JP2012200705A5 - - Google Patents

Download PDF

Info

Publication number
JP2012200705A5
JP2012200705A5 JP2011069545A JP2011069545A JP2012200705A5 JP 2012200705 A5 JP2012200705 A5 JP 2012200705A5 JP 2011069545 A JP2011069545 A JP 2011069545A JP 2011069545 A JP2011069545 A JP 2011069545A JP 2012200705 A5 JP2012200705 A5 JP 2012200705A5
Authority
JP
Japan
Prior art keywords
control
tank
aerobic tank
target
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011069545A
Other languages
Japanese (ja)
Other versions
JP2012200705A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011069545A priority Critical patent/JP2012200705A/en
Priority claimed from JP2011069545A external-priority patent/JP2012200705A/en
Publication of JP2012200705A publication Critical patent/JP2012200705A/en
Publication of JP2012200705A5 publication Critical patent/JP2012200705A5/ja
Pending legal-status Critical Current

Links

Description

同じような効果が得られる方式として、例えば、好気槽、無酸素槽、再曝気槽、沈殿池の順で窒素含有排水を通水する内生硝化脱窒法もある。この場合、好気槽3では、散気装置12から供給される酸素によりアンモニア性窒素が硝化され、無酸素槽2では、活性汚泥中に吸着蓄積された有機物成分を水素供与体として脱窒が行われる。排水中の有機物濃度が低い場合、もしくは排水が無機性の場合は、外部から無酸素槽2に水素供与体を添加することにより脱窒が進められる。
また、窒素とリンを含有する排水の場合には、窒素、リン同時除去方法が用いられる。 例えば、嫌気槽、無酸素槽2、好気槽3の順で窒素含有排水を通水する嫌気―無酸素―好気法などである。
これらの窒素含有排水を生物学的に処理する施設では、窒素含有排水中に含まれるアンモニア性窒素を硝化するために、好気槽3において酸素含有気体の曝気を行っており、曝気風量は、曝気風量一定制御、もしくは流入水量比例制御、又は溶存酸素濃度(以下、DOと称す)一定制御などによって制御されているのが一般的である。
As a method similar effect can be obtained, for example, the aerobic tank 3, anoxic tank 2, re-aeration tank, there is also a raw nitrification denitrification among you passed through a nitrogen-containing waste water in the order of settling tank 4. In this case, in the aerobic tank 3, ammonia nitrogen is nitrified by oxygen supplied from the air diffuser 12, and in the anoxic tank 2, denitrification is performed using the organic component adsorbed and accumulated in the activated sludge as a hydrogen donor. Done. When the concentration of organic matter in the wastewater is low or the wastewater is inorganic, denitrification proceeds by adding a hydrogen donor to the anoxic tank 2 from the outside.
In the case of wastewater containing nitrogen and phosphorus, a simultaneous nitrogen and phosphorus removal method is used. For example, anaerobic tank, anoxic tank 2, anaerobic you passed through a nitrogen-containing waste water in the order of the aerobic tank 3 - and the like aerobic method - anoxic.
In a facility for biologically treating these nitrogen-containing wastewater, oxygen-containing gas is aerated in the aerobic tank 3 in order to nitrify ammonia nitrogen contained in the nitrogen-containing wastewater, It is generally controlled by aeration air volume constant control, inflow water volume proportional control, or dissolved oxygen concentration (hereinafter referred to as DO) constant control.

