JP6866055B2 - Water treatment equipment and water treatment method - Google Patents

Water treatment equipment and water treatment method Download PDF

Info

Publication number
JP6866055B2
JP6866055B2 JP2020533158A JP2020533158A JP6866055B2 JP 6866055 B2 JP6866055 B2 JP 6866055B2 JP 2020533158 A JP2020533158 A JP 2020533158A JP 2020533158 A JP2020533158 A JP 2020533158A JP 6866055 B2 JP6866055 B2 JP 6866055B2
Authority
JP
Japan
Prior art keywords
water
treated
load value
water treatment
time point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533158A
Other languages
Japanese (ja)
Other versions
JPWO2020170364A1 (en
Inventor
弘二 橋爪
弘二 橋爪
航 吉田
航 吉田
英二 今村
英二 今村
野田 清治
清治 野田
古川 誠司
誠司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020170364A1 publication Critical patent/JPWO2020170364A1/en
Application granted granted Critical
Publication of JP6866055B2 publication Critical patent/JP6866055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本願は、水処理装置および水処理方法に関するものである。 The present application relates to a water treatment apparatus and a water treatment method.

都市下水および有機性廃水、窒素含有廃水を処理する一般的な方法として、活性汚泥法がある。活性汚泥法とは、浄化機能をもつ微生物群(活性汚泥)を生物反応槽に蓄え、これと廃水とを混合および接触させつつ曝気することにより、廃水中の汚濁物を酸化および分解する方法である。この汚濁物を十分に浄化するためには、適切な量の空気を生物反応槽に供給する必要がある。 The activated sludge method is a general method for treating urban sewage, organic wastewater, and nitrogen-containing wastewater. The activated sludge method is a method of oxidizing and decomposing pollutants in wastewater by storing a group of microorganisms (activated sludge) with a purification function in a biological reaction tank and aerating them while mixing and contacting them with wastewater. is there. In order to sufficiently purify this pollutant, it is necessary to supply an appropriate amount of air to the biological reaction tank.

また、上記のように活性汚泥法により処理された二次処理水、および、上水処理における凝集沈殿後、または、急速濾過後の水の消毒、殺菌、消臭等のために、オゾンガスを被処理水に供給することで、水中の有機物およびウイルスなどの汚濁物を酸化分解する処理が行われる。ここでも、汚濁物を十分に浄化するために、適切な量のオゾンガスを被処理水に供給する必要がある。 In addition, ozone gas is applied to the secondary treated water treated by the activated sludge method as described above, and for disinfection, sterilization, deodorization, etc. of water after coagulation and precipitation in clean water treatment or after rapid filtration. By supplying the treated water, a treatment for oxidatively decomposing organic substances in the water and pollutants such as viruses is performed. Again, it is necessary to supply an appropriate amount of ozone gas to the water to be treated in order to sufficiently purify the pollutants.

さらに、リン含有廃水を処理する方法として、凝集沈殿法がある。これは、凝集剤を被処理水のリン酸と反応させることにより金属塩またはカルシウム塩としてリンを沈殿させ、水中からリンを浄化処理する方法である。凝集剤の供給量は被処理水に含まれるリン濃度に応じて変化することから、適切な量の凝集剤を被処理水に供給する必要がある。 Further, as a method for treating phosphorus-containing wastewater, there is a coagulation sedimentation method. This is a method of purifying phosphorus from water by precipitating phosphorus as a metal salt or calcium salt by reacting a flocculant with phosphoric acid in the water to be treated. Since the supply amount of the coagulant changes according to the phosphorus concentration contained in the water to be treated, it is necessary to supply an appropriate amount of the coagulant to the water to be treated.

上記に示した水処理方法の全てに共通する点は、被処理水が流入する水処理槽に対して空気、オゾンガス、凝集剤などの処理剤を供給することで被処理水を浄化する点であり、負荷値の変動に対して処理剤の供給量を即座に制御する必要がある。例えば、特許文献1には、活性汚泥を活用した水処理システムにおいて、原水の有機物濃度と窒素濃度から好気槽の硝化率の設定値を求め、好気槽中のアンモニア性窒素濃度および硝酸性窒素濃度から好気槽中の硝化率の算出値と前記硝化率の設定値を比較し、曝気制御を行う方法が提案されている。 The point common to all the water treatment methods shown above is that the water to be treated is purified by supplying a treatment agent such as air, ozone gas, and a flocculant to the water treatment tank into which the water to be treated flows. Therefore, it is necessary to immediately control the supply amount of the treatment agent in response to fluctuations in the load value. For example, in Patent Document 1, in a water treatment system utilizing activated sludge, the set value of the nitrification rate of the aerobic tank is obtained from the organic substance concentration and the nitrogen concentration of the raw water, and the ammoniacal nitrogen concentration and the nitrate in the aerobic tank are obtained. A method of controlling aeration by comparing the calculated value of the nitrification rate in the aerobic tank with the set value of the nitrification rate from the nitrogen concentration has been proposed.

また、例えば、特許文献2には、オゾンによる水処理設備において、オゾン発生体とオゾン溶解器を共通のオゾン曝気槽に組み込み、発生する全てのオゾンを処理対象水に溶解させオゾン処理を行うことで、オゾン発生体の建設コストと運転コストを低減する方法が提案されている。 Further, for example, in Patent Document 2, in a water treatment facility using ozone, an ozone generator and an ozone solubilizer are incorporated into a common ozone aeration tank, and all the generated ozone is dissolved in the water to be treated to perform ozone treatment. Therefore, a method for reducing the construction cost and the operating cost of the ozone generator has been proposed.

また、例えば、特許文献3には、水処理システムにおいて、被処理水の流量およびリン成分濃度と、流出水のリン成分濃度に基づいて生物処理槽の散気量と凝集剤注入量を制御する方法が提案されている。 Further, for example, in Patent Document 3, in a water treatment system, the amount of air diffused and the amount of coagulant injected in the biological treatment tank are controlled based on the flow rate and phosphorus component concentration of the water to be treated and the phosphorus component concentration of the effluent. A method has been proposed.

特開2014−184396号公報Japanese Unexamined Patent Publication No. 2014-184396 特開2011−5406号公報Japanese Unexamined Patent Publication No. 2011-5406 特開2010−269276号公報Japanese Unexamined Patent Publication No. 2010-269276

例えば、特許文献1では、流入水の有機物濃度と窒素濃度の現在値に基づいて散気制御を行っている。しかし、散気により活性汚泥が浄化機能を高めるには時間を要するため、流入水質の現在値に基づいた制御では、高負荷時には散気量不足による水質悪化を招く虞がある。また、低負荷時には必要な散気量が減少するにも関わらず、負荷値の減少に対して散気量の制御が追い付かず、過剰な散気によるエネルギーロスを招く虞がある。 For example, in Patent Document 1, air diffusion is controlled based on the current values of the organic matter concentration and the nitrogen concentration of the inflow water. However, since it takes time for activated sludge to enhance its purification function due to air dispersal, control based on the current value of inflow water quality may cause deterioration of water quality due to insufficient air dispersal amount when the load is high. Further, when the load is low, the required amount of air dissipated decreases, but the control of the amount of air dissipated cannot catch up with the decrease in the load value, which may lead to energy loss due to excessive air dispersal.

また、特許文献2では、負荷値の現在の変動に応答してオゾン発生器の出力を変化させることになるため、高負荷時にはオゾンガスの供給量不足による流出水質の悪化、低負荷時にはオゾンガスの過剰供給によるエネルギーロスを招く虞がある。 Further, in Patent Document 2, since the output of the ozone generator is changed in response to the current fluctuation of the load value, the outflow water quality deteriorates due to the insufficient supply of ozone gas at the time of high load, and the ozone gas becomes excessive at the time of low load. There is a risk of energy loss due to supply.

また、特許文献3では、特許文献1と同様に流入水の流量とリン成分濃度の現在の変動に応答して凝集剤を供給しているため、負荷値増加時には凝集剤供給不足による水質悪化、低負荷時には凝集剤の過剰供給によるコスト増加を招く虞がある。 Further, in Patent Document 3, as in Patent Document 1, since the coagulant is supplied in response to the current fluctuations in the flow rate of the inflow water and the phosphorus component concentration, the water quality deteriorates due to insufficient supply of the coagulant when the load value increases. When the load is low, there is a risk of cost increase due to excessive supply of coagulant.

このように、いずれの従来技術においても、負荷値の現在の変動に応答して処理剤を供給する制御では、負荷値の変動を検知した後で処理剤の供給量を増減させることになるため、高負荷時には処理剤の供給量不足による流出水質の悪化、低負荷時には処理剤の過剰供給によるコスト増加を招く虞があるという問題点があった。 As described above, in any of the prior arts, in the control of supplying the treatment agent in response to the current fluctuation of the load value, the supply amount of the treatment agent is increased or decreased after the fluctuation of the load value is detected. When the load is high, the quality of the effluent may deteriorate due to the insufficient supply of the treatment agent, and when the load is low, the cost may increase due to the excessive supply of the treatment agent.

本願は、上記のような課題を解決するための技術を開示するものであり、被処理水が水処理された処理水の水質の変動抑制および運転コストの低減を達成できる水処理装置および水処理方法を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and is a water treatment apparatus and water treatment capable of suppressing fluctuations in the quality of treated water in which the water to be treated is treated and reducing operating costs. The purpose is to provide a method.

本願に開示される水処理装置は、
水処理槽に流入する被処理水に処理剤を供給して水処理を行う水処理装置において、
第一時点において前記水処理槽に流入する前記被処理水の負荷値を第一負荷値として測定する負荷測定部と、
前記負荷測定部が測定した前記第一負荷値に基づいて、前記第一時点の後の第二時点における前記水処理槽に流入する前記被処理水の負荷値を第二負荷値として予測する予測部と、
前記第二負荷値が前記第一負荷値よりも増加している場合は、前記第二負荷値に対応した前記処理剤の供給量を算出し、前記第二負荷値が前記第一負荷値よりも減少している場合は、前記第一負荷値に対応した前記処理剤の供給量を算出し、当該算出した供給量の前記処理剤を前記第一時点と前記第二時点との間の第三時点に前記水処理槽内の前記被処理水に供給する供給部とを備えるものである。
また、本願に開示される水処理方法は、
被処理水に処理剤を供給して水処理を行う水処理方法において、
第一時点における前記被処理水の負荷値を第一負荷値として測定する第一工程と、
前記第一工程にて測定した前記第一負荷値に基づいて、前記第一時点の後の第二時点における前記被処理水の負荷値を第二負荷値として予測する第二工程と、
前記第二負荷値が前記第一負荷値よりも増加している場合は、前記第二負荷値に対応した前記処理剤の供給量を算出し、前記第二負荷値が前記第一負荷値よりも減少している場合は、前記第一負荷値に対応した前記処理剤の供給量を算出し、当該算出した供給量の前記処理剤を前記第一時点と前記第二時点との間の第三時点に前記被処理水に供給する第三工程とを備えるものである。
The water treatment device disclosed in the present application is
In a water treatment device that performs water treatment by supplying a treatment agent to the water to be treated that flows into the water treatment tank.
A load measuring unit that measures the load value of the water to be treated flowing into the water treatment tank as the first load value at the first time point,
Based on the first load value measured by the load measuring unit, the load value of the water to be treated flowing into the water treatment tank at the second time point after the first time point is predicted as the second load value. Department and
When the second load value is larger than the first load value, the supply amount of the treatment agent corresponding to the second load value is calculated, and the second load value is higher than the first load value. If the amount is also decreasing, the supply amount of the treatment agent corresponding to the first load value is calculated, and the treatment agent of the calculated supply amount is used as the second time between the first time point and the second time point. It is provided with a supply unit for supplying the water to be treated in the water treatment tank at three time points.
In addition, the water treatment method disclosed in the present application is
In a water treatment method in which a treatment agent is supplied to water to be treated to perform water treatment.
The first step of measuring the load value of the water to be treated as the first load value at the first time point,
Based on the first load value measured in the first step, the second step of predicting the load value of the water to be treated at the second time point after the first time point as the second load value, and
When the second load value is larger than the first load value, the supply amount of the treatment agent corresponding to the second load value is calculated, and the second load value is higher than the first load value. If the amount is also decreasing, the supply amount of the treatment agent corresponding to the first load value is calculated, and the treatment agent of the calculated supply amount is used as the second time between the first time point and the second time point. It is provided with a third step of supplying the water to be treated at three time points.

本願に開示される水処理装置および水処理方法によれば、
被処理水が水処理された処理水の水質の変動抑制および運転コストの低減を達成できる。
According to the water treatment apparatus and water treatment method disclosed in the present application.
It is possible to suppress fluctuations in the quality of treated water in which the water to be treated is treated and reduce operating costs.

実施の形態1による水処理装置の構成を示す図である。It is a figure which shows the structure of the water treatment apparatus by Embodiment 1. FIG. 図1に示した水処理装置における水処理方法を示したフローチャートである。It is a flowchart which showed the water treatment method in the water treatment apparatus shown in FIG. 実施の形態1による水処理装置および比較例における負荷値および散気量の経時変化を示した図である。It is a figure which showed the time-dependent change of the load value and the amount of air dispersal in the water treatment apparatus and comparative example by Embodiment 1. FIG. 実施の形態1による水処理装置における処理水のアンモニア態窒素濃度の経時変化を示した図である。It is a figure which showed the time-dependent change of the ammonia nitrogen concentration of the treated water in the water treatment apparatus by Embodiment 1. FIG. 実施の形態1による水処理装置および比較例における負荷値および散気量の経時変化を示した図である。It is a figure which showed the time-dependent change of the load value and the amount of air dispersal in the water treatment apparatus and comparative example by Embodiment 1. FIG. 実施の形態1による水処理装置における処理水のアンモニア態窒素濃度の経時変化を示した図である。It is a figure which showed the time-dependent change of the ammonia nitrogen concentration of the treated water in the water treatment apparatus by Embodiment 1. FIG. 実施の形態2による水処理装置の構成を示す図である。It is a figure which shows the structure of the water treatment apparatus by Embodiment 2. 実施の形態3による水処理装置の構成を示す図である。It is a figure which shows the structure of the water treatment apparatus by Embodiment 3. FIG. 実施の形態4による水処理装置の構成を示す図である。It is a figure which shows the structure of the water treatment apparatus according to Embodiment 4.

本願は、都市下水、有機性廃水、窒素含有廃水、下水二次処理水、リン含有廃水など、被処理水中に含まれる汚濁物を浄化処理して水処理を行う水処理装置および水処理方法に関するものある。 The present application relates to a water treatment apparatus and a water treatment method for purifying and treating pollutants contained in the water to be treated, such as urban sewage, organic wastewater, nitrogen-containing wastewater, secondary sewage treated water, and phosphorus-containing wastewater. There is something.

実施の形態1.
図1は実施の形態1による水処理装置の構成を示す図である。図において、水処理装置は、水処理槽1と、供給部としての第一算出部91、第一供給部41および第一散気部31、第二算出部92、第二供給部42および第二散気部32、第三算出部93、第三供給部43および第三散気部33と、負荷測定部5、記録部6、予測部7および沈殿槽2とを備える。尚、第一算出部91、第一供給部41および第一散気部31にて1つの供給部が形成される。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a water treatment apparatus according to the first embodiment. In the figure, the water treatment apparatus includes a water treatment tank 1, a first calculation unit 91, a first supply unit 41 and a first air diffuser unit 31, a second calculation unit 92, a second supply unit 42, and a second supply unit. (2) The air diffuser 32, the third calculation unit 93, the third supply unit 43 and the third air diffuser 33, and the load measurement unit 5, the recording unit 6, the prediction unit 7, and the settling tank 2 are provided. One supply unit is formed by the first calculation unit 91, the first supply unit 41, and the first air diffuser unit 31.

また、第二算出部92、第二供給部42および第二散気部32にて1つの供給部が形成される。また、第三算出部93、第三供給部43および第三散気部33にて1つの供給部が形成される。本実施の形態では3つの供給部を備える例を示したが、水処理槽1の大きさおよび被処理水の処理量などに応じて、1つの供給部を備える場合、2つの供給部を備える場合、さらに、4つ以上の供給部を備える場合も考えられる。尚、供給部の数については、以下の実施の形態においても同様であるため、その説明は適宜省略する。 Further, one supply unit is formed by the second calculation unit 92, the second supply unit 42, and the second air diffuser unit 32. Further, one supply unit is formed by the third calculation unit 93, the third supply unit 43, and the third air diffuser unit 33. In the present embodiment, an example including three supply units has been shown, but when one supply unit is provided depending on the size of the water treatment tank 1 and the amount of water to be treated, two supply units are provided. In some cases, it may be further provided with four or more supply units. Since the number of supply units is the same in the following embodiments, the description thereof will be omitted as appropriate.

