えばFPGA400のデジタイザ410により出力される)デジタル化されたアナログパルス信号を表す複数のデジタル信号値を受け取り、各デジタル信号値をPLLクロックのクロック信号と比較することにより、それに対応する複数の時間測定値を生成できる。いくつかの実施形態において、FPGAは時間に伴うデジタル信号値の値の変化を表す方形波信号を受け取り、複数のPLLクロックを使って方形波信号の立上り又は立下りエッジに関する時間測定値を生成できる。FPGAは、複数のPLLクロックを使って、個別のPLLクロックのクロック周期より高い分解能で時間測定を実行できる。例えば、各PLLクロックはナノ秒単位のクロックレートを有することができ、その一方で、サンプリングの時間分解能はピコ秒単位とすることができる。
図9は、本発明の技術の実施形態による時間−デジタル変換に使用される複数のPLLクロック信号900a〜900dを示す。各クロック信号はクロック周期Tckを有する。複数のPLLクロック信号900a〜900dは各々、連続的に量Δだけ位相シフトされ、これは図9において参照番号902で示されている。各PLLクロック信号について、カウンタを使って測定開始以降に信号により生成されたクロックサイクルCの数をカウントする。カウンタは、それがサンプリングされた信号(例えば、方形波信号)の立上りエッジ又は立下りエッジを受け取ると停止される。それゆえ、第一のPLLクロック信号900aにより生成される時間測定値はCTckであり、第二の信号900bにより生成される時間測定値はCTck+Δであり、第三の信号900cにより生成される時間測定値はCTck+2Δであり、第四の信号900dにより生成される時間測定値はCTck+3Δであり、等々である。サンプリングされた信号の最終的な時間測定値は、PLLクロック信号900a〜900dにより生成される最大時間測定値である。
図10は、本発明の技術の実施形態による物体までの距離を測定する方法1000を示す。方法1000のステップのうちのいくつか又は全部は、本明細書に記載されているシステム及び装置の何れによって実行することもできる(例えば、システム400)。いくつかの実施形態において、方法1000のステップのうちのいくつか又は全部は、無人機(例えばUAV)又はロボット等の可動物体上に搭載されたコンポーネントを使って実行される。
ステップ1010において、射出光パルスが発せられる。光パルスは、LIDAR装置の発光素子、例えば図1Bの発光素子101又は図4の発光素子402により発生させることができる。
ステップ1020において、物体から反射される戻り光パルスが受け取られる。戻り光パルスは、物体からの射出光パルスの反射とすることができる。戻り光パルスは、LIDAR装置の光センサ、例えば図1Bの光検出器105又は図4の光センサ404により受け取ることができる。
ステップ1030において、戻り光パルスを表すアナログパルス信号が出力される。例えば、LIDAR装置の光センサ(例えば、図1Bの光検出器105又は図4の光センサ404)は、戻り光パルスの光エネルギーを電気信号に変換するために使用できる。
ステップ1040において、アナログパルス信号は複数のデジタル信号値に変換される。ステップ1040は、本明細書に記載されているように、FPGAを使って(例えばFPGA408のデジタイザ410により)実行できる。あるいは、ステップ1040は、図2A、2B、及び3に関して説明したように、1つ又は複数のコンパレータを使って実行できる。いくつかの実施形態において、変換には、アナログパルス信号を複数の閾値と比較し、比較に基づいて複数のデジタル信号値を生成することが関わる。変換は、図5A及び5Bに関して述べたように、FPGAの複数の差動入力ポートを使って実行できる。任意選択により、ステップ1040は、差動入力ポートのオフセット電圧の補償を含むことができ、例えばこれは、調整電圧を差動入力ポートに印加することによって行われ、これはそのポートの測定されたオフセット電圧を補償するように構成される。
ステップ1050において、複数のデジタル信号値に対応する複数の時間測定値が生成される。ステップ1050は、本明細書に記載されているように、FPGAを使って(例えば、FPGA408のTDC412によって)実行できる。FPGAは、ステップ1040を実行するために使用されたものと同じFPGAとすることも、異なるFPGAとすることもできる。複数の時間測定値は、FPGAのクロック周期より短い時間分解能で各デジタル信号値をサンプリングすることによって生成できる。より短い時間分解能は例えば、図8A〜8Cに関して述べたように、複数の遅延ユニットを使って連続する遅延時間をデジタル信号値の中に導入することにより実現できる。あるいは、又は組合せにより、より短い時間分解能は、図9に関して述べたように、複数の位相シフトPLLクロック信号を使ってデジタル信号値をサンプリングすることにより実現できる。
ステップ1060において、物体までの距離は、複数のデジタル信号値と複数の時間測定値を使って計算される。いくつかの実施形態において、ステップ1060は、コントローラ(例えば、システム400のコントローラ406)を使って実行される。コントローラは、FPGAの一部として含められてもよく、又はFPGAとは別の装置であってもよい。距離計算には、例えば、複数のデジタル信号値と複数の時間測定値を関数に入力し、この関数を使って戻り光パルスに関する予測時間値を導き出すことが関わることができる。任意選択により、関数はまた、差動入力ポートの測定されたオフセット電圧又はオフセット電圧を補償するように構成されたオフセット調整パラメータ等の他の入力パラメータも利用できる。関数により生成される予測時間値はその後、物体距離を判断するためのTOF計算において使用できる。
図11は、本発明の技術の実施形態による距離測定装置を校正する方法1100を示す。方法1100は、本明細書に記載されているシステム及び装置の何れを校正するためにも使用できる(例えば、システム400)。いくつかの実施形態において、方法1100は、距離測定装置を操作する前に実行される。例えば、方法1100は、製造工場で、又は使用者により(例えば、距離測定装置を初めて操作する前、及び/又は距離測定装置の電源を入れるたびに)実行できる。
ステップ1100において、FPGAが提供される。FPGAは、図5A及び5Bに関して前述したように、パルスデジタル化を実行するために使用される複数の差動入力ポートを有することができる。各差動入力ポートは、オフセット電圧に関連付けることができる。
ステップ1120において、FPGAは、各差動入力ポートに関連付けられるオフセット電圧を補償するために校正される。いくつかの実施形態において、ステップ1120は、前述のように、差動入力ポートのオフセット電圧を測定することを含む。測定されたオフセット電圧は次に、例えば調整電圧を差動入力ポートに印加すること、又は測定されたオフセットを予測時間値計算のための入力パラメータとして使用することにより、FPGAの校正に使用できる。他の実施形態において、ステップ1120は、オフセット電圧を測定せずに実行できる。このような実施形態において、FPGAは、オフセット電圧を補償するように構成されたオフセット調整パラメータを決定し、オフセット調整電圧を予測時間値計算への入力パラメータとして使用することによって校正できる。
本明細書に記載の実施形態のいくつかは、一般的な方法又はプロセスに関して説明されており、これらは1つの実施形態においては、ネットワーク環境中でコンピュータが実行する、プログラムコード等のコンピュータ実行可能命令を含むコンピュータ読取可能媒体に具現化されたコンピュータプログラム製品により実現されてもよい。コンピュータ読取可能媒体にはリムーバブル又はノンリムーバブルストレージデバイスを含まれていてもよく、これにはリードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)等が含まれるが、これらに限定されない。したがって、コンピュータ読取可能媒体は、非一時的記憶媒体を含むことができる。一般に、プログラムモジュールは、特定のタスクを実行する、又は特定のアブストラクトデータタイプを実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含んでいてもよい。コンピュータ又はプロセッサ実行可能命令、関連するデータ構造、及びプログラムモジュールは、本明細書で開示されている方法のステップを実行するためのプログラムコードの例を示している。このような実行可能命令又は関連するデータ構造の特定のシーケンスは、かかるステップ又はプロセスの中に記載された機能を実行するための、それに対応する動作の例を表している。
開示された実施形態のいくつかは、ハードウェア回路、ソフトウェア、又はそれらの組合せを使ってデバイス又はモジュールとして実装できる。例えば、ハードウェア回路実装は、離散型アナログ及び/又はデジタルコンポーネントを含むことができ、これらは例えば、プリント回路基板の一部として集積される。あるいは、又はこれに加えて、開示されたコンポーネント又はモジュールは、特定用集積回路(ASIC)及び/又はフィールドプログラマブルゲートアレイ(FPGA)装置として実装できる。いくつかの実装は、それに加えて、又はその代わりに、デジタル信号プロセッサ(DSP)を含んでいてもよく、これは、本願の開示された機能に関連付けられるデジタル信号処理の動作上のニーズに合わせて最適化されたアーキテクチャを持つ専用マイクロプロセッサである。同様に、各モジュール内の各種のコンポーネント又はサブコンポーネントは、ソフトウェア、ハードウェア、又はファームウェアに実装されてもよい。モジュール及び/又はモジュール内のコンポーネントとの間の接続は、当業界で知られている接続方法及び媒体の何れを使って提供されてもよく、これには適当なプロトコルを用いたインタネット、有線、又は無線ネットワーク上での通信が含まれるが、これに限定されない。
