JP6396238B2 - Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program - Google Patents

Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program Download PDF

Info

Publication number
JP6396238B2
JP6396238B2 JP2015051316A JP2015051316A JP6396238B2 JP 6396238 B2 JP6396238 B2 JP 6396238B2 JP 2015051316 A JP2015051316 A JP 2015051316A JP 2015051316 A JP2015051316 A JP 2015051316A JP 6396238 B2 JP6396238 B2 JP 6396238B2
Authority
JP
Japan
Prior art keywords
concentration
organic
organic matter
total nitrogen
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015051316A
Other languages
Japanese (ja)
Other versions
JP2016168571A (en
Inventor
時本 寛幸
寛幸 時本
卓巳 小原
卓巳 小原
理 山中
理 山中
由紀夫 平岡
由紀夫 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015051316A priority Critical patent/JP6396238B2/en
Publication of JP2016168571A publication Critical patent/JP2016168571A/en
Application granted granted Critical
Publication of JP6396238B2 publication Critical patent/JP6396238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明の実施形態は、有機排水処理システム、有機排水の処理方法及び有機排水処理システムの制御プログラムに関する。   Embodiments described herein relate generally to an organic wastewater treatment system, an organic wastewater treatment method, and an organic wastewater treatment system control program.

従来、生活排水を浄化処理する下水処理場では、もっとも代表的なプロセスとして、標準活性汚泥法が採用されてきた。標準活性汚泥法は、送風機により水中に空気を供給する曝気槽において、好気微生物により水中の有機汚濁物質を酸化分解するものである。この標準活性汚泥法では、有機物は分解除去できる。しかし、放流先の富栄養化問題の原因物質となる窒素やリンは、標準活性汚泥法では除去できない。そこで、有機物を分解するとともに、窒素及びリンを除去する方法として、標準活性汚泥法の変法である窒素除去型の循環式硝化脱窒法、リン除去型の嫌気−好気活性汚泥法(AO法)、窒素・リン同時除去型の嫌気−無酸素−好気活性汚泥法(AO)法などの高度処理プロセスの導入が進められている。 Conventionally, the standard activated sludge method has been adopted as the most typical process in sewage treatment plants that purify domestic wastewater. The standard activated sludge method oxidizes and decomposes organic pollutants in water by aerobic microorganisms in an aeration tank that supplies air into the water by a blower. In this standard activated sludge method, organic substances can be decomposed and removed. However, nitrogen and phosphorus that cause eutrophication problems at the discharge destination cannot be removed by the standard activated sludge method. Therefore, as a method for decomposing organic substances and removing nitrogen and phosphorus, a nitrogen removal type circulatory nitrification denitrification method, a phosphorus removal type anaerobic-aerobic activated sludge method (AO method), which is a modification of the standard activated sludge method. ), Advanced treatment processes such as an anaerobic-anoxic-aerobic activated sludge method (A 2 O) method of simultaneous removal of nitrogen and phosphorus are being promoted.

高度処理プロセスでは、流入下水から最初沈殿池で沈殿汚泥が除去された一次処理水が生物反応槽に送られる。次いで、生物反応槽内の嫌気槽、無酸素槽および好気槽において微生物の反応により、一次処理水から有機物、窒素、リンが除去される。同時に、生物反応槽において微生物の凝集体であるフロックが形成される。そして、フロックを含む二次処理水が最終沈殿池に送られる。最終沈殿池では二次処理水からフロックが沈殿、除去される。沈殿物の大部分は活性汚泥を含む返送汚泥として最終沈殿池から生物反応槽に戻される。沈殿物の一部は余剰汚泥として最終沈殿池から排出され、濃縮・脱水後に焼却処理される。   In the advanced treatment process, primary treated water from which sediment sludge has been removed from the inflowing sewage in the first sedimentation tank is sent to the biological reaction tank. Next, organic substances, nitrogen, and phosphorus are removed from the primary treated water by the reaction of microorganisms in the anaerobic tank, anoxic tank, and aerobic tank in the biological reaction tank. At the same time, flocs that are aggregates of microorganisms are formed in the bioreactor. Then, secondary treated water containing floc is sent to the final sedimentation basin. In the final sedimentation basin, flocs are settled and removed from the secondary treated water. Most of the sediment is returned to the biological reaction tank from the final sedimentation basin as return sludge containing activated sludge. Part of the sediment is discharged as surplus sludge from the final sedimentation basin and incinerated after concentration and dehydration.

有機排水中の窒素分としてのアンモニアの除去プロセスは次の通りである。まず、好気槽においてアンモニアが硝酸イオンに酸化される。酸化された硝酸イオンは無酸素槽に返送される。無酸素槽において微生物の作用により硝酸イオンが窒素ガスに還元される。また、リンの除去プロセスでは、嫌気槽において微生物からリンを吐き出させる。次いで好気槽において、微生物にリンを吸収させ、リンを吸収した微生物をフロックとして沈澱除去させる。好気槽において微生物に吸収されるリン量は、嫌気槽において微生物が吐き出すリン量よりも大量である。この吐出量と吸収量の差に基づきリンの除去が行われる。   The process for removing ammonia as nitrogen in organic wastewater is as follows. First, ammonia is oxidized to nitrate ions in an aerobic tank. Oxidized nitrate ions are returned to the anoxic tank. In the anaerobic tank, nitrate ions are reduced to nitrogen gas by the action of microorganisms. Further, in the phosphorus removal process, phosphorus is discharged from microorganisms in an anaerobic tank. Next, in the aerobic tank, the microorganisms absorb phosphorus, and the microorganisms that have absorbed phosphorus are precipitated and removed as floc. The amount of phosphorus absorbed by the microorganisms in the aerobic tank is larger than the amount of phosphorus discharged by the microorganisms in the anaerobic tank. Phosphorus removal is performed based on the difference between the discharge amount and the absorption amount.

しかしながら、既存の排水処理装置に、上記の高度処理方法を導入するためには、生物反応槽内に新たに嫌気槽、無酸素槽および好気槽を設ける必要がある。具体的には、攪拌機、ポンプなどの新たな機器の導入ならびに新たなコンクリート躯体の新設が必要となる。このため、既存の設備の改造に手間がかかる場合があった。   However, in order to introduce the above-described advanced treatment method into an existing wastewater treatment apparatus, it is necessary to newly provide an anaerobic tank, an oxygen-free tank, and an aerobic tank in the biological reaction tank. Specifically, it is necessary to introduce new equipment such as a stirrer and a pump, and newly install a new concrete frame. For this reason, it may take time to modify the existing equipment.

また、窒素またはリンの除去プロセスでは、微生物の活性化を図るために、有機排水中に有機物が一定以上存在することが必要である。しかしながら、生物反応の前に設置された最初沈殿池において沈殿汚泥が過剰に除去されてしまうと、生物反応における微生物の活動が不活発になる。これにより、有機排水中から窒素やリンを充分に除去できない場合があった。 Further, in the process of removing nitrogen or phosphorus, in order to activate microorganisms, it is necessary that organic substances exist in a certain amount or more in the organic waste water. However, if the precipitated sludge is removed excessively in the first sedimentation tank installed in front of the biological reaction tank , the activity of microorganisms in the biological reaction tank becomes inactive. Thereby, nitrogen and phosphorus may not be sufficiently removed from the organic waste water.

特開2013−212490号公報JP 2013-212490 A

本発明が解決しようとする課題は、有機排水中から窒素やリンを充分に除去できる有機排水処理システム、有機排水の処理方法及び有機排水処理システムの制御プログラムを提供することである。   The problem to be solved by the present invention is to provide an organic wastewater treatment system, an organic wastewater treatment method, and an organic wastewater treatment system control program capable of sufficiently removing nitrogen and phosphorus from organic wastewater.

実施形態の有機排水処理システムは、沈殿池と、導入流路と、生物反応槽と、第1制御部と、高濃度処理水供給機構とを持つ。
沈殿池は、有機排水中の有機物を沈降させる。
導入流路は、沈殿池から流出された有機排水を流す。
生物反応槽は、導入流路の下流側に接続され、嫌気処理領域、嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれかの雰囲気に切り替え可能であり、かつ、各々の雰囲気が占める領域の範囲を調整可能な調整領域および好気処理領域を有する。調整領域は、嫌気処理領域と好気処理領域との間にある。
第1制御部は、好気処理領域におけるアンモニア濃度と、生物反応槽から流出した処理水の全窒素濃度及び全リン濃度と、各々の濃度の目標値との比較に基づいて、調整領域の各々の雰囲気が占める領域の範囲を調整する。
高濃度処理水供給機構は、沈殿池から流出される有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を、導入流路に流入させる。
高濃度処理水供給機構は、第1制御部により調整領域の雰囲気の範囲を調整した結果であっても、生物反応槽から流出する処理水の全窒素濃度または全リン濃度が所定の目標値を超える場合に、生物反応槽に流入前の有機排水の有機物濃度、全窒素濃度および全リン濃度を測定して、生物反応槽へ流入前の有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出し、全窒素濃度に対する有機物濃度が、予め設定した全窒素濃度に対する有機物濃度の基準値よりも小さい場合、または全リン濃度に対する有機物濃度が、予め設定した全リン濃度に対する有機物濃度の基準値よりも小さい場合に、沈殿池から流出される有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を導入流路に流入させる。
The organic wastewater treatment system of the embodiment includes a sedimentation basin, an introduction channel, a biological reaction tank, a first control unit, and a high-concentration treated water supply mechanism.
The sedimentation basin sediments organic matter in the organic waste water.
The introduction channel flows the organic waste water that has flowed out of the sedimentation basin.
Bioreactor is connected to the downstream side of the introduction channel, anaerobic treatment region, anaerobic atmosphere, being switchable to either the atmosphere microaerobic atmosphere or aerobic atmosphere, and the region occupied by each of the atmosphere It has an adjustment area and an aerobic treatment area where the range can be adjusted. The adjustment region is between the anaerobic processing region and the aerobic processing region.
The first control unit is configured to compare each of the adjustment regions based on a comparison between the ammonia concentration in the aerobic treatment region, the total nitrogen concentration and total phosphorus concentration of the treated water flowing out from the biological reaction tank, and the target values of the respective concentrations. The range of the area occupied by the atmosphere is adjusted.
The high-concentration treated water supply mechanism causes organic wastewater having an organic matter concentration higher than the organic matter concentration of the organic wastewater flowing out from the sedimentation basin to flow into the introduction channel.
Even if the high-concentration treated water supply mechanism is a result of adjusting the atmosphere range of the adjustment region by the first control unit, the total nitrogen concentration or total phosphorus concentration of the treated water flowing out from the biological reaction tank has a predetermined target value. If so, measure the organic matter concentration, total nitrogen concentration and total phosphorus concentration in the organic wastewater before flowing into the bioreactor, and measure the organic matter concentration and total phosphorus concentration relative to the total nitrogen concentration in the organic wastewater before flowing into the bioreactor. The organic matter concentration is calculated and the organic matter concentration relative to the total nitrogen concentration is smaller than the reference value of the organic matter concentration relative to the preset total nitrogen concentration, or the organic matter concentration relative to the total phosphorus concentration is the organic matter concentration relative to the preset total phosphorus concentration. When the value is smaller than the reference value, the organic wastewater having an organic matter concentration higher than the organic matter concentration of the organic wastewater flowing out from the settling basin is caused to flow into the introduction channel.

第1実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on 1st Embodiment. 第2実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on 2nd Embodiment. 第3実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on 3rd Embodiment. 第4実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on 4th Embodiment. 第5実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on 5th Embodiment. 第6実施形態に係る有機排水処理システムを示す模式図。The schematic diagram which shows the organic waste water treatment system which concerns on 6th Embodiment.

以下、実施形態の有機排水処理システム、有機排水の処理方法及び有機排水処理システムの制御プログラムを、図面を参照して説明する。 Hereinafter, an organic wastewater treatment system, an organic wastewater treatment method, and an organic wastewater treatment system control program according to embodiments will be described with reference to the drawings.

(第1の実施形態)
図1に示す本実施形態の有機排水処理システム1は、上流側から順に最初沈殿池2(沈殿池)、生物反応槽3および最終沈殿池4を備えている。また、最初沈殿池2と生物反応槽3は、導入流路51によって接続されている。更に、有機排水処理システム1には、第1制御部9と、高濃度処理水供給機構52が備えられている。
(First embodiment)
The organic waste water treatment system 1 of this embodiment shown in FIG. 1 includes a first sedimentation basin 2 (sedimentation basin), a biological reaction tank 3 and a final sedimentation basin 4 in order from the upstream side. The initial sedimentation basin 2 and the biological reaction tank 3 are connected by an introduction flow path 51. Furthermore, the organic waste water treatment system 1 includes a first control unit 9 and a high concentration treated water supply mechanism 52.

生物反応槽3は、微生物による分解作用を利用して汚水を浄化処理するための反応容器である。生物反応3には、嫌気処理領域11、調整領域12、好気処理領域13が設置されている。調整領域12は、嫌気処理領域11と好気処理領域13との間に配置されている。ここで、「間に配置」とは、空間的な概念ではなく、調整領域12における処理の順番が、嫌気処理領域11と好気処理領域13との間であることを意味している。 The biological reaction tank 3 is a reaction vessel for purifying sewage using a decomposition action by microorganisms. In the biological reaction tank 3, an anaerobic treatment area 11, an adjustment area 12, and an aerobic treatment area 13 are installed. The adjustment region 12 is disposed between the anaerobic processing region 11 and the aerobic processing region 13. Here, “arranged between” is not a spatial concept but means that the processing order in the adjustment region 12 is between the anaerobic processing region 11 and the aerobic processing region 13.

生物反応槽3には、浄化処理前の有機排水が導入流路51から流入する流入部と、浄化処理後の有機排水が流出する流出部がある。流入部は、嫌気処理領域11の近くに設置されている。流出部は、好気処理領域13の近くに設置されている。嫌気処理領域11における有機排水の水面高さは、調整領域12における有機排水の水面高さよりも高くなっている。調整領域12における有機排水の水面高さは、好気処理領域13における有機排水の水面高さよりも高くなっている。このように、嫌気処理領域11、調整領域12、好気処理領域13における水面高さが、段階的に低くなるように構成されている。 The biological reaction tank 3 has an inflow portion where the organic waste water before the purification treatment flows from the introduction flow path 51 and an outflow portion where the organic waste water after the purification treatment flows out. The inflow part is installed near the anaerobic treatment region 11. The outflow part is installed near the aerobic treatment region 13. The water surface height of the organic waste water in the anaerobic treatment region 11 is higher than the water surface height of the organic waste water in the adjustment region 12. The water surface height of the organic waste water in the adjustment region 12 is higher than the water surface height of the organic waste water in the aerobic treatment region 13. Thus, the water surface height in the anaerobic treatment region 11, the adjustment region 12, and the aerobic treatment region 13 is configured to be lowered stepwise.

嫌気処理領域11は、生物反応槽3の内容積のうちの15〜30%を占める領域とされる。好気処理領域13は、生物反応槽3の内容積のうちの40〜60%を占める領域とされる。生物反応槽3の内容積の残りが調整領域12とされる。   The anaerobic treatment region 11 is a region that occupies 15 to 30% of the internal volume of the biological reaction tank 3. The aerobic treatment region 13 is a region that occupies 40 to 60% of the internal volume of the biological reaction tank 3. The remainder of the internal volume of the biological reaction tank 3 is used as the adjustment region 12.

最初沈殿池2は、有機排水を受け入れ、所定時間静置しておき、浮遊物質(SS)を沈殿させる一次処理設備である。最初沈殿池2には堰が設けられ、上澄み水が堰を乗り越えてオーバーフローラインに流れ込み、さらにオーバーフローラインから生物反応槽3に流入するようになっている。なお、最初沈殿池2の底部には図示しない汚泥排出ラインが連通し、汚泥が定期的に又は随時に排出されるようになっている。   The first sedimentation basin 2 is a primary treatment facility that accepts organic waste water and is allowed to stand for a predetermined time to precipitate suspended solids (SS). The sedimentation basin 2 is initially provided with a weir, and the supernatant water passes over the weir and flows into the overflow line, and further flows into the biological reaction tank 3 from the overflow line. In addition, the sludge discharge line which is not shown in figure communicates with the bottom part of the first sedimentation tank 2, and sludge is discharged | emitted regularly or at any time.

導入流路51には、高濃度処理水供給機構52が接続されている。高濃度処理水供給機構52は、バイパス流路53と、導入流路51に設けられた各種の濃度測定器54〜56と、第2制御部57とから構成されている。   A high concentration treated water supply mechanism 52 is connected to the introduction channel 51. The high-concentration treated water supply mechanism 52 includes a bypass channel 53, various concentration measuring devices 54 to 56 provided in the introduction channel 51, and a second control unit 57.

バイパス流路53は、最初沈殿池2に流入する前の有機排水を、最初沈殿池2を通さずに導入流路51に流入させるための流路である。   The bypass channel 53 is a channel for allowing the organic waste water before flowing into the first sedimentation basin 2 to flow into the introduction channel 51 without passing through the first sedimentation basin 2.

また、導入流路51には、有機排水中の有機物濃度を測定する有機物濃度測定器54と、全窒素濃度を測定する第1全窒素濃度測定器55と、全リン濃度を測定する第1全リン濃度測定器56とが設けられている。これらの各濃度測定器54〜56は、第2制御部57に接続されており、測定結果を第2制御部57に出力できるようになっている。   The introduction channel 51 includes an organic substance concentration measuring device 54 that measures the organic substance concentration in the organic waste water, a first total nitrogen concentration measuring device 55 that measures the total nitrogen concentration, and a first total nitrogen concentration that measures the total phosphorus concentration. A phosphorus concentration measuring device 56 is provided. Each of these concentration measuring devices 54 to 56 is connected to the second control unit 57 so that the measurement result can be output to the second control unit 57.

第2制御部57は、高濃度処理水供給機構52を制御するための制御プログラムが格納されたコンピュータである。第2制御部57は、第2全窒素濃度測定器7、第2全リン濃度測定器8及び濃度測定器54〜56の測定結果に基づき、最初沈殿池2に流入前の有機排水を、最初沈殿池2を通さずに導入流路51に流入させるかどうかを判断する。最初沈殿池2に流入前の有機排水を導入流路51に直接流入させると判断した場合は、バイパス流路53の途中に備えられたバイパスポンプ58を作動させる。制御プログラムによる第2制御部57の動作は後述する。   The second control unit 57 is a computer that stores a control program for controlling the high-concentration treated water supply mechanism 52. Based on the measurement results of the second total nitrogen concentration measuring device 7, the second total phosphorus concentration measuring device 8, and the concentration measuring devices 54 to 56, the second control unit 57 first drains the organic waste water before flowing into the first sedimentation basin 2. It is determined whether or not to flow into the introduction channel 51 without passing through the settling basin 2. When it is determined that the organic waste water before flowing into the sedimentation basin 2 first flows directly into the introduction channel 51, the bypass pump 58 provided in the middle of the bypass channel 53 is operated. The operation of the second control unit 57 according to the control program will be described later.