水処理槽1は、外部から配管101を介して被処理水が流入される。水処理槽1は、活性汚泥を蓄え、被処理水を活性汚泥による生物反応によって浄化処理する。また、水処理槽1にて処理された被処理水(以下、水処理槽1にて処理された被処理水は“処理水”と称す)は配管102を介して沈殿槽2に排出される。沈殿槽2は、配管102を介して水処理槽1から排出された処理水に含まれる活性汚泥を沈殿させる。沈殿槽2では、沈殿処理した後の上澄水が配管103を介して排出される。また、沈殿槽2では、沈殿処理によって分離した活性汚泥が、配管104を介して水処理槽1へ返送される。但し、沈殿槽2では、余剰分の活性汚泥は配管105を介して外部に排出される。 Water to be treated flows into the water treatment tank 1 from the outside through the pipe 101. The water treatment tank 1 stores activated sludge and purifies the water to be treated by a biological reaction with the activated sludge. Further, the water to be treated in the water treatment tank 1 (hereinafter, the water to be treated in the water treatment tank 1 is referred to as "treated water") is discharged to the settling tank 2 via the pipe 102. .. The settling tank 2 precipitates activated sludge contained in the treated water discharged from the water treatment tank 1 via the pipe 102. In the settling tank 2, the supernatant water after the settling treatment is discharged through the pipe 103. Further, in the settling tank 2, the activated sludge separated by the settling treatment is returned to the water treatment tank 1 via the pipe 104. However, in the settling tank 2, the surplus activated sludge is discharged to the outside through the pipe 105.

各散気部31〜33は、水処理槽1内で被処理水が流下する方向に並んで設置される。各散気部31〜33は、各供給部41〜43から各配管411、421、431を介して送られた気体状態の処理剤を水処理槽1内に供給する。 The air diffusers 31 to 33 are installed side by side in the water treatment tank 1 in the direction in which the water to be treated flows down. The air diffusers 31 to 33 supply the treatment agent in a gaseous state sent from the supply units 41 to 43 via the pipes 411, 421, and 431 into the water treatment tank 1.

負荷測定部5は、配管101に取り付けられ、水処理槽1に流入する被処理水の負荷値を測定する。記録部6は負荷測定部5にて測定された負荷値を信号線51を介して入力し、時刻とともに記録する。予測部7は記録部6に記録されている過去の負荷値および当該負荷値の時刻を信号線61を介して入力し、さらに、負荷測定部5にて測定された第一時点としての現在の被処理水の第一負荷値および時刻を負荷測定部5から信号線52を介して入力する。そして、予測部7は現在(第一時点)より後の第二時点における水処理槽1に流入する被処理水の負荷値を第二負荷値として予測する。 The load measuring unit 5 is attached to the pipe 101 and measures the load value of the water to be treated that flows into the water treatment tank 1. The recording unit 6 inputs the load value measured by the load measuring unit 5 via the signal line 51 and records it together with the time. The prediction unit 7 inputs the past load value recorded in the recording unit 6 and the time of the load value via the signal line 61, and further, the current load value measured by the load measurement unit 5 as the first time point. The first load value and time of the water to be treated are input from the load measuring unit 5 via the signal line 52. Then, the prediction unit 7 predicts the load value of the water to be treated flowing into the water treatment tank 1 at the second time point after the present (first time point) as the second load value.

各算出部91〜93は、予測部7が予測した被処理水の第二負荷値を信号線71から入力し、当該第二負荷値に対応した処理剤の供給量を算出する。尚、本実施の形態1では、処理剤として空気を用いるため、供給量を散気量として示す場合もある。そして、各算出部91〜93は、各供給部41〜43に第一時点と第二時点との間の第三時点において、被処理水の第二負荷値に対応して算出した処理剤の供給量を各散気部31〜33に供給させる。 Each of the calculation units 91 to 93 inputs the second load value of the water to be treated predicted by the prediction unit 7 from the signal line 71, and calculates the supply amount of the treatment agent corresponding to the second load value. In the first embodiment, since air is used as the treatment agent, the supply amount may be indicated as the air dispersal amount. Then, each of the calculation units 91 to 93 tells each of the supply units 41 to 43 that the treatment agent is calculated according to the second load value of the water to be treated at the third time point between the first time point and the second time point. The supply amount is supplied to each of the air diffusers 31 to 33.

この際、各算出部91〜93で算出された処理剤の供給量は各信号線911、921、931を介して各供給部41〜43に送られる。また、各供給部41〜43から供給された処理剤は各散気部31〜33に供給され、処理剤は水処理槽1内に供給される。よって本実施の形態1の水処理装置では、水処理槽1内において、配管101を介して流入する被処理水を、活性汚泥および各供給部41〜43から供給される処理剤の空気が各散気部31〜33から散気され、混合および攪拌し、水中の汚濁物質を生物学的に酸化分解することで浄化処理する。 At this time, the supply amount of the processing agent calculated by the calculation units 91 to 93 is sent to the supply units 41 to 43 via the signal lines 911, 921, and 931. Further, the treatment agent supplied from each supply unit 41 to 43 is supplied to each air diffuser unit 31 to 33, and the treatment agent is supplied into the water treatment tank 1. Therefore, in the water treatment apparatus of the first embodiment, the activated sludge and the air of the treatment agent supplied from the respective supply units 41 to 43 are used for the water to be treated flowing through the pipe 101 in the water treatment tank 1. Air is diffused from the air diffuser parts 31 to 33, mixed and stirred, and the pollutant in water is biologically oxidatively decomposed to purify it.

次に、各箇所の具体例および詳細について説明する。まず、負荷測定部5の具体例について説明する。負荷測定部5は、水処理槽1に流入する被処理水の負荷値を測定するものであり、具体的には、被処理水の流量計、汚濁物濃度計(アンモニア態窒素濃度計、全窒素濃度計、BOD(Biochemical oxygen demand)計、COD(Chemical oxygen demand)計など)の少なくとも1つ以上の計測機器を備える。負荷測定部5は、連続的、または、所定時間の間隔の間欠的に当該負荷値を測定する。そして、全ての負荷値は、負荷値を測定した時刻と関連付けられる。 Next, specific examples and details of each part will be described. First, a specific example of the load measuring unit 5 will be described. The load measuring unit 5 measures the load value of the water to be treated flowing into the water treatment tank 1, and specifically, a flow meter of the water to be treated and a pollutant concentration meter (ammonia nitrogen concentration meter, all). It is equipped with at least one or more measuring instruments such as a nitrogen concentration meter, a BOD (Biochemical oxygen demand) meter, and a COD (Chemical oxygen demand) meter). The load measuring unit 5 measures the load value continuously or intermittently at predetermined time intervals. Then, all the load values are associated with the time when the load values are measured.

負荷測定部5として、先に示した、流量計および汚濁物濃度計のどちらも備える場合もある。その場合、水処理槽1に流入する被処理水の流量と汚濁物濃度との積を負荷値として算出してもよい。そして、負荷測定部5は水処理槽1に実質的に流入する被処理水の負荷値として測定する。また、流量計の代替として、流入渠の堰の開度を流量に換えて利用してもよい。さらに、季節等の温度に対する影響を考慮するために、流量計および汚濁物濃度計に加えて、水温計を備えてもよい。尚、ここでは、水温計を備えない場合にて説明する。 The load measuring unit 5 may include both the flow meter and the pollutant concentration meter shown above. In that case, the product of the flow rate of the water to be treated flowing into the water treatment tank 1 and the concentration of pollutants may be calculated as the load value. Then, the load measuring unit 5 measures the load value of the water to be treated that substantially flows into the water treatment tank 1. Further, as an alternative to the flow meter, the opening degree of the weir of the inflow culvert may be used in place of the flow rate. Further, in order to consider the influence on the temperature such as the season, a water temperature gauge may be provided in addition to the flow meter and the pollutant concentration gauge. Here, the case where the water temperature gauge is not provided will be described.

また図1では、負荷測定部5は配管101に接続する例を示したが、負荷測定部5を水処理槽1内の上流側に設置してもよい。これにより、配管104から返送される活性汚泥の影響を含めた負荷値を考慮することが可能である。さらに、配管101を通過して実際に水処理槽1に流入するまでのタイムラグの影響を取り除くことができるため、より精密な制御を行うことができる。尚、このことは以下の実施の形態でも同様であるためその説明は適宜省略する。 Further, although FIG. 1 shows an example in which the load measuring unit 5 is connected to the pipe 101, the load measuring unit 5 may be installed on the upstream side in the water treatment tank 1. Thereby, it is possible to consider the load value including the influence of the activated sludge returned from the pipe 104. Further, since the influence of the time lag until the water passes through the pipe 101 and actually flows into the water treatment tank 1 can be removed, more precise control can be performed. Since this also applies to the following embodiments, the description thereof will be omitted as appropriate.

次に、予測部7の具体例について説明する。予測部7は過去の負荷値と、負荷測定部5にて測定された現在(第一時点)の第一負荷値とに基づいて、所定時間後(第二時点)の被処理水の第二負荷値を予測する。予測部7が予測する所定時間後(第二時点)は、水処理装置に流入する被処理水の負荷変動パターンに応じて最適値は異なる。一般に、晴天時における都市下水などでは、負荷値は周期的な変動を行うことが知られている。よって、負荷値の周期を超えない範囲で上記所定時間を設定することが望ましく、おおむね30分から6時間先を予測する。この予測により、負荷値の変動を見越した水処理装置の運転が可能となる。 Next, a specific example of the prediction unit 7 will be described. The prediction unit 7 is based on the past load value and the current (first time point) first load value measured by the load measurement unit 5, and the second of the water to be treated after a predetermined time (second time point). Predict the load value. After a predetermined time (second time point) predicted by the prediction unit 7, the optimum value differs depending on the load fluctuation pattern of the water to be treated flowing into the water treatment apparatus. In general, it is known that the load value fluctuates periodically in urban sewage in fine weather. Therefore, it is desirable to set the predetermined time within a range that does not exceed the cycle of the load value, and it is predicted to be about 30 minutes to 6 hours ahead. This prediction makes it possible to operate the water treatment device in anticipation of fluctuations in the load value.

予測部7の第二時点の被処理水の第二負荷値の予測は、蓄積された過去の負荷値のデータを基にして第一時点の現在の被処理水の第一負荷値から、第一時点より後の第二時点としての所定時間先の被処理水の第二負荷値を予測する。具体的な予測する手法としては、ニューラルネットワーク、ディープラーニング、強化学習、機械学習、局所近似法などが用いられる。学習用のデータとして記録部6に記録された過去の負荷値のデータを使用するが、負荷値のデータ以外の水質データまたは外部から取得可能なデータと関連付けて負荷値を予測してもよい。 The second load value of the water to be treated at the second time point of the prediction unit 7 is predicted from the first load value of the current water to be treated at the first time point based on the accumulated past load value data. Predict the second load value of the water to be treated at a predetermined time ahead as the second time point after the first time point. As specific prediction methods, neural networks, deep learning, reinforcement learning, machine learning, local approximation methods, and the like are used. The past load value data recorded in the recording unit 6 is used as the learning data, but the load value may be predicted in association with water quality data other than the load value data or data that can be acquired from the outside.

例えば、活性汚泥法による水処理では、負荷値の増減に伴って水処理槽1に供給する散気量も増減させることが一般的である。よって、過去の負荷値のデータと過去の散気量の経時データとを関連付けて学習することで、負荷値の変動パターンの中でも、散気量の大幅な増減が必要となる負荷値の変動を精度よく予測できる。また、過去の負荷値のデータを雨雲レーダまたは降雨量の経時データと関連付けて学習させることで、降雨による被処理水の流入量または被処理水の水質の変動を精度よく予測できる。 For example, in water treatment by the activated sludge method, it is common to increase or decrease the amount of air diffused to be supplied to the water treatment tank 1 as the load value increases or decreases. Therefore, by learning by associating the past load value data with the historical data of the past divergence amount, even among the load value fluctuation patterns, the load value fluctuation that requires a large increase or decrease in the divergence amount can be detected. It can be predicted accurately. In addition, by learning the past load value data in association with the rain cloud radar or the time-dependent data of the rainfall amount, it is possible to accurately predict the inflow amount of the treated water or the fluctuation of the water quality of the treated water due to the rainfall.

次に、各算出部91〜93の具体例について説明する。各算出部91〜93は負荷測定部5で測定された第一時点としての現在の被処理水の第一負荷値、または予測部7で予測された第一時点より後の第二時点としての所定時間先の被処理水の第二負荷値を用いて、各散気部31〜33から第一時点と第二時点との間の第三時点において供給する処理剤の散気量を計算する演算式が組み込まれている。 Next, specific examples of each calculation unit 91 to 93 will be described. Each of the calculation units 91 to 93 serves as the current first load value of the water to be treated as the first time point measured by the load measurement unit 5, or as the second time point after the first time point predicted by the prediction unit 7. Using the second load value of the water to be treated at a predetermined time ahead, the amount of air diffused by the treatment agent supplied from each air diffuser 31 to 33 at the third time point between the first time point and the second time point is calculated. Calculation formulas are built in.

具体的には、各算出部91〜93は、それぞれに接続されている各散気部31〜33に予め定められた係数を保持しており、下記の(A)、(B)の和を算出する。
(A)負荷測定部5で測定された水処理槽1に流入する被処理水の負荷値に、各散気部31〜33に予め定められた係数を乗じた供給量
(B)定数
尚、前記係数は、水処理槽1に流入する負荷値の変動に対して素早く散気量を追従させるために最適な散気量を、上記演算において得ることができるように予め設定された値であり、各散気部31〜33の位置あるいは個数によって値を設定できる。
Specifically, each of the calculation units 91 to 93 holds a predetermined coefficient in each of the air diffuser units 31 to 33 connected to each of them, and the sum of the following (A) and (B) is added. calculate.
(A) Supply amount (B) constant obtained by multiplying the load value of the water to be treated flowing into the water treatment tank 1 measured by the load measuring unit 5 by a predetermined coefficient for each air diffuser 31 to 33. The coefficient is a value preset so that the optimum amount of air diffused can be obtained in the above calculation in order to quickly follow the amount of air diffused with respect to the fluctuation of the load value flowing into the water treatment tank 1. , The value can be set according to the position or the number of each air diffuser 31 to 33.

例えば、負荷測定部5に流量計および汚濁物濃度計としてアンモニア態窒素濃度計を備えている場合、第一算出部91では、第一散気部31から供給される散気量の設定値G1[Nm/hr]を以下に示す式(1)により算出する。
G1=k11・SIN,N・QIN+k13・・・(1)
SIN,N;水処理槽1へ流入する被処理水のアンモニア態窒素濃度[mg/L]
QIN;水処理槽1へ流入する被処理水の流量[m/hr]
k11,k13;定数
For example, when the load measuring unit 5 is provided with a flow meter and an ammonia nitrogen concentration meter as a pollutant concentration meter, the first calculation unit 91 sets a value G1 of the amount of air diffused supplied from the first air diffuser 31. [Nm 3 / hr] is calculated by the following formula (1).
G1 = k11 ・ SIN, N ・ QIN + k13 ... (1)
SIN, N; Ammonia nitrogen concentration [mg / L] of the water to be treated flowing into the water treatment tank 1.
QIN; Flow rate of water to be treated flowing into the water treatment tank 1 [m 3 / hr]
k11, k13; constant

上記に示した場合と同様に、各算出部92、93では、各散気部32、33から供給される散気量の設定値G2、G3[Nm/hr]を以下に示す式(2)、(3)によりそれぞれ算出する。
G2=k21・SIN,N・QIN+k23・・・(2)
k21、k23;定数
G3=k31・SIN,N・QIN+k33・・・(3)
k31、k33;定数
Similar to the case shown above, in the calculation units 92 and 93, the set values G2 and G3 [Nm 3 / hr] of the amount of air diffused supplied from the air diffuser units 32 and 33 are expressed by the following equation (2). ) And (3), respectively.
G2 = k21 ・ SIN, N ・ QIN + k23 ... (2)
k21, k23; constant G3 = k31 · SIN, N · QIN + k33 ... (3)
k31, k33; constant

上記に示した式(1)〜(3)において、各散気部31〜33に対応して予め定める係数k11、k21、k31は、前述したように、水処理槽1に流入する負荷値の変動に対して素早く散気量を追従させるために最適な散気量を、上記演算において得ることができるように予め設定された値である。但し、係数k11、k21、k31は、全て等しい値とは限らず、各散気部31〜33の位置に応じて異なる値を設定してもよい。また、係数k11、k21、k31は一度設定した後も、季節変動および目標とする処理水の水質の変化などに応じて適宜最適な値を設定し直すことができる。 In the formulas (1) to (3) shown above, the coefficients k11, k21, and k31 predetermined for each of the air diffusers 31 to 33 are the load values flowing into the water treatment tank 1 as described above. It is a preset value so that the optimum amount of divergence can be obtained in the above calculation in order to quickly follow the amount of divergence with respect to the fluctuation. However, the coefficients k11, k21, and k31 are not necessarily the same values, and different values may be set depending on the positions of the air diffusers 31 to 33. Further, even after the coefficients k11, k21, and k31 are set once, the optimum values can be appropriately set again according to seasonal fluctuations, changes in the target treated water quality, and the like.