好気槽へ流入する流入水のアンモニア性窒素濃度(C1)と、好気槽最後部区画における目標アンモニア性窒素濃度(SVNH4)から前述の(5)式を用いて、好気槽最後部区画における目標アンモニア性窒素濃度(SVNH4)を実現するために必要な目標硝化速度(SVdSNH4/dt)を求める。
計算した目標硝化速度(SVdSNH4/dt)、定数Kの値、目標アンモニア性窒素濃度(SV NH4)を前述の(6)式に代入し、SVDOを求める。
以上の計算を溶存酸素・曝気風量演算装置22にて行い、目標アンモニア性窒素濃度を実現するために必要なDO設定制御のSVDOもしくは曝気風量を演算し、演算されたSVDOもしくは曝気風量から求められる制御信号を、SVDOよりも測定されたDOが高い場合には曝気風量を減らし、低い場合には曝気風量を増やす制御を行う溶存酸素制御手段14へ送る。
硝化速度演算装置21と溶存酸素・曝気風量演算装置22と溶存酸素制御手段14により、DO設定制御手段が構築されており、計算されたSVDOに基づき、好気槽3のDOは制御される。
From the ammonia nitrogen concentration (C1) of the inflow water flowing into the aerobic tank and the target ammonia nitrogen concentration (SV NH4 ) in the last section of the aerobic tank, using the above formula (5), the last part of the aerobic tank A target nitrification rate (SVdS NH4 / dt) necessary to achieve the target ammoniacal nitrogen concentration (SV NH4 ) in the compartment is determined.
The calculated target nitrification rate (SVdS NH4 / dt), the value of the constant K, and the target ammonia nitrogen concentration (SV S NH4 ) are substituted into the aforementioned equation (6) to obtain SVDO.
The above calculation is performed by the dissolved oxygen / aeration air volume calculation device 22, and the DODO control SVDO or aeration air volume necessary for realizing the target ammoniacal nitrogen concentration is calculated and obtained from the calculated SVDO or aeration air volume. The control signal is sent to the dissolved oxygen control means 14 that performs control to reduce the aeration air volume when the measured DO is higher than the SVDO, and to increase the aeration air volume when the DO is low.
The DO setting control means is constructed by the nitrification speed calculating device 21, the dissolved oxygen / aeration air amount calculating device 22, and the dissolved oxygen control means 14, and the DO of the aerobic tank 3 is controlled based on the calculated SVDO.

以下に本発明を用いて施設を制御した例を示す。
実施例1
嫌気−無酸素−好気法のパイロットプラントにおける実施例を示す。本実施例は、本発明の方法にて制御した結果である。
図6及び図7に水温条件の異なる時期での制御状況を示す。
本処理設備は、嫌気槽1槽(0.65m)、無酸素槽2槽(0.96m×2)、好気槽3槽(0.96m×3)からなり、流入水量8.25m/d、硝化液循環率は流入水量に対して150%、汚泥返送率は流入水量に対して50%で運転されているHRT15.9時間の嫌気−無酸素−好気法のパイロットプラントである。
図7の6/15 10:00を例にとって計算する。無酸素槽2区画目のアンモニア性窒素濃度が4.8mg/L、好気槽1区画目のアンモニア性窒素濃度が3.6mg/Lのとき、好気槽1区画目の滞留時間は0.93hrであった。(1)式により、好気槽1区画目の硝化速度は1.3mg/L・hrとなった。このとき、好気槽1区画目のDOは、0.12mg/Lであった。前述の(4)式の溶存酸素の飽和定数Koを0.60、アンモニア性窒素の飽和定数を0.45としたとき、(4)式により定数Kは8.8hr−1と計算される。
Examples of controlling facilities using the present invention are shown below.
Example 1
The Example in the pilot plant of an anaerobic-anoxic-aerobic method is shown. This example is the result of control by the method of the present invention.
6 and 7 show the control status at different times of the water temperature condition.
This treatment equipment consists of 1 anaerobic tank (0.65 m 3 ), 2 anaerobic tanks (0.96 m 3 × 2) and 3 aerobic tanks (0.96 m 3 × 3). HRT 15.9 hours anaerobic-anoxic-aerobic pilot plant operating at 25 m 3 / d, nitrifying liquid circulation rate of 150% with respect to inflow water, sludge return rate with 50% of inflow water It is.
The calculation is performed using 6/15 10:00 in FIG. 7 as an example. When the ammoniacal nitrogen concentration in the second section of the anaerobic tank is 4.8 mg / L and the ammoniacal nitrogen concentration in the first section of the aerobic tank is 3.6 mg / L, the residence time in the first section of the aerobic tank is 0.8. It was 93 hr. According to the formula (1), the nitrification rate in the first compartment of the aerobic tank was 1.3 mg / L · hr. At this time, the DO in the first compartment of the aerobic tank was 0.12 mg / L. When the saturation constant Ko 2 of dissolved oxygen in the above equation (4) is 0.60 and the saturation constant of ammoniacal nitrogen is 0.45, the constant K is calculated as 8.8 hr −1 according to the equation (4). .

