JP6826613B2 - Microwave heat treatment equipment and carbon fiber manufacturing equipment and manufacturing method - Google Patents

Microwave heat treatment equipment and carbon fiber manufacturing equipment and manufacturing method Download PDF

Info

Publication number
JP6826613B2
JP6826613B2 JP2018558854A JP2018558854A JP6826613B2 JP 6826613 B2 JP6826613 B2 JP 6826613B2 JP 2018558854 A JP2018558854 A JP 2018558854A JP 2018558854 A JP2018558854 A JP 2018558854A JP 6826613 B2 JP6826613 B2 JP 6826613B2
Authority
JP
Japan
Prior art keywords
heated
fiber
microwave
conductivity
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018558854A
Other languages
Japanese (ja)
Other versions
JPWO2018123249A1 (en
Inventor
豊田 一行
一行 豊田
山田 正行
正行 山田
哲夫 山本
哲夫 山本
志有 廣地
志有 廣地
一秀 浅井
一秀 浅井
岩倉 裕幸
裕幸 岩倉
勝艶 浜野
勝艶 浜野
武鎗 良治
良治 武鎗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Publication of JPWO2018123249A1 publication Critical patent/JPWO2018123249A1/en
Application granted granted Critical
Publication of JP6826613B2 publication Critical patent/JP6826613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Description

本発明は、マイクロ波電力の照射により前駆体繊維を炭素化するマイクロ波加熱処理装 置、及び、これを用いた炭素繊維の製造装置及び製造方法に関するものである。 The present invention relates to a microwave heat treatment device for carbonizing a precursor fiber by irradiation with microwave electric power, and a carbon fiber manufacturing apparatus and manufacturing method using the microwave heat treatment device.

炭素繊維は、物理的、化学的に優れた性質を有し自動車、航空・宇宙、産業機械他幅広 い分野での利用が進んでいる。
炭素繊維製造プロセスの炭素化において、従来はポリマー原料を紡糸した被加熱繊維( 前駆体繊維)を、抵抗加熱ヒータで300℃から2000℃程度に昇温した加熱炉の中を ロール トゥ ロール(roll to roll)方式で送りながら製造している(特許文献1、2 、3参照)。
Carbon fiber has excellent physical and chemical properties and is being used in a wide range of fields such as automobiles, aerospace, industrial machinery, and so on.
In the carbonization of the carbon fiber manufacturing process, conventionally, the fibers to be heated (precursor fibers) obtained by spinning a polymer raw material are rolled to roll in a heating furnace in which the temperature is raised from 300 ° C to 2000 ° C by a resistance heating heater. Manufactured while feeding by the to roll) method (see Patent Documents 1, 2, and 3).

特開平11−158738号公報Japanese Unexamined Patent Publication No. 11-158738 特開2013−249570号公報Japanese Unexamined Patent Publication No. 2013-249570 特開2014−125683号公報Japanese Unexamined Patent Publication No. 2014-125683

従来の炭素繊維製造プロセスにおける被加熱繊維の加熱方法は、加熱炉の壁を含めて炉 内全体を昇温するため、ロール トゥ ロール方式で加熱処理するためにセッティングす る被加熱繊維の製造開始や終了時、及び保守を行う際、加熱炉の昇降温に多大な時間と労 力を要する。
また加熱炉壁を含む加熱対象の熱容量が大きいため特に昇温時に大量の電力を消費する 。 そこで被加熱繊維を炭素化する際、加熱炉全体を加熱せず、マイクロ波を被加熱繊維に照 射して消費電力の削減と加熱炉の保守性を改善する方法が検討されている。
In the conventional carbon fiber manufacturing process, the heating method of the heated fiber is to heat the entire inside of the furnace including the wall of the heating furnace, so the production of the heated fiber is set to be set for heat treatment by the roll-to-roll method. It takes a lot of time and effort to raise and lower the temperature of the heating furnace at the end of the operation and at the time of maintenance.
In addition, since the heat capacity of the heating target including the heating furnace wall is large, a large amount of electric power is consumed especially when the temperature rises. Therefore, when carbonizing the fibers to be heated, a method of reducing power consumption and improving the maintainability of the heating furnace by irradiating the fibers to be heated with microwaves without heating the entire heating furnace is being studied.

しかし、炭素繊維の製造プロセスにおいて、マイクロ波で加熱する場合に被加熱繊維の 物理的な性質がプロセスの進行と共に変化し、最適な加熱状態を維持することが難しいと いう問題がある。
またマイクロ波で加熱している状態の被加熱繊維の温度を直接正確に測定できればフィ ードバック制御が可能であるが、被加熱繊維の輻射熱による熱逃げを抑制するための断熱 機構を設けた場合、放射温度計による被加熱繊維の温度測定は非常に困難になる。
However, in the carbon fiber manufacturing process, when heating with microwaves, the physical properties of the fibers to be heated change as the process progresses, and there is a problem that it is difficult to maintain the optimum heating state.
Feedback control is possible if the temperature of the fibers to be heated in the state of being heated by microwaves can be measured directly and accurately. However, if a heat insulating mechanism is provided to suppress heat escape due to radiant heat of the fibers to be heated, It is very difficult to measure the temperature of the fiber to be heated with a radiation thermometer.

本発明によれば、加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装 置において、
被加熱繊維の特定の2点間に電圧を印加し、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と導電率とに応じた加熱処 理を行うように、マイクロ波出力を調節する技術を提供する。
According to the present invention, in a microwave heating device in which heat treatment is performed by microwaves in a heat treatment chamber,
A voltage is applied between two specific points on the fiber to be heated,
The conductivity of the fiber to be heated is calculated from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the fiber to be heated.
Provided is a technique for adjusting the microwave output so that the heating process is performed according to the carbonization rate, the microwave output, and the conductivity of the fiber to be heated calculated in advance.

本発明によれば、加熱処理室の中を走行する被加熱繊維の導電率を測定し、導電率とマ イクロ波電力と炭素化率の関係をあらかじめ取得した関係を基にしてマイクロ波出力を調 節することができ、被加熱繊維の炭素化処理を高品質で行うことができる。
また本発明によれば、炭素繊維の製造プロセスにおいて、マイクロ波加熱装置による加 熱処理を可能とし、加熱処理における被加熱繊維の温度を演算測定し、炭素化状態に応じ た加熱処理制御を行うことを可能とするものである。
According to the present invention, the conductivity of the fiber to be heated running in the heat treatment chamber is measured, and the microwave output is calculated based on the relationship obtained in advance between the conductivity, the microwave power and the carbonization rate. It can be adjusted, and the carbonization treatment of the fiber to be heated can be performed with high quality.
Further, according to the present invention, in the carbon fiber manufacturing process, heat treatment by a microwave heating device is possible, the temperature of the fiber to be heated in the heat treatment is calculated and measured, and the heat treatment is controlled according to the carbonization state. Is possible.