本特許文献には、多くの具体的な点が含まれているが、これらは、本発明の範囲と、特許請求されるかもしれない限定として解釈されるべきではなく、むしろ、特定の発明の特定の実施形態にとって固有であるかもしれない特徴を説明していると理解すべきである。特許文献の中で、別々の実施形態に関して説明されている特定の特徴はまた、1つの実施形態の中に組み合わせて実装することもできる。反対に、1つの実施形態に関して説明された各種の特徴はまた、複数の実施形態の中に、別々に、又は何れかの適当な部分組合せで実装することもできる。さらに、上では特徴が特定の組合せで動作すると記載されているが、さらには当初はそのように特許請求されるかもしれないが、特許請求されている組合せの中の1つ又は複数の特徴を、場合によっては組合せから削除でき、特許請求された組合せは部分組合せや部分組合せの変形型に関していてもよい。
同様に、図面には動作が特定の順序で描かれているが、これは、所望の結果を実現するために、そのような動作が図の特定の順序又は連続的順序で実行されることが求められている、又は示されているすべての動作を実行する必要があると理解すべきではない。さらに、本特許文献中に記載されている実施形態の中の各種のシステムコンポーネントの分離は、すべての実施形態においてそのような分離が必要であると理解すべきではない。
ある数の実装及び例のみが説明されており、本特許文献中に記載され、図示されているものに基づいて、他の実装、改善、及び変形を考案することができる。
以上のことから、本発明の具体的な実施形態が本明細書においては例示を目的として説明されているが、本発明の範囲から逸脱することなく、各種の改変を加えることができることがわかるであろう。したがって、本発明は付属の特許請求の範囲以外によっては限定されない。
[項目1]
物体までの距離を測定するシステムであって、
射出光パルスを発生する発光素子と、
上記物体から反射された戻り光パルスを受け取り、上記戻り光パルスを表すアナログパルス信号を出力する光センサと、
上記光センサに連結されたフィールドプログラマブルゲートアレイ(FPGA)であって、
上記アナログパルス信号を複数のデジタル信号値に変換し、
各デジタル信号値をサンプリングすることにより、上記複数のデジタル信号値に対応する複数の時間測定値を生成し、上記サンプリングの時間分解能が上記FPGAのクロック周期より短いFPGAと、
上記物体までの上記距離を、上記複数のデジタル信号値と上記複数の時間測定値に基づいて計算するコントローラと、
を含むシステム。
[項目2]
上記発光素子、光センサ、FPGA、及びコントローラは、無人機、自律走行車、又はロボットにより支持される、項目1に記載のシステム。
[項目3]
上記時間分解能は上記FPGAの上記クロック周期の少なくとも5倍短い、項目1に記載のシステム。
[項目4]
上記FPGAは相互に連続的に連結された複数の遅延ユニットを含み、上記FPGAは、上記複数の遅延ユニットを使って上記サンプリングを実行する、項目1に記載のシステム。
[項目5]
上記複数の遅延ユニットは少なくとも25の遅延ユニットを含む、項目4に記載のシステム。
[項目6]
上記複数の遅延ユニットはキャリーチェーン又はルックアップテーブル(LUT)を含む、項目4に記載のシステム。
[項目7]
上記複数の遅延ユニットの各々は、5ピコ秒〜2000ピコ秒の範囲内の遅延を発生させる、項目4に記載のシステム。
[項目8]
上記FPGAは複数のラッチを含み、各ラッチは上記複数の遅延ユニットのうちの対応する遅延ユニットに連結され、各ラッチは、上記対応する遅延ユニットがデジタル信号値を受け取ったことに応答してラッチされる、項目4に記載のシステム。
[項目9]
上記FPGAは、
上記複数の遅延ユニットに沿って連続的にデジタル信号値を送信し、
上記FPGAのクロック周期中にトリガされた上記複数のラッチの数を判断し、
上記判断された数に基づいて上記デジタル信号値に対応する時間測定値を計算すること
によって上記複数の時間測定値を生成する、項目8に記載のシステム。
[項目10]
上記FPGAの上、中、又は付近に位置付けられた温度センサをさらに含み、上記FPGAは、
上記温度センサからの温度値を受け取り、
上記温度値に基づいて上記時間測定値を計算すること
によって上記複数の時間測定値を生成する、項目9に記載のシステム。
[項目11]
上記FPGAは複数のフェーズロックループ(PLL)クロックを含み、各々は異なる位相を有するクロック信号を生成し、上記FPGAは、上記複数のPLLクロックを使って上記サンプリングを実行する、項目1に記載のシステム。
[項目12]
上記複数のPLLクロックは少なくとも2つのPLLクロックを含む、項目11に記載のシステム。
[項目13]
上記複数のPLLクロックにより生成される上記クロック信号は、π/8、π/4、π/2、又はπだけ相互に位相シフトされている、項目11に記載のシステム。
[項目14]
上記FPGAは、
デジタル信号値を上記複数のPLLクロックの各々により生成される上記クロック信号と比較し、
上記デジタル信号値に対応する時間測定値を上記比較に基づいて計算すること
により、上記複数の時間測定値を生成する、項目11に記載のシステム。
[項目15]
上記FPGAは上記コントローラを含む、項目1に記載のシステム。
[項目16]
上記コントローラは上記FPGAに連結される、項目1に記載のシステム。
[項目17]
物体までの距離を測定する方法であって、
発光素子によって射出光パルスを発生させるステップと、
光センサにおいて、上記物体から反射された戻り光パルスを受け取るステップと、
上記光センサにより、上記戻り光パルスを表すアナログパルス信号を出力するステップと、
フィールドプログラマブルゲートアレイ(FPGA)を使って上記アナログパルス信号を複数のデジタル信号値に変換するステップと、
上記FPGAを使って、各デジタル信号値をサンプリングすることによって上記複数のデジタル信号値に対応する複数の時間測定値を生成するステップであって、上記サンプリングの時間分解能が上記FPGAのクロック周期より短いステップと、
上記物体までの上記距離を上記複数のデジタル信号値と上記複数の時間測定値に基づいて計算するステップと、
を含む方法。
[項目18]
上記発光素子、光センサ、及びFPGAは、無人機、自律走行車、又はロボットにより支持される、項目17に記載の方法。
[項目19]
上記時間分解能は、上記FPGAの上記クロック周期より少なくとも5倍短い、項目17に記載の方法。
[項目20]
上記FPGAは相互に連続的に連結された複数の遅延ユニットを使って上記サンプリングを実行する、項目17に記載の方法。
[項目21]
上記複数の遅延ユニットは少なくとも25の遅延ユニットを含む、項目20に記載の方法。
[項目22]
上記複数の遅延ユニットはキャリーチェーン又はルックアップテーブル(LUT)を含む、項目20に記載の方法。
[項目23]
上記複数の遅延ユニットの各々は、5ピコ秒〜2000ピコ秒の範囲内の遅延を発生させる、項目20に記載の方法。
[項目24]
上記FPGAは複数のラッチを含み、各ラッチは上記複数の遅延ユニットのうちの対応する遅延ユニットに連結され、各ラッチは、上記対応する遅延ユニットがデジタル信号値を受け取ったことに応答してラッチされる、項目20に記載の方法。
[項目25]
上記複数の時間測定値を生成する上記ステップは、
上記複数の遅延ユニットに沿って連続的にデジタル信号値を送信するステップと、
上記FPGAのクロック周期中にトリガされた上記複数のラッチの数を判断するステップと、
上記判断された数に基づいて上記デジタル信号値に対応する時間測定値を計算するステップと、
を含む、項目24に記載の方法。
[項目26]
上記複数の時間測定値を生成する上記ステップは、
上記FPGAの上、中、又は付近に位置付けられた温度センサからの温度値を受け取るステップと、
上記温度値に基づいて上記時間測定値を計算するステップと、
を含む、項目25に記載の方法。
[項目27]
上記FPGAは複数のフェーズロックループ(PLL)クロックを使って上記サンプリングを実行するように構成され、各々は異なる位相を有するクロック信号を生成する、項目17に記載の方法。
[項目28]
上記複数のPLLクロックは少なくとも2つのPLLクロックを含む、項目27に記載の方法。
[項目29]
上記複数のPLLクロックにより生成される上記クロック信号は、π/8、π/4、π/2、又はπだけ相互に位相シフトされている、項目27に記載の方法。
[項目30]
上記複数の時間測定値を生成する上記ステップは、
デジタル信号値を上記複数のPLLクロックの各々により生成される上記クロック信号と比較するステップと、
上記デジタル信号値に対応する時間測定値を上記比較に基づいて計算するステップと、
を含む、項目27に記載の方法。
[項目31]
物体までの距離を測定するシステムであって、
射出光パルスを発生する発光素子と、