処理水の目標アンモニア性窒素濃度を0.5mg/Lとすると、(5)式に無酸素槽2区画目のアンモニア性窒素濃度4.8mg/Lと目標アンモニア性窒素濃度0.5mg/Lと好気槽全体の滞留時間2.8hrを代入して目標硝化速度1.5mg/L・hrが計算される。計算された目標硝化速度を(6)式に代入し、目標溶存酸素濃度SVDO0.3mg/Lを得て、SVDOを溶存酸素の制御値として制御を行った。なお、実験ではDOの制御下限を0.5mg/Lとしたため、実際にはDOは0.5mg/Lとして制御されている。これを1時間毎に繰り返した結果を図6及び図7に示す。
本パイロットプラントでは、本発明のDO設定制御(実験系)とDO一定制御(対照系)を比較した。図6のように、水温が18℃の条件でDOは1.0mg/Lを中心に制御され、処理水NH−N濃度も一時的に1.1mg/Lまで上昇するも、ほぼ0.4〜0.5mg/Lであった。このとき曝気風量はDO一定制御(1.5mg/L)における日平均風量が8.8m/hだったのに対して、本発明のDO設定制御を実施した場合には7.9m/hであり、本発明のDO設定制御を実施することで、DO一定制御を実施したときよりも10%程度曝気風量を低減することができた。
When the target ammonia nitrogen concentration of the treated water is 0.5 mg / L, the ammonia nitrogen concentration in the second section of the oxygen-free tank is 4.8 mg / L and the target ammonia nitrogen concentration is 0.5 mg / L in equation (5). The target nitrification rate of 1.5 mg / L · hr is calculated by substituting the residence time of the entire aerobic tank of 2.8 hr . The calculated target nitrification rate was substituted into equation (6) to obtain a target dissolved oxygen concentration SVDO 0.3 mg / L, and control was performed using SVDO as a control value of dissolved oxygen. In the experiment, since the lower control limit of DO was set to 0.5 mg / L, the DO is actually controlled to be 0.5 mg / L. The results of repeating this every hour are shown in FIGS.
In this pilot plant, the DO setting control (experimental system) of the present invention and the DO constant control (control system) were compared. As shown in FIG. 6, DO is controlled around 1.0 mg / L under the condition where the water temperature is 18 ° C., and the concentration of treated water NH 4 -N temporarily rises to 1.1 mg / L. It was 4 to 0.5 mg / L. While the daily average air flow in this case aeration amount DO constant control (1.5 mg / L) was 8.8 m 3 / h, when the DO setting control of the present invention was carried out in 7.9 m 3 / h, and by performing the DO setting control of the present invention, it was possible to reduce the aeration air volume by about 10% compared to when the DO constant control was performed.

実施例2
次に、実施例1と同じ施設において、本発明の別の方法にて制御した結果を示す。
図8に制御状況を示す。
図8の、6/12 13:00を例にとって計算する。好気槽1区画目のアンモニア性窒素濃度が3.6mg/L、好気槽2区画目のアンモニア性窒素濃度が1.9mg/Lのとき、好気槽2区画目の滞留時間は0.93hrであった。(1)式により、好気槽2区画目の硝化速度は1.8mg/L・hrとなった。このとき、好気槽2区画目のDOは0.26mg/Lであった。前述の(4)式の溶存酸素の飽和定数Koを0.60、アンモニア性窒素の飽和定数を0.45としたとき、(4)式により定数Kは7.5hr−1と計算される。
Example 2
Next, the results of control by another method of the present invention in the same facility as in Example 1 are shown.
FIG. 8 shows the control status.
The calculation is performed using 6/12 13:00 in FIG. 8 as an example. When the ammoniacal nitrogen concentration in the first compartment of the aerobic tank is 3.6 mg / L and the ammoniacal nitrogen concentration in the second compartment of the aerobic tank is 1.9 mg / L, the residence time in the second compartment of the aerobic tank is 0.00. It was 93 hr. According to the formula (1), the nitrification rate in the second compartment of the aerobic tank was 1.8 mg / L · hr. At this time, the DO in the second compartment of the aerobic tank was 0.26 mg / L. When the saturation constant Ko 2 of dissolved oxygen in the above equation (4) is 0.60 and the saturation constant of ammoniacal nitrogen is 0.45, the constant K is calculated as 7.5 hr −1 according to the equation (4). .