本発明の実施の形態に係わるマイクロ波加熱装置における炭素化処理状態 を説明する図(加熱処理室の断面図)である。It is a figure (cross-sectional view of the heat treatment chamber) explaining the carbonization treatment state in the microwave heating apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係わるマイクロ波加熱装置における炭素化処理状態 を説明する図(加熱処理室における被加熱繊維の加熱部位の位置関係を示す図)である。It is a figure explaining the carbonization treatment state in the microwave heating apparatus which concerns on embodiment of this invention (the figure which shows the positional relationship of the heating part of the fiber to be heated in a heat treatment room). 本発明の実施の形態に係わるマイクロ波加熱装置における炭素化処理状態 を説明する図(加熱処理室における被加熱繊維の加熱部位の位置関係に基づく温度、炭素 化率、誘電損失、導電率、マイクロ波出力を示す図)である。The figure explaining the carbonization treatment state in the microwave heating apparatus which concerns on embodiment of this invention (temperature, carbonization rate, dielectric loss, conductivity, micro based on the positional relationship of the heating part of the fiber to be heated in a heat treatment room. The figure which shows the wave output). 本発明の実施の形態に係わるマイクロ波加熱装置に加熱処理室を説明する 図(図1Aの加熱処理室の断面詳細図)である。It is a figure (the cross-sectional detail view of the heat treatment chamber of FIG. 1A) explaining the heat treatment chamber to the microwave heating apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係わるマイクロ波加熱装置に加熱処理室を説明する 図(図1Aの加熱処理室の内部を上から見た図)である。It is a figure explaining the heat treatment chamber to the microwave heating apparatus which concerns on embodiment of this invention (the inside of the heat treatment chamber of FIG. 1A seen from the top). 本発明の実施の形態に係わるマイクロ波照射部と導電率測定部に関する図The figure regarding the microwave irradiation part and the conductivity measurement part which concerns on embodiment of this invention. 本発明の実施の形態に係わるマイクロ波照射部と導電率測定部に関する図The figure regarding the microwave irradiation part and the conductivity measurement part which concerns on embodiment of this invention. 本発明の実施の形態に係わるマイクロ波照射部と導電率測定部に関する図The figure regarding the microwave irradiation part and the conductivity measurement part which concerns on embodiment of this invention. 本発明の実施の形態に係わるマイクロ波照射部の構造を示しており、(a) は側面から見た図、(b)は下から見た図である。The structure of the microwave irradiation part which concerns on embodiment of this invention is shown, (a) is a side view, and (b) is a bottom view. 本発明の実施の形態に係わるマイクロ波照射部の構造、及び、マイクロ波照 射の波形を模式的に示した図である。It is a figure which showed typically the structure of the microwave irradiation part and the waveform of the microwave irradiation which concerns on embodiment of this invention. 本発明の実施の形態に係わる炭素繊維に製造工程を示す図である。It is a figure which shows the manufacturing process to the carbon fiber which concerns on embodiment of this invention. 本発明の実施の形態に係わる被加熱繊維の導電率毎のマイクロ波電力とその 温度の関係を示す図である。It is a figure which shows the relationship between the microwave electric power for each conductivity of the fiber to be heated and its temperature which concerns on embodiment of this invention. 本発明の実施の形態に係わる制御装置のブロック図である。It is a block diagram of the control device which concerns on embodiment of this invention.

以下、本発明の実施形態について図面を参照して詳細に説明する。
図1A〜Cは、本発明の実施の形態に係わるマイクロ波加熱装置における炭素化処理状 態を説明する図である。
図1Aは、加熱処理室の断面図であり、被加熱繊維3の炭素化を行う加熱処理室1の断 面を模式的に示している。
図1Bは、加熱処理室における被加熱繊維の加熱部位の位置関係を示す図であり、被加 熱繊維3がマイクロ波5に加熱されるモードと加熱処理室1内の位置との関係を示してい る。
図1Cは、加熱処理室における被加熱繊維の加熱部位の位置関係に基づく温度、炭素化 率、誘電損失、導電率、マイクロ波出力を示す図であり、即ち、加熱処理室1内の位置に おける被加熱繊維3の温度、炭素化率、誘電損失、導電率、マイクロ波出力を示している 。 ここで、図1A〜Cにおいて、加熱処理室1内での位置は同じ関係になるように示してあ る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A to 1C are diagrams for explaining a carbonization treatment state in the microwave heating apparatus according to the embodiment of the present invention.
FIG. 1A is a cross-sectional view of the heat treatment chamber, and schematically shows a cut surface of the heat treatment chamber 1 that carbonizes the fiber 3 to be heated.
FIG. 1B is a diagram showing the positional relationship of the heated portion of the heated fiber in the heat treatment chamber, and shows the relationship between the mode in which the heated fiber 3 is heated by the microwave 5 and the position in the heat treatment chamber 1. ing.
FIG. 1C is a diagram showing the temperature, carbonization rate, dielectric loss, conductivity, and microwave output based on the positional relationship of the heated portion of the fiber to be heated in the heat treatment chamber, that is, at the position in the heat treatment chamber 1. It shows the temperature, carbonization rate, dielectric loss, conductivity, and microwave output of the fiber 3 to be heated. Here, in FIGS. 1A to 1C, the positions in the heat treatment chamber 1 are shown to have the same relationship.

図1Aにおいて、被加熱繊維3は図に示した加熱処理室1の左端から入って右端に一定 の速度で送られ、ロール トゥ ロール方式で加熱処理される。 走行中の被加熱繊維3は後述する図2A(および図2B)のローラ6により加熱処理室1 内部における進行する位置が変化しないように支持されている。 加熱処理室1内部にはマイクロ波照射部4が数か所(本実施例では3か所)に設けられ、 その下部を通過する被加熱繊維3にマイクロ波を照射して加熱処理を行うものである。
またマイクロ波照射部4の間に導電率測定部14が設けられ(本実施例では各導電率測 定部間の2ヶ所)、被加熱繊維3の導電率を測定する。詳細は後述する図10にて説明す る。
ここで、マイクロ波照射部4の数や設置位置は被加熱繊維3の数や処理温度、送り速度 によって増減させる。
また、マイクロ波の周波数は2.45GHzを用いるが、照射による加熱処理のできる 周波数であればその他の周波数でも構わない。
In FIG. 1A, the fibers 3 to be heated enter from the left end of the heat treatment chamber 1 shown in the figure, are sent to the right end at a constant speed, and are heat-treated by a roll-to-roll method. The running fiber 3 to be heated is supported by the roller 6 of FIG. 2A (and FIG. 2B), which will be described later, so that the traveling position inside the heat treatment chamber 1 does not change. Microwave irradiation units 4 are provided in several places (three places in this embodiment) inside the heat treatment chamber 1, and the fibers 3 to be heated passing under the microwave irradiation units 3 are irradiated with microwaves to perform heat treatment. Is.
Further, a conductivity measuring unit 14 is provided between the microwave irradiation units 4 (in this embodiment, two locations between the conductivity measuring units), and the conductivity of the fiber 3 to be heated is measured. Details will be described later with reference to FIG.
Here, the number and the installation position of the microwave irradiation unit 4 are increased or decreased depending on the number of fibers 3 to be heated, the processing temperature, and the feed rate.
The frequency of the microwave is 2.45 GHz, but any frequency may be used as long as it can be heat-treated by irradiation.