上記物体から反射された戻り光パルスを受け取り、上記戻り光パルスを表すアナログパルス信号を出力する光センサと、
上記光センサに連結されたフィールドプログラマブルゲートアレイ(FPGA)であって、
上記アナログパルス信号を複数のデジタル信号値に、(1)上記アナログパルス信号を複数の閾値と比較し、(2)上記複数のデジタル信号値を上記比較に基づいて生成することによって変換し、
上記複数のデジタル信号値に対応する複数の時間測定値を生成するFPGAと、
上記物体までの上記距離を、上記複数のデジタル信号値と上記複数の時間測定値に基づいて計算するコントローラと、
を含むシステム。
[項目32]
上記発光素子、光センサ、FPGA、及びコントローラは、無人機、自律走行車、又はロボットにより支持される、項目31に記載のシステム。
[項目33]
上記複数の異なる閾値は少なくとも2つの異なる閾値を含む、項目31に記載のシステム。
[項目34]
上記FPGAは複数の差動入力ポートを含み、上記FPGAは、上記複数の差動入力ポートを使って上記アナログパルス信号を変換するように構成される、項目31に記載のシステム。
[項目35]
各差動入力ポートは低電圧作動信号(LVDS)インタフェース又はエミッタ結合論理(ECL)インタフェースを含む、項目34に記載のシステム。
[項目36]
上記FPGAは、上記複数の差動入力ポートの各々において上記アナログパルス信号と閾値を受け取り、各差動入力ポートは異なる閾値を受け取るようにさらに構成される、項目34に記載のシステム。
[項目37]
各差動入力ポートは、上記アナログパルス信号が上記受け取った閾値より大きいか、小さいかに基づいてデジタル信号値を生成する、項目36に記載のシステム。
[項目38]
各差動入力ポートは、
上記アナログパルス信号を受け取るように構成される第一のピンと、
上記閾値を受けるように構成される第二のピンと
を含む、項目36に記載のシステム。
[項目39]
上記第二のピンは調整電圧を受け取るように構成され、上記調整電圧は、上記差動入力ポートの上記第一及び第二のピン間のオフセット電圧を補償するように構成される、項目38に記載のシステム。
[項目40]
上記コントローラは上記距離を、
上記複数のデジタル信号値と上記複数の時間測定値を関数に入力し、
上記関数を使って上記戻り光パルスに関する予測時間値を導き出すこと
によって計算するように構成される、項目31に記載のシステム。
[項目41]
上記関数はパルス信号モデルを含み、上記予測時間値は、上記複数のデジタル信号値と上記複数の時間測定値を上記パルス信号モデルに適合させることによって導き出される、項目40に記載のシステム。
[項目42]
上記複数の差動入力ポートの各々は測定されたオフセット電圧に関連付けられ、上記コントローラは、各差動入力ポートの上記測定されたオフセット電圧を上記関数に入力するように構成される、項目40に記載のシステム。
[項目43]
上記コントローラはオフセット調整パラメータを上記関数に入力するように構成され、上記オフセット調整パラメータは、上記複数の差動入力ポートのオフセット電圧を補償するように構成される、項目40に記載のシステム。
[項目44]
各差動入力ポートは遅延時間に関連付けられ、上記FPGAは、上記複数の時間測定値を生成する際に、各差動入力ポートの上記遅延時間を補償するように構成される、項目34に記載のシステム。
[項目45]
上記FPGAは上記コントローラを含む、項目31に記載のシステム。
[項目46]
上記コントローラは上記FPGAに連結される、項目31に記載のシステム。
[項目47]
物体までの距離を測定する方法であって、
発光素子により射出光パルスを発生させるステップと、
光センサにおいて、上記物体から反射された戻り光パルスを受け取るステップと、
上記光センサにより、上記戻り光パルスを表すアナログパルス信号を出力するステップと、
フィールドプログラマブルゲートアレイ(FPGA)を用いて、上記アナログパルス信号を複数のデジタル信号値に、(1)上記アナログパルス値を複数の閾値と比較し、(2)上記複数のデジタル信号値を上記比較に基づいて生成することによって変換するステップと、
上記FPGAを用いて、上記複数のデジタル信号値に対応する複数の時間測定値を生成するステップと、
上記物体までの上記距離を、上記複数のデジタル信号値と上記複数の時間測定値に基づいて計算するステップと、
を含む方法。
[項目48]
上記発光素子、光センサ、及びFPGAは、無人機、自律走行車、又はロボットにより支持される、項目47に記載の方法。
[項目49]
上記複数の閾値は少なくとも2つの異なる閾値を含む、項目47に記載の方法。
[項目50]
上記FPGAは複数の差動入力ポートを含み、上記変換するステップは、上記複数の差動入力ポートを用いて実行される、項目47に記載の方法。
[項目51]
各差動入力ポートは低電圧作動信号(LVDS)インタフェース又はエミッタ結合論理(ECL)インタフェースを含む、項目50に記載の方法。
[項目52]
上記複数の差動入力ポートの各々において上記アナログパルス信号と閾値を受け取るステップをさらに含み、各差動入力ポートは異なる閾値を受け取る、項目50に記載の方法。
[項目53]
各差動入力ポートを用いて、上記アナログパルス信号が上記受け取った閾値より大きいか、小さいかに基づいてデジタル信号値を生成するステップをさらに含む、項目52に記載の方法。
[項目54]
上記アナログパルス信号は各差動入力ポートの第一のピンで受け取られ、上記閾値は各差動入力ポートの第二のピンで受け取られる、項目52に記載の方法。
[項目55]
調整電圧を各差動入力ポートの上記第二のピンに印加するステップをさらに含み、上記調整電圧は、上記差動入力ポートの上記第一及び第二のピン間のオフセット電圧を補償するように構成される、項目54に記載の方法。
[項目56]
上記計算するステップは、
上記複数のデジタル信号値と上記複数の時間測定値を関数に入力するステップと、
上記関数を使って上記戻り光パルスに関する予測時間値を導き出すステップと、
を含む、項目50に記載の方法。
[項目57]
上記関数はパルス信号モデルを含み、上記予測時間値は、上記複数のデジタル信号値と上記複数の時間測定値を上記パルス信号モデルに適合させることによって導き出される、項目56に記載の方法。
[項目58]
上記複数の差動入力ポートの各々が測定されたオフセット電圧に関連付けられ、上記計算するステップは、各差動入力ポートの上記測定されたオフセット電圧を上記関数に入力するステップを含む、項目56に記載の方法。
[項目59]
上記計算するステップは、オフセット調整パラメータを上記関数に入力するステップをさらに含み、上記オフセット調整パラメータは、上記複数の差動入力ポートのオフセット電圧を補償するように構成される、項目56に記載の方法。
[項目60]
各差動入力ポートは遅延時間に関連付けられ、上記複数の時間測定値を生成する上記ステップは、各差動入力ポートの上記遅延時間を補償するステップを含む、項目50に記載の方法。
[項目61]
距離測定装置を校正する方法であって、
複数の差動入力ポートを含むフィールドプログラマブルアレイ(FPGA)を提供するステップを含み、上記複数の差動入力ポートの各々はオフセット電圧に関連付けられ、上記FPGAは、
物体から反射された戻り光パルスを表すアナログパルス信号を受け取り、
上記アナログパルス信号を複数のデジタル信号値に、(1)上記複数の差動入力ポートを使って上記アナログパルス値を複数の閾値と比較し、(2)比上記較に基づいて上記複数のデジタル信号値を生成することによって変換し、
上記複数のデジタル信号値に対応する複数の時間測定値を生成する
ように構成され、
上記アナログパルス信号を変換する際に、上記複数の差動入力ポートの各々に関連付けられた上記オフセット電圧を補償するために上記FPGAを校正するステップを含む方法。
[項目62]
上記FPGAは無人機、自律走行車、又はロボットにより支持される、項目61に記載の方法。
[項目63]
各差動入力ポートに関連付けられた上記オフセット電圧を測定するステップをさらに含む、項目61に記載の方法。
[項目64]
各差動入力ポートは、
上記アナログパルス信号を受け取るように構成された第一のピンと、
閾値を受け取るように構成された第二のピンと、
を含む、項目63に記載の方法。
[項目65]
上記測定するステップは、
可変電圧信号を上記第一のピンに印加するステップと、
定電圧信号を上記第二のピンに印加するステップと、
上記差動入力ポートの出力信号の変化を検出するステップと、
上記変化が検出されたときに、上記第一及び第二のピン間の電圧差を判断するステップと、
を含む、項目64に記載の方法。
[項目66]
上記判断するステップは、上記第一及び第二のピン間の上記電圧差を測定するステップを含む、項目65に記載の方法。
[項目67]
上記判断するステップは、
上記出力信号の上記変化が検出された時点を判断するステップと、
上記電圧差を上記時点と上記可変電圧信号の波形に基づいて計算するステップと、
を含む、項目65に記載の方法。
[項目68]
上記可変電圧信号は増大する電圧信号を含む、項目65に記載の方法。
[項目69]
上記可変電圧信号は三角波信号又は台形波信号を含む、項目65に記載の方法。
[項目70]
上記校正するステップは、調整電圧を各差動入力ポートの上記第二のピンを印加するステップを含み、上記調整電圧は、上記差動入力ポートに関連付けられる上記オフセット電圧を補償するように構成される、項目64に記載の方法。