このように、各算出部91〜93では、各算出部91〜93に組み込まれた散気量の演算式と、予測部7で予測された第二時点の被処理水の第二負荷値を基に、第一時点と第二時点との間の第三時点にて各散気部31〜33から供給する散気量を算出する。各算出部91〜93に組み込まれた散気量の演算式は現在(第一時点)の第一負荷値を“SIN,N、QIN”と表記する。これに対して、最適な散気量を演算するための演算式であるが、各算出部91〜93では、上記演算式に現在の被処理水の第一負荷値“SIN,N、QIN”ではなく、第二時点の被処理水の第二負荷値“S’IN,N、Q’IN”を入力して、被処理水の第二負荷値に対応する散気量を算出する。 In this way, in each of the calculation units 91 to 93, the calculation formula of the amount of air diffused incorporated in each of the calculation units 91 to 93 and the second load value of the water to be treated at the second time point predicted by the prediction unit 7 are obtained. Based on this, the amount of air diffused to be supplied from each air diffuser 31 to 33 at the third time point between the first time point and the second time point is calculated. In the calculation formula of the amount of air diffused incorporated in each of the calculation units 91 to 93, the current (first time point) first load value is expressed as "SIN, N, QIN". On the other hand, although it is a calculation formula for calculating the optimum amount of air dissipation, in each calculation unit 91 to 93, the current first load value "SIN, N, QIN" of the water to be treated is added to the above calculation formula. Instead, the second load value "S'IN, N, Q'IN" of the water to be treated at the second time point is input, and the amount of air diffused corresponding to the second load value of the water to be treated is calculated.

具体的に、上記に示した式(1)〜(3)を基に説明する。上記に示した式(1)〜(3)に被処理水の現在の第一負荷値“SIN,N、QIN”を入力することで、現在の第一負荷値に対して最適な散気量が算出される。しかし、各算出部91〜93では、被処理水の第二時点の予測の被処理水の第二負荷値“S’IN,N、Q’IN”を入力して、各散気部31〜33のそれぞれの目標(第三時点における)の散気量を算出する。 Specifically, it will be described based on the equations (1) to (3) shown above. By inputting the current initial load values "SIN, N, QIN" of the water to be treated into the equations (1) to (3) shown above, the optimum amount of air dissipation for the current first load value. Is calculated. However, in each of the calculation units 91 to 93, the second load value "S'IN, N, Q'IN" of the water to be treated predicted at the second time point of the water to be treated is input, and each air diffuser 31 to 31 Calculate the amount of air dispersal for each of the 33 targets (at the third time point).

上記のようにして算出された第三時点の散気量の設定値G1〜G3はそれぞれ信号線911〜931を介して各供給部41〜43に伝えられる。各供給部41〜43では、それぞれ配管411〜431および各散気部31〜33を介して、それぞれに設定された散気量の空気を水処理槽1内に供給する。 The set values G1 to G3 of the amount of air diffused at the third time point calculated as described above are transmitted to the respective supply units 41 to 43 via the signal lines 911 to 931, respectively. In each of the supply units 41 to 43, the air of the air diffused amount set in each is supplied into the water treatment tank 1 through the pipes 411 to 431 and the air diffuser units 31 to 33, respectively.

上記に示したように、負荷測定部5で現在の被処理水の第一負荷値が測定された後、予測部7での所定時間先の被処理水の第二負荷値、各算出部91〜93での第三時点での処理剤の供給量を算出、各供給部41〜43での散気量を制御、配管411〜431内の空気の移動を経て、各散気部31〜33から目標の散気量が水処理槽1に供給される。この時、負荷測定部5で現在の被処理水の第一負荷値が測定された後に、各算出部91〜93で算出された第三時点の散気量が各散気部31〜33から実際に供給されるまでには、被処理水の第二負荷値の演算時間、第三時点の散気量の演算時間、各散気部31〜33の制御時間、空気の配管内の移動時間などを含めたタイムラグが生じる。よって、このタイムラグが予測部7における被処理水の第二負荷値の予測の所定時間先よりも短くなるよう、前記所定時間を設定する必要がある。これにより、負荷値が実際に予測値に到達する前に、前もって散気量を制御できる。 As shown above, after the load measurement unit 5 measures the current first load value of the water to be treated, the prediction unit 7 determines the second load value of the water to be treated at a predetermined time ahead, and each calculation unit 91. Calculate the supply amount of the treatment agent at the third time point in ~ 93, control the amount of air dispersal in each supply unit 41 to 43, move the air in the pipes 411 to 431, and then each air dispersal unit 31 to 33. The target amount of air diffused is supplied to the water treatment tank 1. At this time, after the current first load value of the water to be treated is measured by the load measuring unit 5, the amount of air diffused at the third time point calculated by each calculation unit 91 to 93 is calculated from each air diffuser 31 to 33. Before it is actually supplied, the calculation time of the second load value of the water to be treated, the calculation time of the amount of air diffused at the third time point, the control time of each air diffuser 31 to 33, and the movement time in the air pipe. There will be a time lag including such things. Therefore, it is necessary to set the predetermined time so that this time lag is shorter than the predetermined time ahead of the prediction of the second load value of the water to be treated by the prediction unit 7. This makes it possible to control the amount of air dissipation in advance before the load value actually reaches the predicted value.

次に上記のように構成された実施の形態1の水処理装置の水処理方法について図2を交えて説明する。まず、配管101を介して、被処理水が水処理槽1に流入される。その際、負荷測定部5では被処理水の現在(第一時点)の第一負荷値が測定される(図2のステップST1)。また、当該第一負荷値は、測定した時刻とともに記録部6に記録される(図2のステップST5)。次に、予測部7は、負荷測定部5が測定した第一負荷値および、記録部6に記録されている過去の負荷値などを用いて、現在(第一時点)より後の第二時点の被処理水の第二負荷値を予測する(図2のステップST2)。次に、各算出部91〜93は、被処理水の第二負荷値に基づいた、処理剤の供給量を算出する(図2のステップST3)。次に、各算出部91〜93は、第一時点と第二時点との間の第三時点において、先に算出した処理剤の供給量を各供給部41〜43および各散気部31〜33を介して水処理槽1に供給する(図2のステップST4)。 Next, the water treatment method of the water treatment apparatus of the first embodiment configured as described above will be described with reference to FIG. First, the water to be treated flows into the water treatment tank 1 through the pipe 101. At that time, the load measuring unit 5 measures the current (first time point) first load value of the water to be treated (step ST1 in FIG. 2). Further, the first load value is recorded in the recording unit 6 together with the measured time (step ST5 in FIG. 2). Next, the prediction unit 7 uses the first load value measured by the load measurement unit 5 and the past load value recorded in the recording unit 6, and the second time point after the present (first time point). The second load value of the water to be treated is predicted (step ST2 in FIG. 2). Next, each of the calculation units 91 to 93 calculates the supply amount of the treatment agent based on the second load value of the water to be treated (step ST3 in FIG. 2). Next, each calculation unit 91-93 sets the previously calculated supply amount of the treatment agent at the third time point between the first time point and the second time point to each supply unit 41 to 43 and each air diffuser unit 31 to 31. It is supplied to the water treatment tank 1 via 33 (step ST4 in FIG. 2).

次に、上記のように行った実施の形態1の水処理方法の効果について、図3から図6を用いて説明する。図3および図4は現在から所定時間先に被処理水の第二負荷値が現在の被処理水の第一負荷値より増加することを予測した場合について示す。図5および図6は現在から所定時間先に被処理水の第二負荷値が現在の被処理水の第一負荷値より減少することを予測した場合について示す。図3および図5は散気量、および負荷値の経時変化を示す図である。図4および図6は流出した処理水、すなわち、水処理槽1にて水処理を行った後の処理水のアンモニア態窒素濃度の経時変化を示す図である。 Next, the effect of the water treatment method of the first embodiment as described above will be described with reference to FIGS. 3 to 6. 3 and 4 show a case where it is predicted that the second load value of the water to be treated will increase from the current first load value of the water to be treated in a predetermined time from the present. 5 and 6 show a case where it is predicted that the second load value of the water to be treated will be smaller than the current first load value of the water to be treated in a predetermined time from the present. 3 and 5 are diagrams showing changes in the amount of air diffused and the load value over time. 4 and 6 are diagrams showing the time course of the effluent treated water, that is, the ammonia nitrogen concentration of the treated water after the water treatment in the water treatment tank 1.

図3から図6において、T1は現在であり、第一時点とする。T2は第一時点T1より所定時間後の第二時点T2とする。また、T3は、第一時点T1と第二時点T2との間の第三時点とする。図3において、F1は負荷値の実際の値を示すグラフである。F2は予測の負荷値の値を示すグラフである。D1は負荷値F1に基づいた散気量を示すグラフである。D2は負荷値F2に基づいた散気量を示すグラフである。図4において、N1は散気量D1にて処理した場合の、水処理槽1にて水処理され水処理槽1から排出される処理水のアンモニア態窒素濃度(以下、“処理水のアンモニア態窒素濃度”と称す)を示すグラフである。N2は散気量D2にて処理した場合の処理水のアンモニア態窒素濃度を示すグラフである。 In FIGS. 3 to 6, T1 is the present and is the first time point. T2 is the second time point T2 after a predetermined time from the first time point T1. Further, T3 is a third time point between the first time point T1 and the second time point T2. In FIG. 3, F1 is a graph showing the actual value of the load value. F2 is a graph showing the value of the predicted load value. D1 is a graph showing the amount of air diffused based on the load value F1. D2 is a graph showing the amount of air diffused based on the load value F2. In FIG. 4, N1 is treated with the amount of air diffused D1 and is treated with water in the water treatment tank 1 and discharged from the water treatment tank 1 in an ammonia nitrogen concentration (hereinafter, “ammonia state of the treated water”). It is a graph which shows (referred to as a nitrogen concentration "). N2 is a graph showing the ammonia nitrogen concentration of the treated water when treated with the amount of air diffused D2.

図5において、F3は負荷値の実際の値を示すグラフである。F4は予測の負荷値の値を示すグラフである。D3は負荷値F3に基づいた散気量を示すグラフである。D4は負荷値F4に基づいた散気量を示すグラフである。図6において、N3は散気量D3にて処理した場合の処理水のアンモニア態窒素濃度を示すグラフである。N4は散気量D4にて処理した場合の処理水のアンモニア態窒素濃度を示すグラフである。 In FIG. 5, F3 is a graph showing the actual value of the load value. F4 is a graph showing the value of the predicted load value. D3 is a graph showing the amount of air diffused based on the load value F3. D4 is a graph showing the amount of air diffused based on the load value F4. In FIG. 6, N3 is a graph showing the ammonia nitrogen concentration of the treated water when treated with the amount of air diffused D3. N4 is a graph showing the ammonia nitrogen concentration of the treated water when treated with the amount of air diffused D4.

まず、比較例として、図3に示すように、現在の負荷値F1“SIN,N、QIN”を散気量の演算に使用した場合、負荷値F1の増加と同じタイミングT0で散気量D1が増加する。しかし、散気により活性汚泥が浄化機能を高めるには時間を要することから、特に負荷値F1が急激に増加する場合には、散気量D1の増加による活性汚泥の浄化機能の向上が追い付かず、処理水のアンモニア態窒素濃度N1が図4に示すように管理上限値であるSOUT,contを超える可能性がある。 First, as a comparative example, as shown in FIG. 3, when the current load value F1 “SIN, N, QIN” is used in the calculation of the air dispersal amount, the air dispersal amount D1 at the same timing T0 as the increase in the load value F1. Will increase. However, since it takes time for the activated sludge to enhance its purification function due to air diffusion, the improvement of the activated sludge purification function due to the increase in the amount of air diffused D1 cannot catch up, especially when the load value F1 increases sharply. As shown in FIG. 4, the ammonia nitrogen concentration N1 of the treated water may exceed the control upper limit values SOUT and cont.

これに対し、本願においては、現在、第一時点T1の第一負荷値から所定時間先の第二時点T2の被処理水の第二負荷値が現在より増加することを予測した場合、上式(1)〜(3)に予測の被処理水の第二負荷値“S’IN,N、Q’IN”を入力する。そして、負荷値F2の増加が予測された段階で、上記式(1)〜(3)中の負荷値には被処理水のアンモニア態窒素濃度と流量の現在値よりも大きな値が入力されるため、実際に負荷値が増加する前、第三時点T3から散気量D2が増加できる。よって、負荷値の増加を見越して予め散気量が増加され、活性汚泥の浄化機能を十分に高めた状態で高負荷の被処理水が水処理槽1に流入する。これにより、図4に示すように、負荷値の増加による処理水のアンモニア態窒素濃度N2の増加を最低限に抑えることができ、負荷値が急激に増加した場合であっても、処理水のアンモニア態窒素濃度N2をSOUT,cont以下に抑えることが可能となる。 On the other hand, in the present application, when it is predicted that the second load value of the water to be treated at the second time point T2, which is a predetermined time ahead, will increase from the first load value of the first time point T1 from the present, the above equation Enter the predicted second load value "S'IN, N, Q'IN" of the water to be treated in (1) to (3). Then, when an increase in the load value F2 is predicted, a value larger than the current values of the ammonia nitrogen concentration and the flow rate of the water to be treated is input to the load values in the above equations (1) to (3). Therefore, the amount of air diffused D2 can be increased from the third time point T3 before the load value actually increases. Therefore, the amount of air diffused is increased in advance in anticipation of an increase in the load value, and the water to be treated with a high load flows into the water treatment tank 1 in a state where the purification function of activated sludge is sufficiently enhanced. As a result, as shown in FIG. 4, the increase in the ammonia nitrogen concentration N2 of the treated water due to the increase in the load value can be suppressed to the minimum, and even when the load value suddenly increases, the treated water can be suppressed. It is possible to suppress the ammonia nitrogen concentration N2 to SOUT, cont or less.

また、比較例として、図5に示すように、現在の負荷値“SIN,N、QIN”を散気量の演算に使用した場合、負荷値F3の減少と同じタイミングT0で散気量D3が減少される。しかし、特に負荷値F3が急激に減少する場合には負荷値F3の減少に対して散気量D3の制御が遅れ、過剰な散気量D3を供給する可能性がある。 Further, as a comparative example, as shown in FIG. 5, when the current load value “SIN, N, QIN” is used in the calculation of the air dispersal amount, the air dispersal amount D3 becomes the same timing T0 as the decrease of the load value F3. Will be reduced. However, especially when the load value F3 suddenly decreases, the control of the air diffuser amount D3 is delayed with respect to the decrease in the load value F3, and there is a possibility that an excessive air diffuser amount D3 is supplied.

これに対し、本願においては、現在、第一時点T1の第一負荷値から所定時間先の第二時点T2の被処理水の第二負荷値が現在より減少することを予測した場合、上記に示した式(1)〜(3)に予測の被処理水の第二負荷値“S’IN,N、Q’IN”を入力する。そして、負荷値F4の減少が予測された段階で、上式(1)〜(3)中の負荷値には被処理水のアンモニア態窒素濃度と流量の現在値よりも小さな値が入力されるため、実際に負荷値が減少する前、第三時点T3から散気量D4が減少できる。よって、負荷値の減少を見越して予め散気量を減少するため、一時的に処理水のアンモニア態窒素濃度N4は増加するが、その後は負荷値の減少した被処理水が実際に水処理槽1に流入されるため、処理水のアンモニア態窒素濃度N4は管理上限値であるSOUT,contを超えることなく、処理水の水質を良好に保った状態で過剰な散気、図5において散気量D3と散気量D4との差を示す斜線にて示した散気量分Mが抑制できる。 On the other hand, in the present application, when it is predicted that the second load value of the water to be treated at the second time point T2, which is a predetermined time ahead, is smaller than the current first load value of the first time point T1, the above Enter the predicted second load value "S'IN, N, Q'IN" of the water to be treated in the shown equations (1) to (3). Then, at the stage where the decrease of the load value F4 is predicted, a value smaller than the current value of the ammonia nitrogen concentration and the flow rate of the water to be treated is input to the load value in the above equations (1) to (3). Therefore, the amount of air diffused D4 can be reduced from the third time point T3 before the load value is actually reduced. Therefore, in anticipation of a decrease in the load value, the amount of air diffused is reduced in advance, so that the ammonia nitrogen concentration N4 of the treated water temporarily increases, but after that, the water to be treated with the reduced load value actually becomes the water treatment tank. Since it flows into 1, the ammonia nitrogen concentration N4 of the treated water does not exceed the control upper limit values SOUT and cont, and the treated water is excessively diffused while maintaining good water quality. The amount of air diffused M indicated by the diagonal line indicating the difference between the amount D3 and the amount of air diffused D4 can be suppressed.