図1Bにおいて、被加熱繊維3がマイクロ波5に加熱されるモードは加熱処理室1の左 側から右に進むにしたがって炭素化が進行し、誘電加熱から誘導加熱に移行する。
被加熱繊維3はポリマー原料から紡糸した合成繊維で炭素を含んでいる。
被加熱繊維3は、不活性ガス雰囲気の加熱処理室1内を走行する間に、被加熱繊維3の 有機物が変質してその一部が被加熱繊維3の外へ放出される。これによって被加熱繊維3 の炭素の濃度が高くなると共に、加熱によって化学組成も変化し、マイクロ波の吸収状態 が誘電損失による誘電加熱から誘導電流による誘導加熱側に変化するものである。
誘導加熱が生じる状態で被加熱繊維3を300℃程度から2000℃程度まで昇温し、 これをしばらく維持して炭素化処理を行う。
In FIG. 1B, in the mode in which the fiber 3 to be heated is heated by the microwave 5, carbonization progresses from the left side to the right of the heat treatment chamber 1, and the mode shifts from dielectric heating to induction heating.
The fiber 3 to be heated is a synthetic fiber spun from a polymer raw material and contains carbon.
While the fiber 3 to be heated travels in the heat treatment chamber 1 in an inert gas atmosphere, the organic matter of the fiber 3 to be heated is denatured and a part thereof is released to the outside of the fiber 3 to be heated. As a result, the carbon concentration of the fiber 3 to be heated increases, the chemical composition also changes due to heating, and the absorption state of microwaves changes from dielectric heating due to dielectric loss to the induction heating side due to induced current.
The temperature of the fiber 3 to be heated is raised from about 300 ° C. to about 2000 ° C. in a state where induction heating occurs, and this is maintained for a while to perform carbonization treatment.

図1Cにおいて、導電率は炭素化処理の進行により炭素化率が大きくなると上昇し、誘 電損失は逆に減少する。
被加熱繊維3の温度は導電率の上昇と共に加速度的に上がり、効率的に炭素化が進むよ うに2000℃程度に維持される。
マイクロ波出力は被加熱繊維3の昇温時に最大となり、被加熱繊維3が2000℃に到 達した時点で徐々に低下させ、被加熱繊維3の温度が2000℃に維持されるように制御 される。
In FIG. 1C, the conductivity increases as the carbonization rate increases as the carbonization process progresses, and the attraction loss decreases conversely.
The temperature of the fiber 3 to be heated increases at an accelerating rate as the conductivity increases, and is maintained at about 2000 ° C. so that carbonization proceeds efficiently.
The microwave output is maximized when the temperature of the heated fiber 3 is raised, and is gradually lowered when the heated fiber 3 reaches 2000 ° C., and the temperature of the heated fiber 3 is controlled to be maintained at 2000 ° C. To.

誘電加熱による発熱量P1を数1に、誘導加熱による発熱量P2を数2に示す。 The calorific value P1 due to dielectric heating is shown in Equation 1, and the calorific value P2 due to induction heating is shown in Equation 2.

Figure 0006826613
Figure 0006826613

Figure 0006826613
Figure 0006826613

誘電加熱による発熱量は誘電損失tanδに比例し、誘導加熱による発熱量は導電率σに 比例する。
炭素化処理の初期では被加熱繊維3のマイクロ波に対する誘電損失tanδが大きいため 誘電加熱が主な加熱メカニズムとなり、炭素化が進行して導電率σが増加してくると誘導 加熱のメカニズムが加わり高温での効率的な加熱が可能となる。
The calorific value due to dielectric heating is proportional to the dielectric loss tan δ, and the calorific value due to induction heating is proportional to the conductivity σ.
In the initial stage of carbonization treatment, the dielectric loss tan δ of the fiber to be heated 3 with respect to microwaves is large, so dielectric heating becomes the main heating mechanism, and as carbonization progresses and the conductivity σ increases, an induction heating mechanism is added. Efficient heating at high temperatures is possible.

図2A、Bは、本発明の実施の形態に係わるマイクロ波加熱装置に加熱処理室を説明す る図であり、図2Aは、前述した図1Aの加熱処理室の断面詳細図であり、図2Bは、加 熱処理室の内部を上から見た図である。
加熱処理室壁2には加熱処理室1内部に不活性ガスを供給する図示しない配管が接続さ れている。被加熱繊維3は不活性ガスの雰囲気中で加熱処理が行われる。
また加熱処理室1の内部には連続的に送られてくる複数の被加熱繊維3を支持するロー ラ6が設けられ、複数の被加熱繊維3が一定の高さを維持しながら送られる。
加熱処理室1の天井部には被加熱繊維3にマイクロ波5を照射するマイクロ波照射部4 が3式設けてあり、走行中の複数の被加熱繊維3にマイクロ波5を照射する。
また、マイクロ波5による照射で被加熱繊維3を効率よく加熱するために、被加熱繊維 3の周囲には図示しない断熱用のカバーが設けてある。
この断熱用カバーはマイクロ波の吸収率は低く、被加熱繊維からの輻射熱の透過を抑制 する高融点材料で構成される。
なお図2A、Bについては、後述に詳細を示す。
2A and 2B are views for explaining the heat treatment chamber to the microwave heating apparatus according to the embodiment of the present invention, and FIG. 2A is a detailed cross-sectional view of the heat treatment chamber of FIG. 1A described above. 2B is a top view of the inside of the heat treatment chamber.
A pipe (not shown) for supplying an inert gas is connected to the wall 2 of the heat treatment chamber 1 inside the heat treatment chamber 1. The fiber 3 to be heated is heat-treated in an atmosphere of an inert gas.
Further, a roller 6 for supporting a plurality of fibers 3 to be continuously fed is provided inside the heat treatment chamber 1, and the plurality of fibers 3 to be heated are fed while maintaining a constant height.
The ceiling of the heat treatment chamber 1 is provided with three sets of microwave irradiation units 4 for irradiating the heated fibers 3 with microwaves 5, and irradiating a plurality of running fibers 3 with microwaves 5.
Further, in order to efficiently heat the heated fiber 3 by irradiation with the microwave 5, a cover for heat insulation (not shown) is provided around the heated fiber 3.
This heat insulating cover has a low microwave absorption rate and is made of a high melting point material that suppresses the transmission of radiant heat from the fibers to be heated.
Details of FIGS. 2A and 2B will be shown later.