処理水の目標アンモニア性窒素濃度を0.5mg/Lとすると、(5)式に、好気槽1区画目のアンモニア性窒素濃度3.6mg/Lと、目標アンモニア性窒素濃度0.5mg/Lと、好気槽全体の滞留時間2.8hrを代入して、目標硝化速度1.1mg/L・hrが計算される。計算された目標硝化速度を(6)式に代入し、目標溶存酸素濃度SVDO0.23mg/Lを得て、SVDOを溶存酸素の制御値として制御を行った。これを1時間毎に繰り返した結果を図8に示す。
本処理施設では、本発明のDO設定制御(実験系)とDO一定制御(対照系)を比較した。
図8に示すように、水温23℃の条件で、DOは0.5〜1.0mg/Lで制御され、処理水NH−Nも0.1〜0.6mg/Lで制御されており、曝気風量もDO一定制御の場合が日平均7.2m/h、本発明のDO設定制御の場合が5.9m/hであり、DO一定制御を実施したときに比べて18%程度低減できた。表2にその結果を示す。
When the target ammonia nitrogen concentration of the treated water is 0.5 mg / L, the ammonia nitrogen concentration 3.6 mg / L in the first section of the aerobic tank and the target ammonia nitrogen concentration 0.5 mg / L A target nitrification rate of 1.1 mg / L · hr is calculated by substituting L and the residence time of the entire aerobic tank of 2.8 hr . The calculated target nitrification rate was substituted into equation (6) to obtain a target dissolved oxygen concentration SVDO 0.23 mg / L, and control was performed using SVDO as a control value of dissolved oxygen. The result of repeating this every hour is shown in FIG.
In this treatment facility, the DO setting control (experimental system) of the present invention was compared with the DO constant control (control system).
As shown in FIG. 8, under the condition of a water temperature of 23 ° C., DO is controlled at 0.5 to 1.0 mg / L, and treated water NH 4 -N is also controlled at 0.1 to 0.6 mg / L. In addition, the aeration air volume is 7.2 m 3 / h daily in the case of DO constant control, and 5.9 m 3 / h in the case of DO setting control of the present invention, which is about 18% compared to when DO constant control is performed. Reduced. Table 2 shows the results.

1:流入水路、2:無酸素槽、3:好気槽、4:最終沈殿池、5:返送汚泥水路、6:返送汚泥ポンプ、7:循環水路、8:循環ポンプ、9:ブロア、10:曝気空気管、11:曝気風量調整弁、12:散気装置、13:DO測定手段、14:溶存酸素制御手段、15:余剰汚泥ポンプ、16:攪拌装置、17:水温測定手段、18:アンモニア性窒素濃度測定手段、19:水量測定手段、20:流量演算手段、21:硝化速度演算手段、22:溶存酸素・曝気風量演算手段、23:凝集剤添加手段、2:嫌気槽、2:再曝気槽、2:アルカリ剤添加手段






1: Inflow water channel, 2: Anoxic tank, 3: Aerobic tank, 4: Final sedimentation tank, 5: Return sludge water channel, 6: Return sludge pump, 7: Circulation water channel, 8: Circulation pump, 9: Blower, 10 : Aeration air pipe, 11: aeration air volume adjusting valve, 12: aeration device, 13: DO measurement means, 14: dissolved oxygen control means, 15: surplus sludge pump, 16: stirring device, 17: water temperature measurement means, 18: Ammonia nitrogen concentration measuring means, 19: water amount measuring means, 20: flow rate calculating means, 21: nitrification rate calculating means, 22: dissolved oxygen / aeration air volume calculating means, 23: flocculant adding means, 2 5 : anaerobic tank, 2 6 : Re-aeration tank, 2 7 : Means for adding alkali agent






JP2011069545A 2011-03-28 2011-03-28 Nitrogen-containing wastewater treatment method and apparatus Pending JP2012200705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069545A JP2012200705A (en) 2011-03-28 2011-03-28 Nitrogen-containing wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069545A JP2012200705A (en) 2011-03-28 2011-03-28 Nitrogen-containing wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2012200705A JP2012200705A (en) 2012-10-22
JP2012200705A5 true JP2012200705A5 (en) 2013-09-05

Family

ID=47182224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069545A Pending JP2012200705A (en) 2011-03-28 2011-03-28 Nitrogen-containing wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2012200705A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902106B2 (en) * 2013-01-10 2016-04-13 株式会社西原環境 Waste water treatment apparatus, air flow controller used therefor, and waste water treatment method
JP2015051389A (en) * 2013-09-06 2015-03-19 株式会社日立製作所 Water treatment controller
CN105130111A (en) * 2015-08-26 2015-12-09 浙江华建尼龙有限公司 Process for treating caprolactam and domestic combined sewage by anaerobic-oxic method
JP6655975B2 (en) * 2015-12-16 2020-03-04 東京都 Aeration control device and aeration control method
JP7166058B2 (en) 2018-02-09 2022-11-07 オルガノ株式会社 Water treatment method and water treatment equipment
JP7002977B2 (en) * 2018-03-27 2022-02-10 株式会社九電工 Wastewater treatment equipment
CN109467283B (en) * 2018-12-25 2020-09-08 湖南智水环境工程有限公司 Sewage treatment equipment suitable for multi-household domestic sewage treatment
CN110204067B (en) * 2019-07-10 2024-04-16 北京首创股份有限公司 Aeration control system and method
JP7209606B2 (en) * 2019-09-25 2023-01-20 三菱電機株式会社 water treatment equipment