バイパスポンプ58は、第2制御部57の指令に基づき作動し、最初沈殿池2に流入前の有機排水を、バイパス流路53を経由させて、直接導入流路51に流し込む。   The bypass pump 58 operates based on a command from the second control unit 57, and flows the organic waste water before first flowing into the settling basin 2 directly into the introduction flow path 51 via the bypass flow path 53.

生物反応3には、曝気手段としてエアレーション装置20が備えられている。エアレーション装置20は、ブロア21と、ブロア21から延びる空気配管22と、空気配管22に設けられた流量調整弁23と、空気配管22から分岐した分岐管24と、各分岐管24に設けられた開閉弁25a〜25dと、各分岐管24の先端に取り付けられた散気板26a〜26dとから構成されている。散気板26a〜26dは、生物反応3の内部に設置されている。 The biological reaction tank 3 is provided with an aeration device 20 as an aeration means. The aeration apparatus 20 includes a blower 21, an air pipe 22 extending from the blower 21, a flow rate adjusting valve 23 provided in the air pipe 22, a branch pipe 24 branched from the air pipe 22, and each branch pipe 24. The on / off valves 25a to 25d and diffuser plates 26a to 26d attached to the tips of the branch pipes 24 are configured. The diffuser plates 26 a to 26 d are installed inside the biological reaction tank 3.

散気板26aは、生物反応3の嫌気処理領域11に設置されている。また、散気板26b及び26cは処理水が流れる方向に沿って調整領域12内に設置されている。更に、散気板26dは処理水が流れる方向に沿って好気処理領域13に設置されている。 The diffuser plate 26 a is installed in the anaerobic treatment region 11 of the biological reaction tank 3. The diffuser plates 26b and 26c are installed in the adjustment region 12 along the direction in which the treated water flows. Further, the diffuser plate 26d is installed in the aerobic treatment region 13 along the direction in which the treated water flows.

また、各分岐管24に設けられた開閉弁25a〜25dのうち、嫌気処理領域11に向かう分岐管24に設置された開閉弁25aは、常に「閉」とされている。なお、分岐管24、開閉弁25a及び散気板26aの設置は省略してもよい。また、好気処理領域13に向かう分岐管24に設置された開閉弁25dは、常に「開」とされている。更に、調整領域12に向かう分岐管24に設置された開閉弁25b及び25cは、開度が自在に設定可能になっている。開閉弁25b及び25cは、後述する第1制御部9に接続されている。
第1制御部9の指令に基づき、開閉弁25bおよび25cの開度が制御される。これら開閉弁25b及び25cの開度を制御することで、調整領域12における各々の雰囲気が占める領域を調整可能になっている。たとえば、調整領域12の雰囲気を、嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれかに設定できるようになっている。
Of the on-off valves 25 a to 25 d provided on each branch pipe 24, the on-off valve 25 a installed on the branch pipe 24 toward the anaerobic treatment region 11 is always “closed”. In addition, you may abbreviate | omit installation of the branch pipe 24, the on-off valve 25a, and the diffuser board 26a. Further, the on-off valve 25d installed in the branch pipe 24 toward the aerobic treatment region 13 is always “open”. Further, the opening / closing valves 25b and 25c installed in the branch pipe 24 toward the adjustment region 12 can be freely set. The on-off valves 25b and 25c are connected to a first control unit 9 described later.
Based on the command of the first control unit 9, the opening degree of the on-off valves 25b and 25c is controlled. By controlling the opening degree of these on-off valves 25b and 25c, the area occupied by each atmosphere in the adjustment area 12 can be adjusted. For example, the atmosphere of the adjustment region 12 can be set to any one of an anaerobic atmosphere, a slight aerobic atmosphere, and an aerobic atmosphere.

更に、空気配管22に設けられた流量調整弁23は、風量コントローラ30に接続されている。風量コントローラ30の制御によって、空気配管22における空気の流量が調整可能となっている。   Further, the flow rate adjusting valve 23 provided in the air pipe 22 is connected to the air volume controller 30. The air flow rate in the air pipe 22 can be adjusted by the control of the air volume controller 30.

また、生物反応3の好気処理領域13には、凝集剤供給装置50が備えられている。
凝集剤供給装置50から、好気処理領域13を流れる処理水に凝集剤が投入できるようになっている。凝集剤供給装置50は、後述する第1制御部9に接続されている。
The aerobic treatment region 13 of the biological reaction tank 3 is provided with a flocculant supply device 50.
The flocculant can be supplied from the flocculant supply device 50 to the treated water flowing in the aerobic treatment region 13. The flocculant supply device 50 is connected to a first control unit 9 described later.

嫌気処理領域11は、バルブが全閉であるため、定常運転時において嫌気性微生物の活性が高まるように嫌気雰囲気(ORP値がマイナス側)となる。より詳細には、ORP値が−200mV以下となる。ここでORP値とは酸化還元電位のことをいう。処理水のORP値がマイナスの場合はその処理水は還元状態にあるといえる。すなわち、曝気しないで嫌気的な状態におかれた汚水は電位が低くなる(マイナスのORP値)。嫌気処理領域11では、微生物からのリンの吐き出しが進むとともに、硝酸イオンから窒素への還元反応が進む。   Since the valve is fully closed, the anaerobic treatment region 11 becomes an anaerobic atmosphere (ORP value is on the negative side) so that the activity of the anaerobic microorganisms is increased during steady operation. More specifically, the ORP value is −200 mV or less. Here, the ORP value means a redox potential. If the ORP value of the treated water is negative, it can be said that the treated water is in a reduced state. In other words, the sewage that is placed in an anaerobic state without aeration has a low potential (negative ORP value). In the anaerobic treatment region 11, the discharge of phosphorus from the microorganism proceeds and the reduction reaction from nitrate ions to nitrogen proceeds.

一方、好気処理領域13は、定常運転時において好気性微生物の活性が高まるように好気雰囲気(ORP値がプラス側)に調整されている。より詳細には、ORP値が50mV以上の範囲になるように調整されている。ORP値がプラスの場合はその処理水は酸化状態にあるといえる。すなわち、曝気が十分で好気的な状態におかれた処理水は電位が高くなる。好気処理領域13では、微生物によるリンの吸収が進むとともにアンモニアから硝酸イオンへの酸化反応が進む。   On the other hand, the aerobic treatment region 13 is adjusted to an aerobic atmosphere (ORP value is on the positive side) so that the activity of aerobic microorganisms is increased during steady operation. More specifically, the ORP value is adjusted to be in a range of 50 mV or more. When the ORP value is positive, it can be said that the treated water is in an oxidized state. That is, the treated water placed in an aerobic state with sufficient aeration has a high potential. In the aerobic treatment region 13, the absorption of phosphorus by microorganisms proceeds and the oxidation reaction from ammonia to nitrate ions proceeds.

調整領域12は、雰囲気を嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれかに切り替え可能である。また、調整領域12は、嫌気雰囲気、微好気雰囲気および好気雰囲気の各雰囲気が占める範囲を調整可能とされている。図1に示す例では、調整領域12は、第1領域12aと第2領域12bの2つの領域に分けられる。第1領域12aは、散気板26bの設置箇所に対応する領域であり、第2領域12bは、散気板26cの設置箇所に対応する領域である。第1、第2領域12a、12bのそれぞれにおいて、雰囲気を独立して切り替え可能とされている。 In the adjustment region 12, the atmosphere can be switched to any one of an anaerobic atmosphere, a slight aerobic atmosphere, and an aerobic atmosphere. Moreover, the adjustment area | region 12 can adjust the range which each atmosphere of an anaerobic atmosphere, a micro aerobic atmosphere, and an aerobic atmosphere occupies. In the example shown in FIG. 1, the adjustment area 12 is divided into two areas, a first area 12a and a second area 12b. The first region 12a is a region corresponding to the installation location of the diffuser plate 26b, and the second region 12b is a region corresponding to the installation location of the diffusion plate 26c. In each of the first and second regions 12a and 12b, the atmosphere can be switched independently.

ここで、微好気雰囲気とは、ORP値が−50〜50mVの範囲になるように調整された雰囲気をいう。嫌気雰囲気が−200mV以下の範囲の雰囲気であり、好気雰囲気が50mV以上の範囲の雰囲気であるから、微好気雰囲気は、嫌気雰囲気と好気雰囲気の中間の状態にあるといえる。この微好気雰囲気では、硝酸イオンから窒素への還元反応と、アンモニアから硝酸イオンへの酸化反応とが同時に進む。   Here, the slightly aerobic atmosphere refers to an atmosphere adjusted so that the ORP value is in the range of −50 to 50 mV. Since the anaerobic atmosphere is an atmosphere in a range of −200 mV or less and the aerobic atmosphere is an atmosphere in a range of 50 mV or more, it can be said that the slightly aerobic atmosphere is in an intermediate state between the anaerobic atmosphere and the aerobic atmosphere. In this slightly aerobic atmosphere, the reduction reaction from nitrate ions to nitrogen and the oxidation reaction from ammonia to nitrate ions proceed simultaneously.

調整領域12における雰囲気の切替は、エアレーション装置20を操作することにより行う。エアレーション装置20は、後述する第1制御部9の指令によって制御される。エアレーション装置20の各散気板から空気を供給しない場合は嫌気雰囲気となる。エアレーション装置20の各散気板から空気を多量に供給する場合は好気雰囲気となる。エアレーション装置20の各散気板から空気を少量に供給する場合は微好気雰囲気となる。好気雰囲気と微好気雰囲気の切替は、分岐管24に設けられた開閉弁25b、25cの開度を調整することで行う。たとえば、好気雰囲気にする場合は開閉弁25b、25cの開度を全開(100%開)とする。微好気雰囲気にする場合は開閉弁25b、25cの開度を、全開に対して5〜15%の開度とする。   Switching the atmosphere in the adjustment region 12 is performed by operating the aeration apparatus 20. The aeration apparatus 20 is controlled by a command from a first control unit 9 described later. When air is not supplied from each diffuser plate of the aeration apparatus 20, an anaerobic atmosphere is created. When a large amount of air is supplied from each diffuser plate of the aeration apparatus 20, an aerobic atmosphere is obtained. When a small amount of air is supplied from each diffuser plate of the aeration apparatus 20, a slightly aerobic atmosphere is obtained. Switching between the aerobic atmosphere and the slightly aerobic atmosphere is performed by adjusting the opening degree of the on-off valves 25b and 25c provided in the branch pipe 24. For example, in the case of an aerobic atmosphere, the opening degree of the on-off valves 25b and 25c is fully opened (100% open). When the slightly aerobic atmosphere is used, the opening degree of the on-off valves 25b and 25c is set to 5 to 15% with respect to the full opening.

また、各雰囲気の占める範囲を調整するには、調整領域12に備えられた2つの散気板26b、26cからの空気供給量を独立に制御することで行う。たとえば、散気板26b、26cの両方の空気供給を止めた場合は、調整領域12の全部が嫌気雰囲気となる。また、散気板26bの空気供給を止めるとともに散気板26cから少量の空気を供給した場合は、第1領域12aが嫌気雰囲気となり、第2領域12bが微好気雰囲気となる。また、散気板26bから少量の空気を供給するとともに散気板26cから大量の空気を供給した場合は、第1領域12aが微好気雰囲気となり、第2領域12bが好気雰囲気となる。更に、散気板26b、26cの両方から大量の空気を供給した場合は、調整領域12の全部が好気雰囲気となる。図1に示す例では、調整領域12に2つの散気板26b、26cを設置することで調整領域12を更に2つの領域(第1、第2領域)に分けているが、散気板を更に数多く設置して、調整領域12をより多くの領域に分けることで、調整領域12における雰囲気をより柔軟に調整することが可能となる。   Moreover, in order to adjust the range which each atmosphere occupies, it carries out by controlling independently the air supply amount from the two diffuser plates 26b and 26c with which the adjustment area | region 12 was equipped. For example, when the air supply of both of the diffuser plates 26b and 26c is stopped, the entire adjustment region 12 becomes an anaerobic atmosphere. When the air supply to the diffuser plate 26b is stopped and a small amount of air is supplied from the diffuser plate 26c, the first region 12a becomes an anaerobic atmosphere, and the second region 12b becomes a slightly aerobic atmosphere. When a small amount of air is supplied from the diffuser plate 26b and a large amount of air is supplied from the diffuser plate 26c, the first region 12a becomes a slightly aerobic atmosphere and the second region 12b becomes an aerobic atmosphere. Furthermore, when a large amount of air is supplied from both of the diffuser plates 26b and 26c, the entire adjustment region 12 becomes an aerobic atmosphere. In the example shown in FIG. 1, the adjustment region 12 is further divided into two regions (first and second regions) by installing two diffusion plates 26 b and 26 c in the adjustment region 12. Furthermore, the atmosphere in the adjustment area 12 can be adjusted more flexibly by installing a larger number and dividing the adjustment area 12 into more areas.

最終沈殿池4の下流側には図示しない消毒設備が設けられ、消毒された処理水が放流用流路を通って河川や海洋に放流されるようになっている。   A disinfection facility (not shown) is provided on the downstream side of the final sedimentation basin 4 so that the sterilized treated water is discharged to a river or ocean through a discharge channel.

また、最終沈澱池4には、返送配管40が備えられる。返送配管40の途中にはポンプ41が備えられている。返送配管40によって、返送汚泥及び処理水の一部が最終沈澱池4から生物反応3の上流部に常時戻される。 The final sedimentation basin 4 is provided with a return pipe 40. A pump 41 is provided in the middle of the return pipe 40. By the return pipe 40, part of the returned sludge and treated water is always returned from the final sedimentation basin 4 to the upstream portion of the biological reaction tank 3.

また、有機排水処理システム1には、アンモニア濃度測定器5と、溶存酸素測定器6と、第2全窒素濃度測定器7と、第2全リン濃度測定器8とが備えられている。アンモニア濃度測定器5は、好気処理領域13を流れる処理水のアンモニア濃度を測定する。溶存酸素測定器6は、好気処理領域13を流れる処理水の溶存酸素量を測定する。第2全窒素濃度測定器7および第2全リン濃度測定器8は、生物反応槽3及び最終沈殿池4から流出された処理水の全窒素濃度及び全リン濃度をそれぞれ測定する。   In addition, the organic wastewater treatment system 1 includes an ammonia concentration measuring device 5, a dissolved oxygen measuring device 6, a second total nitrogen concentration measuring device 7, and a second total phosphorus concentration measuring device 8. The ammonia concentration measuring device 5 measures the ammonia concentration of the treated water flowing through the aerobic treatment region 13. The dissolved oxygen measuring device 6 measures the dissolved oxygen amount of the treated water flowing through the aerobic treatment region 13. The second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 measure the total nitrogen concentration and the total phosphorus concentration of the treated water discharged from the biological reaction tank 3 and the final sedimentation basin 4, respectively.

アンモニア濃度測定器5及び溶存酸素測定器6は、風量コントローラ30に接続されている。更にアンモニア濃度測定器5は、第1制御部9にも接続されている。更にまた、第2全窒素濃度測定器7及び第2全リン濃度測定器8は、第1制御部9と第2制御部57とに接続されている。   The ammonia concentration measuring device 5 and the dissolved oxygen measuring device 6 are connected to the air volume controller 30. Further, the ammonia concentration measuring device 5 is also connected to the first control unit 9. Furthermore, the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are connected to the first control unit 9 and the second control unit 57.

第1制御部9には、生物反応3を制御する制御プログラムが格納されている。この制御プログラムは、第1ステップと、第2ステップとからなる。第1ステップは、所定時間毎に、好気処理領域13における処理水のアンモニア濃度、生物反応槽から流出された処理水の全窒素濃度及び全リン濃度をそれぞれ測定させる指令を発する。第2ステップは、これらアンモニア濃度、全窒素濃度及び全リン濃度の測定結果と、各々の濃度の目標値との比較に基づき、調整領域12における嫌気雰囲気、微好気雰囲気及び好気雰囲気の範囲を調整する指令を発する。制御プログラムの第1、第2ステップは、たとえば、第1制御部9を構成する中央演算装置に備えられた機能によって実現される。制御プログラムの動作は、後述する。 The first control unit 9 stores a control program for controlling the biological reaction tank 3. This control program includes a first step and a second step. The first step issues a command to measure the ammonia concentration of the treated water in the aerobic treatment region 13, the total nitrogen concentration of the treated water discharged from the biological reaction tank, and the total phosphorus concentration at each predetermined time. The second step is based on a comparison between the measurement results of these ammonia concentration, total nitrogen concentration, and total phosphorus concentration and target values of the respective concentrations, and ranges of anaerobic atmosphere, microaerobic atmosphere, and aerobic atmosphere in the adjustment region 12. Issue a command to adjust. The first and second steps of the control program are realized, for example, by functions provided in the central processing unit constituting the first control unit 9. The operation of the control program will be described later.

次に、図1に示す有機排水処理システム1を用いた有機排水の処理方法について説明する。
有機排水は,最初沈殿池2にて、固形分と液分に分離する。液分は導入流路51を経由して生物反応槽3内に導入させる。この段階では、バイパスポンプ58は作動させず、バイパス流路53には有機排水を流さない。生物反応槽3内では微生物の凝集物である活性汚泥の働きにより、有機物質の分解除去と同時に、以下に示す原理で窒素、リンの除去が行われる。
Next, an organic wastewater treatment method using the organic wastewater treatment system 1 shown in FIG. 1 will be described.
The organic waste water is first separated into a solid content and a liquid content in the sedimentation basin 2. The liquid component is introduced into the biological reaction tank 3 via the introduction channel 51. At this stage, the bypass pump 58 is not operated, and the organic waste water is not allowed to flow through the bypass channel 53. In the biological reaction tank 3, the activated sludge, which is an agglomerate of microorganisms, simultaneously removes organic substances and removes nitrogen and phosphorus by the following principle.

まず、窒素除去の原理を説明する。
有機排水中の窒素成分の大半はアンモニアイオン(NH )の形態で存在する。この窒素分は、酸素が存在する条件下で活性汚泥中に存在する硝化菌の働きにより、(1)式の反応により、硝酸性窒素(NO )まで酸化される。この反応は、主に、好気処理領域13において進行する。
First, the principle of nitrogen removal will be described.
Most of the nitrogen components in organic wastewater exist in the form of ammonia ions (NH 4 + ). This nitrogen content is oxidized to nitrate nitrogen (NO 3 ) by the reaction of the formula (1) by the action of nitrifying bacteria present in the activated sludge under conditions where oxygen is present. This reaction proceeds mainly in the aerobic treatment region 13.