図6は、本発明の実施の形態に係わるマイクロ波照射部4の構造を示しており、(a) は側面から見た図、(b)は下から見た図である。
図6に示すようにマイクロ波照射部4はマグネトロン23、アイソレータ24、方向性 結合器25、整合器26、導波管27で構成され、導波管27の終端は壁で閉じられてお り、その壁は図示しない機構で導波管27の軸方向にマイクロ波の1波長程度の範囲で移 動できるようになっている。
また、導波管27の下側にはマイクロ波の波長の1/2の間隔でスリット28が設けて ある。すなわち、1/2波長はスリットのピッチを示しており、隣り合うスリットの間隔 を1/2波長とするものである。なお、図6においてはスリットがジグザグに配置されて いる実施例としているが、スリットは平行であっても良い。
また、マグネトロン23の出力するマイクロ波は整合器から導波管にかけて共振するよ うに調節され、マイクロ波の電界の最も大きな部分である腹30(後述する図7参照)が スリット28に位置するようになっており、スリット28からマイクロ波が導波管27の 外へ放射される。
ここで、ローラ6の高さや取付け位置は被加熱繊維3の引き回し方によって異なるが、 これに伴って被加熱繊維3の走行位置も変わるため、マイクロ波照射部4の位置はこれら を考慮して適切な位置に設けられる。
6A and 6B show the structure of the microwave irradiation unit 4 according to the embodiment of the present invention, in which FIG. 6A is a side view and FIG. 6B is a bottom view.
As shown in FIG. 6, the microwave irradiation unit 4 is composed of a magnetron 23, an isolator 24, a directional coupler 25, a matching unit 26, and a waveguide 27, and the end of the waveguide 27 is closed by a wall. The wall is a mechanism (not shown) that can move in the axial direction of the waveguide 27 within a range of about one wavelength of microwaves.
Further, slits 28 are provided on the lower side of the waveguide 27 at intervals of 1/2 of the wavelength of the microwave. That is, the 1/2 wavelength indicates the pitch of the slits, and the distance between adjacent slits is the 1/2 wavelength. In FIG. 6, the slits are arranged in a zigzag manner, but the slits may be parallel.
Further, the microwave output by the magnetron 23 is adjusted so as to resonate from the matching unit to the waveguide so that the antinode 30 (see FIG. 7 described later), which is the largest part of the microwave electric field, is located in the slit 28. The microwave is radiated from the slit 28 to the outside of the waveguide 27.
Here, the height and mounting position of the roller 6 differ depending on how the heated fiber 3 is routed, but the traveling position of the heated fiber 3 also changes accordingly, so the position of the microwave irradiation unit 4 takes these into consideration. It is installed in an appropriate position.

図2A、Bにおいて、複数のマイクロ波照射部4の下流側には導電率測定用ローラ7が 2式ずつ設けてある。
この導電率測定用ローラ7には被加熱繊維3に電圧を印加するための複数の滑車状端子 8が設けてあり、電源11により2式の導電率測定用ローラ7を経由して、それぞれの滑 車状端子8に電圧を印加し、この2式の滑車状端子8の間の電圧と電流をそれぞれ電圧計 9と電流計10で測定できるようになっている。
導電率測定用ローラ7と滑車状端子8の回転軸は同一で、滑車状端子8の外周の被加熱 繊維3との接触部は導電率測定用ローラ7と絶縁されている。
被加熱繊維3の特定の2点間に電圧を印加する滑車状端子8は、被加熱繊維3の走行と 共に導電率測定用ローラ7の滑車状端子8と一体となって回転しながら滑車状端子8と被 加熱繊維3との間で電流を流す構造になっている。
被加熱繊維3の特定の2点間の電源ラインは回転ロールの端部に設けたロータリコネク タ13を経由して加熱処理室1の外部に設けた電源11に接続されている。
また複数の被加熱繊維3の特定の2点間に電圧を印加する際、それぞれに電源11、電 圧計9、電流計10を設けても良いが、連続して測定する必要がない場合は、図2のよう にロータリコネクタ13に連接した端子選択ユニット12により時分割して電圧を印加す る構造としても良い。
測定した電圧値と電流値のデータは制御装置(制御部)に送られ、被加熱繊維3の導電 率が算出される。
また、電源11と電気的に接続されている導電率測定系は他の部材と絶縁されている。
In FIGS. 2A and 2B, two sets of conductivity measuring rollers 7 are provided on the downstream side of the plurality of microwave irradiation units 4.
The conductivity measuring roller 7 is provided with a plurality of pulley-shaped terminals 8 for applying a voltage to the heated fiber 3, and each of the rollers 7 is provided by a power source 11 via two sets of conductivity measuring rollers 7. A voltage is applied to the pulley-shaped terminal 8, and the voltage and current between the two types of pulley-shaped terminals 8 can be measured by the voltmeter 9 and the ammeter 10, respectively.
The rotation shafts of the conductivity measuring roller 7 and the pulley-shaped terminal 8 are the same, and the contact portion with the heated fiber 3 on the outer circumference of the pulley-shaped terminal 8 is insulated from the conductivity measuring roller 7.
The pulley-shaped terminal 8 for applying a voltage between two specific points of the fiber 3 to be heated has a pulley-like shape while rotating together with the pulley-shaped terminal 8 of the roller 7 for conductivity measurement while the fiber 3 to be heated travels. The structure is such that an electric current flows between the terminal 8 and the fiber 3 to be heated.
The power supply line between two specific points of the fiber 3 to be heated is connected to the power supply 11 provided outside the heat treatment chamber 1 via the rotary connector 13 provided at the end of the rotating roll.
Further, when a voltage is applied between two specific points of a plurality of fibers 3 to be heated, a power supply 11, a pressure gauge 9, and an ammeter 10 may be provided for each, but if continuous measurement is not necessary, the measurement may be provided. As shown in FIG. 2, the structure may be such that the voltage is applied in a time-division manner by the terminal selection unit 12 connected to the rotary connector 13.
The measured voltage value and current value data are sent to the control device (control unit), and the conductivity of the fiber 3 to be heated is calculated.
Further, the conductivity measuring system electrically connected to the power supply 11 is insulated from other members.

図10は、本発明の実施の形態に係わる制御装置のブロック図を示す。
電源(導電率測定用)から交流又は直流の電圧を被加熱繊維と接触する測定部の端子( 電極端子)に供給する。測定部で測定された端子間の電圧と被加熱繊維に流れる電流値を A/D(アナログ/デジタル)変換部でデジタル化し制御部に送る。制御部において予め記 憶部に記憶している被加熱繊維の温度、導電率、測定端子間の電圧値、電流値と、測定し た(A/D変換部から入力された)電圧と電流値の関係から被加熱繊維の温度が所定の値 になるように導電率を演算し、マイクロ波電源に制御信号を送る。マイクロ波電源は制御 部から入力した制御信号に従って前記導電率の演算により調整したマイクロ波を被加熱繊 維に照射する。
なお、制御部は測定した被加熱繊維の電圧と電流値を時間の経過とともに記憶部に記憶 し、所望の導電率が得られるように温度、導電率、測定端子間の電圧値、電流値を演算し て所望の制御信号としてマイクロ波電源に出力するものである。このような制御により、 被加熱繊維の導電率は、該繊維の加熱による炭素化の度合を示すものとして測定され、該 測定結果をフィードバックしてマイクロ波の照射を調整するものである。
FIG. 10 shows a block diagram of a control device according to an embodiment of the present invention.
An AC or DC voltage is supplied from the power source (for conductivity measurement) to the terminal (electrode terminal) of the measuring unit that comes into contact with the heated fiber. The voltage between the terminals measured by the measuring unit and the current value flowing through the fiber to be heated are digitized by the A / D (analog / digital) conversion unit and sent to the control unit. The temperature, conductivity, voltage value between measurement terminals, and current value of the fiber to be heated stored in advance in the memory unit in the control unit, and the measured voltage and current value (input from the A / D conversion unit). Therefore, the conductivity is calculated so that the temperature of the fiber to be heated becomes a predetermined value, and a control signal is sent to the microwave power supply. The microwave power supply irradiates the heated fiber with microwaves adjusted by the calculation of the conductivity according to the control signal input from the control unit.
The control unit stores the measured voltage and current values of the fibers to be heated in the storage unit over time, and stores the temperature, conductivity, voltage value between the measurement terminals, and current value so that the desired conductivity can be obtained. It is calculated and output to the microwave power supply as a desired control signal. By such control, the conductivity of the fiber to be heated is measured as indicating the degree of carbonization due to heating of the fiber, and the measurement result is fed back to adjust the microwave irradiation.