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189397A (en) * 1988-01-25 1989-07-28 Toshiba Corp Air quantity controller for aeration tank
JPH0691292A (en) * 1992-09-14 1994-04-05 Meidensha Corp Operation control method of aerobic-anaerobic active sludge treatment apparatus
JPH0724492A (en) * 1993-07-09 1995-01-27 Meidensha Corp Method for controlling operation of activated sludge circulation change method
JP3303475B2 (en) * 1993-10-27 2002-07-22 株式会社明電舎 Operation control method of activated sludge circulation method
JPH07299495A (en) * 1994-03-09 1995-11-14 Meidensha Corp Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH081189A (en) * 1994-06-16 1996-01-09 Meidensha Corp Anaerobic and aerobic activated sludge method
JPH08117793A (en) * 1994-10-25 1996-05-14 Meidensha Corp Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JPH08294698A (en) * 1995-04-28 1996-11-12 Meidensha Corp Measurement of activity of nitro-bacteria in sewage treatment facilities
JP3608256B2 (en) * 1995-06-30 2005-01-05 株式会社明電舎 Operation control method for circulating nitrification denitrification
JPH0947780A (en) * 1995-08-10 1997-02-18 Meidensha Corp Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
US6143246A (en) * 1998-08-18 2000-11-07 Biochem Technology, Inc. Apparatus for measuring ammonia in biochemical processes
US5976888A (en) * 1998-12-07 1999-11-02 Biochem Technology, Inc. Method for measuring NOx in biochemical processes
JP4365512B2 (en) * 2000-06-12 2009-11-18 株式会社東芝 Sewage treatment system and measurement system
JP4008694B2 (en) * 2001-11-06 2007-11-14 株式会社東芝 Sewage treatment plant water quality controller
JP2004275826A (en) * 2003-03-13 2004-10-07 Toshiba Corp Sewage treatment plant water quality monitoring and controlling device
JP4334317B2 (en) * 2003-10-23 2009-09-30 株式会社東芝 Sewage treatment system
JP4131955B2 (en) * 2004-01-13 2008-08-13 株式会社東芝 Aeration air volume control device of sewage treatment plant
JP4509579B2 (en) * 2004-01-13 2010-07-21 株式会社東芝 Aeration air volume control device of sewage treatment plant
FR2871153B1 (en) * 2004-06-02 2006-08-11 Otv Sa PROCESS FOR TREATING WATER USING A BIOLOGICAL REACTOR IN WHICH AIR SPEED INJECTED IN THE REACTOR IS REGULATED AND DEVICE THEREFOR
JP2006192382A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Water treatment system
JP4557912B2 (en) * 2006-03-17 2010-10-06 株式会社東芝 Process control system
JP5032164B2 (en) * 2007-03-12 2012-09-26 株式会社東芝 Sewage treatment system and measurement system
JP5608027B2 (en) * 2010-09-27 2014-10-15 川崎重工業株式会社 Water treatment system and aeration air volume control method thereof
JP5714355B2 (en) * 2011-02-21 2015-05-07 三機工業株式会社 Activated sludge treatment apparatus and treatment method thereof

Similar Documents

Publication Publication Date Title
JP2012200705A5 (en)
RU2671729C2 (en) Method and apparatus for nitrogen removal from wastewater
JP3961835B2 (en) Sewage treatment plant water quality controller
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
ES2856223T3 (en) Procedure and installation of biological denitrification of wastewater
JP2010269254A (en) Water treatment equipment
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP5833791B1 (en) Aeration control method for activated sludge
JP6532723B2 (en) Method and system for treating organic wastewater
Ma et al. Achieving nitritation and phosphorus removal in a continuous-flow anaerobic/oxic reactor through bio-augmentation
JP4229999B2 (en) Biological nitrogen removal equipment
Schneider et al. Nitrous oxide formation during nitritation and nitrification of high-strength wastewater
BR112020006794A2 (en) METHODS FOR THE BIOLOGICAL TREATMENT OF NITROGEN IN WASTE WATERS
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
JP4008694B2 (en) Sewage treatment plant water quality controller
JP6774341B2 (en) Nitrogen removal system and nitrogen removal method
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP2015104712A (en) Sewage treatment system and method
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP6375257B2 (en) Water treatment equipment
JP2014205104A (en) Water treatment apparatus and method
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
KR102250418B1 (en) Annamox reactor and water treatment method using the same