以上のように、水処理槽1に流入する被処理水の負荷値を予測し、予測の負荷値に基づいて水処理槽1内に供給する空気量を設定するので、負荷値が増加する際には予め散気量を増加させることで処理水の水質の悪化を抑制できる。また、負荷値が減少する際には予め散気量を減少させることで処理水の水質が管理上限値を超えない範囲で過剰な散気量を抑制できる。 As described above, the load value of the water to be treated flowing into the water treatment tank 1 is predicted, and the amount of air supplied into the water treatment tank 1 is set based on the predicted load value. Therefore, when the load value increases. By increasing the amount of air diffused in advance, deterioration of the quality of treated water can be suppressed. Further, when the load value is reduced, the amount of air diffused can be suppressed in advance so that the excessive amount of air diffused can be suppressed within the range where the water quality of the treated water does not exceed the control upper limit value.

他の対応として、上記に示した場合より流出する処理水の水質を可能な限り良好に保ちたい場合には、上記に示した方法では、予測する負荷値が減少する際に、事前に散気量を減少させることで一時的に処理水の水質が悪化する。よってこれを防止するために、予測の負荷値が増加時の場合のみに、予測の負荷値“S’IN,N、Q’IN”を入力し、予測の負荷値が減少時の場合には現在の負荷値“SIN,N、QIN”を入力して制御を行う。 As another measure, if you want to keep the quality of the treated water flowing out as good as possible than the case shown above, the method shown above will disperse in advance when the predicted load value decreases. By reducing the amount, the quality of treated water temporarily deteriorates. Therefore, in order to prevent this, the predicted load value "S'IN, N, Q'IN" is input only when the predicted load value increases, and when the predicted load value decreases. Control is performed by inputting the current load value "SIN, N, QIN".

また、他の対応として、上記に示した場合より可能な限り散気量を抑制して運転コストを最小化したい場合、予測する負荷値が増加する場合には、上記に示したように、負荷値増加時に事前に散気量を増加させるため運転コストが増加する。よって、予測する負荷値が減少時のみ予測の負荷値“S’IN,N、Q’IN”を入力し、予測の負荷値が増加時には現在の負荷値“SIN,N、QIN”を入力して、制御を行い、運転コストを低減できる。 In addition, as another measure, when it is desired to suppress the amount of air dissipation as much as possible to minimize the operating cost, or when the predicted load value increases, the load is as shown above. When the value increases, the amount of air diffused is increased in advance, so the operating cost increases. Therefore, the predicted load value "S'IN, N, Q'IN" is input only when the predicted load value decreases, and the current load value "SIN, N, QIN" is input when the predicted load value increases. Therefore, control can be performed and operating costs can be reduced.

上記のように構成された実施の形態1の水処理装置によれば、
水処理槽に流入する被処理水に処理剤を供給して水処理を行う水処理装置において、
第一時点において前記水処理槽に流入する前記被処理水の負荷値を第一負荷値として測定する負荷測定部と、
前記負荷測定部が測定した前記第一負荷値に基づいて、前記第一時点の後の第二時点における前記水処理槽に流入する前記被処理水の負荷値を第二負荷値として予測する予測部と、
前記予測部が予測した前記第二負荷値に対応した前記処理剤の供給量を前記第一時点と前記第二時点との間の第三時点に前記水処理槽内の前記被処理水に供給する供給部とを備え、
また、
被処理水に処理剤を供給して水処理を行う水処理方法において、
第一時点における前記被処理水の負荷値を第一負荷値として測定する第一工程と、
前記第一工程にて測定した前記第一負荷値に基づいて、前記第一時点の後の第二時点における前記被処理水の負荷値を第二負荷値として予測する第二工程と、
前記第二工程にて予測した前記第二負荷値に対応した前記処理剤の供給量を前記第一時点と前記第二時点との間の第三時点に前記被処理水に供給する第三工程とを備えるので、
第二負荷値に対応する処理剤の供給量を第三時点にて供給するため、被処理水が水処理された処理水の水質の変動抑制および運転コストの低減ができる。
According to the water treatment apparatus of the first embodiment configured as described above,
In a water treatment device that performs water treatment by supplying a treatment agent to the water to be treated that flows into the water treatment tank.
A load measuring unit that measures the load value of the water to be treated flowing into the water treatment tank as the first load value at the first time point,
Based on the first load value measured by the load measuring unit, the load value of the water to be treated flowing into the water treatment tank at the second time point after the first time point is predicted as the second load value. Department and
The supply amount of the treatment agent corresponding to the second load value predicted by the prediction unit is supplied to the water to be treated in the water treatment tank at a third time point between the first time point and the second time point. Equipped with a supply unit
Also,
In a water treatment method in which a treatment agent is supplied to water to be treated to perform water treatment.
The first step of measuring the load value of the water to be treated as the first load value at the first time point,
Based on the first load value measured in the first step, the second step of predicting the load value of the water to be treated at the second time point after the first time point as the second load value, and
A third step of supplying the amount of the treatment agent corresponding to the second load value predicted in the second step to the water to be treated at a third time point between the first time point and the second time point. Because it has
Since the supply amount of the treatment agent corresponding to the second load value is supplied at the third time point, it is possible to suppress fluctuations in the quality of the treated water in which the water to be treated is treated and reduce the operating cost.

また、前記供給部は、前記予測部が予測した前記第二時点における前記第二負荷値が前記第一時点における前記第一負荷値よりも大きいと判断すると、前記第一時点の前記第一負荷値に対応する前記処理剤の供給量よりも多い前記処理剤の供給量を前記第三時点に供給するので、
被処理水が水処理された処理水の水質の変動を確実に抑制できる。
Further, when the supply unit determines that the second load value at the second time point predicted by the prediction unit is larger than the first load value at the first time point, the first load value at the first time point is determined. Since the supply amount of the treatment agent, which is larger than the supply amount of the treatment agent corresponding to the value, is supplied to the third time point,
Fluctuations in the quality of treated water in which the water to be treated has been treated can be reliably suppressed.

また、前記供給部は、前記予測部が予測した前記第二時点における前記第二負荷値が前記第一時点における前記第一負荷値よりも小さいと判断すると、前記第一時点の前記第一負荷値に対応する前記処理剤の供給量よりも少ない前記処理剤の供給量を前記第三時点に供給するので、
被処理水が水処理された処理水の水質の変動抑制および運転コストの低減ができる。
Further, when the supply unit determines that the second load value at the second time point predicted by the prediction unit is smaller than the first load value at the first time point, the first load value at the first time point is determined. Since the supply amount of the treatment agent, which is smaller than the supply amount of the treatment agent corresponding to the value, is supplied to the third time point,
It is possible to suppress fluctuations in the quality of treated water in which the water to be treated has been treated and reduce operating costs.

また、前記水処理槽に活性汚泥が蓄えられている場合、
前記供給部は、前記処理剤として空気を前記水処理槽に供給するので、
被処理水の空気と活性汚泥とによる水処理における運転コストを確実に低減できる。
In addition, when activated sludge is stored in the water treatment tank,
Since the supply unit supplies air as the treatment agent to the water treatment tank,
The operating cost in water treatment with air of the water to be treated and activated sludge can be surely reduced.

また、前記負荷測定部は、前記負荷値を前記水処理槽に流入される前記被処理水の流量にて測定するか、または、前記負荷値を前記水処理槽に流入される前記被処理水の汚濁物濃度にて測定するか、または、前記負荷値を前記水処理槽に流入される前記被処理水の流量と前記水処理槽に流入される前記被処理水の汚濁物濃度との積にて測定するので、
水処理されたる被処理水の負荷値を確実に測定できるため、処理水の水質の変動抑制および運転コストの低減ができる。
Further, the load measuring unit measures the load value by the flow rate of the water to be treated flowing into the water treatment tank, or measures the load value by the flow rate of the water to be treated flowing into the water treatment tank. The load value is the product of the flow rate of the water to be treated flowing into the water treatment tank and the pollutant concentration of the water to be treated flowing into the water treatment tank. Because it is measured at
Since the load value of the water to be treated can be reliably measured, fluctuations in the quality of the treated water can be suppressed and operating costs can be reduced.

実施の形態2.
図7は実施の形態2における水処理装置の構成を示す図である。図において、上記実施の形態1と同様の部分は同一符号を付して説明を省略する。水処理槽1から排出される処理水を配管102から取得し、当該処理水の汚濁物濃度を測定する濃度測定部8を備える。
Embodiment 2.
FIG. 7 is a diagram showing a configuration of a water treatment device according to a second embodiment. In the figure, the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. A concentration measuring unit 8 is provided which obtains the treated water discharged from the water treatment tank 1 from the pipe 102 and measures the pollutant concentration of the treated water.

濃度測定部8とは、水処理において水質管理対象としている汚濁物濃度計にて形成される。具体的には、例えば、アンモニア態窒素濃度計、全窒素濃度計、BOD計、COD計などがある。さらに、季節等の温度に対する影響を考慮するために、汚濁物濃度計に加えて、水温計を備えてもよい。尚、ここでは、水温計を備えない場合にて説明する。 The concentration measuring unit 8 is formed by a pollutant concentration meter which is a water quality control target in water treatment. Specifically, for example, there are an ammonia nitrogen concentration meter, a total nitrogen concentration meter, a BOD meter, a COD meter, and the like. Further, in order to consider the influence on the temperature such as the season, a water temperature gauge may be provided in addition to the pollutant concentration gauge. Here, the case where the water temperature gauge is not provided will be described.

濃度測定部8にて測定された汚濁物濃度は信号線81を介して各算出部91〜93に送られる。よって、各算出部91〜93では、上記に示した実施の形態1と異なり、負荷測定部5で測定された現在(第一時点)の第一負荷値と、濃度測定部8で測定された汚濁物濃度に基づいて最適な処理剤の供給量、すなわち、散気量を演算するための演算式が組み込まれている。 The pollutant concentration measured by the concentration measuring unit 8 is sent to each calculation unit 91 to 93 via the signal line 81. Therefore, in each of the calculation units 91 to 93, unlike the first embodiment shown above, the current (first time point) first load value measured by the load measurement unit 5 and the concentration measurement unit 8 were measured. An arithmetic formula for calculating the optimum amount of the treatment agent supplied based on the pollutant concentration, that is, the amount of air diffused is incorporated.

具体的には、各算出部91〜93は、それぞれに接続されている各散気部31〜33に予め定められた係数を保持しており、下記の(A)、(B)、(C)の和を算出する。
(A)負荷測定部5で測定された水処理槽1に流入する被処理水の負荷値に、各散気部31〜33に予め定められた第一係数を乗じた供給量
(B)定数
(C)濃度測定部8で測定された処理水の汚濁物濃度を、予め定められた処理水の汚濁物濃度の目標値にフィードバック制御する演算量に、各散気部31〜33に予め定められた第二係数を乗じた供給量
Specifically, each of the calculation units 91 to 93 holds a predetermined coefficient in each of the air diffuser units 31 to 33 connected to each of the calculation units 91 to 93, and the following (A), (B), and (C) are held. ) Is calculated.
(A) Supply amount (B) constant obtained by multiplying the load value of the water to be treated flowing into the water treatment tank 1 measured by the load measurement unit 5 by a predetermined first coefficient for each air diffuser 31 to 33. (C) A calculation amount for feedback-controlling the pollutant concentration of the treated water measured by the concentration measuring unit 8 to a predetermined target value of the pollutant concentration of the treated water is predetermined in each of the air diffusers 31 to 33. Supply amount multiplied by the obtained second coefficient

尚、前記各係数は、水処理槽1から排出される処理水の汚濁物濃度が予め定められた汚濁物濃度の目標値に近づけるために最適な散気量を、上記演算において得ることができるように予め設定された値であり、散気部の位置あるいは個数によってそれぞれ異なった値を設定できる。 For each of the above coefficients, the optimum amount of air dispersal can be obtained in the above calculation so that the pollutant concentration of the treated water discharged from the water treatment tank 1 approaches a predetermined target value of the pollutant concentration. It is a value set in advance as described above, and different values can be set depending on the position or number of air diffusers.

例えば、負荷測定部5に流量計および汚濁物濃度計としてアンモニア態窒素濃度計を備えており、濃度測定部8に汚濁物濃度計としてアンモニア態窒素濃度計を備えている場合、第一算出部91では、第一散気部31から供給される散気量の設定値G1[Nm/hr]を以下に示す式(4)により算出する。
G1=k11・SIN,N・QIN+k12・(GP+GI+GD)+k13・・・(4)
SIN,N:水処理槽1へ流入する被処理水のアンモニア態窒素濃度[mg/L]
QIN:水処理槽1へ流入する被処理水の流量[m/hr]
k11,k12,k13:定数 尚、k11は第一係数、k12は第二係数である。
For example, when the load measuring unit 5 is equipped with a flow meter and an ammonia nitrogen concentration meter as a pollutant concentration meter, and the concentration measuring unit 8 is equipped with an ammonia nitrogen concentration meter as a pollutant concentration meter, the first calculation unit In 91, the set value G1 [Nm 3 / hr] of the amount of air diffused supplied from the first air diffuser 31 is calculated by the following equation (4).
G1 = k11 ・ SIN, N ・ QIN + k12 ・ (GP + GI + GD) + k13 ... (4)
SIN, N: Ammonia nitrogen concentration [mg / L] of the water to be treated flowing into the water treatment tank 1.
QIN: Flow rate of water to be treated flowing into the water treatment tank 1 [m 3 / hr]
k11, k12, k13: Constant k11 is the first coefficient and k12 is the second coefficient.

また、GP、GI、GDは以下に示す式(5)、(6)、(7)のように設定される。
GP=KP・(SOUT,N−S0,N)・・・(5)
GI=KP/TI・∫(SOUT,N−S0,N)dt・・・(6)
GD=KP・TD・d(SOUT,N−S0,N)/dt・・・(7)
SOUT,N;処理水のアンモニア態窒素濃度[mg/L]
S0,N;処理水のアンモニア態窒素濃度の目標値[mg/L]
KP;比例ゲイン
TI;積分時間
TD;微分時間
Further, GP, GI and GD are set as the following equations (5), (6) and (7).
GP = KP · (SOUT, N-S0, N) ... (5)
GI = KP / TI · ∫ (SOUT, N-S0, N) dt ... (6)
GD = KP · TD · d (SOUT, N-S0, N) / dt ... (7)
SOUT, N; Ammonia nitrogen concentration in treated water [mg / L]
S0, N; Target value of ammonia nitrogen concentration in treated water [mg / L]
KP; Proportional gain TI; Integration time TD; Differentiation time

上記に示した場合と同様にして、各算出部92、93では、散気量の設定値G2、G3[Nm/hr]を以下に示す式(8)、(9)によりそれぞれ算出する。
G2=k21・SIN,N・QIN+k22・(GP+GI+GD)+k23・・・(8)
k21、k22、k23;定数 尚、k21は第一係数、k22は第二係数である。
G3=k31・SIN,N・QIN+k32・(GP+GI+GD)+k33・・・(9)
k31、k32、k33;定数 尚、k31は第一係数、k32は第二係数である。
In the same manner as in the case shown above, the calculation units 92 and 93 calculate the set values G2 and G3 [Nm 3 / hr] of the amount of air diffused by the following equations (8) and (9), respectively.
G2 = k21 ・ SIN, N ・ QIN + k22 ・ (GP + GI + GD) + k23 ... (8)
k21, k22, k23; constants k21 is the first coefficient and k22 is the second coefficient.
G3 = k31 ・ SIN, N ・ QIN + k32 ・ (GP + GI + GD) + k33 ... (9)
k31, k32, k33; constants k31 is the first coefficient and k32 is the second coefficient.