酸素が存在する条件(好気条件)
NH +2O→NO +HO+2H…(1)
Conditions where oxygen is present (aerobic conditions)
NH 4 + + 2O 2 → NO 3 + H 2 O + 2H + (1)

この硝酸性窒素が、酸素なしの条件で脱窒菌の働きにより、(2)式の反応により窒素ガスに還元される。この反応は、主に、嫌気処理領域11において進行する。(2)式の(H)は、下水中の有機物質(水素供与体)から与えられるため、この反応の促進のためには有機物が必要となる。有機物は、有機排水中の有機物でもよく、アルコール、カルボン酸等を嫌気処理領域11に供給することでもよい。   This nitrate nitrogen is reduced to nitrogen gas by the reaction of formula (2) by the action of denitrifying bacteria in the absence of oxygen. This reaction proceeds mainly in the anaerobic treatment region 11. Since (H) in the formula (2) is given from an organic substance (hydrogen donor) in sewage, an organic substance is required to promote this reaction. The organic matter may be an organic matter in organic waste water, or may supply alcohol, carboxylic acid or the like to the anaerobic treatment region 11.

酸素なしの条件(嫌気条件)
2NO +10H→N+2OH+4HO … (2)
Conditions without oxygen (anaerobic conditions)
2NO 3 + 10H → N 2 + 2OH + 4H 2 O (2)

上述のように、好気雰囲気では、(1)式の反応が主に進行する。また、嫌気雰囲気では、(2)式の反応が主に進行する。更に、微好気雰囲気では、(1)式と(2)式の反応が同時に進む。   As described above, the reaction of the formula (1) mainly proceeds in an aerobic atmosphere. In the anaerobic atmosphere, the reaction of the formula (2) mainly proceeds. Further, in the slightly aerobic atmosphere, the reactions of formulas (1) and (2) proceed simultaneously.

ここで、(1)式のアンモニアから硝酸イオンへの反応の進行が不十分の場合は、(2)式の反応が進まず、有機排水中の全窒素濃度が低減できない。従って、有機排水中のアンモニア濃度及び全窒素濃度が高い場合は、(1)式を促進する必要があり、好気雰囲気を増やす必要がある。   Here, when the progress of the reaction from ammonia in formula (1) to nitrate ions is insufficient, the reaction in formula (2) does not proceed and the total nitrogen concentration in the organic waste water cannot be reduced. Therefore, when the ammonia concentration and the total nitrogen concentration in the organic waste water are high, it is necessary to promote the formula (1), and it is necessary to increase the aerobic atmosphere.

一方、(1)式の反応の進行が十分であっても、(2)式の反応が進まない場合は、有機排水中の全窒素濃度が低減できない。従って、有機排水中のアンモニア濃度が低いにも係わらず全窒素濃度が高い場合は、(2)式を促進する必要があるので、微好気雰囲気を増やす必要がある。   On the other hand, even if the reaction of the formula (1) is sufficiently advanced, if the reaction of the formula (2) does not proceed, the total nitrogen concentration in the organic waste water cannot be reduced. Therefore, when the total nitrogen concentration is high despite the low ammonia concentration in the organic waste water, it is necessary to promote the formula (2), and thus it is necessary to increase the slightly aerobic atmosphere.

次に、リン除去の原理について示す。
リンは、活性汚泥中に存在するリン蓄積菌の働きにより除去される。リン蓄積菌は嫌気雰囲気において、菌体内に蓄積したリンを吐出する。一方、好気雰囲気においては、嫌気雰囲気において菌体から吐出した以上のリンを吸収する。吐出量と吸収量との差分に相当するリンが水中から除去される。リンを体内に蓄えたリン蓄積菌は最終沈殿池4で余剰汚泥として引き抜かれることにより、除去される。また、リン蓄積菌によるリンの除去は、嫌気雰囲気の容積が大きいほど、効果的に進む場合が多い。なお、硝化・脱窒反応が促進される微好気条件ではリン蓄積菌によるリンの吐出は起こらない。
Next, the principle of phosphorus removal will be described.
Phosphorus is removed by the action of phosphorus accumulating bacteria present in the activated sludge. Phosphorus-accumulating bacteria discharge phosphorus accumulated in the cells in an anaerobic atmosphere. On the other hand, in an aerobic atmosphere, it absorbs more phosphorus than was discharged from the cells in an anaerobic atmosphere. Phosphorus corresponding to the difference between the discharge amount and the absorption amount is removed from the water. The phosphorus accumulating bacteria that store phosphorus in the body are removed by being extracted as excess sludge in the final sedimentation basin 4. Moreover, removal of phosphorus by phosphorus accumulating bacteria often proceeds more effectively as the volume of the anaerobic atmosphere increases. In addition, under the microaerobic condition where the nitrification / denitrification reaction is promoted, phosphorus is not discharged by the phosphorus accumulating bacteria.

以上の窒素、リンの除去の原理に基づき、本実施形態の有機排水の処理方法を、第1制御部9が実行する制御プログラムの動作と合わせて説明する。   Based on the principle of nitrogen and phosphorus removal described above, the organic wastewater treatment method of the present embodiment will be described together with the operation of the control program executed by the first controller 9.

まず、初期状態として、調整領域12の第1領域12a、第2領域12bの両方が微好気雰囲気に設定されているとする。   First, as an initial state, it is assumed that both the first region 12a and the second region 12b of the adjustment region 12 are set in a slightly aerobic atmosphere.

有機排水は、最初沈澱池2おいて固形分が沈降分離された後に、上澄み分が生物反応3に流入する。流入した有機排水は、嫌気処理領域11、調整領域12及び好気処理領域13を経て、生物反応3から処理水として流出する。また、好気処理領域13において処理水のアンモニア濃度及び溶存酸素量がアンモニア濃度測定器5及び溶存酸素測定器6によって測定され、測定結果が第1制御部9及び風量コントローラ30に出力される。風量コントローラ30の指令に基づき、ブロワ21の送風量を制御する。ブロワの送風量に関しては、特開2005−199116号公報、特開2007−249767号公報に開示されているような方法でアンモニア濃度と溶存酸素量より、風量調節弁24を調節して曝気風量を制御する。 The organic wastewater first settles and separates in the sedimentation basin 2 and then the supernatant flows into the biological reaction tank 3. The inflowed organic waste water flows out from the biological reaction tank 3 as treated water through the anaerobic treatment region 11, the adjustment region 12 and the aerobic treatment region 13. In the aerobic treatment region 13, the ammonia concentration and the dissolved oxygen amount of the treated water are measured by the ammonia concentration measuring device 5 and the dissolved oxygen measuring device 6, and the measurement results are output to the first control unit 9 and the air volume controller 30. Based on the command of the air volume controller 30, the air volume of the blower 21 is controlled. Regarding the blower air volume, the aeration air volume is adjusted by adjusting the air volume control valve 24 based on the ammonia concentration and the dissolved oxygen volume by a method as disclosed in JP-A-2005-199116 and JP-A-2007-249767. Control.

生物反応3から流出した処理水は、活性汚泥とともに最終沈澱池4に流入する。最終沈澱池4において活性汚泥を沈降分離させる。その後、処理水のみを環境中に放流する。
最終沈澱池4から放流される処理水の全窒素濃度及び全リン濃度は、それぞれ測定器7、8によって測定される。測定器7、8による測定結果が第1制御部9及び第2制御部57に出力される。また、最終沈澱池4において沈降分離された活性汚泥は、一部が返送汚泥として返送配管40を経由して嫌気処理領域11に戻される。また、活性汚泥の残部は、脱水、焼却されて埋め立て処分される。
The treated water flowing out from the biological reaction tank 3 flows into the final sedimentation basin 4 together with the activated sludge. Activated sludge is settled and separated in the final sedimentation basin 4. Thereafter, only the treated water is discharged into the environment.
The total nitrogen concentration and total phosphorus concentration of the treated water discharged from the final sedimentation basin 4 are measured by measuring devices 7 and 8, respectively. Measurement results by the measuring devices 7 and 8 are output to the first control unit 9 and the second control unit 57. In addition, a part of the activated sludge settled and separated in the final sedimentation basin 4 is returned to the anaerobic treatment region 11 via the return pipe 40 as return sludge. In addition, the remaining activated sludge is dewatered and incinerated and disposed of in landfills.

生物反応3の嫌気処理領域11では、嫌気処理領域内の微生物により有機排水中の汚濁物質を分解して嫌気処理水とする。次に、調整領域12では、微好気雰囲気下で嫌気処理水中の汚濁物質を分解して中間処理水とする。次に、好気処理領域13では、好気処理領域13内の微生物により中間処理水中の汚濁物質を分解して処理水とする。また、好気処理領域13に備えられた凝集剤供給装置50から、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸鉄などの凝集剤を連続して添加し、処理水中に浮遊するフロックを凝集させる。なお、凝集剤の添加は、リンの化学的除去を促進する効果もあるので、後述するように、処理水中の全リン濃度によって、凝集剤の供給量を変動させる場合がある。 In the anaerobic treatment region 11 of the biological reaction tank 3, the pollutants in the organic waste water are decomposed by microorganisms in the anaerobic treatment region to obtain anaerobic treated water. Next, in the adjustment area | region 12, the pollutant in anaerobic treated water is decomposed | disassembled in a microaerobic atmosphere, and it is set as intermediate treated water. Next, in the aerobic treatment area 13, the pollutants in the intermediate treated water are decomposed by microorganisms in the aerobic treatment area 13 to obtain treated water. Further, a flocculant such as polyaluminum chloride, aluminum sulfate, iron sulfate or the like is continuously added from the flocculant supply device 50 provided in the aerobic treatment region 13 to agglomerate the floc floating in the treated water. Note that the addition of the flocculant also has an effect of promoting chemical removal of phosphorus, and as described later, the supply amount of the flocculant may be varied depending on the total phosphorus concentration in the treated water.

嫌気処理領域11では、リン蓄積菌からのリンの吐出がなされる。また、嫌気処理領域11では、硝酸イオンから窒素への還元反応も進む。硝酸イオンは、好気処理領域13においてアンモニアの酸化反応により生成され、返送汚泥とともに最終沈澱池4から返送配管40を経て嫌気処理領域11に戻されたものである。また、微好気雰囲気に調整された調整領域12では、処理水中のアンモニアの酸化反応と、硝酸イオンの還元反応とが同時に進む。更に、好気処理領域13では、処理水中のアンモニアの酸化反応が進む。   In the anaerobic treatment region 11, phosphorus is discharged from the phosphorus accumulating bacteria. In the anaerobic treatment region 11, the reduction reaction from nitrate ions to nitrogen also proceeds. The nitrate ions are generated by the oxidation reaction of ammonia in the aerobic treatment region 13 and are returned to the anaerobic treatment region 11 from the final sedimentation basin 4 through the return piping 40 together with the return sludge. Moreover, in the adjustment area | region 12 adjusted to the microaerobic atmosphere, the oxidation reaction of ammonia in a treated water and the reduction reaction of nitrate ion advance simultaneously. Furthermore, in the aerobic treatment region 13, the oxidation reaction of ammonia in the treated water proceeds.

ここで、制御プログラムのステップ1として、第1制御部9に内蔵された目標値設定器から所定の目標値を出力する。目標値には、好気処理領域13における処理水中のアンモニア濃度の上限値(以下、目標値NH3という)、最終沈澱池4に流出した処理水の全窒素濃度の上限値(以下、目標値T−Nという)及び全リン濃度の上限値(以下、目標値という)が含まれる。 Here, as step 1 of the control program, a predetermined target value is output from a target value setter built in the first control unit 9. The target value includes an upper limit value of ammonia concentration in the treated water in the aerobic treatment region 13 (hereinafter referred to as target value NH3 ), and an upper limit value of the total nitrogen concentration of treated water that has flowed into the final sedimentation basin 4 (hereinafter referred to as target value T). -N ) and the upper limit of the total phosphorus concentration (hereinafter referred to as target value P ).

目標値NH3は、たとえば、処理水中のアンモニア濃度及び全窒素濃度が高い場合に、(1)式を促進するために好気雰囲気を増やす必要があると判断する場合における処理水中のアンモニア濃度の上限である。
また、目標値T−Nは、たとえば、自主的に設定した全窒素濃度の排出目標値である。更に、目標値は、たとえば、自主的に設定した全リン濃度の排出目標値である。
なお、目標値T−N及び目標値は、これら排出規制値よりも低い値に設定することが、公害防止、環境保全の観点から好ましい。全窒素、全リンの排出規制値は、たとえば公定の排水の排出基準に定められた値を用いる。
The target value NH3 is, for example, the upper limit of the ammonia concentration in the treated water when it is determined that the aerobic atmosphere needs to be increased to promote the equation (1) when the ammonia concentration and the total nitrogen concentration in the treated water are high. It is.
Further, the target value TN is, for example, a discharge target value of the total nitrogen concentration set independently. Furthermore, the target value P is, for example, a discharge target value for all phosphorus concentrations set independently.
Note that the target value TN and the target value P are preferably set to values lower than these emission regulation values from the viewpoint of pollution prevention and environmental conservation. For example, the values specified in the official discharge standard for wastewater are used as emission control values for total nitrogen and total phosphorus.

次に、制御プログラムのステップ2として、所定時間毎に、アンモニア濃度測定器5、第2全窒素濃度測定器7及び第2全リン濃度測定器8から、第1制御部9に、処理水中のアンモニア濃度、全窒素濃度、全リン濃度が入力される。そして、第1制御部9において、処理水中のアンモニア濃度、全窒素濃度、全リン濃度に基づき、調整領域12における雰囲気の種類及び範囲を決定する。決定内容に基づき、第1制御部9がエアレーション装置20に指令を発し、エアレーション装置20に調整領域12の雰囲気を制御させる。また、第1制御部9は、凝集剤供給装置50に指令を発してもよい。
ステップ2の実施頻度は、調整領域12における雰囲気の切替が頻繁になりすぎないように10分〜60分に1回程度とする。計算頻度は監視端末等から設定できるようにする。
Next, as step 2 of the control program, from the ammonia concentration measuring device 5, the second total nitrogen concentration measuring device 7, and the second total phosphorus concentration measuring device 8 to the first control unit 9 every predetermined time, The ammonia concentration, total nitrogen concentration, and total phosphorus concentration are entered. Then, the first control unit 9 determines the type and range of the atmosphere in the adjustment region 12 based on the ammonia concentration, total nitrogen concentration, and total phosphorus concentration in the treated water. Based on the determination, the first control unit 9 issues a command to the aeration device 20 to cause the aeration device 20 to control the atmosphere in the adjustment region 12. The first controller 9 may issue a command to the flocculant supply device 50.
The execution frequency of step 2 is about once every 10 to 60 minutes so that the atmosphere in the adjustment region 12 is not switched too frequently. The calculation frequency can be set from a monitoring terminal or the like.

以下、第1制御部9の動作を場合分けして説明する。
(ケース1)
全窒素濃度が目標値T−Nを超え、かつアンモニア濃度が目標値NH3を超える場合は、調整領域12における好気雰囲気の範囲を増やす。本ケースでは、アンモニア濃度が目標値NH3を超えているため、好気雰囲気の範囲を増やすことで、アンモニアから硝酸イオンへの酸化反応を促進させる。たとえば、初期状態において調整領域12の全部が微好気雰囲気となっている場合は、第2領域12bの雰囲気を微好気雰囲気から好気雰囲気にするために、開閉弁25cの開度を全開にする。更に好気雰囲気を増やす場合は、第1領域12aの雰囲気を微好気雰囲気から好気雰囲気とするために、開閉弁25bの開度を全開にする。好気雰囲気の範囲を増やす場合は、好気処理領域13に近い側から順に切り替える。調整領域12の全部がすでに好気雰囲気になっている場合は、そのままの状態を維持する。なお、全窒素濃度が目標値T−Nを超過していることに対しては、たとえば、生物反応3への有機排水の流入量を一時的に減少または停止させることで対処する。あるいは、硝酸イオンから窒素への還元反応を促進するために、上記式(2)における水素源としてアルコールやカルボン酸等を処理水に供給してもよい。
Hereinafter, the operation of the first control unit 9 will be described for each case.
(Case 1)
When the total nitrogen concentration exceeds the target value TN and the ammonia concentration exceeds the target value NH3 , the range of the aerobic atmosphere in the adjustment region 12 is increased. In this case, since the ammonia concentration exceeds the target value NH3 , the oxidation reaction from ammonia to nitrate ions is promoted by increasing the range of the aerobic atmosphere. For example, when the entire adjustment region 12 is in a slightly aerobic atmosphere in the initial state, the opening of the on-off valve 25c is fully opened in order to change the atmosphere in the second region 12b from the slightly aerobic atmosphere. To. When the aerobic atmosphere is further increased, the opening of the on-off valve 25b is fully opened in order to change the atmosphere of the first region 12a from the slightly aerobic atmosphere to the aerobic atmosphere. When increasing the range of the aerobic atmosphere, switching is performed in order from the side closer to the aerobic treatment region 13. If the entire adjustment region 12 has already been in an aerobic atmosphere, the state is maintained as it is. The total nitrogen concentration exceeding the target value TN is dealt with, for example, by temporarily reducing or stopping the amount of organic wastewater flowing into the biological reaction tank 3. Or in order to accelerate | stimulate the reduction reaction from nitrate ion to nitrogen, you may supply alcohol, carboxylic acid, etc. to treated water as a hydrogen source in the said Formula (2).

(ケース2)
全窒素濃度が目標値T−Nを超え、アンモニア濃度が目標値NH3と等しい場合は、調整領域12における各雰囲気の範囲をそのままとする。その理由は、アンモニア濃度が目標値NH3と等しいので、アンモニアの酸化反応は十分であり、汚濁物質の分解処理を安定して行う観点から、雰囲気の範囲をあえて変更する必要がないためである。なお、全窒素濃度が目標値T−Nを超過していることに対しては、ケース1と同様に、たとえば、生物反応3への有機排水の流入量を一時的に減少または停止させることで対処する。あるいは、硝酸イオンから窒素への還元反応を促進するために、上記式(2)における水素源としてアルコールやカルボン酸等を処理水に供給してもよい。
(Case 2)
When the total nitrogen concentration exceeds the target value TN and the ammonia concentration is equal to the target value NH3 , the range of each atmosphere in the adjustment region 12 is left as it is. The reason is that since the ammonia concentration is equal to the target value NH3 , the oxidation reaction of ammonia is sufficient, and it is not necessary to intentionally change the atmosphere range from the viewpoint of stably decomposing the pollutant. For the case where the total nitrogen concentration exceeds the target value TN , as in the case 1, for example, the inflow of organic wastewater into the biological reaction tank 3 is temporarily reduced or stopped. To deal with. Or in order to accelerate | stimulate the reduction reaction from nitrate ion to nitrogen, you may supply alcohol, carboxylic acid, etc. to treated water as a hydrogen source in the said Formula (2).