なお図2A、Bでは、導電率測定系における被加熱繊維3の特定の2点間に印加する電 圧は直流となっているが、交流でも良い。
導電率の測定に直流を用いる場合、測定系の寄生容量を考慮せずに容易に電圧、電流値 の測定が可能となる利点がある。また、導電率の測定に交流を用いる場合、直流に比べて 被加熱繊維と接触する滑車状端子部でのスパーク発生の頻度を少なくでき、電流経路の接 触部での電食による劣化を少なくでき、電圧の変更が容易(例えばトランスによる可変が 容易)となる利点がある。
したがって、導電率測定系の規模が大きく複雑となる場合、寄生容量が大きい場合は直 流が向いており、そうでない場合は交流が向いている。
In FIGS. 2A and 2B, the electric pressure applied between the two specific points of the fiber 3 to be heated in the conductivity measurement system is direct current, but alternating current may also be used.
When direct current is used to measure the conductivity, there is an advantage that the voltage and current values can be easily measured without considering the parasitic capacitance of the measurement system. In addition, when alternating current is used to measure conductivity, the frequency of sparks at the pulley-shaped terminals that come into contact with the heated fiber can be reduced compared to direct current, and deterioration due to electrolytic corrosion at the contacting part of the current path can be reduced. It has the advantage that the voltage can be easily changed (for example, it can be easily changed by a transformer).
Therefore, when the scale and complexity of the conductivity measurement system is large and complicated, direct current is suitable when the parasitic capacitance is large, and alternating current is suitable when the parasitic capacitance is large.

次に本発明の実施の形態に係わる導電率測定系ついて説明する。
図2A、Bにおいて、加熱処理室1内を走行する被加熱繊維3が接触する一対の導電率 測定用ローラ7の滑車状端子8を端子選択ユニット12で選択し、電源11から供給され る電圧を印加する。
この状態での導電率測定用ローラ7の滑車状端子8の間に印加した電圧値と、滑車状端 子8の間の被加熱繊維3に流れる電流(ローラ間の電流21)の測定値のデータを制御装 置に送り、次の数3で導電率を求める。
Next, the conductivity measurement system according to the embodiment of the present invention will be described.
In FIGS. 2A and 2B, the pulley-shaped terminals 8 of the pair of conductivity measuring rollers 7 with which the fibers 3 to be heated running in the heat treatment chamber 1 come into contact are selected by the terminal selection unit 12, and the voltage supplied from the power supply 11. Is applied.
The measured value of the voltage value applied between the pulley-shaped terminals 8 of the conductivity measuring roller 7 in this state and the current flowing through the heated fiber 3 between the pulley-shaped terminals 8 (current 21 between rollers). The data is sent to the control device, and the conductivity is calculated by the following equation 3.

Figure 0006826613
Figure 0006826613

導電率σを測定する被加熱繊維3を端子選択ユニット12で選択しながら加熱処理室1 を走行する複数の被加熱繊維3の導電率の測定を順次繰り返し行う。
そして測定した導電率を所定の範囲に保持するようマイクロ波照射電力を調整する。
ここで、あらかじめ求めておいた導電率とマイクロ波出力と炭素化率の関係を制御装置 の記憶部に記憶しておき、マイクロ波照射電力を適切に調節することで安定した所望の炭 素化処理を行うことができる。
While the terminal selection unit 12 selects the fiber 3 to be heated for measuring the conductivity σ, the measurement of the conductivity of the plurality of fibers 3 to be heated running in the heat treatment chamber 1 is sequentially repeated.
Then, the microwave irradiation power is adjusted so as to keep the measured conductivity within a predetermined range.
Here, the relationship between the conductivity, the microwave output, and the carbonization rate obtained in advance is stored in the storage unit of the control device, and stable and desired carbonization is achieved by appropriately adjusting the microwave irradiation power. Processing can be performed.

図3、図4、図5は、本発明の実施の形態であるマイクロ波照射部と導電率測定部に関 する図であり、前述した図2Bの加熱処理室壁2を省略して被加熱繊維3の加熱処理の仕 方を模式的に示している図である。
図3は、被加熱繊維3の走行方向の上流側(図の左側)から下流側(図の右側)に向かって 第1マイクロ波照射部17、第1導電率測定部15、第2マイクロ波照射部18、第2導 電率測定部16、第3マイクロ波照射部19の順に各ユニットが設けてある。
まず第1マイクロ波照射部17が被加熱繊維3を加熱処理し、この加熱処理された後の 導電率を第1導電率測定部15で測定し、必要に応じて第1マイクロ波照射部17と第2 マイクロ波照射部18のマイクロ波電力を調節する。
次に第2導電率測定部16で測定された導電率を基に必要に応じて、第2マイクロ波照 射部18と第3マイクロ波照射部19のマイクロ波電力を調節する。
3, FIG. 4, and FIG. 5 are views relating to the microwave irradiation unit and the conductivity measurement unit according to the embodiment of the present invention, and the heat treatment chamber wall 2 of FIG. 2B described above is omitted to be heated. It is a figure which shows typically the method of heat treatment of a fiber 3.
FIG. 3 shows the first microwave irradiation unit 17, the first conductivity measuring unit 15, and the second microwave from the upstream side (left side in the figure) to the downstream side (right side in the figure) of the fiber 3 to be heated in the traveling direction. Each unit is provided in the order of the irradiation unit 18, the second conductivity measuring unit 16, and the third microwave irradiation unit 19.
First, the first microwave irradiation unit 17 heat-treats the fiber 3 to be heated, and the conductivity after the heat treatment is measured by the first microwave irradiation unit 15, and if necessary, the first microwave irradiation unit 17 And adjust the microwave power of the second microwave irradiation unit 18.
Next, the microwave power of the second microwave irradiation unit 18 and the third microwave irradiation unit 19 is adjusted as necessary based on the conductivity measured by the second conductivity measurement unit 16.