上記に示した式(4)、(8)、(9)において、各散気部31〜33に対応して予め定める第一係数k11、k21、k31および第二係数k12、k22、k32は、前述したように、処理水のアンモニア態窒素濃度が、予め定められた汚濁物濃度の目標値に近づけるために最適な散気量を、上記演算において得ることができるように予め設定された値である。但し、第一係数k11、k21、k31、第二係数k12、k22、k32共に全て等しい値とは限らず、散気部の位置に応じて異なる値を設定してもよい。また、第一係数k11、k21、k31および第二係数k12、22、32は一度設定した後も、季節変動および目標とする処理水の水質の変化などに応じて適宜最適な値を設定し直すことができる。 In the formulas (4), (8), and (9) shown above, the first coefficients k11, k21, and k31 and the second coefficients k12, k22, and k32, which are predetermined for each of the air diffusers 31 to 33, are As described above, the optimum amount of air diffused for the ammonia nitrogen concentration of the treated water to approach the predetermined target value of the pollutant concentration is set to a preset value so that it can be obtained in the above calculation. is there. However, the first coefficients k11, k21, k31, and the second coefficients k12, k22, and k32 are not all the same values, and different values may be set depending on the position of the air diffuser. Further, even after the first coefficient k11, k21, k31 and the second coefficient k12, 22, 32 are set once, the optimum values are appropriately set again according to seasonal fluctuations and changes in the target treated water quality. be able to.

このように、各算出部91〜93では、各算出部91〜93に組み込まれた散気量の演算式と、予測部7で算出された第二時点の被処理水の第二負荷値と、濃度測定部8で測定された汚濁物濃度とを基に、第一時点と第二時点との間の第三時点にて各散気部31〜33から供給する散気量を算出する。各算出部91〜93に組み込まれた散気量の演算式は現在の負荷値“SIN,N、QIN”に対して最適な散気量を演算するための演算式であるが、各算出部91〜93では、上記演算式に現在の負荷値ではなく、第二時点の被処理水の第二負荷値“S’IN,N、Q’IN”を入力して、被処理水の第二負荷値に対応する散気量を算出する。 In this way, in each of the calculation units 91 to 93, the calculation formula of the amount of air diffused incorporated in each of the calculation units 91 to 93 and the second load value of the water to be treated at the second time point calculated by the prediction unit 7 Based on the pollutant concentration measured by the concentration measuring unit 8, the amount of air diffused to be supplied from each air diffuser 31 to 33 at the third time point between the first time point and the second time point is calculated. The calculation formula of the amount of divergence incorporated in each calculation unit 91 to 93 is a calculation formula for calculating the optimum amount of divergence with respect to the current load value "SIN, N, QIN". In 91 to 93, instead of the current load value, the second load value "S'IN, N, Q'IN" of the water to be treated at the second time point is input to the above calculation formula, and the second load value of the water to be treated is input. Calculate the amount of air diffused corresponding to the load value.

具体的に、上記に示した式(4)、(8)、(9)を基に説明する。上記に示した式(4)、(8)、(9)では被処理水の現在の第一負荷値“SIN,N、QIN”を入力することで、現在の被処理水の第一負荷値に対して最適な散気量が算出される。しかし、各算出部91〜93では、被処理水の第二時点の予測の被処理水の第二負荷値“S’IN,N、Q’IN”を入力して、各散気部31〜33それぞれの目標(第三時点における)の散気量を算出する。 Specifically, it will be described based on the equations (4), (8) and (9) shown above. In the above equations (4), (8), and (9), the current initial load value of the water to be treated is input by inputting the current initial load value "SIN, N, QIN" of the water to be treated. The optimum amount of air dissipation is calculated for. However, in each of the calculation units 91 to 93, the second load value "S'IN, N, Q'IN" of the water to be treated predicted at the second time point of the water to be treated is input, and each air diffuser 31 to 31 33 Calculate the amount of air dispersal for each target (at the third time point).

上記のようにして算出された第三時点の散気量の設定値G1〜G3はそれぞれ信号線911〜931を介して各供給部41〜43に伝えられる。各供給部41〜43では、それぞれ配管411〜431および各散気部31〜33を介して、それぞれに設定された量の空気を水処理槽1内に供給する。 The set values G1 to G3 of the amount of air diffused at the third time point calculated as described above are transmitted to the respective supply units 41 to 43 via the signal lines 911 to 931, respectively. In each of the supply units 41 to 43, the amount of air set for each is supplied into the water treatment tank 1 through the pipes 411 to 431 and the air diffuser units 31 to 33, respectively.

上記に示したように、負荷測定部5で現在の被処理水の第一負荷値が測定された後、予測部7での所定時間先の被処理水の第二負荷値、各算出部91〜93での第三時点での処理剤の供給量を算出、各供給部41〜43での散気量を制御、配管411〜431内の空気の移動を経て、各散気部31〜33から目標の散気量が水処理槽1に供給される。この時、負荷測定部5で現在の被処理水の第一負荷値が測定された後に、各算出部91〜93で算出された第三時点の散気量が各散気部31〜33から実際に供給されるまでには、負荷値予測の演算時間、散気量の目標値の演算時間、各散気部31〜33の制御時間、空気の配管内の移動時間などを含めたタイムラグが生じる。よって、このタイムラグが予測部7における被処理水の第二負荷値の予測の所定時間先よりも短くなるよう、前記所定時間を設定する必要がある。これにより、負荷値が実際に予測値に到達する前に、前もって散気量を制御できる。 As shown above, after the load measurement unit 5 measures the current first load value of the water to be treated, the prediction unit 7 determines the second load value of the water to be treated at a predetermined time ahead, and each calculation unit 91. Calculate the supply amount of the treatment agent at the third time point in ~ 93, control the amount of air dispersal in each supply unit 41 to 43, move the air in the pipes 411 to 431, and then each air dispersal unit 31 to 33. The target amount of air diffused is supplied to the water treatment tank 1. At this time, after the current first load value of the water to be treated is measured by the load measuring unit 5, the amount of air diffused at the third time point calculated by each calculation unit 91 to 93 is calculated from each air diffuser 31 to 33. Before it is actually supplied, there is a time lag including the calculation time of load value prediction, the calculation time of the target value of the amount of air diffused, the control time of each air diffuser 31 to 33, and the movement time in the air pipe. Occurs. Therefore, it is necessary to set the predetermined time so that this time lag is shorter than the predetermined time ahead of the prediction of the second load value of the water to be treated by the prediction unit 7. This makes it possible to control the amount of air dissipation in advance before the load value actually reaches the predicted value.

尚、図7では、濃度測定部8は配管102に接続したが、水処理槽1内での活性汚泥による浄化処理が終了した後の処理水の汚濁物濃度を測定できればよいため、濃度測定部8は沈殿槽2内、または、配管103のいずれかに接続されてもよい。さらに、水処理槽1から排出される処理水の汚濁物流出を確実に防ぐために、濃度測定部8を水処理槽1内の下流側に設置することもできる。これにより、水処理槽1での浄化処理が終了する手前で処理水の汚濁物濃度が目標値に制御される。よって、さらに浄化処理された処理水が水処理槽1から排出され、処理水の水質を良好に保つことができる。尚、このことは以下の実施の形態でも同様であるためその説明は適宜省略する。 In FIG. 7, the concentration measuring unit 8 is connected to the pipe 102, but it is sufficient if the concentration of pollutants in the treated water after the purification treatment with activated sludge in the water treatment tank 1 is completed can be measured. 8 may be connected to either the settling tank 2 or the pipe 103. Further, in order to surely prevent the outflow of pollutants in the treated water discharged from the water treatment tank 1, the concentration measuring unit 8 can be installed on the downstream side in the water treatment tank 1. As a result, the pollutant concentration of the treated water is controlled to the target value before the purification treatment in the water treatment tank 1 is completed. Therefore, the treated water that has been further purified is discharged from the water treatment tank 1, and the water quality of the treated water can be kept good. Since this also applies to the following embodiments, the description thereof will be omitted as appropriate.

本実施の形態2と上記実施の形態1との違いは、散気量の演算式(1)〜(3)に濃度測定部8で測定された処理水の汚濁物濃度を、予め定められた処理水の汚濁物濃度の目標値にフィードバック制御する演算式が加えられた点である。このようにすれば、汚濁物濃度を精緻に制御することが可能にとなり、負荷値の変動に対する処理水の水質の変動をさらに抑制できるだけでなく、過不足ない散気により各供給部41〜43および各散気部31〜33の消費エネルギーを抑制できる。 The difference between the second embodiment and the first embodiment is that the pollutant concentration of the treated water measured by the concentration measuring unit 8 is predetermined in the calculation formulas (1) to (3) of the amount of air diffused. The point is that an arithmetic expression for feedback control has been added to the target value of the pollutant concentration in the treated water. By doing so, it becomes possible to precisely control the pollutant concentration, and not only can the fluctuation of the water quality of the treated water due to the fluctuation of the load value be further suppressed, but also the fluctuation of the water quality of the treated water can be further suppressed, and each supply unit 41 to 43 can be dissipated without excess or deficiency. And the energy consumption of each air diffuser 31 to 33 can be suppressed.

以上のように、水処理槽1に流入する被処理水の負荷値を予測し、予測の負荷値に基づいて水処理槽1内に供給する散気量を設定するだけでなく、水処理された処理水の汚濁物濃度に対してフィードバック制御する演算を追加することにより、汚濁物濃度を目標値に対して精緻に制御し、過不足なく散気量を設定できる。さらに、処理水の水質を可能な限り良好に保ちたい場合、負荷値減少時に事前に散気量を減少させることによる一時的な処理水の水質の悪化を防止するため、予測の負荷値が増加する時のみ、予測の負荷値“S’IN,N、Q’IN”を入力し、予測の負荷値が減少する時には、現在の負荷値“SIN,N、QIN”を入力するという制御を行うこともできる。また、可能な限り散気量を抑制して運転コストを最小化したい場合、負荷値増加時に事前に散気量を増加させることは運転コストの増加に繋がるため、負荷値減少時のみ予測の負荷値“S’IN,N、Q’IN”を入力し、負荷値増加時には現在の負荷値“SIN,N、QIN”を入力するという制御を行うこともできる。 As described above, not only the load value of the water to be treated flowing into the water treatment tank 1 is predicted and the amount of air diffused to be supplied into the water treatment tank 1 is set based on the predicted load value, but also the water is treated. By adding an operation for feedback control with respect to the pollutant concentration of the treated water, the pollutant concentration can be precisely controlled with respect to the target value, and the amount of air diffused can be set without excess or deficiency. Furthermore, if the quality of the treated water is to be maintained as good as possible, the predicted load value is increased in order to prevent temporary deterioration of the water quality of the treated water by reducing the amount of air diffused in advance when the load value is reduced. Only when the predicted load value is input, the predicted load value "S'IN, N, Q'IN" is input, and when the predicted load value decreases, the current load value "SIN, N, QIN" is input. You can also do it. In addition, if you want to minimize the operating cost by suppressing the amount of air diffused as much as possible, increasing the amount of air diffused in advance when the load value increases leads to an increase in the operating cost. It is also possible to control by inputting the values "S'IN, N, Q'IN" and inputting the current load value "SIN, N, QIN" when the load value increases.

上記のように構成された実施の形態2の水処理装置によれば、上記実施の形態1と同様の効果を奏するのはもちろんこと、
前記水処理槽にて前記被処理水が水処理された処理水の汚濁物濃度を測定する濃度測定部を備え、
前記供給部は、前記濃度測定部にて測定された前記水処理槽にて水処理された前記処理水の汚濁物濃度を加味して前記処理剤の供給量を供給するので、
処理剤の供給量を、水処理槽にて水処理された処理水の汚濁物濃度を加味するので、被処理水が水処理された処理水の水質の変動抑制および運転コストの低減をさらに達成できる。
According to the water treatment apparatus of the second embodiment configured as described above, it goes without saying that the same effect as that of the first embodiment is obtained.
A concentration measuring unit for measuring the pollutant concentration of the treated water in which the water to be treated is treated with water in the water treatment tank is provided.
Since the supply unit supplies the supply amount of the treatment agent in consideration of the pollutant concentration of the treated water water-treated in the water treatment tank measured by the concentration measurement unit.
Since the supply amount of the treatment agent takes into account the pollutant concentration of the treated water treated with water in the water treatment tank, it is possible to further suppress fluctuations in the quality of the treated water in which the water to be treated is treated and reduce the operating cost. it can.

実施の形態3.
図8は実施の形態3における水処理装置の構成を示す図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。本実施の形態3は、水処理装置として、被処理水に処理剤としてオゾンガスを供給し、被処理水の汚濁物質を酸化分解する水処理装置について示す。本実施の形態3では、処理剤としてオゾンガスを用いるため、上記各実施の形態と異なり、水処理槽1には活性汚泥が必要無く、沈殿槽2および沈殿槽2に付随する構成が存在しない。
Embodiment 3.
FIG. 8 is a diagram showing the configuration of the water treatment device according to the third embodiment. In the figure, the same parts as those in each of the above embodiments are designated by the same reference numerals and the description thereof will be omitted. The third embodiment shows, as a water treatment apparatus, a water treatment apparatus that supplies ozone gas as a treatment agent to the water to be treated and oxidatively decomposes pollutants in the water to be treated. In the third embodiment, since ozone gas is used as the treatment agent, unlike each of the above-described embodiments, the water treatment tank 1 does not require activated sludge, and there is no configuration associated with the settling tank 2 and the settling tank 2.

尚、本実施の形態3では、処理剤としてオゾンガスを用いるため、供給量をオゾンガス濃度として示す場合もある。本実施の形態3での供給部は、各散気部31〜33、供給部44および算出部94から構成される。 In the third embodiment, since ozone gas is used as the treatment agent, the supply amount may be indicated as the ozone gas concentration. The supply unit in the third embodiment is composed of each air diffuser unit 31 to 33, a supply unit 44, and a calculation unit 94.

負荷測定部5は、流量計、または、汚濁物濃度計(有機物濃度計、臭気物質濃度計、色度計、ウイルス検出器など)の少なくとも1つ以上の計測機器を備える。また、負荷測定部5は、上記各実施の形態と同様に、連続的、または、所定時間の間隔の間欠的に当該負荷値を測定する。そして、全ての負荷値は、負荷値を測定した時刻と関連付けられる。また、負荷測定部5として、先に示した、流量計および汚濁物濃度計のどちらも備える場合もある。その場合、水処理槽1に流入する被処理水の流量と汚濁物濃度との積を負荷値として算出してもよい。そして、負荷測定部5は水処理槽1に実質的に流入する被処理水の負荷値として測定する。また、流量計の代替として、流入渠の堰の開度を流量に換えて利用してもよい。さらに、季節等の温度に対する影響を考慮するために、流量計および汚濁物濃度計に加えて、水温計を備えてもよい。尚、ここでは、水温計を備えない場合にて説明する。 The load measuring unit 5 includes at least one or more measuring devices such as a flow meter or a pollutant concentration meter (organic substance concentration meter, odorous substance concentration meter, chromaticity meter, virus detector, etc.). Further, the load measuring unit 5 measures the load value continuously or intermittently at predetermined time intervals, as in each of the above-described embodiments. Then, all the load values are associated with the time when the load values are measured. Further, the load measuring unit 5 may include both the flow meter and the pollutant concentration meter shown above. In that case, the product of the flow rate of the water to be treated flowing into the water treatment tank 1 and the concentration of pollutants may be calculated as the load value. Then, the load measuring unit 5 measures the load value of the water to be treated that substantially flows into the water treatment tank 1. Further, as an alternative to the flow meter, the opening degree of the weir of the inflow culvert may be used in place of the flow rate. Further, in order to consider the influence on the temperature such as the season, a water temperature gauge may be provided in addition to the flow meter and the pollutant concentration gauge. Here, the case where the water temperature gauge is not provided will be described.

濃度測定部8は、水処理において水質管理対象としている汚濁物濃度計にて形成される。具体的には、例えば、有機物濃度計、臭気物質濃度計、色度計、ウイルス検出器などがある。さらに、季節等の温度に対する影響を考慮するために、汚濁物濃度計に加えて、水温計を備えてもよい。尚、ここでは、水温計を備えない場合にて説明する。 The concentration measuring unit 8 is formed by a pollutant densitometer, which is the target of water quality control in water treatment. Specifically, for example, there are an organic substance concentration meter, an odorous substance concentration meter, a chromaticity meter, a virus detector and the like. Further, in order to consider the influence on the temperature such as the season, a water temperature gauge may be provided in addition to the pollutant concentration gauge. Here, the case where the water temperature gauge is not provided will be described.