(ケース3)
全窒素濃度が目標値T−Nを超え、アンモニア濃度が目標値NH3未満の場合には、調整領域12における微好気雰囲気の範囲を増やす。ケース3では、アンモニア濃度が目標値NH3未満であるので、アンモニアの酸化反応が進む雰囲気が十分確保されている一方で、全窒素濃度が目標値T−Nを超えていることから、微好気雰囲気の範囲を増やすことで、硝酸イオンの還元反応を促進させる。
(Case 3)
When the total nitrogen concentration exceeds the target value TN and the ammonia concentration is less than the target value NH3 , the range of the slightly aerobic atmosphere in the adjustment region 12 is increased. In case 3, since the ammonia concentration is less than the target value NH3 , the atmosphere in which the oxidation reaction of ammonia proceeds sufficiently is ensured, while the total nitrogen concentration exceeds the target value TN , so By increasing the range of the atmosphere, the reduction reaction of nitrate ions is promoted.

上記の初期状態では調整領域12全体が微好気雰囲気なので、それ以上に微好気雰囲気を増やす余地はない。しかしながら、たとえば、調整領域12の第1領域12a及び第2領域12bの両方が嫌気雰囲気の場合は、まず、好気処理領域13に近い側の第2領域12bを微好気雰囲気とするために、開閉弁25cの開度を調整する。更に、微好気雰囲気を増やす必要があれば、第1領域12aを微好気雰囲気とするために、開閉弁25bの開度を調整する。   In the initial state, the entire adjustment region 12 is a microaerobic atmosphere, so there is no room for further increase in the microaerobic atmosphere. However, for example, when both the first region 12a and the second region 12b of the adjustment region 12 are in an anaerobic atmosphere, first, in order to make the second region 12b on the side close to the aerobic treatment region 13 a slightly aerobic atmosphere. Then, the opening degree of the on-off valve 25c is adjusted. Furthermore, if it is necessary to increase the slightly aerobic atmosphere, the opening degree of the on-off valve 25b is adjusted in order to make the first region 12a a slightly aerobic atmosphere.

また、第1領域12a及び第2領域12bの両方が好気雰囲気の場合は、まず、嫌気処理領域11に近い側の第1領域12aを微好気雰囲気とするために、開閉弁25bの開度を調整する。更に、微好気雰囲気を増やす必要があれば、第2領域12bを微好気雰囲気とするために、開閉弁25cの開度を調整する。   When both the first region 12a and the second region 12b are in an aerobic atmosphere, first, in order to make the first region 12a on the side close to the anaerobic treatment region 11 into a slightly aerobic atmosphere, the opening / closing valve 25b is opened. Adjust the degree. Further, if it is necessary to increase the slightly aerobic atmosphere, the opening degree of the on-off valve 25c is adjusted in order to make the second region 12b a slightly aerobic atmosphere.

更に、第1領域12aが嫌気状態であり、第2領域12bが好気雰囲気の場合は、嫌気処理領域11に近い側の第1領域12aを微好気雰囲気とするために、開閉弁25bの開度を調整する。更に、微好気雰囲気を増やす必要があれば、第2領域12bを微好気雰囲気とするために、開閉弁25cの開度を調整する。   Further, when the first region 12a is in an anaerobic state and the second region 12b is in an aerobic atmosphere, in order to make the first region 12a near the anaerobic treatment region 11 a slightly aerobic atmosphere, the on-off valve 25b Adjust the opening. Further, if it is necessary to increase the slightly aerobic atmosphere, the opening degree of the on-off valve 25c is adjusted in order to make the second region 12b a slightly aerobic atmosphere.

調整領域12の全部がすでに微好気雰囲気になっている場合は、そのままの状態を維持する。なお、全窒素濃度が目標値T−Nを超過していることに対しては、たとえば、生物反応3への有機排水の流入量を一時的に減少または停止させることで対処する。あるいは、硝酸イオンから窒素への還元反応を促進するために、上記式(2)における水素源としてアルコールやカルボン酸等を処理水に供給してもよい。 If the entire adjustment region 12 has already been in a slightly aerobic atmosphere, the state is maintained as it is. The total nitrogen concentration exceeding the target value TN is dealt with, for example, by temporarily reducing or stopping the amount of organic wastewater flowing into the biological reaction tank 3. Or in order to accelerate | stimulate the reduction reaction from nitrate ion to nitrogen, you may supply alcohol, carboxylic acid, etc. to treated water as a hydrogen source in the said Formula (2).

このように、微好気雰囲気の範囲を増やす場合は、好気処理領域13に近い側から切り替える場合と、嫌気処理領域11に近い側から切り替える場合とがある。   As described above, when the range of the slightly aerobic atmosphere is increased, there are a case of switching from the side close to the aerobic processing region 13 and a case of switching from the side close to the anaerobic processing region 11.

(ケース4)
全窒素濃度が目標値T−Nを超え、全リン濃度が目標値を超える場合には、凝集剤供給装置50からの凝集剤の供給量を増やす。すなわち、全リン濃度を低減するために、凝集剤を通常よりもより多く添加してリンを汚泥とともに凝集させる化学的処理法を適用する。全窒素濃度の低減については、たとえば、生物反応3への有機排水の流入量を一時的に減少または停止させることで対処する。これは全リン濃度の低減にも有効である。また、全窒素濃度の低減のために、硝酸イオンから窒素への還元反応を促進するために上記式(2)における水素源としてアルコールやカルボン酸等を処理水に供給してもよい。
(Case 4)
When the total nitrogen concentration exceeds the target value TN and the total phosphorus concentration exceeds the target value P , the supply amount of the flocculant from the flocculant supply device 50 is increased. That is, in order to reduce the total phosphorus concentration, a chemical treatment method is applied in which phosphorus is coagulated with sludge by adding more coagulant than usual. The reduction of the total nitrogen concentration is dealt with, for example, by temporarily reducing or stopping the inflow of organic wastewater into the biological reaction tank 3. This is also effective in reducing the total phosphorus concentration. In order to reduce the total nitrogen concentration, alcohol, carboxylic acid or the like may be supplied to the treated water as a hydrogen source in the above formula (2) in order to promote the reduction reaction from nitrate ions to nitrogen.

(ケース5)
全窒素濃度が目標値T−Nを超え、全リン濃度が目標値に等しい場合には、そのままの状態を維持する。なお、全窒素濃度が目標値T−Nを超過していることに対しては、たとえば、生物反応3への有機排水の流入量を一時的に減少または停止させることで対処する。若しくは、硝酸イオンから窒素への還元反応を促進するために、上記式(2)における水素源としてアルコールやカルボン酸等を処理水に供給する。
(Case 5)
When the total nitrogen concentration exceeds the target value TN and the total phosphorus concentration is equal to the target value P , the state is maintained as it is. The total nitrogen concentration exceeding the target value TN is dealt with, for example, by temporarily reducing or stopping the amount of organic wastewater flowing into the biological reaction tank 3. Alternatively, in order to promote the reduction reaction from nitrate ions to nitrogen, alcohol, carboxylic acid or the like is supplied to the treated water as a hydrogen source in the above formula (2).

(ケース6)
全窒素濃度が目標値T−Nを超え、全リン濃度が目標値未満の場合には、リンの除去が十分になされているから、凝集剤供給装置50からの凝集剤の供給量を減らす。全窒素濃度の低減については、たとえば、生物反応3への有機排水の流入量を一時的に減少または停止させることで対処する。これは全リン濃度の低減にも有効である。また、全窒素濃度の低減のために、硝酸イオンから窒素への還元反応を促進するために上記式(2)における水素源としてアルコールやカルボン酸等を処理水に供給してもよい。
(Case 6)
When the total nitrogen concentration exceeds the target value TN and the total phosphorus concentration is less than the target value P , phosphorus is sufficiently removed, so the supply amount of the flocculant from the flocculant supply device 50 is reduced. . The reduction of the total nitrogen concentration is dealt with, for example, by temporarily reducing or stopping the inflow of organic wastewater into the biological reaction tank 3. This is also effective in reducing the total phosphorus concentration. In order to reduce the total nitrogen concentration, alcohol, carboxylic acid or the like may be supplied to the treated water as a hydrogen source in the above formula (2) in order to promote the reduction reaction from nitrate ions to nitrogen.

(ケース7)
全窒素濃度が目標値T−N以下であり、リン濃度が目標値を超える場合は、調整領域12における嫌気雰囲気の範囲を増やす。全窒素濃度が目標値T−N未満なので、窒素の除去プロセスは順調であるのに対し、リン濃度が目標値を超えているので、リンの除去プロセスを改善する必要がある。そこで、嫌気雰囲気の範囲を増やすことで、菌体からのリンの吐出を盛んにして、好気雰囲気における菌体によりリンの吸収量を増大させリンの除去率を高める。
(Case 7)
When the total nitrogen concentration is equal to or less than the target value TN and the phosphorus concentration exceeds the target value P , the range of the anaerobic atmosphere in the adjustment region 12 is increased. Since the total nitrogen concentration is less than the target value TN , the nitrogen removal process is smooth, whereas the phosphorus concentration exceeds the target value P , so the phosphorus removal process needs to be improved. Therefore, by increasing the range of the anaerobic atmosphere, the discharge of phosphorus from the cells is actively performed, the amount of phosphorus absorbed by the cells in the aerobic atmosphere is increased, and the phosphorus removal rate is increased.

具体的にはたとえば、初期状態において調整領域12の全部が微好気雰囲気となっている場合は、第1領域12aの雰囲気を微好気雰囲気から嫌気雰囲気とするために、開閉弁25bの開度を全閉にする。次いで、更に嫌気雰囲気を増やす場合は、第2領域12bの雰囲気を微好気雰囲気から嫌気雰囲気とするために、開閉弁25cの開度を全閉にする。このように、嫌気雰囲気の範囲を増やす場合は、嫌気処理領域11に近い側から順に切り替える。調整領域12の全部がすでに嫌気雰囲気になっている場合は、そのままの状態を維持する。
このように、嫌気雰囲気の範囲を増やす場合は、嫌気処理領域11に近い側から順に切り替えるとよい。
Specifically, for example, when the entire adjustment region 12 is in a slightly aerobic atmosphere in the initial state, the opening / closing valve 25b is opened in order to change the atmosphere in the first region 12a from the slightly aerobic atmosphere to the anaerobic atmosphere. Fully close the degree. Next, when the anaerobic atmosphere is further increased, the opening of the on-off valve 25c is fully closed in order to change the atmosphere of the second region 12b from the slightly aerobic atmosphere to the anaerobic atmosphere. Thus, when increasing the range of an anaerobic atmosphere, it switches in order from the side close | similar to the anaerobic process area | region 11. FIG. If the entire adjustment area 12 is already in an anaerobic atmosphere, the state is maintained as it is.
Thus, when increasing the range of an anaerobic atmosphere, it is good to switch in an order from the side close | similar to the anaerobic process area | region 11. FIG.

(ケース8)
全窒素濃度が目標値T−N以下であり、リン濃度が目標値以下の場合は、調整領域12における各雰囲気の範囲をそのままとする。窒素及びリンの除去が順調に行われているので、あえて雰囲気の範囲を変更する必要はない。
(Case 8)
When the total nitrogen concentration is equal to or lower than the target value TN and the phosphorus concentration is equal to or lower than the target value P , the range of each atmosphere in the adjustment region 12 is left as it is. Since nitrogen and phosphorus are removed smoothly, there is no need to change the atmosphere range.

上記の何れかのケースに従って有機排水処理システム1を運転し、その後、所定時間毎に、ステップ2を再度実施して、調整領域12における雰囲気の範囲を変更する。   The organic waste water treatment system 1 is operated according to any of the above cases, and thereafter, step 2 is performed again every predetermined time to change the atmosphere range in the adjustment region 12.

次に、高濃度処理水供給機構52の動作について説明する。生物反応槽3の調整領域12における雰囲気を切り替えてもなお、最終沈殿池4から流出された処理水の全窒素濃度及び全リン濃度が目標値T−NまたはT−Pを超えており、更に所定時間を経過してもなお、全窒素濃度及び全リン濃度が低下しない場合は、高濃度処理水供給機構52により、生物反応3に有機物濃度が高い処理水を供給する。 Next, the operation of the high concentration treated water supply mechanism 52 will be described. Even if the atmosphere in the adjustment region 12 of the biological reaction tank 3 is switched, the total nitrogen concentration and total phosphorus concentration of the treated water discharged from the final sedimentation tank 4 exceed the target value TN or TP , If the total nitrogen concentration and the total phosphorus concentration do not decrease even after the predetermined time has elapsed, the high-concentration treated water supply mechanism 52 supplies treated water with a high organic matter concentration to the biological reaction tank 3.

第2制御部57には、第2全窒素濃度測定器7及び第2全リン濃度測定器8から、最終沈殿池4を通過した処理水の全窒素濃度及び全リン濃度の測定結果が常時出力されている。上記ケース1〜ケース8の通りに生物反応3を制御して所定時間経過しても処理水の全窒素濃度及び全リン濃度が目標値を超えている場合は、第2制御部57は、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56から、最初沈殿池2を通過して導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果を取得する。なお、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56は、常時、濃度測定を行っていてもよく、第2制御部57の指令を受けてから濃度測定を行ってもよい。 The second control unit 57 constantly outputs the measurement results of the total nitrogen concentration and the total phosphorus concentration of the treated water that has passed through the final sedimentation basin 4 from the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8. Has been. If the total nitrogen concentration and the total phosphorus concentration of the treated water exceed the target values even after a predetermined time has passed after controlling the biological reaction tank 3 as in the above case 1 to case 8, the second control unit 57 From the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56, the organic matter concentration, the total nitrogen concentration and the total concentration of the organic waste water flowing through the introduction channel 51 through the first settling basin 2 first. Acquire the measurement result of phosphorus concentration. Note that the organic substance concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56 may always perform concentration measurement, and after receiving a command from the second control unit 57, the concentration is measured. Measurement may be performed.

第2制御部57は、導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果に基づき、有機排水の全窒素濃度に対する有機物濃度比(有機物濃度/全窒素濃度)及び全リン濃度に対する有機物濃度比(有機物濃度/全リン濃度)をそれぞれ算出する。   Based on the measurement results of the organic matter concentration, the total nitrogen concentration, and the total phosphorus concentration of the organic wastewater flowing through the introduction channel 51, the second control unit 57 compares the organic matter concentration ratio with respect to the total nitrogen concentration of the organic wastewater (organic matter concentration / total nitrogen concentration). And the organic substance concentration ratio (organic substance concentration / total phosphorus concentration) with respect to the total phosphorus concentration.

次いで、これらの算出値と、予め設定してあった(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値とを比較する。(有機物濃度/全窒素濃度)の算出値が(有機物濃度/全窒素濃度)の基準値より低い場合、または、(有機物濃度/全リン濃度)の算出値が(有機物濃度/全リン濃度)の基準値より低い場合のいずれか一方または両方であるときは、第2制御部57は、生物反応3に流入する有機排水の有機物濃度が不足していると判断する。 Next, these calculated values are compared with a preset reference value of (organic matter concentration / total nitrogen concentration) or a reference value of (organic matter concentration / total phosphorus concentration). When the calculated value of (organic substance concentration / total nitrogen concentration) is lower than the reference value of (organic substance concentration / total nitrogen concentration), or the calculated value of (organic substance concentration / total phosphorus concentration) is (organic substance concentration / total phosphorus concentration). When it is either one or both of the cases where it is lower than the reference value, the second control unit 57 determines that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient.

ここで、(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値について説明する。本実施形態においては、有機排水から窒素及びリンを除去する際に、硝化菌、脱窒菌、リン蓄積菌等の微生物を利用している。有機排水から窒素及びリンを除去するためには、これらの微生物が活発に活動する必要がある。微生物の働きを活性化させるためには、有機排水中に所定濃度以上の有機物が存在している必要がある。この有機物の濃度の目安として、本実施形態では、(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値を用いる。生物反応3に流入する有機排水中の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、これらの基準値以上であれば、微生物の活動が活発化し、窒素除去またはリン除去を効率的に行うことが可能になる。これら基準値は、予め事前にテスト等を行って決めておけばよい。 Here, the reference value of (organic substance concentration / total nitrogen concentration) or the reference value of (organic substance concentration / total phosphorus concentration) will be described. In the present embodiment, microorganisms such as nitrifying bacteria, denitrifying bacteria, and phosphorus accumulating bacteria are used when removing nitrogen and phosphorus from the organic waste water. In order to remove nitrogen and phosphorus from organic wastewater, these microorganisms need to be active. In order to activate the action of microorganisms, it is necessary that organic substances having a predetermined concentration or more exist in the organic waste water. In this embodiment, a reference value of (organic substance concentration / total nitrogen concentration) or a reference value of (organic substance concentration / total phosphorus concentration) is used as a standard for the concentration of organic substances. If (organic substance concentration / total nitrogen concentration) or (organic substance concentration / total phosphorus concentration) in the organic wastewater flowing into the biological reaction tank 3 is higher than these reference values, the activity of microorganisms is activated, and nitrogen removal or phosphorus Removal can be performed efficiently. These reference values may be determined in advance by performing a test or the like.

生物反応3に流入する有機排水の有機物濃度が不足していると判断した場合、第2制御部57は、バイパスポンプ58を作動させる。これにより、最初沈殿池2に流入前の有機排水が、バイパス流路53経由で導入流路51に直接流入し、その後、生物反応3に流入する。生物反応3に流入する有機排水は、(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超えたものとなる。これにより、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高まる。バイパス流路53を利用した高有機物濃度の有機排水の供給は、第2全窒素濃度測定器7及び第2全リン濃度測定器8の測定結果が全窒素濃度の目標値及び全リン濃度の目標値より低くなるまで継続する。測定結果が目標値を下回ったら、バイパス流路53を経由した有機排水の供給を停止する。この間、生物反応3に流入する有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)は、各濃度測定器54〜56によって連続して計測される。 When it is determined that the organic matter concentration of the organic waste water flowing into the biological reaction tank 3 is insufficient, the second control unit 57 operates the bypass pump 58. Thereby, the organic waste water before flowing into the first sedimentation basin 2 directly flows into the introduction channel 51 via the bypass channel 53 and then flows into the biological reaction tank 3. The organic waste water flowing into the biological reaction tank 3 has (organic substance concentration / total nitrogen concentration) or (organic substance concentration / total phosphorus concentration) exceeding the respective reference values. Thereby, the organic substance density | concentration of the to-be-processed water in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of a total nitrogen process and a total phosphorus process increases. The supply of organic wastewater with a high organic concentration using the bypass channel 53 is based on the measurement results of the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 being the target value of the total nitrogen concentration and the target of the total phosphorus concentration. Continue until below the value. When the measurement result falls below the target value, the supply of organic wastewater via the bypass flow path 53 is stopped. During this period, (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the organic wastewater flowing into the biological reaction tank 3 is continuously measured by the concentration measuring devices 54 to 56.