[項目71]
上記校正するステップは、上記複数の差動入力ポートの上記オフセット電圧を関数の入力パラメータとして使用するステップを含み、上記関数は、上記複数のデジタル信号値、上記複数の時間測定値、及び上記入力パラメータに基づいて上記戻り光パルスに関する予測時間値を導き出すように構成される、項目63に記載の方法。
[項目72]
上記校正するステップは、
オフセット調整パラメータを判断するステップであって、上記オフセット調整パラメータは上記複数の差動入力ポートの上記オフセット電圧を補償するように構成されるステップと、
上記オフセット調整パラメータを関数の入力として使用するステップであって、上記関数は、上記複数のデジタル信号値、上記複数の時間な測定値、及び上記オフセット調整パラメータに基づいて上記戻り光パルスに関する予測時間値を導き出すように構成されるステップと、
を含む、項目61に記載の方法。

Claims (11)

  1. 物体までの距離を測定するシステムであって、
    射出光パルスを発生する発光素子と、
    前記物体から反射された戻り光パルスを受け取り、前記戻り光パルスを表すアナログパルス信号を出力する光センサと、
    前記光センサに連結されたフィールドプログラマブルゲートアレイ(FPGA)であって、
    前記アナログパルス信号を複数のデジタル信号値に変換し、
    各デジタル信号値をサンプリングすることにより、前記複数のデジタル信号値に対応する複数の時間測定値を生成し、前記サンプリングの時間分解能が前記FPGAのクロック周期より短いFPGAと、
    前記物体までの前記距離を、前記複数のデジタル信号値と前記複数の時間測定値に基づいて計算するコントローラと、
    を含み、
    前記FPGAは相互に連続的に連結された複数の遅延ユニットを含み、前記FPGAは、前記複数の遅延ユニットを使って前記サンプリングを実行し、
    前記FPGAは複数のラッチを含み、各ラッチは前記複数の遅延ユニットのうちの対応する遅延ユニットに連結され、各ラッチは、前記対応する遅延ユニットがデジタル信号値を受け取ったことに応答してラッチされ、
    前記FPGAは、
    前記複数の遅延ユニットに沿って連続的にデジタル信号値を送信し、
    前記FPGAのクロック周期中にトリガされた前記複数のラッチの数を判断し、
    前記判断された数に基づいて前記デジタル信号値に対応する時間測定値を計算すること
    によって前記複数の時間測定値を生成する、システム。
  2. 前記発光素子、光センサ、FPGA、及びコントローラは、無人機、自律走行車、又はロボットにより支持される、請求項1に記載のシステム。
  3. 前記複数の遅延ユニットはキャリーチェーン又はルックアップテーブル(LUT)を含む、請求項1または2に記載のシステム。
  4. 前記FPGAの上、中、又は付近に位置付けられた温度センサをさらに含み、前記FPGAは、
    前記温度センサからの温度値を受け取り、
    前記温度値に基づいて前記時間測定値を計算すること
    によって前記複数の時間測定値を生成する、請求項1から3の何れか1つに記載のシステム。
  5. 前記FPGAは複数のフェーズロックループ(PLL)クロックを含み、各々は異なる位相を有するクロック信号を生成し、前記FPGAは、前記複数のPLLクロックを使って前記サンプリングを実行する、請求項1から請求項の何れか1項に記載のシステム。
  6. 前記複数のPLLクロックは少なくとも2つのPLLクロックを含む、請求項に記載のシステム。
  7. 前記複数のPLLクロックにより生成される前記クロック信号は、π/8、π/4、π/2、又はπだけ相互に位相シフトされている、請求項又は請求項に記載のシステム。
  8. 前記FPGAは、
    デジタル信号値を前記複数のPLLクロックの各々により生成される前記クロック信号と比較し、
    前記デジタル信号値に対応する時間測定値を前記比較に基づいて計算すること
    により、前記複数の時間測定値を生成する、請求項から請求項の何れか1項に記載のシステム。
  9. 前記FPGAは前記コントローラを含む、請求項1から請求項の何れか1項に記載のシステム。
  10. 前記コントローラは前記FPGAに連結される、請求項1から請求項の何れか1項に記載のシステム。
  11. 物体までの距離を測定する方法であって、
    発光素子によって射出光パルスを発生させるステップと、
    光センサにおいて、前記物体から反射された戻り光パルスを受け取るステップと、
    前記光センサにより、前記戻り光パルスを表すアナログパルス信号を出力するステップと、
    相互に連続的に連結された複数の遅延ユニット及び前記複数の遅延ユニットのうちの対応する遅延ユニットに連結される複数のラッチを含むフィールドプログラマブルゲートアレイ(FPGA)を使って前記アナログパルス信号を複数のデジタル信号値に変換するステップと、
    前記FPGAの前記複数の遅延ユニットを使って、各デジタル信号値をサンプリングすることによって前記複数のデジタル信号値に対応する複数の時間測定値を生成するステップであって、前記複数のラッチは、前記対応する遅延ユニットがデジタル信号値を受け取ったことに応答してラッチされ、前記サンプリングの時間分解能が前記FPGAのクロック周期より短いステップと、
    前記物体までの前記距離を前記複数のデジタル信号値と前記複数の時間測定値に基づいて計算するステップと、
    を含み、
    前記複数の時間測定値を生成するステップは、前記FPGAを使って、
    前記複数の遅延ユニットに沿って連続的にデジタル信号値を送信するステップと、
    前記FPGAのクロック周期中にトリガされた前記複数のラッチの数を判断するステップと、
    前記判断された数に基づいて前記デジタル信号値に対応する時間測定値を計算すること
    によって前記複数の時間測定値を生成するステップとを含む、方法。
JP2019566942A 2017-07-20 2017-07-20 光学距離測定のためのシステム及び方法 Active JP6891375B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093688 WO2019014896A1 (en) 2017-07-20 2017-07-20 SYSTEMS AND METHODS FOR OPTICAL DISTANCE MEASUREMENT

Publications (2)

Publication Number Publication Date
JP2020523568A JP2020523568A (ja) 2020-08-06
JP6891375B2 true JP6891375B2 (ja) 2021-06-18

Family

ID=65015959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566942A Active JP6891375B2 (ja) 2017-07-20 2017-07-20 光学距離測定のためのシステム及び方法

Country Status (5)

Country Link
US (2) US10371802B2 (ja)
EP (1) EP3455645A4 (ja)
JP (1) JP6891375B2 (ja)
CN (2) CN116359934A (ja)
WO (1) WO2019014896A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10826502B1 (en) 2018-11-05 2020-11-03 Nima Badizadegan Field programmable gate array with external phase-locked loop
EP3657203A1 (de) * 2018-11-22 2020-05-27 Hexagon Technology Center GmbH Elektrooptischer entfernungsmesser und entfernungsmessverfahren
US10771069B1 (en) 2019-02-21 2020-09-08 Nima Badizadegan Field programmable gate array with internal phase-locked loop
CN112236687A (zh) * 2019-04-30 2021-01-15 深圳市大疆创新科技有限公司 一种探测电路、探测方法及测距装置、移动平台
US10837795B1 (en) * 2019-09-16 2020-11-17 Tusimple, Inc. Vehicle camera calibration system
CN111580122B (zh) * 2020-05-28 2022-12-06 睿镞科技(北京)有限责任公司 空间测量装置、方法、设备以及计算机可读存储介质
EP4006576A1 (en) * 2020-11-30 2022-06-01 Hexagon Technology Center GmbH Multichannel time-of-flight measurement device with time-to-digital converters in a programmable integrated circuit