供給部44は、処理剤としてオゾンガスを供給する。供給部44は、例えば、空気、または酸素を原料ガスとして放電式、紫外線ランプ式などによりオゾンガスを発生させる。尚、酸素を原料ガスとして使用する場合は必要に応じて、供給される酸素流量に対して0.05%〜5%の窒素、空気、または二酸化炭素を添加してもよい。 The supply unit 44 supplies ozone gas as a treatment agent. The supply unit 44 uses air or oxygen as a raw material gas to generate ozone gas by a discharge type, an ultraviolet lamp type, or the like. When oxygen is used as the raw material gas, 0.05% to 5% of nitrogen, air, or carbon dioxide may be added to the supplied oxygen flow rate, if necessary.

算出部94は負荷測定部5で測定された第一時点としての現在の被処理水の第一負荷値、または予測部7で予測された第一時点より後の第二時点としての所定時間先の被処理水の第二負荷値を用いて、各散気部31〜33から第一時点と第二時点との間の第三時点において供給する処理剤のオゾンガス濃度を計算する演算式が組み込まれている。また、供給部44から供給するオゾンガス濃度が、算出部94で算出されたオゾンガス濃度となるよう、供給部44は出力をインバーター等で制御する機能を有する。 The calculation unit 94 is the first load value of the current water to be treated as the first time point measured by the load measurement unit 5, or a predetermined time ahead as the second time point after the first time point predicted by the prediction unit 7. A calculation formula is incorporated to calculate the ozone gas concentration of the treatment agent supplied from each diffuser section 31 to 33 at the third time point between the first time point and the second time point using the second load value of the water to be treated. It has been. Further, the supply unit 44 has a function of controlling the output by an inverter or the like so that the ozone gas concentration supplied from the supply unit 44 becomes the ozone gas concentration calculated by the calculation unit 94.

このように構成された実施の形態3の水処理装置の水処理方法では、水処理槽1において配管101を介して流入する被処理水をオゾンガスと混合および攪拌し、水中の汚濁物質を酸化分解することで浄化処理を行う。 In the water treatment method of the water treatment apparatus of the third embodiment configured as described above, the water to be treated flowing through the pipe 101 in the water treatment tank 1 is mixed and stirred with ozone gas, and the pollutants in the water are oxidatively decomposed. Purification treatment is performed by doing.

次に、算出部94の算出を具体的に示す。算出部94は下記の(A)、(B)、(C)の和を算出する。
(A)負荷測定部5で測定された水処理槽1に流入する被処理水の負荷値に、予め定めされた第一係数を乗じた供給量
(B)定数
(C)濃度測定部8で測定された処理水の汚濁物濃度を予め定められた処理水の汚濁物濃度の目標値にフィードバック制御する演算量に、予め定められた第二係数を乗じた供給量
Next, the calculation of the calculation unit 94 will be specifically shown. The calculation unit 94 calculates the sum of the following (A), (B), and (C).
(A) Supply amount (B) constant (C) concentration measuring unit 8 obtained by multiplying the load value of the water to be treated flowing into the water treatment tank 1 measured by the load measuring unit 5 by a predetermined first coefficient. Supply amount obtained by multiplying the calculated amount of feedback control of the measured pollutant concentration of the treated water to the predetermined target value of the pollutant concentration of the treated water by a predetermined second coefficient.

尚、前記各係数は、水処理槽1から排出される処理水の汚濁物濃度が予め定められた汚濁物濃度の目標値に近づけるために最適なオゾンガス濃度を、上記演算において得ることができるように予め設定された値である。 It should be noted that each of the above coefficients allows the optimum ozone gas concentration to be obtained in the above calculation so that the pollutant concentration of the treated water discharged from the water treatment tank 1 approaches a predetermined target value of the pollutant concentration. Is a preset value.

例えば、負荷測定部5に流量計と有機物濃度計(紫外吸光度計など)とを備えており、濃度測定部8に有機物濃度計を備えている場合、算出部94では、各散気部31〜33から供給されるオゾンガスのオゾンガス濃度の設定値SO3[g/Nm]を以下に示す式(10)により算出する。
SO3=k1・SIN,TOC・QIN+k2・(GP+GI+GD)+k3・・・(10)
SIN,TOC;水処理槽へ流入する被処理水の有機物濃度測定値[mg/L]
QIN;流量測定値[m/hr]
k1,k2,k3;定数 尚、k1は第一係数、k2は第二係数である。
For example, when the load measuring unit 5 is provided with a flow meter and an organic substance densitometer (ultraviolet absorbance meter, etc.) and the concentration measuring unit 8 is provided with an organic substance densitometer, the calculation unit 94 may include each air diffuser 31 to 31. The set value SO3 [g / Nm 3 ] of the ozone gas concentration of the ozone gas supplied from 33 is calculated by the following formula (10).
SO3 = k1 · SIN, TOC · QIN + k2 · (GP + GI + GD) + k3 ... (10)
SIN, TOC; Measured value of organic matter concentration in the water to be treated flowing into the water treatment tank [mg / L]
QIN; flow rate measurement value [m 3 / hr]
k1, k2, k3; constants k1 is the first coefficient and k2 is the second coefficient.

また、GP、GI、GDは以下に示す式(11)、(12)、(13)のように設定される。
GP=KP・(SOUT,TOC−S0,TOC)・・・(11)
GI=KP/TI・∫(SOUT,TOC−S0,TOC)dt・・・(12)
GD=KP・TD・d(SOUT,TOC−S0,TOC)/dt・・・(13)
SOUT,TOC;処理水の有機物濃度測定値[mg/L]
S0,TOC;処理の有機物濃度の目標値[mg/L]
KP;比例ゲイン
TI;積分時間
TD;微分時間係数
Further, GP, GI and GD are set as the following equations (11), (12) and (13).
GP = KP ・ (SOUT, TOC-S0, TOC) ... (11)
GI = KP / TI · ∫ (SOUT, TOC-S0, TOC) dt ... (12)
GD = KP · TD · d (SOUT, TOC-S0, TOC) / dt ... (13)
SOUT, TOC; Measured value of organic matter concentration in treated water [mg / L]
S0, TOC; Target value of organic matter concentration for treatment [mg / L]
KP; proportional gain TI; integration time TD; differential time coefficient

k1、k2、k3は一度設定した後も、水温または目標とする処理水の水質の変化などに応じて適宜最適な値を設定し直すことができる。算出部94では、算出部94に組み込まれたオゾンガス濃度の演算式と、予測部7で算出された第二時点の被処理水の第二負荷値と、濃度測定部8で測定された処理水の汚濁物濃度を基に、各散気部31〜33から供給するオゾンガス濃度の目標値を算出する。 Even after k1, k2, and k3 are set once, the optimum values can be appropriately set again according to changes in the water temperature or the target treated water quality. In the calculation unit 94, the calculation formula of the ozone gas concentration incorporated in the calculation unit 94, the second load value of the water to be treated at the second time point calculated by the prediction unit 7, and the treated water measured by the concentration measurement unit 8. Based on the pollutant concentration of, the target value of the ozone gas concentration supplied from each air diffuser 31 to 33 is calculated.

算出部94に組み込まれたオゾンガス濃度の演算式は、現在(第一時点)の第一負荷値に対して最適なオゾンガス濃度を算出するための演算式であるが、算出部94では、上記演算式に現在の被処理水の第一負荷値“SIN,TOC、QIN”ではなく、第二時点の被処理水の第二負荷値“S’IN,TOC、Q’IN”を入力して、供給するオゾンガス濃度を算出する。 The calculation formula of the ozone gas concentration incorporated in the calculation unit 94 is a calculation formula for calculating the optimum ozone gas concentration with respect to the current (first time point) first load value. Enter the second load value "S'IN, TOC, Q'IN" of the water to be treated at the second time point instead of the current first load value "SIN, TOC, QIN" of the water to be treated in the formula. Calculate the concentration of ozone gas to be supplied.

具体的に、上記に示した式(10)を基に説明する。上記に示した式(10)に被処理水の現在の第一負荷値“SIN,TOC、QIN”を入力することで、現在の被処理水の第一負荷値に対して最適なオゾンガス濃度が算出される。しかし、算出部94では、被処理水の第二時点の第二負荷値“S’IN,TOC、Q’IN”を入力して、各散気部31〜33から供給するオゾンガスのオゾンガス濃度を算出する。 Specifically, it will be described based on the equation (10) shown above. By inputting the current initial load value "SIN, TOC, QIN" of the water to be treated into the formula (10) shown above, the optimum ozone gas concentration with respect to the current initial load value of the water to be treated can be obtained. Calculated. However, in the calculation unit 94, the second load value "S'IN, TOC, Q'IN" at the second time point of the water to be treated is input, and the ozone gas concentration of the ozone gas supplied from each diffuser unit 31 to 33 is calculated. calculate.

上記のようにして算出されたオゾンガス濃度の設定値SO3は信号線941を介して供給部44に伝えられる。供給部44では、それぞれ配管441〜443および各散気部31〜33を介して、設定された濃度のオゾンガスを水処理槽1内に供給する。負荷測定部5で現在の被処理水の第一負荷値が測定された後、予測部7での所定時間先の被処理水の第二負荷値を予測し、算出部94での処理剤の供給量の目標値を算出、供給部44でのオゾンガス濃度制御、配管441〜443内のオゾンガスの移動を経て、各散気部31〜33から目標のオゾンガス濃度のオゾンガスが水処理槽1に供給される。 The set value SO3 of the ozone gas concentration calculated as described above is transmitted to the supply unit 44 via the signal line 941. The supply unit 44 supplies ozone gas having a set concentration into the water treatment tank 1 via the pipes 441 to 443 and the air diffuser units 31 to 33, respectively. After the load measurement unit 5 measures the current first load value of the water to be treated, the prediction unit 7 predicts the second load value of the water to be treated at a predetermined time ahead, and the calculation unit 94 determines the second load value of the treatment agent. After calculating the target value of the supply amount, controlling the ozone gas concentration in the supply unit 44, and moving the ozone gas in the pipes 441 to 443, the ozone gas having the target ozone gas concentration is supplied to the water treatment tank 1 from each diffuser unit 31 to 33. Will be done.

この時、負荷測定部5で現在の被処理水の第一負荷値が測定された後に、算出部94で算出されたオゾンガス濃度のオゾンガスが各散気部31〜33から実際に供給されるまでには、流入予測の演算時間、オゾンガス濃度の演算時間、オゾン発生器の制御時間、オゾンガスの配管内移動時間などを含めたタイムラグが生じる。ここで、このタイムラグが予測部7における被処理水の第二負荷値の予測の所定時間先よりも短くなるよう、前記所定時間を設定する必要がある。これにより、負荷値が実際に予測値に到達する前に、前もってオゾンガス濃度を制御することが可能となる。 At this time, after the current initial load value of the water to be treated is measured by the load measuring unit 5, the ozone gas having the ozone gas concentration calculated by the calculating unit 94 is actually supplied from the air diffusers 31 to 33. There is a time lag including the calculation time of the inflow prediction, the calculation time of the ozone gas concentration, the control time of the ozone generator, and the movement time of the ozone gas in the pipe. Here, it is necessary to set the predetermined time so that this time lag is shorter than the predetermined time ahead of the prediction of the second load value of the water to be treated by the prediction unit 7. This makes it possible to control the ozone gas concentration in advance before the load value actually reaches the predicted value.

上記に示した式(10)に第二時点の被処理水の第二負荷値を入力することにより、第二時点の被処理水の第二負荷値が、第一時点の第一負荷値より増加する場合には、被処理水の第二負荷値の増加が予測された段階(第一時点と第二時点との間の第三時点)で、実際に負荷値が増加する前から事前にオゾンガス濃度を増加させておくことにより、水処理槽1内の溶存オゾンガス濃度を十分に高めた状態で高負荷の被処理水が水処理槽1に流入する。 By inputting the second load value of the water to be treated at the second time point into the equation (10) shown above, the second load value of the water to be treated at the second time point becomes higher than the first load value at the first time point. If it increases, at the stage where the increase in the second load value of the water to be treated is predicted (the third time point between the first time point and the second time point), before the actual load value increases, in advance. By increasing the ozone gas concentration, a high load of water to be treated flows into the water treatment tank 1 in a state where the dissolved ozone gas concentration in the water treatment tank 1 is sufficiently increased.

これにより、高負荷の被処理水が即座に浄化させるため、負荷値の増加による処理水の水質の悪化を抑えることができる。一方、第二時点の被処理水の第二負荷値が第一時点の第一負荷値より減少する場合には、負荷値の減少が予測された段階(第一時点と第二時点との間の第三時点)で、実際に負荷値が低下する前からオゾンガス濃度が減少することになる。前もってオゾンガス濃度を低下することで一時的に処理水の水質は悪化するが、その後は負荷の減少した被処理水が水処理槽1に流入するため、処理水の水質は管理上限値を超えることなく、処理水の水質を良好に保った状態で過剰なオゾンガスの供給を抑制できる。 As a result, the high-load treated water is immediately purified, so that deterioration of the treated water quality due to an increase in the load value can be suppressed. On the other hand, when the second load value of the water to be treated at the second time point is smaller than the first load value at the first time point, the stage where the decrease in the load value is predicted (between the first time point and the second time point). At the third time point), the ozone gas concentration will decrease even before the load value actually decreases. The quality of the treated water temporarily deteriorates by lowering the ozone gas concentration in advance, but after that, the treated water with a reduced load flows into the water treatment tank 1, so the quality of the treated water exceeds the upper limit of control. It is possible to suppress the supply of excess ozone gas while maintaining good quality of treated water.

さらに、濃度測定部8で測定された処理水の汚濁物濃度を予め定められた処理水の汚濁物濃度の目標値にフィードバック制御する演算により、処理水の汚濁物濃度を目標値に対して精緻に制御することが可能になるため、負荷値の変動に対する処理水の水質の変動をさらに抑制できるだけでなく、過不足ないオゾンガス供給によりオゾンガスの原料、およびオゾン発生に要するエネルギーを抑制できる。 Further, the pollutant concentration of the treated water is precisely controlled with respect to the target value by the calculation of feedback-controlling the pollutant concentration of the treated water measured by the concentration measuring unit 8 to a predetermined target value of the pollutant concentration of the treated water. Not only can the fluctuation of the water quality of the treated water due to the fluctuation of the load value be further suppressed, but also the raw material of ozone gas and the energy required for ozone generation can be suppressed by supplying ozone gas in just proportion.

以上のように、水処理槽1に流入する被処理水の第二負荷値を予測し、予測の被処理水の第二負荷値に基づいて、第三時点にて水処理槽1内に供給するオゾンガスのオゾンガス濃度を設定するので、被処理水の第二負荷値が増加する際には予めオゾンガス濃度を増加させることで処理水の水質の悪化を抑制できる。また、被処理水の第二負荷値が減少する際には予めオゾンガス濃度を低下させることで処理水の水質が管理上限値を超えない範囲で過剰なオゾンガス供給を抑制できる。 As described above, the second load value of the water to be treated flowing into the water treatment tank 1 is predicted, and based on the predicted second load value of the water to be treated, it is supplied into the water treatment tank 1 at the third time point. Since the ozone gas concentration of the ozone gas to be treated is set, deterioration of the water quality of the treated water can be suppressed by increasing the ozone gas concentration in advance when the secondary load value of the water to be treated increases. Further, when the second load value of the water to be treated decreases, the excess ozone gas supply can be suppressed within a range in which the water quality of the treated water does not exceed the control upper limit value by lowering the ozone gas concentration in advance.

さらに、処理水の水質を可能な限り良好に保ちたい場合、負荷値減少時に事前にオゾンガス濃度を減少させることによる一時的な処理水の水質の悪化を防止するため、被処理水の第二負荷値の増加時のみ第二負荷値“S’IN,TOC、Q’IN”を入力し、被処理水の第二負荷値の減少時には現在の被処理水の第一負荷値“SIN,TOC、QIN”を入力するという制御を行うこともできる。 Furthermore, when it is desired to maintain the water quality of the treated water as good as possible, the second load of the treated water is to prevent the temporary deterioration of the water quality of the treated water due to the reduction of the ozone gas concentration in advance when the load value is reduced. The second load value "S'IN, TOC, Q'IN" is input only when the value increases, and the current first load value "SIN, TOC," of the water to be treated decreases when the second load value of the water to be treated decreases. It is also possible to control the input of "QIN".