以上説明したように、本実施形態の有機排水の処理装置及び処理方法によれば、生物反応3から流出する処理水の全窒素濃度または全リン濃度が所定の目標値を超え、かつ、生物反応3に流入前の有機排水の全窒素濃度に対する有機物濃度または全リン濃度に対する有機物濃度が予め設定した基準値よりも小さい場合に、最初沈殿池に流入する前の有機排水を生物反応3に流入させるので、生物反応3における有機物濃度が上昇し、これにより微生物の活動が活発化されて窒素除去及びリン除去が効率的になされ、有機排水中の全窒素濃度及び全リン濃度を低減できる。 As described above, according to the organic wastewater treatment apparatus and treatment method of the present embodiment, the total nitrogen concentration or total phosphorus concentration of treated water flowing out of the biological reaction tank 3 exceeds a predetermined target value, and When the organic matter concentration with respect to the total nitrogen concentration or the organic matter concentration with respect to the total phosphorus concentration of the organic waste water before flowing into the reaction tank 3 is smaller than a preset reference value, the organic waste water before flowing into the first sedimentation tank is used as the biological reaction tank 3. As a result, the concentration of organic substances in the biological reaction tank 3 is increased, and thus the activity of microorganisms is activated to efficiently remove nitrogen and phosphorus, and reduce the total nitrogen concentration and total phosphorus concentration in organic wastewater. it can.

また、本実施形態の有機排水の処理装置及び処理方法によれば、有機排水を処理する生物反応槽3に、嫌気処理領域11、調整領域12及び好気処理領域13を配置した上で、処理水の全窒素濃度及びアンモニア濃度に応じて、調整領域12における雰囲気の種類及び範囲を調整することで、窒素とリンの除去を同時に進めることができる。   Moreover, according to the organic wastewater treatment apparatus and treatment method of the present embodiment, the anaerobic treatment region 11, the adjustment region 12, and the aerobic treatment region 13 are disposed in the biological reaction tank 3 for treating the organic wastewater. By adjusting the type and range of the atmosphere in the adjustment region 12 according to the total nitrogen concentration and ammonia concentration of water, the removal of nitrogen and phosphorus can proceed simultaneously.

処理水の全窒素濃度が高く、かつ、アンモニア濃度が高い場合は、アンモニアの硝化反応を促進するべく、好気雰囲気を増やすことで、窒素の除去率を改善できる。
また、処理水の全窒素濃度が高く、かつ、アンモニア濃度が低い場合は、硝酸イオンの還元反応を促進するべく、微好気雰囲気を増やすことで、窒素の除去率を改善できる。
更に、処理水の全窒素濃度が低く、かつ、リン濃度が高い場合は、菌体からのリンの吐出を促してより多くのリンを菌体に吸収させるべく、嫌気雰囲気を増やすことで、リンの除去率を改善できる。
更にまた、アンモニア濃度測定器5を生物反応槽3に設置することにより、切替判定だけでなく、曝気風量のコントロールにもアンモニア濃度測定器5を利用することができ、曝気風量の削減効果により、省エネを図ることができる。
また、リンに関しては、凝集剤を添加することにより化学的にも除去できるため、リンの値に関わらず、全窒素濃度とアンモニア濃度に基づき調整領域12の雰囲気を制御することで、窒素の除去率を高めることができる。
When the total nitrogen concentration of the treated water is high and the ammonia concentration is high, the nitrogen removal rate can be improved by increasing the aerobic atmosphere in order to promote the nitrification reaction of ammonia.
Further, when the total nitrogen concentration of the treated water is high and the ammonia concentration is low, the nitrogen removal rate can be improved by increasing the microaerobic atmosphere in order to promote the reduction reaction of nitrate ions.
Furthermore, if the total nitrogen concentration of the treated water is low and the phosphorus concentration is high, the anaerobic atmosphere can be increased by increasing the anaerobic atmosphere in order to promote the discharge of phosphorus from the cells and absorb more phosphorus in the cells. The removal rate can be improved.
Furthermore, by installing the ammonia concentration measuring device 5 in the biological reaction tank 3, the ammonia concentration measuring device 5 can be used not only for switching determination but also for controlling the aeration air volume. Energy saving can be achieved.
Further, since phosphorus can be chemically removed by adding a flocculant, nitrogen can be removed by controlling the atmosphere in the adjustment region 12 based on the total nitrogen concentration and ammonia concentration regardless of the phosphorus value. The rate can be increased.

更に、既存の全面曝気方式の標準活性汚泥法の施設において、一部の開閉弁25b、25cを開度可変式の開閉弁とし、各種センサを追加設置し、更に高濃度処理水供給機構を設置することで本実施形態の処理方法及び処理装置を構築できるため、既存設備の改造を最小限にして窒素・リンの同時除去が可能になる。   In addition, in existing standard aeration sludge facility with full aeration, some open / close valves 25b and 25c are variable open / close valves, various sensors are installed, and a high-concentration treated water supply mechanism is installed. By doing so, the processing method and the processing apparatus of the present embodiment can be constructed, so that nitrogen and phosphorus can be removed simultaneously with minimal modification of existing facilities.

なお、本実施形態では、以下の変更を加えても良い。
調整領域12の少なくとも一部を嫌気雰囲気とした場合や、嫌気処理領域11においては、たとえば1時間おきに数分程度、開閉弁25a〜25cを「開」として撹拌を促進させてもよい。
アンモニア濃度測定器5、全窒素濃度測定器7及び全リン濃度測定器8の設置位置は生物処理3の後段部から後ろであれば、最終沈殿池4に設置するなど、どこであってもよい。
また、図1では調整領域12を2つの領域に分けたが、1つの領域であってもよいし、3以上の領域であってもよい。
更に全リン濃度測定器8は、リン酸性のリン(PO4-P)を測定するリン酸計であってもよい。
In the present embodiment, the following changes may be added.
When at least a part of the adjustment region 12 is an anaerobic atmosphere, or in the anaerobic treatment region 11, for example, the opening / closing valves 25 a to 25 c may be “opened” for about several minutes every hour to promote stirring.
The ammonia concentration measuring device 5, the total nitrogen concentration measuring device 7, and the total phosphorus concentration measuring device 8 may be installed anywhere in the final sedimentation basin 4 as long as they are behind the biological treatment tank 3. .
In FIG. 1, the adjustment region 12 is divided into two regions, but may be one region or three or more regions.
Further, the total phosphorus concentration measuring device 8 may be a phosphoric acid meter that measures phosphoric acid phosphorus (PO4-P).

また、曝気手段として、撹拌機能を有するドラフトチューブエアレーターを用いてもよい。ドラフトチューブエアレーターによって処理水を曝気しつつ撹拌することで、処理水の水質改善効果が得やすくなり、窒素、リンの除去をより促進できる。
更に、調整領域12に酸化還元電位計を備えさせておき、第1制御部9によって、酸化還元電位計の測定結果に基づき、調整領域12における各雰囲気の状態を維持するように曝気手段を制御させてもよい。また、第1制御部9によって、酸化還元電位計の測定結果に基づき、調整領域12における嫌気雰囲気、微好気雰囲気または好気雰囲気の範囲を調整させてもよい。これにより、調整領域12の雰囲気を確実に制御できるので、有機排水からの窒素及びリンの除去を改善できる。特に、嫌気雰囲気や好気雰囲気に比べて調整維持が難しい微好気雰囲気であっても、確実に微好気雰囲気を形成できるので、窒素の除去率を改善できる。
A draft tube aerator having a stirring function may be used as the aeration means. By stirring the treated water while aerated with a draft tube aerator, it becomes easier to obtain an effect of improving the water quality of the treated water, and the removal of nitrogen and phosphorus can be further promoted.
Further, the adjustment region 12 is provided with a redox potentiometer, and the first controller 9 controls the aeration means so as to maintain the state of each atmosphere in the adjustment region 12 based on the measurement result of the redox potentiometer. You may let them. Further, the first control unit 9 may adjust the range of the anaerobic atmosphere, the microaerobic atmosphere, or the aerobic atmosphere in the adjustment region 12 based on the measurement result of the oxidation-reduction potentiometer. Thereby, since the atmosphere of the adjustment area | region 12 can be controlled reliably, the removal of nitrogen and phosphorus from organic waste water can be improved. In particular, even in a microaerobic atmosphere that is difficult to adjust and maintain compared to an anaerobic atmosphere and an aerobic atmosphere, the microaerobic atmosphere can be reliably formed, so the nitrogen removal rate can be improved.

(第2の実施形態)
図2に、本実施形態の有機排水処理システム101を示す。図2に示す構成のうち、図1に示した有機排水処理システム1と同一の構成には、同一の符号を付してその説明を一部省略する。
図2に示す有機排水処理システム101は、上流側から順に最初沈殿池2(沈殿池)、生物反応槽3および最終沈殿池4を備えている。また、最初沈殿池2と生物反応槽3は、導入流路51によって接続されている。更に、有機排水処理システム101には、第1制御部9と、高濃度処理水供給機構152が備えられている。
(Second Embodiment)
In FIG. 2, the organic waste water treatment system 101 of this embodiment is shown. 2, the same components as those in the organic waste water treatment system 1 illustrated in FIG. 1 are denoted by the same reference numerals, and the description thereof is partially omitted.
The organic waste water treatment system 101 shown in FIG. 2 includes a first sedimentation basin 2 (sedimentation basin), a biological reaction tank 3 and a final sedimentation basin 4 in order from the upstream side. The initial sedimentation basin 2 and the biological reaction tank 3 are connected by an introduction flow path 51. Furthermore, the organic waste water treatment system 101 is provided with a first control unit 9 and a high-concentration treated water supply mechanism 152.

高濃度処理水供給機構152は、導入流路51に接続されている。高濃度処理水供給機構152は、有機排水に有機物を添加可能な有機物添加装置153と、導入流路51に設けられた各種の濃度測定器54〜56と、第3制御部157とから構成されている。   The high concentration treated water supply mechanism 152 is connected to the introduction flow path 51. The high-concentration treated water supply mechanism 152 includes an organic substance addition device 153 capable of adding organic substances to organic waste water, various concentration measuring devices 54 to 56 provided in the introduction flow path 51, and a third control unit 157. ing.

導入流路51には、有機排水中の有機物濃度を測定する有機物濃度測定器54と、全窒素濃度を測定する第1全窒素濃度測定器55と、全リン濃度を測定する第1全リン濃度測定器56とが設けられている。これらの各濃度測定器54〜56は、第3制御部157に接続されており、測定結果を第3制御部157に出力できるようになっている。   The introduction channel 51 includes an organic substance concentration measuring device 54 that measures the organic substance concentration in the organic waste water, a first total nitrogen concentration measuring device 55 that measures the total nitrogen concentration, and a first total phosphorus concentration that measures the total phosphorus concentration. A measuring device 56 is provided. Each of these concentration measuring devices 54 to 56 is connected to the third control unit 157 so that the measurement result can be output to the third control unit 157.

有機物添加装置153は、有機物貯留槽153aと、有機物供給流路153bと、有機物供給流路153bの途中に設けられた注入ポンプ153cとから構成されている。有機物貯留槽153aには、メタノール、エタノール等の有機物が貯留されている。有機物供給流路153bは、一端が有機物貯留槽153aに接続され、他端が導入流路51に接続されている。有機物供給流路153bは、各濃度測定器54〜56の設置箇所よりも上流側の導入流路51に接続されている。注入ポンプ153cは、第3制御部157に接続されており、第3制御部157の指令で作動するようになっている。   The organic substance addition device 153 includes an organic substance storage tank 153a, an organic substance supply channel 153b, and an injection pump 153c provided in the middle of the organic substance supply channel 153b. Organic substances such as methanol and ethanol are stored in the organic substance storage tank 153a. The organic substance supply channel 153 b has one end connected to the organic substance storage tank 153 a and the other end connected to the introduction channel 51. The organic substance supply flow path 153b is connected to the introduction flow path 51 on the upstream side of the locations where the concentration measuring devices 54 to 56 are installed. The infusion pump 153 c is connected to the third control unit 157 and is operated according to a command from the third control unit 157.

第3制御部157は、高濃度処理水供給機構152を制御するための制御プログラムが格納されたコンピュータである。第3制御部157は、第2全窒素濃度測定器7、第2全リン濃度測定器8及び濃度測定器54〜56の測定結果に基づき、有機物添加装置153によって導入流路51を流れる有機排水に有機物を添加させるかどうかを判断する。有機排水に有機物を添加させると判断した場合は、有機物添加装置153の注入ポンプ153cを作動させて、有機物貯留槽153aに収容されている有機物を導入流路51に流入させる。制御プログラムによる第3制御部157の動作は後述する。   The third control unit 157 is a computer that stores a control program for controlling the high-concentration treated water supply mechanism 152. Based on the measurement results of the second total nitrogen concentration measuring device 7, the second total phosphorus concentration measuring device 8, and the concentration measuring devices 54 to 56, the third control unit 157 is an organic wastewater that flows through the introduction channel 51 by the organic substance addition device 153. Determine whether or not to add organic matter. When it is determined that the organic matter is added to the organic waste water, the injection pump 153 c of the organic matter addition device 153 is operated to cause the organic matter contained in the organic matter storage tank 153 a to flow into the introduction channel 51. The operation of the third control unit 157 according to the control program will be described later.

また、第3制御部157には、第2全窒素濃度測定器7及び第2全リン濃度測定器8が接続されている。第2全窒素濃度測定器7及び第2全リン濃度測定器8は、第1制御部9にも接続されている。   The third control unit 157 is connected to the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8. The second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are also connected to the first control unit 9.

次に、本実施形態の高濃度処理水供給機構152の動作について説明する。第1の実施形態と同様に、生物反応槽3の調整領域12における雰囲気を切り替えてもなお、最終沈殿池4から流出された処理水の全窒素濃度及び全リン濃度が目標値T−NまたはT−Pを超えており、更に所定時間を経過してもなお、全窒素濃度及び全リン濃度が低下しない場合は、高濃度処理水供給機構152により、生物反応3に有機物濃度が高い処理水を供給する。 Next, operation | movement of the high concentration treated water supply mechanism 152 of this embodiment is demonstrated. Similarly to the first embodiment, even if the atmosphere in the adjustment region 12 of the biological reaction tank 3 is switched, the total nitrogen concentration and total phosphorus concentration of the treated water discharged from the final sedimentation tank 4 are the target values TN or If the total nitrogen concentration and the total phosphorus concentration do not decrease even after a predetermined time has elapsed after exceeding TP, the biological reaction tank 3 is treated with a high organic matter concentration by the high-concentration treated water supply mechanism 152. Supply water.

第3制御部157には、第2全窒素濃度測定器7及び第2全リン濃度測定器8から、最終沈殿池4を通過した処理水の全窒素濃度及び全リン濃度の測定結果が常時出力されている。第1の実施形態の上記ケース1〜ケース8の通りに生物反応3を制御して所定時間経過しても全窒素濃度及び全リン濃度が目標値を超えている場合は、第3制御部157は、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56から、最初沈殿池2を通過して導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果を取得する。なお、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56は、常時、濃度測定を行っていてもよく、第2制御部57の指令を受けてから濃度測定を行ってもよい。 The third control unit 157 always outputs the measurement results of the total nitrogen concentration and the total phosphorus concentration of the treated water that has passed through the final sedimentation tank 4 from the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8. Has been. If the total nitrogen concentration and the total phosphorus concentration exceed the target values even if the biological reaction tank 3 is controlled as in the case 1 to the case 8 of the first embodiment and a predetermined time elapses, the third control unit Reference numeral 157 denotes the organic matter concentration of the organic wastewater flowing through the introduction channel 51 through the first precipitation basin 2 from the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56, and the total nitrogen. Obtain measurement results of concentration and total phosphorus concentration. Note that the organic substance concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56 may always perform concentration measurement, and after receiving a command from the second control unit 57, the concentration is measured. Measurement may be performed.

第3制御部157は、導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果に基づき、有機排水の全窒素濃度に対する有機物濃度比(有機物濃度/全窒素濃度)及び全リン濃度に対する有機物濃度比(有機物濃度/全リン濃度)をそれぞれ算出する。   The third control unit 157 determines the organic substance concentration ratio (organic substance concentration / total nitrogen concentration) with respect to the total nitrogen concentration of the organic wastewater based on the measurement results of the organic matter concentration, the total nitrogen concentration, and the total phosphorus concentration of the organic wastewater flowing through the introduction channel 51. And the organic substance concentration ratio (organic substance concentration / total phosphorus concentration) with respect to the total phosphorus concentration.

次いで、これらの算出値と、予め設定してあった(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値とを比較する。(有機物濃度/全窒素濃度)の算出値が(有機物濃度/全窒素濃度)の基準値より低い場合、または、(有機物濃度/全リン濃度)の算出値が(有機物濃度/全リン濃度)の基準値より低い場合のいずれか一方または両方であるときは、第3制御部157は、生物反応3に流入する有機排水の有機物濃度が不足していると判断する。 Next, these calculated values are compared with a preset reference value of (organic matter concentration / total nitrogen concentration) or a reference value of (organic matter concentration / total phosphorus concentration). When the calculated value of (organic substance concentration / total nitrogen concentration) is lower than the reference value of (organic substance concentration / total nitrogen concentration), or the calculated value of (organic substance concentration / total phosphorus concentration) is (organic substance concentration / total phosphorus concentration). When it is either one or both of the cases where it is lower than the reference value, the third control unit 157 determines that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient.

生物反応3に流入する有機排水の有機物濃度が不足していると判断した場合、第3制御部157は、注入ポンプ153cを作動させる。これにより、有機物貯留槽153aに貯えられていた有機物が、最初沈殿池2から流出された有機排水に添加される。有機物の添加は、導入流路51を流れる有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超えるまで添加する。これにより、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高まる。有機物の添加は、第2全窒素濃度測定器7及び第2全リン濃度測定器8の測定結果が全窒素濃度の目標値及び全リン濃度の目標値より低くなるまで継続する。この間、第3制御部157及び濃度測定器54〜56による有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)の監視を継続する。第2全窒素濃度測定器7及び第2全リン濃度測定器8による測定結果が目標値を下回ったら、有機物の添加を停止する。 When it is determined that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient, the third control unit 157 operates the injection pump 153c. As a result, the organic matter stored in the organic matter storage tank 153a is added to the organic wastewater that has flowed out of the sedimentation tank 2 first. The organic matter is added until (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the organic waste water flowing through the introduction flow path 51 exceeds the respective reference values. Thereby, the organic substance density | concentration of the to-be-processed water in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of a total nitrogen process and a total phosphorus process increases. The addition of the organic substance is continued until the measurement results of the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 become lower than the target value of the total nitrogen concentration and the target value of the total phosphorus concentration. During this time, monitoring of (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of organic wastewater by the third controller 157 and the concentration measuring devices 54 to 56 is continued. When the measurement results by the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are below the target value, the addition of the organic substance is stopped.