CN112616031B (zh) * 2020-12-16 2022-11-04 天津大学合肥创新发展研究院 基于脉冲阵列图像传感器的高速目标追踪方法及***
CN112731427A (zh) * 2020-12-21 2021-04-30 奥比中光科技集团股份有限公司 一种基于tof的距离测量***、方法及电子设备
CN112904354B (zh) * 2021-01-22 2024-06-18 西安应用光学研究所 一种高精度激光测距距离模拟装置
CN113959943B (zh) * 2021-09-22 2024-03-19 武汉雷施尔光电信息工程有限公司 一种平面型光纤探针传感器的空泡份额测量***及方法
US20240069196A1 (en) * 2022-08-30 2024-02-29 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and Methods for Time of Flight Measurement Implementing Threshold-Based Sampling for Waveform Digitizing

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283116A (en) 1977-04-22 1981-08-11 Jersey Nuclear-Avco Isotopes, Inc. Beam combiner
JPS6076541A (ja) 1983-10-01 1985-05-01 Sekisui Chem Co Ltd 発泡用組成物
JPS63194211A (ja) 1987-02-09 1988-08-11 Sony Corp カメラのレンズ駆動装置
US5179565A (en) 1990-06-07 1993-01-12 Hamamatsu Photonics, K.K. Low noise pulsed light source utilizing laser diode and voltage detector device utilizing same low noise pulsed light source
JP2756737B2 (ja) 1991-06-27 1998-05-25 エルジー電子株式会社 Vcrの表題自動挿入装置
US5249046A (en) 1992-03-30 1993-09-28 Kaman Aerospace Corporation Method and apparatus for three dimensional range resolving imaging
US6101455A (en) 1998-05-14 2000-08-08 Davis; Michael S. Automatic calibration of cameras and structured light sources
US6344937B1 (en) 1999-03-03 2002-02-05 Raytheon Company Beam steering optical arrangement using Risley prisms with surface contours for aberration correction
US6246258B1 (en) 1999-06-21 2001-06-12 Xilinx, Inc. Realizing analog-to-digital converter on a digital programmable integrated circuit
US6666855B2 (en) 1999-09-14 2003-12-23 Visx, Inc. Methods and systems for laser calibration and eye tracker camera alignment
US7085400B1 (en) 2000-06-14 2006-08-01 Surgical Navigation Technologies, Inc. System and method for image based sensor calibration
US6493653B1 (en) * 2000-11-28 2002-12-10 Scientific Technologies Incorporated Tapped delay line high speed register
US6665621B2 (en) * 2000-11-28 2003-12-16 Scientific Technologies Incorporated System and method for waveform processing
JP2002199682A (ja) 2000-12-26 2002-07-12 Toshiba Corp 中空モータおよび光波距離計
US7143380B1 (en) * 2002-08-08 2006-11-28 Xilinx, Inc. Method for application of network flow techniques under constraints
AU2003295944A1 (en) 2002-11-26 2005-02-04 James F. Munro An apparatus for high accuracy distance and velocity measurement and methods thereof
EP1524494A1 (en) 2003-10-17 2005-04-20 inos Automationssoftware GmbH Method for calibrating a camera-laser-unit in respect to a calibration-object
US7102742B2 (en) 2004-01-12 2006-09-05 Gemological Institute Of America, Inc. Fluorescence measuring device for gemstones
JP2005321547A (ja) 2004-05-07 2005-11-17 Fujinon Corp 光源装置
JP2005321403A (ja) 2004-05-10 2005-11-17 Ibeo Automobile Sensor Gmbh 距離測定のための方法及び装置
FR2870428A1 (fr) 2004-05-11 2005-11-18 Gen Electric Machine a rayons x mobile
EP1600564A1 (de) 2004-05-24 2005-11-30 Leica Geosystems AG Verfahren zur Steuerung einer oberflächenverändernden Maschine
EP1612511B1 (en) 2004-07-01 2015-05-20 Softkinetic Sensors Nv TOF rangefinding with large dynamic range and enhanced background radiation suppression
DE102005017624A1 (de) 2005-04-15 2006-10-19 Robert Bosch Gmbh Verfahren zum Bestimmen der Rad- und/oder Achsgeometrie von Kraftfahrzeugen
US7336407B1 (en) 2005-07-28 2008-02-26 Lockheed Martin Corporation Scanner/pointer apparatus having super-hemispherical coverage
US7843448B2 (en) 2005-11-21 2010-11-30 Leica Geosystems Ag Identification of occluded edge regions from 3D point data
US9173661B2 (en) * 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US7944548B2 (en) * 2006-03-07 2011-05-17 Leica Geosystems Ag Increasing measurement rate in time of flight measurement apparatuses
US7236299B1 (en) 2006-04-11 2007-06-26 Bae Systems Information And Electronic Systems Integration Inc. Compact periscopic beam director
US8490489B2 (en) * 2006-11-10 2013-07-23 Siemens Medical Solutions Usa, Inc. Transducer array imaging system
CN101216562A (zh) 2007-01-05 2008-07-09 薛志强 激光测距***
CN101256232A (zh) 2007-02-28 2008-09-03 电装波动株式会社 用于目标三维探测的激光雷达装置