図4は、前述した図3に対し、マイクロ波照射部4を複数連結した場合を示しており、 被加熱繊維3の走行速度を上げることができる。
このとき各マイクロ波照射部は、図7に示すように隣り合う導波管内におけるマイクロ 波の位相差20が1/4波長になるように各マイクロ波照射部の取付位置が調節されてい る。
FIG. 4 shows a case where a plurality of microwave irradiation units 4 are connected to FIG. 3 described above, and the traveling speed of the heated fiber 3 can be increased.
At this time, as shown in FIG. 7, the mounting position of each microwave irradiation unit is adjusted so that the phase difference 20 of the microwaves in the adjacent waveguides is 1/4 wavelength.

ここで、マイクロ波電力の照射による所望の導電率については、予め実測により求めて 制御装置に記憶した被加熱繊維の導電率(σ)に対応したマイクロ波出力と温度の関係から 、被加熱繊維の温度が所定の温度になるようにマイクロ波電力を調節する。
図9は、本発明の実施の形態に係わる被加熱繊維の導電率毎のマイクロ波電力とその温 度の関係を示す図である。
被加熱繊維3の温度を保持温度に維持した状態で炭素化が進行して導電率(σ)が例えば dからaに向けて高くなると被加熱繊維3の温度が上昇してしまうため、マイクロ波電力を 図9の矢印Aの方向に向けて下げて行く調節を行う。
Here, the desired conductivity due to irradiation with microwave power is determined in advance by actual measurement and stored in the control device from the relationship between the microwave output and the temperature corresponding to the conductivity (σ) of the fiber to be heated. The microwave power is adjusted so that the temperature of is a predetermined temperature.
FIG. 9 is a diagram showing the relationship between the microwave power for each conductivity of the fiber to be heated and the temperature thereof according to the embodiment of the present invention.
When carbonization proceeds and the conductivity (σ) increases from d to a while the temperature of the fiber 3 to be heated is maintained at the holding temperature, the temperature of the fiber 3 to be heated rises, so that microwaves are used. The power is adjusted to be lowered in the direction of arrow A in FIG.

図7は、本発明の実施の形態に係わるマイクロ波照射部4の構造を示しており、前述し た図6(b)のマイクロ波照射部4を複数連結した場合の構造、及び、マイクロ波照射の 波形を模式的に示している。
これは第1マイクロ波照射部17のマイクロ波5電界の節29の部分を通過した被加熱 繊維3が次マイクロ波照射部では腹30の部分を通過して、照射されるマイクロ波の電界 強度の差を小さくして均一に加熱処理されるようにするのに有効となる。
FIG. 7 shows the structure of the microwave irradiation unit 4 according to the embodiment of the present invention, the structure when a plurality of the microwave irradiation units 4 of FIG. 6B described above are connected, and the microwave. The waveform of irradiation is shown schematically.
This is because the heated fiber 3 that has passed through the section 29 of the microwave 5 electric field of the first microwave irradiation section 17 passes through the portion of the antinode 30 in the next microwave irradiation section and is irradiated with the electric field strength of the microwave. It is effective to reduce the difference between the above and to ensure uniform heat treatment.

図5は、前述した図4に対し、第1マイクロ波照射部17と第2マイクロ照射部18に おける導電率を、第1導電率測定部15と第2導電率測定部16で測定し、必要に応じて それぞれのマイクロ波照射部のマイクロハ波出力を適切な値に調節する場合を示している 。
この図5で示した構成は図4で示した構成よりも加熱処理装置の外形寸法を小さくする ことができる。
In FIG. 5, the conductivitys of the first microwave irradiation unit 17 and the second microwave irradiation unit 18 are measured by the first conductivity measurement unit 15 and the second conductivity measurement unit 16 with respect to FIG. 4 described above. The case where the microwave output of each microwave irradiation part is adjusted to an appropriate value is shown.
The configuration shown in FIG. 5 can make the external dimensions of the heat treatment apparatus smaller than the configuration shown in FIG.

図8は、本発明の実施の形態に係わる炭素繊維に製造工程を示す図である。
炭素繊維製造プロセスの炭素化において、まずポリマー原料を投入し、紡糸部により被 加熱繊維(前駆体繊維)を、糸状またはひも状に加工し、マイクロ波炭素化部に出力する 。この出力はロール トゥ ロール(roll to roll)方式で所望の速度で送るものであり 、マイクロ波炭素部において、所定のマイクロ波照射により炭素化することにより、所望 の炭素繊維を製造している。
炭素化された炭素繊維にプラズマ加工処理等により所定の加工を施し、所望の炭素繊維 を取り出すものである。
FIG. 8 is a diagram showing a manufacturing process for carbon fibers according to the embodiment of the present invention.
In the carbonization of the carbon fiber manufacturing process, the polymer raw material is first charged, and the heated fiber (precursor fiber) is processed into a thread or string by the spinning part and output to the microwave carbonization part. This output is sent at a desired speed by a roll-to-roll method, and the desired carbon fiber is produced by carbonizing the microwave carbon part by a predetermined microwave irradiation.
The carbonized carbon fiber is subjected to a predetermined process by plasma processing or the like, and the desired carbon fiber is taken out.

上述した本発明の実施の形態においては、導電率を測定して照射するマイクロ波電力に フィードバックするものであるが、別の実施の形態として、ロールの回転速度を可変する 制御とすることもできる。
これは、加熱炉の内部において、被加熱繊維にマイクロ波電力を照射すると、定在波に よって横(並列)方向にムラが出来る可能性があり、その場合、ロールの個々のスピード (すなわちロールの回転速度)にフィードバックするものである。 また、このロールの回転速度およびマイクロ波電力の両方を可変する制御(測定した導電 率に基づくフィードバックの制御)とすることで、より細かな制御が可能となる。
In the above-described embodiment of the present invention, the conductivity is measured and fed back to the microwave power to be irradiated, but as another embodiment, the roll rotation speed can be controlled to be variable. ..
This is because when microwave power is applied to the fibers to be heated inside the heating furnace, standing waves may cause unevenness in the lateral (parallel) direction, in which case the individual speeds of the rolls (ie, rolls). It feeds back to the rotation speed of. In addition, finer control is possible by controlling both the rotation speed of the roll and the microwave power to be variable (feedback control based on the measured conductivity).

また、被加熱繊維の導電率の測定において、1本単位の繊維をロールで搬送して測定対 象とするか、若しくは、複数の被加熱繊維(ファイバ)を一括して搬送して測定対象とす ることができる。
1本のファイバ搬送においての、ロール部分接触により導電率測定は炭素化の精度を高 めることができ、また、複数ファイバの場合には炭素化の効率を高めることができる。 また、被加熱繊維の導電率の測定結果が所望の範囲外となった場合には、当該被加熱繊維 の該当する長さ部分を異常と判断し、エラー処理、例えば、当該長さ部分の被加熱繊維を 廃棄する工程とすることができる。
In addition, in the measurement of the conductivity of the fiber to be heated, one unit of fiber is transported by a roll for measurement, or a plurality of fibers (fiber) to be heated are collectively transported and used as a measurement target. can do.
The conductivity measurement can improve the accuracy of carbonization by the partial contact of the rolls in one fiber transfer, and the efficiency of carbonization can be improved in the case of multiple fibers. If the measurement result of the conductivity of the fiber to be heated is out of the desired range, the corresponding length portion of the fiber to be heated is determined to be abnormal, and error processing is performed, for example, the covering of the length portion. It can be a process of discarding the heated fiber.