また、可能な限りオゾンガスの供給を抑制して運転コストを最小化したい場合、被処理水の第二負荷値が増加時に事前にオゾンガス濃度を増加させることは運転コストの増加に繋がるため、被処理水の第二負荷値の減少時のみ予測の負荷値“S’IN,TOC、Q’IN”を入力し、被処理水の第二負荷値の増加時には現在の被処理水の第一負荷値“SIN,TOC、QIN”を入力するという制御を行うこともできる。 In addition, when it is desired to suppress the supply of ozone gas as much as possible to minimize the operating cost, increasing the ozone gas concentration in advance when the second load value of the water to be treated increases leads to an increase in the operating cost. Enter the predicted load value "S'IN, TOC, Q'IN" only when the second load value of water decreases, and when the second load value of water to be treated increases, the current first load value of water to be treated It is also possible to control the input of "SIN, TOC, QIN".

上記のように構成された実施の形態3の水処理装置によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、
前記被処理水の前記水処理として、有機物除去、臭気物除去、ウイルス除去、および、脱色の少なくともいずれか1つを行う場合、
前記供給部は、前記処理剤としてオゾンガスを前記水処理槽に供給するので、
被処理水の有機物除去、臭気物除去、ウイルス除去、および、脱色等の水処理における処理水の水質の変動抑制および運転コストの低減を達成できる。
According to the water treatment apparatus of the third embodiment configured as described above, it goes without saying that the same effect as that of each of the above-described embodiments is obtained.
When at least one of organic matter removal, odorous matter removal, virus removal, and decolorization is performed as the water treatment of the water to be treated.
Since the supply unit supplies ozone gas as the treatment agent to the water treatment tank,
It is possible to suppress fluctuations in the quality of treated water and reduce operating costs in water treatment such as organic matter removal, odor removal, virus removal, and decolorization of water to be treated.

実施の形態4.
図9は実施の形態4における水処理装置の構成を示す図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。本実施の形態4は、水処理装置として、被処理水に処理剤として凝集剤を供給し、被処理水の汚濁物と凝集剤とを反応させることにより、金属塩、カルシウム塩として汚濁物を沈殿させ、浄化処理する水処理装置について示す。本実施の形態4では、処理剤として凝集剤を用いるため、上記各実施の形態とは異なり、各散気部31〜33および各散気部31〜33に付随する構成が存在しない。本実施の形態4での供給部は、処理剤タンク45、供給部46および算出部95から構成される。
Embodiment 4.
FIG. 9 is a diagram showing the configuration of the water treatment apparatus according to the fourth embodiment. In the figure, the same parts as those in each of the above embodiments are designated by the same reference numerals and the description thereof will be omitted. In the fourth embodiment, as a water treatment apparatus, a coagulant is supplied to the water to be treated as a treatment agent, and the pollutants in the water to be treated are reacted with the coagulant to produce pollutants as metal salts and calcium salts. The water treatment apparatus for precipitating and purifying is shown. In the fourth embodiment, since the coagulant is used as the treatment agent, unlike each of the above-described embodiments, there is no configuration attached to each air diffuser 31 to 33 and each air diffuser 31 to 33. The supply unit in the fourth embodiment includes a treatment agent tank 45, a supply unit 46, and a calculation unit 95.

負荷測定部5は、流量計、または、汚濁物濃度計(リン酸態リン濃度計、全リン濃度計など)の少なくとも1つ以上の計測機器を備える。また、負荷測定部5は、上記各実施の形態と同様に、連続的、または、所定時間の間隔の間欠的に当該負荷値を測定する。そして、全ての負荷値は、負荷値を測定した時刻と関連付けられる。また、負荷測定部5として、先に示した、流量計および汚濁物濃度計のどちらも備える場合もある。その場合、水処理槽1に流入する被処理水の流量と汚濁物濃度との積を負荷値として算出してもよい。そして、負荷測定部5は水処理槽1に実質的に流入する負荷値として測定する。また、流量計の代替として、流入渠の堰の開度を流量に換えて利用してもよい。さらに、季節等の温度に対する影響を考慮するために、流量計および汚濁物濃度計に加えて、水温計を備えていてもよい。尚、ここでは、水温計を備えない場合にて説明する。 The load measuring unit 5 includes at least one measuring device such as a flow meter or a pollutant concentration meter (phosphate phosphorus concentration meter, total phosphorus concentration meter, etc.). Further, the load measuring unit 5 measures the load value continuously or intermittently at predetermined time intervals, as in each of the above-described embodiments. Then, all the load values are associated with the time when the load values are measured. Further, the load measuring unit 5 may include both the flow meter and the pollutant concentration meter shown above. In that case, the product of the flow rate of the water to be treated flowing into the water treatment tank 1 and the concentration of pollutants may be calculated as the load value. Then, the load measuring unit 5 measures the load value substantially flowing into the water treatment tank 1. Further, as an alternative to the flow meter, the opening degree of the weir of the inflow culvert may be used in place of the flow rate. Further, in order to consider the influence on the temperature such as the season, a water temperature gauge may be provided in addition to the flow meter and the pollutant concentration gauge. Here, the case where the water temperature gauge is not provided will be described.

濃度測定部8は、配管103に取り付けられ、沈殿槽2から排出される処理水の汚濁物濃度を測定する。濃度測定部8は、水処理において水質管理対象としている汚濁物のうち、凝集剤により浄化される汚濁物濃度計にて形成される。具体的には、例えば、リン酸態リン濃度計、全リン濃度計などがある。さらに、季節等の温度に対応する影響を考慮するために、汚濁物濃度計に加えて、水温計を備えていてもよい。尚、ここでは、水温計を備えない場合にて説明する。 The concentration measuring unit 8 is attached to the pipe 103 and measures the concentration of pollutants in the treated water discharged from the settling tank 2. The concentration measuring unit 8 is formed by a pollutant concentration meter that is purified by a coagulant among the pollutants that are subject to water quality control in water treatment. Specifically, for example, there are a phosphate phosphorus concentration meter, a total phosphorus concentration meter and the like. Further, in order to consider the influence corresponding to the temperature such as the season, a water temperature gauge may be provided in addition to the pollutant concentration gauge. Here, the case where the water temperature gauge is not provided will be described.

処理剤タンク45は、処理剤としての凝集剤を貯留する。凝集剤の種類としてはPAC(ポリ塩化アルミニウム)、塩化第二鉄、ポリ硫酸第二鉄、水酸化鉄などがある。供給部46は、処理剤タンク45に貯留された凝集剤をポンプによって配管451を介して流入し、配管461を介して水処理槽1に供給する。 The treatment agent tank 45 stores a coagulant as a treatment agent. Types of flocculants include PAC (polyaluminum chloride), ferric chloride, ferric polysulfate, iron hydroxide and the like. The supply unit 46 flows in the flocculant stored in the treatment agent tank 45 through the pipe 451 by a pump, and supplies the coagulant stored in the treatment agent tank 45 to the water treatment tank 1 via the pipe 461.

算出部95は、負荷測定部5で測定された第一時点としての現在の被処理水の第一負荷値と、濃度測定部8で測定された汚濁物濃度に基づいて、供給部46から供給する最適な凝集剤の供給量を演算する演算式が組み込まれている。算出部95で算出された供給量は信号線951を介して供給部46に送信される。また、供給部46にて供給する凝集剤の供給量が、算出部95で算出された供給量となるよう、供給部46はインバーター等で供給量を制御する機能を有する。 The calculation unit 95 supplies the water from the supply unit 46 based on the current first load value of the water to be treated as the first time point measured by the load measurement unit 5 and the pollutant concentration measured by the concentration measurement unit 8. A formula for calculating the optimum amount of coagulant to be supplied is incorporated. The supply amount calculated by the calculation unit 95 is transmitted to the supply unit 46 via the signal line 951. Further, the supply unit 46 has a function of controlling the supply amount by an inverter or the like so that the supply amount of the coagulant supplied by the supply unit 46 becomes the supply amount calculated by the calculation unit 95.

このように構成された実施の形態4の水処理装置の水処理方法では、水処理槽1に凝集剤を供給することでリン等の化学的凝集反応によって浄化可能な汚濁物質を沈殿槽2で沈殿分離させ、被処理水の汚濁物質の浄化処理を行う。 In the water treatment method of the water treatment apparatus of the fourth embodiment configured in this way, a pollutant that can be purified by a chemical coagulation reaction such as phosphorus by supplying a coagulant to the water treatment tank 1 is prepared in the settling tank 2. Precipitate and separate, and purify the pollutants in the water to be treated.

次に、算出部95の算出を具体的に示す。算出部95は下記の(A)、(B)、(C)の和を算出する。
(A)負荷測定部5で測定された水処理槽1に流入する被処理水の負荷値に、予め定められた第一係数を乗じた供給量
(B)定数
(C)濃度測定部8で測定された処理水の汚濁物濃度を予め定められた処理水の汚濁物濃度の目標値にフィードバック制御する演算量に、予め定められた第二係数を乗じた供給量
Next, the calculation of the calculation unit 95 will be specifically shown. The calculation unit 95 calculates the sum of the following (A), (B), and (C).
(A) Supply amount (B) constant (C) concentration measuring unit 8 obtained by multiplying the load value of the water to be treated flowing into the water treatment tank 1 measured by the load measuring unit 5 by a predetermined first coefficient. Supply amount obtained by multiplying the calculated amount of feedback control of the measured pollutant concentration of the treated water to the predetermined target value of the pollutant concentration of the treated water by a predetermined second coefficient.

尚、前記各係数は、水処理槽1から排出される処理水の汚濁物濃度が予め定められた処理水の汚濁物濃度の目標値により近づけるために最適な凝集剤の供給量を、上記演算において得ることができるように予め設定された値である。 It should be noted that each of the above coefficients is calculated by calculating the optimum amount of coagulant to be supplied so that the pollutant concentration of the treated water discharged from the water treatment tank 1 is closer to the predetermined target value of the pollutant concentration of the treated water. It is a preset value so that it can be obtained in.

例えば、負荷測定部5に流量計とリン酸態リン濃度計とを備えており、濃度測定部8にリン酸態リン濃度計を備えている場合、算出部95では、供給部46から供給される凝集剤の供給量の設定値QF[g/nm]を以下に示す式(14)により算出する。
QF=k1・SIN,P・QIN+k2・(GP+GI+GD)+k3・・・(14)
SIN,P;水処理槽へ流入する被処理水のリン酸態リン濃度測定値[mg/L]
QIN;流量測定値[m/hr]
k1,k2,k3;定数 尚、k1は第一係数、k2は第二係数である。
For example, when the load measuring unit 5 is provided with a flow meter and a phosphoric acid phosphorus concentration meter and the concentration measuring unit 8 is provided with a phosphoric acid phosphorus concentration meter, the calculation unit 95 is supplied from the supply unit 46. The set value QF [g / nm 3 ] of the supply amount of the coagulant is calculated by the following formula (14).
QF = k1 · SIN, P · QIN + k2 · (GP + GI + GD) + k3 ... (14)
SIN, P; Measured value of phosphoric acid phosphorus concentration in the water to be treated flowing into the water treatment tank [mg / L]
QIN; flow rate measurement value [m 3 / hr]
k1, k2, k3; constants k1 is the first coefficient and k2 is the second coefficient.

また、GP、GI、GDは以下に示す式(15)、(16)、(17)のように設定される。
GP=KP・(SOUT,P−S0,P)・・・(15)
GI=KP/TI・∫(SOUT,P−S0,P)dt・・・(16)
GD=KP・TD・d(SOUT,P−S0,P)/dt・・・(17)
SOUT,P;流出水のリン酸態リン濃度測定値[mg/L]
S0,P;流出水のリン酸態リン濃度の目標値[mg/L]
KP;比例ゲイン
TI;積分時間
TD;微分時間係数
Further, GP, GI and GD are set as the following equations (15), (16) and (17).
GP = KP · (SOUT, P-S0, P) ... (15)
GI = KP / TI · ∫ (SOUT, P-S0, P) dt ... (16)
GD = KP · TD · d (SOUT, P-S0, P) / dt ... (17)
SOUT, P; Phosphate phosphorus concentration measurement value of effluent [mg / L]
S0, P; Target value of phosphate phosphorus concentration in effluent [mg / L]
KP; proportional gain TI; integration time TD; differential time coefficient

k1、k2、k3は一度設定した後も、水温または目標とする処理水の変化などに応じて適宜最適な値を設定し直すことができる。算出部95では、算出部95に組み込まれた凝集剤の供給量の演算式と、予測部7で算出された第二時点の第二負荷値と、濃度測定部8で測定された処理水の汚濁物濃度を基に、供給部46から供給する凝集剤の供給量の目標値を算出する。 Even after k1, k2, and k3 are set once, the optimum values can be appropriately set again according to changes in the water temperature or the target treated water. In the calculation unit 95, the calculation formula of the supply amount of the coagulant incorporated in the calculation unit 95, the second load value at the second time point calculated by the prediction unit 7, and the treated water measured by the concentration measurement unit 8. Based on the pollutant concentration, the target value of the supply amount of the coagulant supplied from the supply unit 46 is calculated.

算出部95に組み込まれた凝集剤の供給量の演算式は、現在(第一時点)の被処理水の第一負荷値に対して最適な凝集剤の供給量をするための演算式であるが、算出部95では、上記演算式に現在の被処理水の第一負荷値“SIN,P、QIN”ではなく、第二時点の被処理水の第二負荷値“S’IN,P、Q’IN”を入力して、凝集剤の供給量を算出する。 The calculation formula for the amount of coagulant supplied incorporated in the calculation unit 95 is a formula for calculating the optimum amount of coagulant supply with respect to the current (first time point) initial load value of the water to be treated. However, in the calculation unit 95, instead of the current first load value "SIN, P, QIN" of the water to be treated, the second load value "S'IN, P, of the water to be treated at the second time point" is used in the above calculation formula. Enter "Q'IN" to calculate the amount of coagulant supplied.

具体的に、上記に示した式(14)を基に説明する。上記に示した式(14)に被処理水の現在の第一負荷値“SIN,P、QIN”を入力することで、現在の被処理水の第一負荷値に対して最適な凝集剤の供給量が算出される。しかし、算出部95では、被処理水の第二負荷値“S’IN,P、Q’IN”を入力して、供給部46から供給する凝集剤の供給量を算出する。 Specifically, it will be described based on the equation (14) shown above. By inputting the current initial load value "SIN, P, QIN" of the water to be treated into the formula (14) shown above, the optimum flocculant for the current first load value of the water to be treated can be obtained. The supply amount is calculated. However, the calculation unit 95 inputs the second load value "S'IN, P, Q'IN" of the water to be treated, and calculates the supply amount of the coagulant supplied from the supply unit 46.

上記のようにして算出された凝集剤の供給量の設定値QFは信号線951を介して供給部46に伝えられる。供給部46では、水処理槽1内に凝集剤が供給される。負荷測定部5で現在の第一負荷値が測定された後、予測部7での所定時間先の第二負荷値を予測し、算出部95での処理剤の供給量の目標値を算出、供給部46での凝集剤の供給量制御を経て、目標の供給量の凝集剤が水処理槽1に供給される。 The set value QF of the supply amount of the flocculant calculated as described above is transmitted to the supply unit 46 via the signal line 951. In the supply unit 46, the flocculant is supplied into the water treatment tank 1. After the current first load value is measured by the load measurement unit 5, the prediction unit 7 predicts the second load value at a predetermined time ahead, and the calculation unit 95 calculates the target value of the supply amount of the treatment agent. The coagulant in the target supply amount is supplied to the water treatment tank 1 through the control of the supply amount of the coagulant in the supply unit 46.

この時、負荷測定部5で現在の第一負荷値が測定された後に、算出部95で算出された供給量の凝集剤が実際に供給されるまでには、流入予測の演算時間、凝集剤の供給量の演算時間、供給部46の制御時間などを含めたタイムラグが生じる。ここで、このタイムラグが予測部7における第二負荷値の予測の所定時間先よりも短くなるよう、前記所定時間を設定する必要がある。これにより、第二負荷値が実際に予測値に到達する前に、前もって凝集剤の供給量を制御することが可能となる。 At this time, after the current first load value is measured by the load measuring unit 5, the calculation time for inflow prediction and the coagulant until the coagulant of the supply amount calculated by the calculation unit 95 is actually supplied. There is a time lag including the calculation time of the supply amount of the above, the control time of the supply unit 46, and the like. Here, it is necessary to set the predetermined time so that the time lag is shorter than the predetermined time ahead of the prediction of the second load value by the prediction unit 7. This makes it possible to control the supply amount of the flocculant in advance before the second load value actually reaches the predicted value.

また、本実施の形態ではリンの浄化について述べたが、リン以外にフッ素、ホウ素、重金属など、凝集剤を供給することで化学的に凝集させることが可能な汚濁物に対しても、同様の処理が適用できる。 Further, although the purification of phosphorus has been described in the present embodiment, the same applies to pollutants such as fluorine, boron and heavy metals that can be chemically agglomerated by supplying a coagulant in addition to phosphorus. Processing can be applied.