CN101034120A (zh) * 2007-03-09 2007-09-12 中国科学院上海光学精密机械研究所 脉冲形状的测量装置及测量方法
CN100478812C (zh) * 2007-11-29 2009-04-15 中国人民解放军国防科学技术大学 精确触发信号产生方法及产生电路
US8224097B2 (en) 2008-06-12 2012-07-17 Sri International Building segmentation for densely built urban regions using aerial LIDAR data
WO2009155924A1 (en) 2008-06-27 2009-12-30 Danmarks Tekniske Universitet Rotating prism scanning device and method for scanning
NO332432B1 (no) 2008-08-12 2012-09-17 Kongsberg Seatex As System for deteksjon og avbildning av objekter i banen for marine fartoy
CA2753197C (en) 2009-02-20 2018-09-11 Digital Signal Corporation System and method for generating three dimensional images using lidar and video measurements
US20120170024A1 (en) 2009-09-22 2012-07-05 Medhat Azzazy Long Range Acquisition and Tracking SWIR Sensor System Comprising Micro-Lamellar Spectrometer
US20110285981A1 (en) 2010-05-18 2011-11-24 Irvine Sensors Corporation Sensor Element and System Comprising Wide Field-of-View 3-D Imaging LIDAR
US20120170029A1 (en) 2009-09-22 2012-07-05 ISC8 Inc. LIDAR System Comprising Large Area Micro-Channel Plate Focal Plane Array
US8488877B1 (en) 2009-12-02 2013-07-16 Hrl Laboratories, Llc System for object recognition in colorized point clouds
WO2011070927A1 (ja) 2009-12-11 2011-06-16 株式会社トプコン 点群データ処理装置、点群データ処理方法、および点群データ処理プログラム
CA2781237C (en) * 2009-12-22 2016-02-23 Leica Geosystems Ag Highly accurate distance measurement device
US8620089B1 (en) 2009-12-22 2013-12-31 Hrl Laboratories, Llc Strip histogram grid for efficient segmentation of 3D point clouds from urban environments
US8396293B1 (en) 2009-12-22 2013-03-12 Hrl Laboratories, Llc Recognizing geometrically salient objects from segmented point clouds using strip grid histograms
US20130107243A1 (en) 2010-05-03 2013-05-02 Irvine Sensors Corporation Fast, High Resolution 3-D Flash LADAR Imager
US9396545B2 (en) 2010-06-10 2016-07-19 Autodesk, Inc. Segmentation of ground-based laser scanning points from urban environment
WO2012010839A1 (en) 2010-07-22 2012-01-26 Renishaw Plc Laser scanning apparatus and method of use
US8324775B2 (en) 2010-08-05 2012-12-04 Hiwin Mikrosystem Corp. Brush DC motor with reduction mechanism
CA2714763A1 (en) * 2010-09-20 2012-03-20 Cfs Concrete Forming Systems Inc. Systems and methods for providing a concrete-reinforced bore
US20120121166A1 (en) 2010-11-12 2012-05-17 Texas Instruments Incorporated Method and apparatus for three dimensional parallel object segmentation
US9731410B2 (en) 2010-12-02 2017-08-15 Makita Corporation Power tool
JP5787699B2 (ja) 2010-12-06 2015-09-30 株式会社アルファラボ・ソリューション 像ぶれ補正ユニット、像ぶれ補正装置及び光学装置
US9470548B2 (en) 2011-01-31 2016-10-18 Agency For Defense Development Device, system and method for calibration of camera and laser sensor
CN103403577B (zh) 2011-03-02 2015-02-11 丰田自动车株式会社 激光雷达装置
JP2014102072A (ja) * 2011-03-08 2014-06-05 National Univ Corp Shizuoka Univ 距離測定用の信号処理回路および距離測定装置
US8581168B2 (en) 2011-03-29 2013-11-12 Flir Systems, Inc. Dual well read-out integrated circuit (ROIC)
US8605998B2 (en) 2011-05-06 2013-12-10 Toyota Motor Engineering & Manufacturing North America, Inc. Real-time 3D point cloud obstacle discriminator apparatus and associated methodology for training a classifier via bootstrapping
CN102882527B (zh) * 2011-07-11 2015-04-22 山东欧龙电子科技有限公司 时间数字转换器及时间数字转换方法
CN202182717U (zh) 2011-08-30 2012-04-04 公安部第三研究所 一种基于tdc技术的激光测距装置
KR101740259B1 (ko) 2011-10-07 2017-05-29 한국전자통신연구원 3차원 포인트 클라우드의 공간 분할 방법
CN102508255A (zh) 2011-11-03 2012-06-20 广东好帮手电子科技股份有限公司 车载四线激光雷达***及其电路、方法
US8766682B2 (en) 2012-01-24 2014-07-01 Voxtel, Inc. Method and device for measuring duration of a time interval
US20150010902A1 (en) * 2012-02-08 2015-01-08 Hitachi, Ltd. Apparatus and Method for Monitoring Airborne Microorganisms in the Atmosphere
US8798372B1 (en) 2012-03-07 2014-08-05 Hrl Laboratories, Llc Method for detecting bridges using lidar point cloud data
CN102623883B (zh) * 2012-03-29 2013-09-25 中国科学院光电技术研究所 基于脉冲激光散射光同步的距离选通同步控制装置
WO2013152344A1 (en) 2012-04-06 2013-10-10 Implant Sciences Corporation Selective ionization using high frequency filtering of reactive ions