以上説明したように、本発明の実施の形態によれば、被加熱繊維の導電率を測定する部 材を加熱処理室の中に設け、この部材で測定した被加熱繊維の導電率とマイクロ波の出力 及び被加熱繊維の炭素化率の関係についてあらかじめ求めた関係を基に、マイクロ波電力 の出力を調節しながら被加熱繊維の炭素化処理を行うことができる。
本発明の実施の形態によれば、加熱処理室の中を走行する被加熱繊維の温度を正確に測 定できない状態でも導電率を測定し、導電率とマイクロ波電力と炭素化率の関係をあらか じめ取得した関係を基にしてマイクロ波出力を調節して、炭素化処理を高品質で行うこと ができる。
As described above, according to the embodiment of the present invention, a member for measuring the conductivity of the fiber to be heated is provided in the heat treatment chamber, and the conductivity and microwave of the fiber to be heated measured by this member are provided. Based on the relationship obtained in advance regarding the relationship between the output of the fiber and the carbonization rate of the fiber to be heated, the carbonization treatment of the fiber to be heated can be performed while adjusting the output of microwave power.
According to the embodiment of the present invention, the conductivity is measured even when the temperature of the fiber to be heated running in the heat treatment chamber cannot be accurately measured, and the relationship between the conductivity, the microwave power and the carbonization rate is determined. The microwave output can be adjusted based on the relationships obtained from the beginning, and carbonization can be performed with high quality.

本発明の実施の形態(1)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で加熱処理を行っている被加熱繊維の特定の2点間に電圧を 印加し、その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被 加熱繊維の断面積から被加熱繊維の導電率を算出し、事前に測定した被加熱繊維の炭素化 率とマイクロ波出力と導電率の関係から、適切な加熱処理状態になるように、マイクロ波 出力を調節するマイクロ波加熱処理装置である。
本発明の実施の形態(2)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に印加する電圧が直流である前記実施の形態 (1)のマイクロ波加熱処理装置である。
本発明の実施の形態(3)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に印加する電圧が交流である前記実施の形態 (1)のマイクロ波加熱処理装置である。
本発明の実施の形態(4)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で炭素化処理を行っている被加熱繊維の導電率を測定するた めに、被加熱繊維の2点間に電圧を印加する部分において被加熱繊維と接触する端子が滑 車状であって、この滑車状の端子が回転ローラにそれぞれの回転軸が共通となるように設 けられ、且つ滑車状の端子の被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維 の進行と共に滑車状の端子がロールと一体となって回転しながら一対の滑車状の端子を経 由して被加熱繊維に電流を流す構造である前記実施の形態(1)のマイクロ波加熱処理装 置である。
As an embodiment (1) of the present invention, a voltage is applied between two specific points of a fiber to be heated, which is heat-treated by a roll-to-roll method using microwaves in a heat treatment chamber. The conductivity of the heated fiber is calculated from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber, and measured in advance. It is a microwave heat treatment device that adjusts the microwave output so that it is in an appropriate heat treatment state based on the relationship between the carbonization rate of the heated fiber, the microwave output, and the conductivity.
As the embodiment (2) of the present invention, the conductivity of the heated fiber, which is carbonized by the roll-to-roll method using microwaves in the heat treatment chamber, is measured. The microwave heat treatment apparatus according to the embodiment (1), wherein the voltage applied between two specific points of the fiber to be heated is direct current.
As the embodiment (3) of the present invention, the conductivity of the heated fiber, which is carbonized by the roll-to-roll method using microwaves in the heat treatment chamber, is measured. The microwave heat treatment apparatus according to the embodiment (1), wherein the voltage applied between two specific points of the fiber to be heated is alternating current.
As an embodiment (4) of the present invention, in order to measure the conductivity of a fiber to be heated that is carbonized by a roll-to-roll method using microwaves in a heat treatment chamber. In addition, the terminal that comes into contact with the heated fiber at the portion where the voltage is applied between the two points of the heated fiber has a pulley shape, and the pulley-shaped terminal has a common rotation axis for the rotating roller. A pair of pulley-shaped terminals are installed and the contact portion of the pulley-shaped terminal with the heated fiber is insulated from the rotating roll, and the pulley-shaped terminal rotates integrally with the roll as the heated fiber progresses. This is the microwave heat treatment device of the embodiment (1), which has a structure in which an electric current is passed through the fibers to be heated.

本発明の実施の形態(5)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に電圧を印加する電源ラインは回転ロールの 端部に設けたロータリ式のコネクタを経由して加熱処理室の外部に設けた電源に接続され ている前記実施の形態(4)のマイクロ波加熱処理装置である。
本発明の実施の形態(6)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で帯状に複数の被加熱繊維の炭素化処理を行っている被加 熱繊維の導電率測定を2本以上で行い、それぞれの導電率が予め設定した所定の範囲に入 るようにマイクロ波電力を制御する前記実施の形態(1)乃至(4)のマイクロ波加熱処 理装置である。
本発明の実施の形態(7)として、導電率測定部をマイクロ波照射部の上流側または下 流側又は両側に設けた前記実施の形態(1)乃至(4)のマイクロ波加熱処理装置である 。 本発明の実施の形態(8)として、導電率測定部の電圧を印加する端子をマイクロ波照射 部の上流側と下流側に設けて、マイクロ波照射部で加熱処理中の被加熱繊維の導電率を測 定する前記実施の形態(1)乃至(4)のマイクロ波加熱処理装置である。
As the embodiment (5) of the present invention, the conductivity of the heated fiber, which is carbonized by the roll-to-roll method using microwaves in the heat treatment chamber, is measured. In order to do so, the power supply line that applies voltage between two specific points of the fiber to be heated is connected to the power supply provided outside the heat treatment chamber via the rotary connector provided at the end of the rotating roll. The microwave heat treatment apparatus according to the embodiment (4).
As the embodiment (6) of the present invention, a plurality of heated fibers are carbonized in a strip shape by a roll-to-roll method using microwaves in a heat treatment chamber. The microwave heating process of the above-described embodiments (1) to (4), wherein the conductivity of the fiber is measured with two or more fibers, and the microwave power is controlled so that the respective conductivity falls within a predetermined range set in advance. It is a physical device.
As the embodiment (7) of the present invention, the microwave heat treatment apparatus according to the embodiments (1) to (4), wherein the conductivity measuring unit is provided on the upstream side, the downstream side or both sides of the microwave irradiation unit. is there . As an embodiment (8) of the present invention, terminals for applying a voltage of the conductivity measuring unit are provided on the upstream side and the downstream side of the microwave irradiation unit, and the conductivity of the heated fiber being heat-treated by the microwave irradiation unit is provided. The microwave heat treatment apparatus according to the embodiment (1) to (4) for measuring the rate.