以上説明したように、本実施形態の有機排水の処理装置及び処理方法によれば、生物反応3から流出する処理水の全窒素濃度または全リン濃度が所定の目標値を超え、かつ、生物反応3に流入前の有機排水の全窒素濃度に対する有機物濃度または全リン濃度に対する有機物濃度が予め設定した基準値よりも小さい場合に、最初沈殿池2を通過後の有機排水に有機物を添加するので、有機物が高濃度で含まれる有機排水が生物反応3に供給され、生物反応3における有機物濃度が上昇し、これにより微生物の活動が活発化されて窒素除去及びリン除去が効率的になされ、処理水の全窒素濃度及び全リン濃度を低減できる。 As described above, according to the organic wastewater treatment apparatus and treatment method of the present embodiment, the total nitrogen concentration or total phosphorus concentration of treated water flowing out of the biological reaction tank 3 exceeds a predetermined target value, and When the organic matter concentration with respect to the total nitrogen concentration or the organic matter concentration with respect to the total phosphorus concentration of the organic waste water before flowing into the reaction tank 3 is smaller than a preset reference value, the organic matter is added to the organic waste water after first passing through the settling tank 2 since organic wastewater organic matter contained in a high concentration is supplied to the bioreactor 3, the organic matter concentration increases in the bioreactor 3, thereby microbial activity is activated nitrogen removal and phosphorus removal efficiently The total nitrogen concentration and total phosphorus concentration of the treated water can be reduced.

(第3の実施形態)
図3に、本実施形態の有機排水処理システム201を示す。図1に示した有機排水処理システム1と同一の構成要素には、同一の符号を付してその説明を一部省略する。
図3に示す有機排水処理システム201は、上流側から順に最初沈殿池2(沈殿池)、生物反応槽3および最終沈殿池4を備えている。また、最初沈殿池2と生物反応槽3は、導入流路51によって接続されている。更に、有機排水処理システム201には、第1制御部9と、高濃度処理水供給機構252が備えられている。
(Third embodiment)
In FIG. 3, the organic waste water treatment system 201 of this embodiment is shown. The same components as those in the organic waste water treatment system 1 shown in FIG.
The organic waste water treatment system 201 shown in FIG. 3 includes a first sedimentation basin 2 (sedimentation basin), a biological reaction tank 3 and a final sedimentation basin 4 in order from the upstream side. The initial sedimentation basin 2 and the biological reaction tank 3 are connected by an introduction flow path 51. Furthermore, the organic waste water treatment system 201 includes a first control unit 9 and a high-concentration treated water supply mechanism 252.

高濃度処理水供給機構252は、導入流路51に接続されている。高濃度処理水供給機構252は、バイパス流路53と、導入流路51に設けられた各種の濃度測定器54〜56と、処理水に有機物を添加可能な有機物添加装置153と、第4制御部257とから構成されている。   The high concentration treated water supply mechanism 252 is connected to the introduction flow path 51. The high-concentration treated water supply mechanism 252 includes a bypass channel 53, various concentration measuring devices 54 to 56 provided in the introduction channel 51, an organic substance addition device 153 capable of adding organic substances to the treated water, and a fourth control. Part 257.

バイパス流路53は、最初沈殿池2に流入する前の有機排水を、最初沈殿池2を通さずに導入流路51に流入させるための流路である。バイパス流路53には、バイパスポンプ58が備えられている。は、第2制御部57の指令に基づき作動し、最初沈殿池2に流入前の有機排水を、バイパス流路53を経由させて、直接導入流路51に流し込む。   The bypass channel 53 is a channel for allowing the organic waste water before flowing into the first sedimentation basin 2 to flow into the introduction channel 51 without passing through the first sedimentation basin 2. The bypass passage 53 is provided with a bypass pump 58. Operates based on a command from the second control unit 57 and directs the organic waste water before flowing into the first settling basin 2 directly into the introduction flow path 51 via the bypass flow path 53.

また、導入流路51には、導入流路51を流れる有機排水中の有機物濃度を測定する有機物濃度測定器54と、全窒素濃度を測定する第1全窒素濃度測定器55と、全リン濃度を測定する第1全リン濃度測定器56が設けられている。これらの各濃度測定器54〜56は、第4制御部257に接続されており、測定結果を第4制御部257に出力できるようになっている。   The introduction channel 51 includes an organic substance concentration measuring device 54 that measures the organic substance concentration in the organic waste water flowing through the introduction channel 51, a first total nitrogen concentration measuring device 55 that measures the total nitrogen concentration, and a total phosphorus concentration. A first total phosphorus concentration measuring device 56 is provided. Each of these concentration measuring devices 54 to 56 is connected to the fourth control unit 257 so that the measurement result can be output to the fourth control unit 257.

有機物添加装置153は、有機物貯留槽153aと、有機物供給流路153bと、有機物供給流路153bの途中に設けられた注入ポンプ153cとから構成されている。有機物貯留槽153aには、メタノール、エタノール等の有機物が貯留されている。有機物供給流路153bは、一端が有機物貯留槽153aに接続され、他端が導入流路51に接続されている。有機物供給流路153bは、各濃度測定器54〜56の設置箇所よりも上流側の導入流路51に接続されている。また、有機物供給流路153bは、バイパス流路51の接続箇所よりも下流側の導入流路51に接続されている。注入ポンプ153cは、第4制御部257に接続されており、第4制御部257の指令で作動するようになっている。   The organic substance addition device 153 includes an organic substance storage tank 153a, an organic substance supply channel 153b, and an injection pump 153c provided in the middle of the organic substance supply channel 153b. Organic substances such as methanol and ethanol are stored in the organic substance storage tank 153a. The organic substance supply channel 153 b has one end connected to the organic substance storage tank 153 a and the other end connected to the introduction channel 51. The organic substance supply flow path 153b is connected to the introduction flow path 51 on the upstream side of the locations where the concentration measuring devices 54 to 56 are installed. Further, the organic substance supply flow path 153 b is connected to the introduction flow path 51 on the downstream side of the connection location of the bypass flow path 51. The infusion pump 153c is connected to the fourth control unit 257, and operates according to a command from the fourth control unit 257.

第4制御部257は、高濃度処理水供給機構252を制御するための制御プログラムが格納されたコンピュータである。第4制御部257には、バイパス判断部257aと有機物添加判断部257bとが備えられている。   The fourth control unit 257 is a computer in which a control program for controlling the high concentration treated water supply mechanism 252 is stored. The fourth control unit 257 includes a bypass determination unit 257a and an organic substance addition determination unit 257b.

バイパス判断部257aは、第2全窒素濃度測定器7、第2全リン濃度測定器8及び濃度測定器54〜56の測定結果に基づき、最初沈殿池2に流入前の有機排水を、最初沈殿池2を通さずに導入流路51に流入させるかどうかを判断する。最初沈殿池2に流入前の有機排水を導入流路51に直接流入させると判断した場合は、バイパス流路53の途中に備えられたバイパスポンプ58を作動させる。
また、有機物添加判断部257bは、バイパス判断部257aによって最初沈殿池2に流入前の有機排水を導入流路51に流入させても、(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)がこれらの基準値よりも小さい場合に、有機物添加装置153を作動させて導入流路51を流れる有機排水に有機物を添加させる。
The bypass determination unit 257a performs the initial precipitation of the organic waste water before flowing into the first settling basin 2 based on the measurement results of the second total nitrogen concentration measuring device 7, the second total phosphorus concentration measuring device 8, and the concentration measuring devices 54 to 56. It is determined whether to flow into the introduction channel 51 without passing through the pond 2. When it is determined that the organic waste water before flowing into the sedimentation basin 2 first flows directly into the introduction channel 51, the bypass pump 58 provided in the middle of the bypass channel 53 is operated.
Further, even if the organic waste water before flowing into the sedimentation basin 2 is caused to flow into the introduction flow channel 51 by the bypass determining unit 257a, the organic matter addition determining unit 257b may be (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration). When the (concentration) is smaller than these reference values, the organic substance addition device 153 is operated to add the organic substance to the organic waste water flowing through the introduction flow path 51.

バイパス判断部257a及び有機物添加判断部257bは、制御プログラムに基づいて動作する。制御プログラムによるバイパス判断部257a及び有機物添加判断部257bの動作は後述する。   The bypass determination unit 257a and the organic substance addition determination unit 257b operate based on the control program. Operations of the bypass determination unit 257a and the organic substance addition determination unit 257b by the control program will be described later.

また、第4制御部257には、第2全窒素濃度測定器7及び第2全リン濃度測定器8が接続されている。第2全窒素濃度測定器7及び第2全リン濃度測定器8は、第1制御部9にも接続されている。   The fourth control unit 257 is connected to the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8. The second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are also connected to the first control unit 9.

次に、本実施形態の高濃度処理水供給機構252の動作について説明する。第1の実施形態と同様に、生物反応槽3の調整領域12における雰囲気を切り替えてもなお、最終沈殿池4から流出された処理水の全窒素濃度及び全リン濃度が目標値T−NまたはT−Pを超えており、更に所定時間を経過してもなお、全窒素濃度及び全リン濃度が低下しない場合は、高濃度処理水供給機構252により、生物反応3に有機物濃度が高い有機排水を供給する。 Next, operation | movement of the high concentration treated water supply mechanism 252 of this embodiment is demonstrated. Similarly to the first embodiment, even if the atmosphere in the adjustment region 12 of the biological reaction tank 3 is switched, the total nitrogen concentration and total phosphorus concentration of the treated water discharged from the final sedimentation tank 4 are the target values TN or If the total nitrogen concentration and the total phosphorus concentration do not decrease even after a predetermined time has elapsed after exceeding T-P, the organic reaction concentration is increased in the biological reaction tank 3 by the high concentration treated water supply mechanism 252. Supply drainage.

第4制御部257には、第2全窒素濃度測定器7及び第2全リン濃度測定器8から、最終沈殿池4を通過した有機排水の全窒素濃度及び全リン濃度の測定結果が常時出力されている。上記ケース1〜ケース8の通りに生物反応3を制御して所定時間経過しても全窒素濃度及び全リン濃度が目標値を超えている場合は、第4制御部257のバイパス判断部257aが、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56から、最初沈殿池2を通過して導入流路51を流れる処理水の有機物濃度、全窒素濃度及び全リン濃度の測定結果を取得する。なお、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56は、常時、濃度測定を行っていてもよく、バイパス判断部257aの指令を受けてから濃度測定を行ってもよい。 The fourth control unit 257 always outputs, from the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8, the measurement results of the total nitrogen concentration and the total phosphorus concentration of the organic wastewater that has passed through the final sedimentation basin 4. Has been. If the total nitrogen concentration and the total phosphorus concentration exceed the target values even after a predetermined time has passed after controlling the biological reaction tank 3 as in the case 1 to case 8 above, the bypass determination unit 257a of the fourth control unit 257 is performed. However, from the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56, the organic matter concentration and the total nitrogen concentration of the treated water that first passes through the settling basin 2 and flows through the introduction channel 51. And the measurement result of total phosphorus concentration is acquired. The organic substance concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56 may always perform concentration measurement, and measure the concentration after receiving a command from the bypass determining unit 257a. May be performed.

バイパス判断部257aは、導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果に基づき、有機排水の全窒素濃度に対する有機物濃度比(有機物濃度/全窒素濃度)及び全リン濃度に対する有機物濃度比(有機物濃度/全リン濃度)をそれぞれ算出する。   The bypass determination unit 257a determines the organic substance concentration ratio (organic substance concentration / total nitrogen concentration) with respect to the total nitrogen concentration of the organic wastewater based on the measurement results of the organic matter concentration, the total nitrogen concentration, and the total phosphorus concentration of the organic wastewater flowing through the introduction flow path 51. The organic substance concentration ratio (organic substance concentration / total phosphorus concentration) with respect to the total phosphorus concentration is calculated.

次いで、これらの算出値と、予め設定してあった(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値とを比較する。(有機物濃度/全窒素濃度)の算出値が(有機物濃度/全窒素濃度)の基準値より低い場合、または、(有機物濃度/全リン濃度)の算出値が(有機物濃度/全リン濃度)の基準値より低い場合のいずれか一方または両方であるときは、バイパス判断部257aは、生物反応3に流入する有機排水の有機物濃度が不足していると判断する。 Next, these calculated values are compared with a preset reference value of (organic matter concentration / total nitrogen concentration) or a reference value of (organic matter concentration / total phosphorus concentration). When the calculated value of (organic substance concentration / total nitrogen concentration) is lower than the reference value of (organic substance concentration / total nitrogen concentration), or the calculated value of (organic substance concentration / total phosphorus concentration) is (organic substance concentration / total phosphorus concentration). When it is one or both of the cases where the value is lower than the reference value, the bypass determination unit 257a determines that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient.

生物反応3に流入する有機排水の有機物濃度が不足していると判断した場合、バイパス判断部257aは、バイパスポンプ58を作動させる。これにより、最初沈殿池2に流入前の有機排水が、バイパス流路53経由で導入流路51に直接流入し、その後、生物反応3に流入する。ここで、生物反応3に流入する有機排水は、(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超える場合と、超えない場合がある。以下、その後の動作を場合分けして説明する。 When it is determined that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient, the bypass determination unit 257a operates the bypass pump 58. Thereby, the organic waste water before flowing into the first sedimentation basin 2 directly flows into the introduction channel 51 via the bypass channel 53 and then flows into the biological reaction tank 3. Here, (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) may or may not exceed the organic wastewater flowing into the biological reaction tank 3. Hereinafter, the subsequent operation will be described for each case.

まず、生物反応3に流入する有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が基準値を超える場合について説明する。この場合は、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高まる。バイパス流路53を利用した高有機物濃度の有機排水の供給は、第2全窒素濃度測定器7及び第2全リン濃度測定器8の測定結果が全窒素濃度の目標値及び全リン濃度の目標値より低くなるまで継続する。測定結果が目標値を下回ったら、バイパス流路53を経由した有機排水の供給を停止する。 First, the case where (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the organic wastewater flowing into the biological reaction tank 3 exceeds the reference value will be described. In this case, the organic matter concentration of the water to be treated in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of total nitrogen treatment and total phosphorus treatment increases. The supply of organic wastewater with a high organic concentration using the bypass channel 53 is based on the measurement results of the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 being the target value of the total nitrogen concentration and the target of the total phosphorus concentration. Continue until below the value. When the measurement result falls below the target value, the supply of organic wastewater via the bypass flow path 53 is stopped.

次に、バイパス流路53を経由した有機排水の供給によってもなお、生物反応3に流入する有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が基準値を超えない場合について説明する。
この場合は、バイパス判断部257aから有機物添加判断部257bに対して動作指令が発せられる。動作指令を受けた有機物添加判断部257bは、注入ポンプ153cを作動させる。これにより、有機物貯留槽153aに貯えられていた有機物が、バイパス流路51から流出された有機排水に添加される。有機物の添加は、導入流路51を流れる処理水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超えるまで添加する。これにより、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高まる。有機物の添加は、第2全窒素濃度測定器7及び第2全リン濃度測定器8の測定結果が全窒素濃度の目標値及び全リン濃度の目標値より低くなるまで継続する。測定結果が目標値を下回ったら、バイパス流路53を経由した有機排水の供給を停止し、有機物の添加を停止する。
Next, even when the organic wastewater is supplied via the bypass channel 53, the organic wastewater (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) flowing into the biological reaction tank 3 exceeds the reference value. The case where there is not will be described.
In this case, an operation command is issued from the bypass determination unit 257a to the organic substance addition determination unit 257b. Upon receiving the operation command, the organic substance addition determination unit 257b operates the injection pump 153c. As a result, the organic matter stored in the organic matter storage tank 153 a is added to the organic waste water that has flowed out of the bypass channel 51. The organic matter is added until the (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the treated water flowing through the introduction flow path 51 exceeds the respective reference values. Thereby, the organic substance density | concentration of the to-be-processed water in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of a total nitrogen process and a total phosphorus process increases. The addition of the organic substance is continued until the measurement results of the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 become lower than the target value of the total nitrogen concentration and the target value of the total phosphorus concentration. When the measurement result falls below the target value, the supply of organic wastewater via the bypass flow path 53 is stopped, and the addition of organic substances is stopped.

以上説明したように、本実施形態の有機排水の処理装置及び処理方法によれば、生物反応3から流出する処理水の全窒素濃度または全リン濃度が所定の目標値を超え、かつ、生物反応3に流入前の有機排水の全窒素濃度に対する有機物濃度または全リン濃度に対する有機物濃度が予め設定した基準値よりも小さい場合に、最初沈殿池に流入する前の有機排水を生物反応3に流入させて生物反応3における有機物濃度を上昇させ、それでも有機物濃度が不足する場合に、バイパス流路51を経由する有機排水に有機物を添加するので、有機物が高濃度で含まれる処理水が生物反応3に供給され、生物反応3における有機物濃度が上昇し、これにより微生物の活動が活発化されて窒素除去及びリン除去が効率的になされ、処理水の全窒素濃度及び全リン濃度を低減できる。 As described above, according to the organic wastewater treatment apparatus and treatment method of the present embodiment, the total nitrogen concentration or total phosphorus concentration of treated water flowing out of the biological reaction tank 3 exceeds a predetermined target value, and When the organic matter concentration with respect to the total nitrogen concentration or the organic matter concentration with respect to the total phosphorus concentration of the organic waste water before flowing into the reaction tank 3 is smaller than a preset reference value, the organic waste water before flowing into the first sedimentation tank is used as the biological reaction tank 3. When the organic matter concentration in the biological reaction tank 3 is increased and the organic matter concentration is still insufficient, the organic matter is added to the organic waste water passing through the bypass channel 51, so that the treated water containing the organic matter at a high concentration is added. is supplied to the bioreactor 3, the organic matter concentration increases in the bioreactor 3, thereby microbial activity is activated nitrogen removal and phosphorus removal is performed efficiently, the treated water total Possible to reduce the oxygen concentration and the total phosphorus concentration.

(第4の実施形態)
図4に、本実施形態の有機排水処理システム301を示す。図1に示した有機排水処理システム1と同一の構成要素には、同一の符号を付してその説明を一部省略する。
(Fourth embodiment)
In FIG. 4, the organic waste water treatment system 301 of this embodiment is shown. The same components as those in the organic waste water treatment system 1 shown in FIG.

図4に示す有機排水処理システム301は、図1に示した有機排水処理システム1とほぼ同じであり、異なる点は、第2全窒素濃度測定器7及び第2全リン濃度測定器8が第2制御部57に接続されない点である。本実施形態では、第2制御部57は、第2全窒素濃度測定器7及び第2全リン濃度測定器8による測定結果を参照せず、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56の測定結果に基づいて、バイパスポンプ58を制御する。以下、本実施形態の有機排水処理システム301の動作を説明する。   The organic waste water treatment system 301 shown in FIG. 4 is substantially the same as the organic waste water treatment system 1 shown in FIG. 1 except that the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are the first. 2 It is a point that is not connected to the control unit 57. In the present embodiment, the second control unit 57 does not refer to the measurement results obtained by the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8, but the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device. Based on the measurement results of 55 and the first total phosphorus concentration measuring device 56, the bypass pump 58 is controlled. Hereinafter, the operation of the organic waste water treatment system 301 of the present embodiment will be described.