EP2856240A4 (en) 2012-04-26 2016-03-02 Neptec Design Group Ltd LIDAR HEAD FOR HIGH-SPEED 360 DEGREE SCAN
JP5963353B2 (ja) 2012-08-09 2016-08-03 株式会社トプコン 光学データ処理装置、光学データ処理システム、光学データ処理方法、および光学データ処理用プログラム
US9453907B2 (en) 2012-08-15 2016-09-27 Digital Signal Corporation System and method for field calibrating video and lidar subsystems using facial features
US20140071121A1 (en) 2012-09-11 2014-03-13 Digital Signal Corporation System and Method for Off Angle Three-Dimensional Face Standardization for Robust Performance
CN202801645U (zh) 2012-09-20 2013-03-20 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的装置
CN102843139B (zh) 2012-09-20 2015-10-28 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的方法及装置
US9383753B1 (en) 2012-09-26 2016-07-05 Google Inc. Wide-view LIDAR with areas of special attention
CN102944224B (zh) 2012-11-09 2014-08-27 大连理工大学 一种无人驾驶车的自动环境感知***的工作方法
US20140132723A1 (en) 2012-11-13 2014-05-15 Osmose Utilities Services, Inc. Methods for calibrating a digital photographic image of utility structures
CN103257342B (zh) 2013-01-11 2014-11-05 大连理工大学 三维激光传感器与二维激光传感器的联合标定方法
JP2014145744A (ja) 2013-01-30 2014-08-14 Ricoh Co Ltd 物体検出装置
US8773182B1 (en) * 2013-02-01 2014-07-08 Intel Corporation Stochastic beating time-to-digital converter (TDC)
US9128190B1 (en) 2013-03-06 2015-09-08 Google Inc. Light steering device with an array of oscillating reflective slats
JP6181388B2 (ja) 2013-03-08 2017-08-16 株式会社トプコン 計測装置
CN103257348B (zh) * 2013-05-17 2015-05-20 南京航空航天大学 一种飞行器相对高度和相对姿态的测量***及其测量方法
US9430822B2 (en) 2013-06-14 2016-08-30 Microsoft Technology Licensing, Llc Mobile imaging platform calibration
US8825260B1 (en) 2013-07-23 2014-09-02 Google Inc. Object and ground segmentation from a sparse one-dimensional range data
CN103499819B (zh) 2013-09-22 2015-06-24 中国科学院光电技术研究所 一种目标视线角偏移量及距离的测量装置和方法
US20150109024A1 (en) * 2013-10-22 2015-04-23 Vaughn Timothy Betz Field Programmable Gate-Array with Embedded Network-on-Chip Hardware and Design Flow
CN203645633U (zh) 2013-12-31 2014-06-11 青岛歌尔声学科技有限公司 红外信号放大电路
US10061111B2 (en) 2014-01-17 2018-08-28 The Trustees Of Columbia University In The City Of New York Systems and methods for three dimensional imaging
JP6278721B2 (ja) 2014-01-31 2018-02-14 鎌倉光機株式会社 像安定化装置
US9633483B1 (en) 2014-03-27 2017-04-25 Hrl Laboratories, Llc System for filtering, segmenting and recognizing objects in unconstrained environments
JP2015200555A (ja) 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 距離測定装置
GB201407270D0 (en) 2014-04-24 2014-06-11 Cathx Res Ltd 3D data in underwater surveys
US9098753B1 (en) 2014-04-25 2015-08-04 Google Inc. Methods and systems for object detection using multiple sensors
JP6249881B2 (ja) * 2014-05-22 2017-12-20 オリンパス株式会社 固体撮像装置および撮像装置
CN103983963B (zh) 2014-06-09 2016-08-17 北京数字绿土科技有限公司 一种多站地基激光雷达数据的自动配准方法
CN106030431B (zh) 2014-08-15 2017-11-03 深圳市大疆创新科技有限公司 传感器的自动标定***及方法
CN104155640B (zh) * 2014-08-15 2016-08-17 中国科学院上海技术物理研究所 一种具备采样点时间定位的激光雷达回波全波形采集器
JP6442193B2 (ja) 2014-08-26 2018-12-19 株式会社トプコン 点群位置データ処理装置、点群位置データ処理システム、点群位置データ処理方法およびプログラム
JP2016057108A (ja) 2014-09-08 2016-04-21 株式会社トプコン 演算装置、演算システム、演算方法およびプログラム
US20160080138A1 (en) * 2014-09-17 2016-03-17 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for timing synchronization in a distributed timing system
WO2016045009A1 (zh) 2014-09-24 2016-03-31 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN104363021B (zh) * 2014-10-08 2017-07-14 南京大学 基于fpga精细延迟单元的时间数字转换方法及装置
GB2532948B (en) 2014-12-02 2021-04-14 Vivo Mobile Communication Co Ltd Object Recognition in a 3D scene
CN104463872B (zh) 2014-12-10 2018-01-12 武汉大学 基于车载LiDAR点云数据的分类方法
CN104600902A (zh) 2015-01-09 2015-05-06 广东韦达尔科技有限公司 一种空心电机
JP6076541B2 (ja) 2015-01-21 2017-02-08 三菱電機株式会社 レーザレーダ装置
WO2016127357A1 (zh) 2015-02-12 2016-08-18 中国科学技术大学 一种基于fpga的时间数字变换器
DE102015103472B4 (de) * 2015-03-10 2021-07-15 Sick Ag Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
WO2016164280A1 (en) 2015-04-04 2016-10-13 Skylift Global Multi-rotor vehicle with yaw control and autorotation
GB2537681B (en) 2015-04-24 2018-04-25 Univ Oxford Innovation Ltd A method of detecting objects within a 3D environment