上記に示した式(14)に第二時点の被処理水の第二負荷値を入力することにより、第二時点の被処理水の第二負荷値が増加する場合には、第二時点の被処理水の第二負荷値の増加が予測された段階(第一時点と第二時点との間の第三時点)で、実際に負荷値が増加する前から事前に凝集剤の供給量を増加させておくことにより、水処理槽1および沈殿槽2内に凝集剤を十分供給した状態で高負荷の被処理水が水処理槽1に流入する。 When the second load value of the water to be treated at the second time point is increased by inputting the second load value of the water to be treated at the second time point into the equation (14) shown above, the second load value of the water to be treated at the second time point is increased. At the stage where an increase in the second load value of the water to be treated is predicted (the third time point between the first time point and the second time point), the amount of coagulant supplied is set in advance before the load value actually increases. By increasing the number, a high load of water to be treated flows into the water treatment tank 1 in a state where the coagulant is sufficiently supplied into the water treatment tank 1 and the settling tank 2.

これにより、高負荷の被処理水が即座に浄化させるため、負荷値の増加による処理水の水質の悪化を抑えることができる。一方、第二時点の被処理水の第二負荷値が減少する場合には、負荷値の減少が予測された段階(第一時点と第二時点との間の第三時点)で、実際に負荷値が低下する前から凝集剤の供給量が減少することになる。前もって凝集剤の供給量を低下することで一時的に処理水の水質は悪化するが、その後は負荷の減少した被処理水が水処理槽1に流入するため、処理水の水質は管理上限値を超えることなく、処理水の水質は良好に保った状態で過剰な凝集剤の供給量を抑制できる。 As a result, the high-load treated water is immediately purified, so that deterioration of the treated water quality due to an increase in the load value can be suppressed. On the other hand, when the second load value of the water to be treated at the second time point decreases, it is actually at the stage where the decrease in the load value is predicted (the third time point between the first time point and the second time point). The amount of coagulant supplied will decrease even before the load value decreases. The water quality of the treated water temporarily deteriorates by reducing the supply amount of the coagulant in advance, but after that, the water to be treated with a reduced load flows into the water treatment tank 1, so that the water quality of the treated water is the upper limit of control. The amount of excess flocculant supplied can be suppressed while maintaining good water quality of the treated water.

さらに、濃度測定部8で測定された汚濁物濃度を予め定められた汚濁物濃度の目標値にフィードバック制御する演算により、汚濁物濃度を目標値に対して精緻に制御することが可能になるため、負荷値の変動に対する処理水の水質の変動をさらに抑制できるだけでなく、過不足ない凝集剤の供給により凝集剤の使用量を抑制できる。 Further, the pollutant concentration measured by the concentration measuring unit 8 can be precisely controlled with respect to the target value by the calculation of feedback control of the pollutant concentration to a predetermined target value of the pollutant concentration. Not only can the fluctuation of the water quality of the treated water due to the fluctuation of the load value be further suppressed, but also the amount of the coagulant used can be suppressed by supplying the coagulant in just proportion.

以上のように、水処理槽1に流入する被処理水の第二負荷値を予測し、予測の被処理水の第二負荷値に基づいて、第三時点にて水処理槽1内に供給する凝集剤の供給量を設定するので、被処理水の第二負荷値が増加する際には予め凝集剤の供給量を増加させることで処理水の水質の悪化を抑制できる。また、被処理水の第二負荷値が減少する際には予め凝集剤の供給量を低下させることで処理水の水質が管理上限値を超えない範囲で過剰な凝集剤の供給を抑制できる。 As described above, the second load value of the water to be treated flowing into the water treatment tank 1 is predicted, and based on the predicted second load value of the water to be treated, it is supplied into the water treatment tank 1 at the third time point. Since the supply amount of the coagulant to be treated is set, deterioration of the water quality of the treated water can be suppressed by increasing the supply amount of the coagulant in advance when the second load value of the water to be treated increases. Further, when the second load value of the water to be treated decreases, the supply amount of the coagulant can be reduced in advance so that the excessive supply of the coagulant can be suppressed within the range where the water quality of the treated water does not exceed the control upper limit value.

さらに、処理水の水質を可能な限り良好に保ちたい場合、被処理水の第二負荷値の減少時に事前に凝集剤の供給量を減少させることによる一時的な処理水の水質の悪化を防止するため、負荷値増加時のみ被処理水の第二負荷値“S’IN,P、Q’IN”を入力し、負荷値減少時には現在の被処理水の第一負荷値“SIN,P、QIN”を入力するという制御を行うこともできる。 Furthermore, when it is desired to maintain the quality of the treated water as good as possible, it is possible to prevent the temporary deterioration of the quality of the treated water by reducing the supply amount of the coagulant in advance when the second load value of the treated water is reduced. Therefore, the second load value "S'IN, P, Q'IN" of the water to be treated is input only when the load value increases, and the first load value "SIN, P," of the current water to be treated decreases when the load value decreases. It is also possible to control the input of "QIN".

また、可能な限り凝集剤の供給を抑制して運転コストを最小化したい場合、被処理水の第二負荷値の増加時に事前に凝集剤の供給量を増加させることは運転コストの増加に繋がるため、被処理水の第二負荷値の減少時のみ予測の被処理水の第二負荷値“S’IN,P、Q’IN”を入力し、被処理水の第二負荷値の増加時には現在の被処理水の第一負荷値を“SIN,P、QIN”に入力するという制御を行うこともできる。 Further, when it is desired to suppress the supply of the coagulant as much as possible to minimize the operating cost, increasing the supply amount of the coagulant in advance when the second load value of the water to be treated increases leads to an increase in the operating cost. Therefore, the predicted second load value "S'IN, P, Q'IN" is input only when the second load value of the water to be treated decreases, and when the second load value of the water to be treated increases. It is also possible to control that the current initial load value of the water to be treated is input to "SIN, P, QIN".

上記のように構成された実施の形態4の水処理装置によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、
前記被処理水の前記水処理として、前記被処理水の汚濁物を化学的凝集反応により沈殿分離を行う場合、
前記供給部は、前記処理剤として凝集剤を前記水処理槽に供給するので、
被処理水の汚濁物と凝集剤との化学的凝集反応により沈殿分離の水処理における処理水の水質の変動抑制および運転コストの低減を達成できる。
According to the water treatment apparatus of the fourth embodiment configured as described above, it goes without saying that the same effect as that of each of the above-described embodiments is obtained.
When the pollutants of the water to be treated are precipitated and separated by a chemical agglutination reaction as the water treatment of the water to be treated.
Since the supply unit supplies the coagulant as the treatment agent to the water treatment tank,
By the chemical agglutination reaction between the pollutants of the water to be treated and the coagulant, it is possible to suppress fluctuations in the water quality of the treated water and reduce the operating cost in the water treatment for precipitation separation.

本開示は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらに、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present disclosure describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 水処理槽、101 配管、102 配管、103 配管、104 配管、105 配管、2 沈殿槽、31 第一散気部、32 第二散気部、33 第三散気部、41 第一供給部、411 配管、42 第二供給部、421 配管、43 第三供給部、431 配管、44 供給部、45 処理剤タンク、451 配管、46 供給部、461 配管、5 負荷測定部、51 信号線、52 信号線、6 記録部、61 信号線、7 予測部、71 信号線、8 濃度測定部、81 信号線、91 第一算出部、911 信号線、92 第二算出部、921 信号線、93 第三算出部、931 信号線、94 算出部、941 信号線、95 算出部、951 信号線。 1 Water treatment tank, 101 piping, 102 piping, 103 piping, 104 piping, 105 piping, 2 settling tank, 31 first air diffuser, 32 second air diffuser, 33 third air diffuser, 41 first supply unit 411 piping, 42 second supply section, 421 piping, 43 third supply section, 431 piping, 44 supply section, 45 treatment agent tank, 451 piping, 46 supply section, 461 piping, 5 load measurement section, 51 signal line, 52 signal line, 6 recording unit, 61 signal line, 7 prediction unit, 71 signal line, 8 concentration measurement unit, 81 signal line, 91 first calculation unit, 911 signal line, 92 second calculation unit, 921 signal line, 93 Third calculation unit, 931 signal line, 94 calculation unit, 941 signal line, 95 calculation unit, 951 signal line.

Claims (7)

水処理槽に流入する被処理水に処理剤を供給して水処理を行う水処理装置において、
第一時点において前記水処理槽に流入する前記被処理水の負荷値を第一負荷値として測定する負荷測定部と、
前記負荷測定部が測定した前記第一負荷値に基づいて、前記第一時点の後の第二時点における前記水処理槽に流入する前記被処理水の負荷値を第二負荷値として予測する予測部と、
前記第二負荷値が前記第一負荷値よりも増加している場合は、前記第二負荷値に対応した前記処理剤の供給量を算出し、前記第二負荷値が前記第一負荷値よりも減少している場合は、前記第一負荷値に対応した前記処理剤の供給量を算出し、当該算出した供給量の前記処理剤を前記第一時点と前記第二時点との間の第三時点に前記水処理槽内の前記被処理水に供給する供給部とを備える水処理装置。
In a water treatment device that performs water treatment by supplying a treatment agent to the water to be treated that flows into the water treatment tank.
A load measuring unit that measures the load value of the water to be treated flowing into the water treatment tank as the first load value at the first time point,
Based on the first load value measured by the load measuring unit, the load value of the water to be treated flowing into the water treatment tank at the second time point after the first time point is predicted as the second load value. Department and
When the second load value is larger than the first load value, the supply amount of the treatment agent corresponding to the second load value is calculated, and the second load value is higher than the first load value. If the amount is also decreasing, the supply amount of the treatment agent corresponding to the first load value is calculated, and the treatment agent of the calculated supply amount is used as the second time between the first time point and the second time point. A water treatment apparatus including a supply unit for supplying the water to be treated in the water treatment tank at three time points.
前記水処理槽に活性汚泥が蓄えられている場合、
前記供給部は、前記処理剤として空気を前記水処理槽に供給する請求項1に記載の水処理装置。
When activated sludge is stored in the water treatment tank,
The water treatment apparatus according to claim 1, wherein the supply unit supplies air as the treatment agent to the water treatment tank.
前記被処理水の前記水処理として、有機物除去、臭気物除去、ウイルス除去、および、脱色の少なくともいずれか1つを行う場合、
前記供給部は、前記処理剤としてオゾンガスを前記水処理槽に供給する請求項1に記載の水処理装置。
When at least one of organic matter removal, odorous matter removal, virus removal, and decolorization is performed as the water treatment of the water to be treated.
The water treatment apparatus according to claim 1, wherein the supply unit supplies ozone gas as the treatment agent to the water treatment tank.
前記被処理水の前記水処理として、前記被処理水の汚濁物を化学的凝集反応により沈殿分離を行う場合、
前記供給部は、前記処理剤として凝集剤を前記水処理槽に供給する請求項1に記載の水処理装置。
When the pollutants of the water to be treated are precipitated and separated by a chemical agglutination reaction as the water treatment of the water to be treated.
The water treatment apparatus according to claim 1, wherein the supply unit supplies a flocculant as the treatment agent to the water treatment tank.
前記負荷測定部は、前記負荷値を前記水処理槽に流入される前記被処理水の流量にて測定するか、または、前記負荷値を前記水処理槽に流入される前記被処理水の汚濁物濃度にて測定するか、または、前記負荷値を前記水処理槽に流入される前記被処理水の流量と前記水処理槽に流入される前記被処理水の汚濁物濃度との積にて測定する請求項1から請求項4のいずれか1項に記載の水処理装置。 The load measuring unit measures the load value by the flow rate of the water to be treated flowing into the water treatment tank, or measures the load value by polluting the water to be treated flowing into the water treatment tank. It is measured by the substance concentration, or the load value is measured by the product of the flow rate of the water to be treated flowing into the water treatment tank and the pollutant concentration of the water to be treated flowing into the water treatment tank. The water treatment apparatus according to any one of claims 1 to 4 , which is to be measured. 前記水処理槽にて前記被処理水が水処理された処理水の汚濁物濃度を測定する濃度測定部を備え、
前記供給部は、前記濃度測定部にて測定された前記処理水の汚濁物濃度を加味して前記処理剤の供給量を供給する請求項1から請求項5のいずれか1項に記載の水処理装置。
A concentration measuring unit for measuring the pollutant concentration of the treated water in which the water to be treated is treated with water in the water treatment tank is provided.
The water according to any one of claims 1 to 5 , wherein the supply unit supplies a supply amount of the treatment agent in consideration of the pollutant concentration of the treated water measured by the concentration measuring unit. Processing equipment.
被処理水に処理剤を供給して水処理を行う水処理方法において、
第一時点における前記被処理水の負荷値を第一負荷値として測定する第一工程と、
前記第一工程にて測定した前記第一負荷値に基づいて、前記第一時点の後の第二時点における前記被処理水の負荷値を第二負荷値として予測する第二工程と、
前記第二負荷値が前記第一負荷値よりも増加している場合は、前記第二負荷値に対応した前記処理剤の供給量を算出し、前記第二負荷値が前記第一負荷値よりも減少している場合は、前記第一負荷値に対応した前記処理剤の供給量を算出し、当該算出した供給量の前記処理剤を前記第一時点と前記第二時点との間の第三時点に前記被処理水に供給する第三工程とを備える水処理方法。
In a water treatment method in which a treatment agent is supplied to water to be treated to perform water treatment.
The first step of measuring the load value of the water to be treated as the first load value at the first time point,
Based on the first load value measured in the first step, the second step of predicting the load value of the water to be treated at the second time point after the first time point as the second load value, and
When the second load value is larger than the first load value, the supply amount of the treatment agent corresponding to the second load value is calculated, and the second load value is higher than the first load value. If the amount is also decreasing, the supply amount of the treatment agent corresponding to the first load value is calculated, and the treatment agent of the calculated supply amount is used as the second time between the first time point and the second time point. A water treatment method comprising a third step of supplying the water to be treated at three time points.
JP2020533158A 2019-02-20 2019-02-20 Water treatment equipment and water treatment method Active JP6866055B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006348 WO2020170364A1 (en) 2019-02-20 2019-02-20 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JPWO2020170364A1 JPWO2020170364A1 (en) 2021-03-11
JP6866055B2 true JP6866055B2 (en) 2021-04-28

Family

ID=72143585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533158A Active JP6866055B2 (en) 2019-02-20 2019-02-20 Water treatment equipment and water treatment method

Country Status (3)

Country Link
JP (1) JP6866055B2 (en)
SG (1) SG11202108193VA (en)
WO (1) WO2020170364A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209905B1 (en) * 2022-03-14 2023-01-20 三菱電機株式会社 Water treatment system, aeration amount control device, and aeration amount control method
WO2023175825A1 (en) * 2022-03-17 2023-09-21 三菱電機株式会社 Aeration amount controller and aeration amount control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648231B2 (en) * 1974-03-15 1981-11-14
JPS6154283A (en) * 1984-08-21 1986-03-18 Kurita Water Ind Ltd Dephosphorizing method
JPH06102195B2 (en) * 1989-09-01 1994-12-14 建設省土木研究所長 Method for controlling phosphorus concentration in wastewater
JPH11244896A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Water treating device

Also Published As

Publication number Publication date
WO2020170364A1 (en) 2020-08-27
SG11202108193VA (en) 2021-09-29
JPWO2020170364A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP3961835B2 (en) Sewage treatment plant water quality controller
JP4334317B2 (en) Sewage treatment system
KR20050074327A (en) Apparatus for controlling aeration air volume used in the sewage treatment plant
JP6866055B2 (en) Water treatment equipment and water treatment method
JP3691650B2 (en) Water treatment method and control device
JP4509579B2 (en) Aeration air volume control device of sewage treatment plant
JP2012200705A5 (en)
JP6404999B2 (en) Organic wastewater treatment equipment
JP6974795B2 (en) Aeration air volume control method and equipment for aeration tanks in sewage treatment equipment
JP2004249200A (en) Water quality control device of sewerage equipment
KR20180104413A (en) Oxygen control system for activated sludge process using harmony search algorithm
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
JP4008694B2 (en) Sewage treatment plant water quality controller
JP6334244B2 (en) Water treatment process control system
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP6805002B2 (en) Water treatment control device and water treatment system
JP6375257B2 (en) Water treatment equipment
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JPH0938682A (en) Biological water treatment
JP7282149B2 (en) Water treatment device and water treatment method
JP7424997B2 (en) water treatment equipment
Karches Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling. Energies 2022, 15, 6113
JP2022107994A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200616

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210219

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R151 Written notification of patent or utility model registration

Ref document number: 6866055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250