第2制御部57には、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56から、導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果が常時出力されている。第2制御部57は、これらの測定結果に基づき、有機排水の全窒素濃度に対する有機物濃度比(有機物濃度/全窒素濃度)及び全リン濃度に対する有機物濃度比(有機物濃度/全リン濃度)をそれぞれ算出する。   The second control unit 57 includes an organic substance concentration meter 54, a first total nitrogen concentration meter 55, and a first total phosphorus concentration meter 55 and a first total phosphorus concentration meter 56. The measurement result of phosphorus concentration is always output. Based on these measurement results, the second control unit 57 sets the organic matter concentration ratio (organic matter concentration / total nitrogen concentration) to the total nitrogen concentration of the organic waste water and the organic matter concentration ratio (organic matter concentration / total phosphorus concentration) to the total phosphorus concentration, respectively. calculate.

次いで、これらの算出値と、予め設定してあった(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値とを比較する。(有機物濃度/全窒素濃度)の算出値が(有機物濃度/全窒素濃度)の基準値より低い場合、または、(有機物濃度/全リン濃度)の算出値が(有機物濃度/全リン濃度)の基準値より低い場合のいずれか一方または両方であるときは、第2制御部57は、生物反応3に流入する有機排水の有機物濃度が不足していると判断する。 Next, these calculated values are compared with a preset reference value of (organic matter concentration / total nitrogen concentration) or a reference value of (organic matter concentration / total phosphorus concentration). When the calculated value of (organic substance concentration / total nitrogen concentration) is lower than the reference value of (organic substance concentration / total nitrogen concentration), or the calculated value of (organic substance concentration / total phosphorus concentration) is (organic substance concentration / total phosphorus concentration). When it is either one or both of the cases where it is lower than the reference value, the second control unit 57 determines that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient.

生物反応3に流入する有機排水の有機物濃度が不足していると判断した場合、第2制御部57は、バイパスポンプ58を作動させる。これにより、最初沈殿池2に流入前の有機排水が、バイパス流路53経由で導入流路51に直接流入し、その後、生物反応3に流入する。生物反応3に流入する有機排水は、(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超えたものとなる。これにより、生物反応3内の有機排水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高められる。 When it is determined that the organic matter concentration of the organic waste water flowing into the biological reaction tank 3 is insufficient, the second control unit 57 operates the bypass pump 58. Thereby, the organic waste water before flowing into the first sedimentation basin 2 directly flows into the introduction channel 51 via the bypass channel 53 and then flows into the biological reaction tank 3. The organic waste water flowing into the biological reaction tank 3 has (organic substance concentration / total nitrogen concentration) or (organic substance concentration / total phosphorus concentration) exceeding the respective reference values. Thereby, the organic substance density | concentration of the organic waste water in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of a total nitrogen process and a total phosphorus process is raised.

以上説明したように、本実施形態の有機排水の処理装置及び処理方法によれば、生物反応3に流入前の有機排水の全窒素濃度に対する有機物濃度または全リン濃度に対する有機物濃度が予め設定した基準値よりも小さい場合に、最初沈殿池に流入する前の有機排水を生物反応3に流入させるので、生物反応3における有機物濃度が上昇し、これにより微生物の活動が活発化されて窒素除去及びリン除去が効率的になされ、処理水の全窒素濃度及び全リン濃度を低減できる。 As described above, according to the organic wastewater treatment apparatus and treatment method of this embodiment, the organic matter concentration relative to the total nitrogen concentration or the total phosphorus concentration of the organic wastewater before flowing into the biological reaction tank 3 is set in advance. When it is smaller than the reference value, the organic waste water before flowing into the first sedimentation basin is caused to flow into the biological reaction tank 3, so that the organic matter concentration in the biological reaction tank 3 is increased, thereby activating the activity of microorganisms and nitrogen. Removal and phosphorus removal are efficiently performed, and the total nitrogen concentration and total phosphorus concentration of the treated water can be reduced.

(第5の実施形態)
図5に、本実施形態の有機排水処理システム401を示す。図2に示した有機排水処理システム101と同一の構成要素には、同一の符号を付してその説明を一部省略する。
(Fifth embodiment)
In FIG. 5, the organic waste water treatment system 401 of this embodiment is shown. The same components as those in the organic waste water treatment system 101 shown in FIG.

図5に示す有機排水処理システム401は、図2に示した有機排水処理システム201とほぼ同じであり、異なる点は、第2全窒素濃度測定器7及び第2全リン濃度測定器8が第3制御部157に接続されない点である。本実施形態では、第3制御部157は、第2全窒素濃度測定器7及び第2全リン濃度測定器8による測定結果を参照せず、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56の測定結果に基づいて、有機物添加装置153の注入ポンプ153cを制御する。以下、本実施形態の有機排水処理システム401の動作を説明する。   The organic waste water treatment system 401 shown in FIG. 5 is almost the same as the organic waste water treatment system 201 shown in FIG. 2 except that the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are the first. 3 is that it is not connected to the control unit 157. In the present embodiment, the third control unit 157 does not refer to the measurement results by the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8, but the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device. 55 and the first total phosphorus concentration measuring device 56, the injection pump 153c of the organic substance addition device 153 is controlled. Hereinafter, operation | movement of the organic waste water treatment system 401 of this embodiment is demonstrated.

第3制御部157には、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56より、導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果が常時出力されている。第3制御部157は、これらの測定結果に基づき、有機排水の全窒素濃度に対する有機物濃度比(有機物濃度/全窒素濃度)及び全リン濃度に対する有機物濃度比(有機物濃度/全リン濃度)をそれぞれ算出する。   The third control unit 157 includes an organic substance concentration measuring device 54, a first total nitrogen concentration measuring device 55, and a first total phosphorus concentration measuring device 56. The measurement result of phosphorus concentration is always output. Based on these measurement results, the third control unit 157 sets the organic matter concentration ratio (organic matter concentration / total nitrogen concentration) to the total nitrogen concentration of the organic waste water and the organic matter concentration ratio (organic matter concentration / total phosphorus concentration) to the total phosphorus concentration, respectively. calculate.

次いで、これらの算出値と、予め設定してあった(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値とを比較する。(有機物濃度/全窒素濃度)の算出値が(有機物濃度/全窒素濃度)の基準値より低い場合、または、(有機物濃度/全リン濃度)の算出値が(有機物濃度/全リン濃度)の基準値より低い場合のいずれか一方または両方であるときは、第3制御部157は、生物反応3に流入する有機排水の有機物濃度が不足していると判断する。 Next, these calculated values are compared with a preset reference value of (organic matter concentration / total nitrogen concentration) or a reference value of (organic matter concentration / total phosphorus concentration). When the calculated value of (organic substance concentration / total nitrogen concentration) is lower than the reference value of (organic substance concentration / total nitrogen concentration), or the calculated value of (organic substance concentration / total phosphorus concentration) is (organic substance concentration / total phosphorus concentration). When it is either one or both of the cases where it is lower than the reference value, the third control unit 157 determines that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient.

生物反応3に流入する有機排水の有機物濃度が不足していると判断した場合、第3制御部157は、注入ポンプ153cを作動させる。これにより、有機物貯留槽153aに貯えられていた有機物が、最初沈殿池2から流出された有機排水に添加される。有機物の添加は、導入流路51を流れる有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超えるまで添加する。これにより、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高められる。 When it is determined that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient, the third control unit 157 operates the injection pump 153c. As a result, the organic matter stored in the organic matter storage tank 153a is added to the organic wastewater that has flowed out of the sedimentation tank 2 first. The organic matter is added until (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the organic waste water flowing through the introduction flow path 51 exceeds the respective reference values. Thereby, the organic matter density | concentration of the to-be-processed water in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of a total nitrogen process and a total phosphorus process is raised.

以上説明したように、本実施形態の有機排水の処理装置及び処理方法によれば、生物反応3に流入前の有機排水の全窒素濃度に対する有機物濃度または全リン濃度に対する有機物濃度が予め設定した基準値よりも小さい場合に、最初沈殿池2を通過後の有機排水に有機物を添加するので、有機物が高濃度で含まれる有機排水が生物反応3に供給され、生物反応3における有機物濃度が上昇し、これにより微生物の活動が活発化されて窒素除去及びリン除去が効率的になされ、処理水の全窒素濃度及び全リン濃度を低減できる。 As described above, according to the organic wastewater treatment apparatus and treatment method of this embodiment, the organic matter concentration relative to the total nitrogen concentration or the total phosphorus concentration of the organic wastewater before flowing into the biological reaction tank 3 is set in advance. It is smaller than the reference value, since the addition of organic matter to the organic waste water passed through the primary sedimentation 2, organic wastewater organic matter contained in a high concentration is supplied to the bioreactor 3, organic matter concentration in the bioreactor 3 As a result, the activity of microorganisms is increased, nitrogen removal and phosphorus removal are efficiently performed, and the total nitrogen concentration and total phosphorus concentration of treated water can be reduced.

(第6の実施形態)
図6に、本実施形態の有機排水処理システム501を示す。図3に示した有機排水処理システム201と同一の構成要素には、同一の符号を付してその説明を一部省略する。
(Sixth embodiment)
In FIG. 6, the organic waste water treatment system 501 of this embodiment is shown. The same components as those in the organic waste water treatment system 201 shown in FIG.

図6に示す有機排水処理システム501は、図3に示した有機排水処理システム201とほぼ同じであり、異なる点は、第2全窒素濃度測定器7及び第2全リン濃度測定器8が第4制御部257に接続されない点である。本実施形態では、第4制御部257は、第2全窒素濃度測定器7及び第2全リン濃度測定器8による測定結果を参照せず、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56の測定結果に基づいて、バイパスポンプ58または有機物添加装置153の注入ポンプ153cを制御する。以下、本実施形態の有機排水処理装置501の動作を説明する。   The organic wastewater treatment system 501 shown in FIG. 6 is substantially the same as the organic wastewater treatment system 201 shown in FIG. 3 except that the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8 are the first. 4 is not connected to the control unit 257. In the present embodiment, the fourth control unit 257 does not refer to the measurement results by the second total nitrogen concentration measuring device 7 and the second total phosphorus concentration measuring device 8, but the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device. The bypass pump 58 or the injection pump 153 c of the organic substance addition device 153 is controlled based on the measurement results of the 55 and the first total phosphorus concentration measuring device 56. Hereinafter, the operation of the organic waste water treatment apparatus 501 of the present embodiment will be described.

第4制御部257のバイパス判断部257aには、有機物濃度測定器54、第1全窒素濃度測定器55及び第1全リン濃度測定器56から、導入流路51を流れる有機排水の有機物濃度、全窒素濃度及び全リン濃度の測定結果が常時出力されている。バイパス判断部257aは、これらの測定結果に基づき、有機排水の全窒素濃度に対する有機物濃度比(有機物濃度/全窒素濃度)及び全リン濃度に対する有機物濃度比(有機物濃度/全リン濃度)をそれぞれ算出する。   The bypass determination unit 257a of the fourth control unit 257 includes the organic matter concentration of the organic waste water flowing through the introduction channel 51 from the organic matter concentration measuring device 54, the first total nitrogen concentration measuring device 55, and the first total phosphorus concentration measuring device 56, Measurement results of total nitrogen concentration and total phosphorus concentration are constantly output. The bypass determining unit 257a calculates the organic substance concentration ratio (organic substance concentration / total nitrogen concentration) with respect to the total nitrogen concentration of the organic waste water and the organic substance concentration ratio (organic substance concentration / total phosphorus concentration) with respect to the total phosphorus concentration based on these measurement results, respectively. To do.

次いで、これらの算出値と、予め設定してあった(有機物濃度/全窒素濃度)の基準値または(有機物濃度/全リン濃度)の基準値とを比較する。(有機物濃度/全窒素濃度)の算出値が(有機物濃度/全窒素濃度)の基準値より低い場合、または、(有機物濃度/全リン濃度)の算出値が(有機物濃度/全リン濃度)の基準値より低い場合のいずれか一方または両方であるときは、バイパス判断部257aは、生物反応3に流入する有機排水の有機物濃度が不足していると判断する。 Next, these calculated values are compared with a preset reference value of (organic matter concentration / total nitrogen concentration) or a reference value of (organic matter concentration / total phosphorus concentration). When the calculated value of (organic substance concentration / total nitrogen concentration) is lower than the reference value of (organic substance concentration / total nitrogen concentration), or the calculated value of (organic substance concentration / total phosphorus concentration) is (organic substance concentration / total phosphorus concentration). When it is one or both of the cases where the value is lower than the reference value, the bypass determination unit 257a determines that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient.

生物反応3に流入する有機排水の有機物濃度が不足していると判断した場合、バイパス判断部257aは、バイパスポンプ58を作動させる。これにより、最初沈殿池2に流入前の有機排水が、バイパス流路53経由で導入流路51に直接流入し、その後、生物反応3に流入する。ここで、生物反応3に流入する有機排水は、(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超える場合と、超えない場合がある。以下、その後の動作を場合分けして説明する。 When it is determined that the organic matter concentration of the organic wastewater flowing into the biological reaction tank 3 is insufficient, the bypass determination unit 257a operates the bypass pump 58. Thereby, the organic waste water before flowing into the first sedimentation basin 2 directly flows into the introduction channel 51 via the bypass channel 53 and then flows into the biological reaction tank 3. Here, (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) may or may not exceed the organic wastewater flowing into the biological reaction tank 3. Hereinafter, the subsequent operation will be described for each case.

まず、生物反応3に流入する有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が基準値を超える場合について説明する。この場合は、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高められる。 First, the case where (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the organic wastewater flowing into the biological reaction tank 3 exceeds the reference value will be described. In this case, the organic matter concentration of the water to be treated in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of total nitrogen treatment and total phosphorus treatment is enhanced.

次に、バイパス流路53を経由した有機排水の供給によってもなお、生物反応3に流入する有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が基準値を超えない場合について説明する。
この場合は、バイパス判断部257aから有機物添加判断部257bに対して動作指令が発せられる。動作指令を受けた有機物添加判断部257bは、注入ポンプ153cを作動させる。これにより、有機物貯留槽153aに貯えられていた有機物が、バイパス流路51から流出された有機排水に添加される。有機物の添加は、導入流路51を流れる有機排水の(有機物濃度/全窒素濃度)または(有機物濃度/全リン濃度)が、それぞれの基準値を超えるまで添加する。これにより、生物反応3内の被処理水の有機物濃度が増大し、微生物の活動が活発になり、全窒素処理及び全リン処理の効率が高められる。
Next, even when the organic wastewater is supplied via the bypass channel 53, the organic wastewater (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) flowing into the biological reaction tank 3 exceeds the reference value. The case where there is not will be described.
In this case, an operation command is issued from the bypass determination unit 257a to the organic substance addition determination unit 257b. Upon receiving the operation command, the organic substance addition determination unit 257b operates the injection pump 153c. As a result, the organic matter stored in the organic matter storage tank 153 a is added to the organic waste water that has flowed out of the bypass channel 51. The organic matter is added until (organic matter concentration / total nitrogen concentration) or (organic matter concentration / total phosphorus concentration) of the organic waste water flowing through the introduction flow path 51 exceeds the respective reference values. Thereby, the organic matter density | concentration of the to-be-processed water in the biological reaction tank 3 increases, the activity of microorganisms becomes active, and the efficiency of a total nitrogen process and a total phosphorus process is raised.

以上説明したように、本実施形態の有機排水の処理装置及び処理方法によれば、生物反応3に流入前の有機排水の全窒素濃度に対する有機物濃度または全リン濃度に対する有機物濃度が予め設定した基準値よりも小さい場合に、最初沈殿池に流入する前の有機排水を生物反応3に流入させて生物反応3における有機物濃度を上昇させ、それでも有機物濃度が不足する場合に、バイパス流路51を経由する有機排水に有機物を添加するので、有機物が高濃度で含まれる有機排水が生物反応3に供給され、生物反応3における有機物濃度が上昇し、これにより微生物の活動が活発化されて窒素除去及びリン除去が効率的になされ、処理水の全窒素濃度及び全リン濃度を低減できる。 As described above, according to the organic wastewater treatment apparatus and treatment method of this embodiment, the organic matter concentration relative to the total nitrogen concentration or the total phosphorus concentration of the organic wastewater before flowing into the biological reaction tank 3 is set in advance. It is smaller than the reference value, if the organic waste water before flowing into the primary sedimentation and to flow into the biological reaction tank 3 increases the organic substance concentration in the bioreactor 3, but still insufficient organic matter concentration, the bypass channel since the addition of organic matter to the organic waste water via 51, organic wastewater organic matter contained in a high concentration is supplied to the bioreactor 3, the organic matter concentration increases in the bioreactor 3, thereby activities activation of microorganisms Thus, nitrogen removal and phosphorus removal are efficiently performed, and the total nitrogen concentration and total phosphorus concentration of the treated water can be reduced.

以上説明した少なくともひとつの実施形態によれば、特定の条件下において、沈殿池から流出される有機排水の有機物濃度よりも高い有機物濃度を有する処理水を導入流路に流入させる高濃度処理水供給機構を持つことにより、処理水の窒素・リン濃度を低減することができる。   According to at least one embodiment described above, a high-concentration treated water supply for flowing treated water having an organic matter concentration higher than the organic matter concentration of the organic waste water flowing out from the settling basin into the introduction channel under a specific condition. By having a mechanism, the concentration of nitrogen and phosphorus in the treated water can be reduced.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1、101、201、301、401、501…有機排水処理システム、2…最初沈殿池(沈殿池)、3…生物反応槽、5…アンモニア濃度測定器、7…第2全窒素濃度測定器、8…第2全リン濃度測定器、9…第1制御部、11…嫌気処理領域、12…調整領域、13…好気処理領域、21…エアレーション装置(曝気手段)、51…導入流路、52、152、252…高濃度処理水供給機構、53…バイパス流路、54…有機物濃度測定器(濃度測定器)、55…第1全窒素濃度測定器(濃度測定器)、56…第1リン濃度測定器(濃度測定器)、57…第2制御部、153…有機物添加装置、157…第3制御部、257…第4制御部、257a…バイパス判断部、257b…有機物添加判断部。   DESCRIPTION OF SYMBOLS 1, 101, 201, 301, 401, 501 ... Organic waste water treatment system, 2 ... First sedimentation basin (precipitation basin), 3 ... Biological reaction tank, 5 ... Ammonia concentration measuring device, 7 ... 2nd total nitrogen concentration measuring device, DESCRIPTION OF SYMBOLS 8 ... 2nd total phosphorus concentration measuring device, 9 ... 1st control part, 11 ... Anaerobic treatment area | region, 12 ... Adjustment area | region, 13 ... Aerobic treatment area | region, 21 ... Aeration apparatus (aeration means), 51 ... Introduction flow path, 52, 152, 252 ... High-concentration treated water supply mechanism, 53 ... Bypass channel, 54 ... Organic substance concentration measuring device (concentration measuring device), 55 ... First total nitrogen concentration measuring device (concentration measuring device), 56 ... First Phosphorus concentration measuring device (concentration measuring device), 57... Second controller, 153... Organic substance adding device, 157... Third controller, 257.