KR101665938B1 (ko) 2015-04-28 2016-10-13 전자부품연구원 미러 회전 방식의 다채널 라이더 스캐너 광학계
CN106063089B (zh) 2015-04-29 2018-06-12 深圳市大疆灵眸科技有限公司 电机、动力装置及使用该动力装置的无人飞行器
EP3098626B1 (de) 2015-05-29 2021-05-19 Hexagon Technology Center GmbH Zeitmessschaltung und optoelektronischer distanzmesser mit einer ebensolchen zeitmessschaltung
US9588517B2 (en) * 2015-07-14 2017-03-07 Delphi Technologies, Inc. Automated vehicle control take-over alert timing based on infotainment activation
CN107850445B (zh) 2015-08-03 2021-08-27 通腾全球信息公司 用于生成及使用定位参考数据的方法及***
US9760996B2 (en) 2015-08-11 2017-09-12 Nokia Technologies Oy Non-rigid registration for large-scale space-time 3D point cloud alignment
US11131756B2 (en) * 2015-09-29 2021-09-28 Qualcomm Incorporated LIDAR system with reflected signal strength measurement
EP3411660A4 (en) * 2015-11-30 2019-11-27 Luminar Technologies, Inc. LIDAR SYSTEM WITH DISTRIBUTED LASER AND MULTIPLE SENSOR HEADS AND PULSED LASER FOR LIDAR SYSTEM
US9644857B1 (en) 2015-12-01 2017-05-09 Nasser Ashgriz Virtual thermostat for a zonal temperature control
US10242455B2 (en) 2015-12-18 2019-03-26 Iris Automation, Inc. Systems and methods for generating a 3D world model using velocity data of a vehicle
CN105759253B (zh) 2016-03-02 2018-01-12 四川经曼光电科技有限公司 激光扫描测距仪
CN105628026B (zh) 2016-03-04 2018-09-14 深圳大学 一种移动物体的定位定姿方法和***
CN105759279B (zh) * 2016-04-20 2018-06-01 深圳市速腾聚创科技有限公司 一种基于波形时域匹配的激光测距***及方法
WO2017213767A2 (en) 2016-04-29 2017-12-14 United Parcel Service Of America, Inc. Unmanned aerial vehicle pick-up and delivery systems
CN106019923B (zh) * 2016-05-18 2018-11-13 中国科学技术大学 一种基于fpga的时间数字变换器
CN106093963B (zh) 2016-05-31 2018-08-24 中铁第四勘察设计院集团有限公司 一种提高铁路车载激光雷达扫描数据精度的方法
CN106019296A (zh) 2016-07-26 2016-10-12 北醒(北京)光子科技有限公司 一种混合固态多线光学扫描测距装置
CN106093958A (zh) 2016-08-24 2016-11-09 武汉万集信息技术有限公司 基于双apd的激光测距方法及装置
CN106597414B (zh) 2016-10-18 2020-01-10 浙江大学 一种定标偏振激光雷达增益比的方法
CN106597416B (zh) 2016-11-18 2019-04-09 长安大学 一种地面GPS辅助的LiDAR数据高程差的误差修正方法
CN106814595B (zh) * 2017-02-08 2022-03-18 中国科学院精密测量科学与技术创新研究院 基于等效细分的高精度tdc及其等效测量方法
CN107037721B (zh) 2017-06-16 2019-06-21 中国科学技术大学 一种自修正型时间数字转换器

Also Published As

Publication number Publication date
WO2019014896A1 (en) 2019-01-24
EP3455645A1 (en) 2019-03-20
EP3455645A4 (en) 2019-04-24
US11982768B2 (en) 2024-05-14
CN116359934A (zh) 2023-06-30
CN110809722B (zh) 2023-05-26
US10371802B2 (en) 2019-08-06
JP2020523568A (ja) 2020-08-06
CN110809722A (zh) 2020-02-18
US20190025413A1 (en) 2019-01-24
US20190302241A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6891375B2 (ja) 光学距離測定のためのシステム及び方法
US10641875B2 (en) Delay time calibration of optical distance measurement devices, and associated systems and methods
JP2024010030A (ja) Lidarデータ収集及び制御
KR101357120B1 (ko) 광 신호를 이용한 거리 측정 방법 및 장치
CN108781116B (zh) 一种功率调整方法及激光测量装置
US10816646B2 (en) Distance measurement instrument
JP6911249B2 (ja) 光検出及び測距方法、並びに光検出及び測距システム
Palojarvi et al. Pulsed time-of-flight laser radar module with millimeter-level accuracy using full custom receiver and TDC ASICs
WO2016121531A1 (ja) 距離測定装置
US20210333375A1 (en) Time measurement correction method and device
EP3447522A1 (en) Distance measuring apparatus, signal discriminator, and moving object
KR102076478B1 (ko) 이동성 거울을 이용한 광 송수신기, 3차원 거리 측정 장치, 및 이동체
WO2020142948A1 (zh) 一种激光雷达设备、专用集成电路及测距装置
CN111527419A (zh) 一种采样电路、采用方法及测距装置、移动平台
KR20190032938A (ko) 거리 측정 장치, 시간 디지털 변환기, 및 이동체
CN115917269A (zh) 开环光电二极管增益调节
US20220244385A1 (en) Lidar device and method of operating the same
Wang et al. LiDAR ranging system based on automatic gain control and timing discriminators
WO2024045227A1 (en) Systems and methods for time of flight measurement implementing threshold-based sampling for waveform digitizing
KR102018158B1 (ko) 거리 측정 장치, 광 송수신기, 및 이동체
Moon et al. Error Correction Technique of Distance Measurement for ToF LIDAR Sensor
CA3231656A1 (en) Field-selectable dynamic gain control modes of optical sensors
CN117805782A (zh) 激光雷达的飞行时间测量方法及装置
Chen et al. Constant fraction discriminator for fast high-precision pulsed TOF laser rangefinder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6891375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150