Claims (6)

有機排水中の有機物を沈降させる沈殿池と、
前記沈殿池から流出された有機排水を流す導入流路と、
前記導入流路の下流側に接続され、嫌気処理領域、嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれかの雰囲気に切り替え可能であり、かつ、各々の雰囲気が占める領域の範囲を調整可能な調整領域および好気処理領域を有し、前記調整領域は、前記嫌気処理領域と前記好気処理領域との間にある生物反応槽と、
前記好気処理領域におけるアンモニア濃度と、前記生物反応槽から流出した処理水の全窒素濃度及び全リン濃度と、各々の濃度の目標値との比較に基づいて、前記調整領域の各々の雰囲気が占める領域の範囲を調整する第1制御部と、
前記沈殿池から流出される前記有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を、前記導入流路に流入させることが可能な高濃度処理水供給機構と、を備え、
前記高濃度処理水供給機構は、前記第1制御部により前記調整領域の雰囲気の範囲を調整した結果であっても、前記生物反応から流出する前記処理水の全窒素濃度または全リン濃度が所定の目標値を超える場合に、前記生物反応に流入前の前記有機排水の有機物濃度、全窒素濃度および全リン濃度を測定して、前記生物反応槽へ流入前の前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出し、前記全窒素濃度に対する有機物濃度が、予め設定した全窒素濃度に対する有機物濃度の基準値よりも小さい場合、または前記全リン濃度に対する有機物濃度が、予め設定した全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記沈殿池から流出される前記有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を前記導入流路に流入させることを特徴とする有機排水処理システム。
A sedimentation basin that settles organic matter in organic wastewater;
An introduction channel for flowing the organic waste water that has flowed out of the settling basin;
Connected to the downstream side of the introduction channel, anaerobic treatment region, anaerobic atmosphere, being switchable to either the atmosphere microaerobic atmosphere or aerobic atmosphere, and can adjust the range of the area occupied by each of the atmosphere has a Do adjustment region and the aerobic treatment area, the adjustment region is a biological reactor which is between the anaerobic treatment region and the aerobic treatment region,
The ammonia concentration in the aerobic treatment area, and total nitrogen concentration and total phosphorus concentration in the treated water flowing out of the bioreactor, based on the comparison between the target value of each concentration, each of the atmosphere of the adjustment area A first control unit for adjusting a range of the occupied area ;
An organic wastewater having an organic matter concentration higher than the organic matter concentration of the organic wastewater flowing out of the sedimentation basin, and a high concentration treated water supply mechanism capable of flowing into the introduction flow path,
Even if the high concentration treated water supply mechanism is a result of adjusting the atmosphere range of the adjustment region by the first control unit, the total nitrogen concentration or the total phosphorus concentration of the treated water flowing out of the biological reaction tank is if it exceeds a predetermined target value, the organic material concentration of the organic waste water before flowing into the biological reactor, by measuring the total nitrogen concentration and total phosphorus concentration, total nitrogen of the organic waste water before flowing into the bioreactor The organic matter concentration with respect to the concentration and the organic matter concentration with respect to the total phosphorus concentration are calculated, and the organic matter concentration with respect to the total nitrogen concentration is smaller than a preset reference value of the organic matter concentration with respect to the total nitrogen concentration, or the organic matter concentration with respect to the total phosphorus concentration Is higher than the organic substance concentration of the organic waste water discharged from the sedimentation basin when the organic substance concentration is smaller than the reference value of the organic substance concentration with respect to the preset total phosphorus concentration The organic waste water processing system characterized by flowing the organic waste water having a degree in the introduction channel.
前記高濃度処理水供給機構は、
前記沈殿池に流入前の有機排水を、前記沈殿池を通さずに前記導入流路に流入させるためのバイパス流路と、
前記導入流路を流れる前記有機排水の有機物濃度、全窒素濃度及び前記リン濃度をそれぞれ測定する濃度測定器と、
前記濃度測定器の測定値に基づき、前記生物反応槽へ流入前の前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出し、これらが前記全窒素濃度に対する有機物濃度の基準値または全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記沈殿池に流入前の有機排水を前記沈殿池を通さずに前記導入流路に流入させる第2制御部と、
を備えることを特徴とする請求項1に記載の有機排水処理システム。
The high-concentration treated water supply mechanism is
A bypass flow path for allowing the organic waste water before flowing into the settling basin to flow into the introduction flow path without passing through the settling basin;
A concentration measuring device for measuring the organic matter concentration, total nitrogen concentration and phosphorus concentration of the organic waste water flowing through the introduction flow path;
Based on the measured value of the concentration meter, the organic matter concentration with respect to the total nitrogen concentration of the organic waste water before flowing into the biological reaction tank and the organic matter concentration with respect to the total phosphorus concentration are calculated, and these are the organic matter concentration with respect to the total nitrogen concentration. A second control unit that causes the organic wastewater before flowing into the settling basin to flow into the introduction channel without passing through the settling basin when the reference value or the reference value of the organic substance concentration relative to the total phosphorus concentration is smaller;
The organic waste water treatment system according to claim 1 , comprising:
前記高濃度処理水供給機構は、
前記導入流路を流れる前記有機排水に有機物を添加可能な有機物添加装置と、
前記導入流路を流れる前記有機排水の有機物濃度、全窒素濃度及び前記リン濃度をそれぞれ測定する濃度測定器と、
前記濃度測定器の測定値に基づき、前記生物反応槽へ流入前の前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出し、これらが前記全窒素濃度に対する有機物濃度の基準値または全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記有機物添加装置によって前記導入流路を流れる前記有機排水に前記有機物を添加させる第3制御部と、
を備えることを特徴とする請求項1に記載の有機排水処理システム。
The high-concentration treated water supply mechanism is
An organic substance addition device capable of adding organic substances to the organic wastewater flowing through the introduction flow path;
A concentration measuring device for measuring the organic matter concentration, total nitrogen concentration and phosphorus concentration of the organic waste water flowing through the introduction flow path;
Based on the measured value of the concentration meter, the organic matter concentration with respect to the total nitrogen concentration of the organic waste water before flowing into the biological reaction tank and the organic matter concentration with respect to the total phosphorus concentration are calculated, and these are the organic matter concentration with respect to the total nitrogen concentration. A third control unit for adding the organic matter to the organic wastewater flowing through the introduction flow path by the organic matter addition device when the reference value or the reference value of the organic matter concentration relative to the total phosphorus concentration is smaller;
The organic waste water treatment system according to claim 1 , comprising:
前記高濃度処理水供給機構は、
前記沈殿池に流入前の有機排水を、前記沈殿池を通さずに前記導入流路に流入させるためのバイパス流路と、
前記導入流路を流れる前記有機排水に有機物を添加可能な有機物添加装置と、
前記導入流路を流れる前記有機排水の有機物濃度、全窒素濃度及び前記リン濃度をそれぞれ測定する濃度測定器と、
第4制御部とを備え、
前記第4制御部は、前記濃度測定器の測定値に基づき、前記生物反応槽へ流入前の前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出し、これらが前記全窒素濃度に対する有機物濃度の基準値または全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記沈殿池に流入前の有機排水を前記沈殿池を通さずに前記導入流路に流入させるバイパス判断部と、
前記バイパス判断部によって前記沈殿池に流入前の有機排水を前記導入流路に流入させても、前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とが前記全窒素濃度に対する有機物濃度の基準値または全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記有機物添加装置によって前記導入流路を流れる前記有機排水に前記有機物を添加させる有機物添加判断部と、を有することを特徴とする請求項1に記載の有機排水処理システム。
The high-concentration treated water supply mechanism is
A bypass flow path for allowing the organic waste water before flowing into the settling basin to flow into the introduction flow path without passing through the settling basin;
An organic substance addition device capable of adding organic substances to the organic wastewater flowing through the introduction flow path;
A concentration measuring device for measuring the organic matter concentration, total nitrogen concentration and phosphorus concentration of the organic waste water flowing through the introduction flow path;
A fourth control unit,
The fourth control unit calculates an organic substance concentration with respect to a total nitrogen concentration and an organic substance concentration with respect to a total phosphorus concentration of the organic waste water before flowing into the biological reaction tank based on a measurement value of the concentration measuring instrument, Bypass that causes the organic waste water before flowing into the settling basin to flow into the introduction channel without passing through the settling basin when the reference value of the organic substance concentration with respect to the total nitrogen concentration or the reference value of the organic matter concentration with respect to the total phosphorus concentration is smaller A determination unit;
Even if the organic wastewater before flowing into the settling basin is caused to flow into the introduction flow path by the bypass determination unit, the organic matter concentration with respect to the total nitrogen concentration and the organic matter concentration with respect to the total phosphorus concentration of the organic wastewater are the organic matter with respect to the total nitrogen concentration. An organic matter addition determining unit for adding the organic matter to the organic wastewater flowing through the introduction flow path by the organic matter addition device when the concentration is smaller than the reference value of the concentration or the reference value of the organic matter concentration with respect to the total phosphorus concentration. The organic waste water treatment system according to claim 1 , wherein
有機排水中の有機物を沈降させる沈殿池と、
前記沈殿池から流出された有機排水を流す導入流路と、
前記導入流路の下流側に接続され、嫌気処理領域、嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれかの雰囲気に切り替え可能であり、かつ、各々の雰囲気が占める領域の範囲を調整可能な調整領域および好気処理領域を有し、前記調整領域は、前記嫌気処理領域と前記好気処理領域との間にある生物反応槽と、
前記好気処理領域におけるアンモニア濃度と、前記生物反応槽から流出した処理水の全窒素濃度及び全リン濃度と、各々の濃度の目標値との比較に基づいて、前記調整領域の各々の雰囲気が占める領域の範囲を調整する第1制御部と、によって前記有機排水を浄化する際に、
前記第1制御部によって前記調整領域の雰囲気の範囲を調整した結果であっても、前記生物反応から流出する前記処理水の全窒素濃度または全リン濃度が所定の目標値を超える場合に、
前記生物反応に流入前の前記有機排水の有機物濃度、全窒素濃度および全リン濃度を測定し、
前記生物反応槽へ流入前の前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出し、
前記全窒素濃度に対する有機物濃度が、予め設定した全窒素濃度に対する有機物濃度の基準値よりも小さい場合、または前記全リン濃度に対する有機物濃度が、予め設定した全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記沈殿池から流出される前記有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を、前記導入流路に流入することを特徴とする有機排水の処理方法。
A sedimentation basin that settles organic matter in organic wastewater;
An introduction channel for flowing the organic waste water that has flowed out of the settling basin;
Connected to the downstream side of the introduction channel, anaerobic treatment region, anaerobic atmosphere, being switchable to either the atmosphere microaerobic atmosphere or aerobic atmosphere, and can adjust the range of the area occupied by each of the atmosphere has a Do adjustment region and the aerobic treatment area, the adjustment region is a biological reactor which is between the anaerobic treatment region and the aerobic treatment region,
The ammonia concentration in the aerobic treatment area, and total nitrogen concentration and total phosphorus concentration in the treated water flowing out of the bioreactor, based on the comparison between the target value of each concentration, each of the atmosphere of the adjustment area When purifying the organic waste water by the first control unit that adjusts the range of the occupied area ,
Even if it is a result of adjusting the atmosphere range of the adjustment region by the first control unit, when the total nitrogen concentration or total phosphorus concentration of the treated water flowing out of the biological reaction tank exceeds a predetermined target value,
Measure the organic matter concentration, total nitrogen concentration and total phosphorus concentration of the organic wastewater before flowing into the biological reaction tank ,
Calculate the organic matter concentration with respect to the total nitrogen concentration and the organic matter concentration with respect to the total phosphorus concentration of the organic waste water before flowing into the biological reaction tank,
When the organic matter concentration with respect to the total nitrogen concentration is smaller than a preset reference value of the organic matter concentration with respect to the total nitrogen concentration, or the organic matter concentration with respect to the total phosphorus concentration is lower than the preset reference value of the organic matter concentration with respect to the total phosphorus concentration An organic wastewater treatment method characterized by flowing an organic wastewater having an organic matter concentration higher than the organic matter concentration of the organic wastewater flowing out from the sedimentation basin into the introduction flow path when it is small.
有機排水中の有機物を沈降させる沈殿池と、
前記沈殿池から流出された有機排水を流す導入流路と、
前記導入流路の下流側に接続され、嫌気処理領域、嫌気雰囲気、微好気雰囲気または好気雰囲気のいずれかの雰囲気に切り替え可能であり、かつ、各々の雰囲気が占める領域の範囲を調整可能な調整領域および好気処理領域を有し、前記調整領域は、前記嫌気処理領域と前記好気処理領域との間にある生物反応槽と、
前記好気処理領域におけるアンモニア濃度と、前記生物反応槽から流出した処理水の全窒素濃度及び全リン濃度と、各々の濃度の目標値との比較に基づいて、前記調整領域の各々の雰囲気が占める領域の範囲を調整する第1制御部と、
前記沈殿池から流出される前記有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を、前記導入流路に流入させることが可能な高濃度処理水供給機構と、を備えた有機排水装置の制御プログラムであり、
前記第1制御部によって前記調整領域の雰囲気の範囲を調整した結果であっても、前記生物反応から流出する前記処理水の全窒素濃度または全リン濃度が所定の目標値を超えた場合に、
前記生物反応に流入前の前記有機排水の有機物濃度、全窒素濃度および全リン濃度を測定するステップと、
前記生物反応槽へ流入前の前記有機排水の全窒素濃度に対する有機物濃度と全リン濃度に対する有機物濃度とを算出するステップと、
前記全窒素濃度に対する有機物濃度が、予め設定した全窒素濃度に対する有機物濃度の基準値よりも小さい場合、または前記全リン濃度に対する有機物濃度が、予め設定した全リン濃度に対する有機物濃度の基準値よりも小さい場合に、前記沈殿池から流出される前記有機排水の有機物濃度よりも高い有機物濃度を有する有機排水を、前記導入流路に流入するステップと、
を前記高濃度処理水供給機構に実行させる有機排水処理システムの制御プログラム。
A sedimentation basin that settles organic matter in organic wastewater;
An introduction channel for flowing the organic waste water that has flowed out of the settling basin;
Connected to the downstream side of the introduction channel, anaerobic treatment region, anaerobic atmosphere, being switchable to either the atmosphere microaerobic atmosphere or aerobic atmosphere, and can adjust the range of the area occupied by each of the atmosphere has a Do adjustment region and the aerobic treatment area, the adjustment region is a biological reactor which is between the anaerobic treatment region and the aerobic treatment region,
The ammonia concentration in the aerobic treatment area, and total nitrogen concentration and total phosphorus concentration in the treated water flowing out of the bioreactor, based on the comparison between the target value of each concentration, each of the atmosphere of the adjustment area A first control unit for adjusting a range of the occupied area ;
An organic drainage device comprising: a high concentration treated water supply mechanism capable of causing an organic wastewater having an organic matter concentration higher than the organic matter concentration of the organic wastewater flowing out of the settling basin to flow into the introduction flow path. Control program,
Even if it is the result of adjusting the atmosphere range of the adjustment region by the first control unit, when the total nitrogen concentration or total phosphorus concentration of the treated water flowing out of the biological reaction tank exceeds a predetermined target value ,
Measuring the organic matter concentration, total nitrogen concentration and total phosphorus concentration of the organic waste water before flowing into the biological reaction tank ;
Calculating an organic matter concentration with respect to a total nitrogen concentration and an organic matter concentration with respect to a total phosphorus concentration of the organic waste water before flowing into the biological reaction tank;
When the organic matter concentration with respect to the total nitrogen concentration is smaller than a preset reference value of the organic matter concentration with respect to the total nitrogen concentration, or the organic matter concentration with respect to the total phosphorus concentration is lower than the preset reference value of the organic matter concentration with respect to the total phosphorus concentration If small, flowing organic wastewater having an organic matter concentration higher than the organic matter concentration of the organic wastewater flowing out of the settling basin into the introduction flow path; and
A control program for an organic wastewater treatment system that causes the high-concentration treated water supply mechanism to execute the operation.
JP2015051316A 2015-03-13 2015-03-13 Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program Active JP6396238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051316A JP6396238B2 (en) 2015-03-13 2015-03-13 Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051316A JP6396238B2 (en) 2015-03-13 2015-03-13 Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program

Publications (2)

Publication Number Publication Date
JP2016168571A JP2016168571A (en) 2016-09-23
JP6396238B2 true JP6396238B2 (en) 2018-09-26

Family

ID=56982886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051316A Active JP6396238B2 (en) 2015-03-13 2015-03-13 Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program

Country Status (1)

Country Link
JP (1) JP6396238B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104567B1 (en) * 2019-12-17 2022-08-05 Suez Groupe Process for regulating the operation of a waste water treatment installation, treatment installation and associated regulation device.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961835B2 (en) * 2002-01-07 2007-08-22 株式会社東芝 Sewage treatment plant water quality controller
CN100443422C (en) * 2005-05-24 2008-12-17 株式会社东芝 Dephosphorize apparatus of sewage treatment plant
JP2007000859A (en) * 2005-05-24 2007-01-11 Toshiba Corp Phosphorous removal device in sewage disposal plant
JP5606513B2 (en) * 2011-11-08 2014-10-15 株式会社東芝 Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus

Also Published As

Publication number Publication date
JP2016168571A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP5698025B2 (en) Waste water treatment apparatus and waste water treatment method
JP3961835B2 (en) Sewage treatment plant water quality controller
JP6404999B2 (en) Organic wastewater treatment equipment
JP4334317B2 (en) Sewage treatment system
JP2010269255A (en) Sewage treatment method
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
JP5883698B2 (en) Wastewater treatment method
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
CN204211601U (en) Sewerage integrated processing system
JP2011147858A (en) Apparatus and method for treating sewage
JP2017013014A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JP5300898B2 (en) Organic wastewater treatment equipment
WO2020170364A1 (en) Water treatment apparatus and water treatment method
JP2015104712A (en) Sewage treatment system and method
KR102502856B1 (en) Waste water treatment system with enhanced denitrification structure
JP6049544B2 (en) Wastewater treatment equipment
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP2019217484A (en) Adjustment section control apparatus, adjustment section control method, computer program and organic wastewater treatment system
JP2013039577A (en) Sewage treatment method
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
TW202202454A (en) Aerobic biological processing method and device
JP2013188664A (en) Drainage processing system and method
JP2022107994A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150