本発明の実施の形態(9)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で加熱処理を行っている被加熱繊維の特定の2点間に電圧を 印加し、その2点間に印加する電圧値と、その2点間に流れる電流値と、その2点間の距 離と、被加熱繊維の断面積から被加熱繊維の導電率を測定し、この導電率と、マイクロ波 電力と、被加熱繊維の炭素化状態との関係を予め求め、その関係に基づいて被加熱繊維の 加熱処理に用いるマイクロ波電力の出力を調節するための制御装置を有するマイクロ波加 熱処理装置である。
As an embodiment (9) of the present invention, a voltage is applied between two specific points of a fiber to be heated, which is heat-treated by a roll-to-roll method using microwaves in a heat treatment chamber. The conductivity of the heated fiber is measured from the voltage value applied between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber. A control device for obtaining the relationship between this conductivity, the microwave power, and the carbonized state of the heated fiber in advance, and adjusting the output of the microwave power used for the heat treatment of the heated fiber based on the relationship. It is a microwave heat treatment device.

本発明に係る第1の構成は、
加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装置において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出部と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記導電率算出部が算出 した導電率とに応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射 部を備えたことを特徴とするマイクロ波加熱処理装置。
The first configuration according to the present invention is
In a microwave heating device that performs heat treatment with microwaves in a heat treatment room
A voltage application part that applies a voltage between two specific points of the fiber to be heated,
A conductivity calculation unit that calculates the conductivity of the fiber to be heated from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the fiber to be heated.
A microwave irradiation unit that adjusts the microwave output is provided so that heat treatment is performed according to the carbonization rate and microwave output of the fiber to be heated calculated in advance and the conductivity calculated by the conductivity calculation unit. A microwave heat treatment device characterized by.

本発明に係る第2の構成は、
前記第1の構成のマイクロ波加熱処理装置であって、
前記被加熱繊維はロール トゥ ロール(roll to roll)方式で加熱処理されることを 特徴とするマイクロ波加熱処理装置。
The second configuration according to the present invention is
The microwave heating treatment apparatus having the first configuration.
A microwave heat treatment apparatus characterized in that the fibers to be heated are heat-treated by a roll-to-roll method.

本発明に係る第3の構成は、
前記第2の構成のマイクロ波加熱処理装置であって、
炭素化処理を行っている被加熱繊維の導電率を測定するために、被加熱繊維の2点間に 電圧を印加する部分において被加熱繊維と接触する端子が滑車状であって、この滑車状の 端子が回転ローラにそれぞれの回転軸が共通となるように設けられ、且つ滑車状の端子の 被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維の進行と共に滑車状の端子が ロールと一体となって回転しながら一対の滑車状の端子を経由して被加熱繊維に電流を流 す構造であることを特徴とするマイクロ波加熱処理装置。
The third configuration according to the present invention is
The microwave heating treatment apparatus having the second configuration.
In order to measure the conductivity of the heated fiber that has been carbonized, the terminal that comes into contact with the heated fiber at the portion where a voltage is applied between the two points of the heated fiber is in the shape of a pulley. Terminals are provided on the rotating roller so that their respective rotation axes are common, and the contact portion of the pulley-shaped terminal with the heated fiber and the rotating roll are insulated, and the pulley-shaped terminal becomes as the heated fiber progresses. A microwave heat treatment device characterized in that it has a structure in which an electric current is passed through a pair of pulley-shaped terminals while rotating integrally with a roll.

本発明に係る第4の構成は、
前記第2または第3の構成のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に電圧を印加する電源ラインは回転ロールの端部に設けたロータリ式のコネ クタを経由して加熱処理室の外部に設けた電源に接続されていることを特徴とするマイク ロ波加熱処理装置。
The fourth configuration according to the present invention is
The microwave heating treatment apparatus having the second or third configuration.
In order to measure the conductivity of the heated fiber that is carbonizing the heated fiber, the power supply line that applies a voltage between two specific points of the heated fiber is a rotary type provided at the end of the rotating roll. A microwave heat treatment device characterized in that it is connected to a power source provided outside the heat treatment room via a connector.

本発明に係る第5の構成は、
前記第2乃至第4の構成のマイクロ波加熱処理装置であって、
帯状に複数の被加熱繊維の炭素化処理を行っている被加熱繊維の導電率測定を複数で行 い、それぞれの導電率が予め設定した所定の範囲に入るようにマイクロ波電力を制御する ことを特徴とするマイクロ波加熱処理装置。
The fifth configuration according to the present invention is
The microwave heating treatment apparatus having the second to fourth configurations.
To measure the conductivity of multiple fibers to be heated, which are carbonized in a strip shape, and control the microwave power so that the conductivity of each fiber falls within a predetermined range set in advance. A microwave heat treatment device characterized by.

本発明に係る第6の構成は、
前記第1乃至第5の構成のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に印加する電圧が直流または交流の何れかであることを特徴とするマイクロ 波加熱処理装置。
The sixth configuration according to the present invention is
The microwave heating treatment apparatus having the first to fifth configurations.
A micro characterized in that the voltage applied between two specific points of the heated fiber is either direct current or alternating current in order to measure the conductivity of the heated fiber that is carbonizing the heated fiber. Wave heat treatment equipment.

本発明に係る第7の構成は、
前記第1乃至第6の構成のマイクロ波加熱処理装置であって、
導電率測定部をマイクロ波照射部の上流側または下流側又は両側に設けたことを特徴と するマイクロ波加熱処理装置。
The seventh configuration according to the present invention is
The microwave heating treatment apparatus having the first to sixth configurations.
A microwave heat treatment apparatus characterized in that the conductivity measuring unit is provided on the upstream side, the downstream side, or both sides of the microwave irradiation unit.

本発明に係る第8の構成は、
前記第1乃至第7の構成のマイクロ波加熱処理装置であって、
導電率測定部の電圧を印加する端子をマイクロ波照射部の上流側と下流側に設けて、マ イクロ波照射部で加熱処理中の被加熱繊維の導電率を測定することを特徴とするマイクロ 波加熱処理装置。
The eighth configuration according to the present invention is
The microwave heating treatment apparatus having the first to seventh configurations.
The micro is characterized in that terminals for applying the voltage of the conductivity measuring unit are provided on the upstream side and the downstream side of the microwave irradiation unit, and the conductivity of the heated fiber being heat-treated by the microwave irradiation unit is measured. Wave heat treatment equipment.

本発明に係る第9の構成は、
加熱処理室の中でマイクロ波を用いて加熱処理を行うマイクロ波加熱装置において、 被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、その2点間に印加する電圧値 と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊維の断面積から被加熱 繊維の導電率を測定する導電率測定部と、この測定した導電率と、マイクロ波電力と、被 加熱繊維の炭素化状態との関係を予め求め、その関係に基づいて被加熱繊維の加熱処理に 用いるマイクロ波電力の出力を調節するための制御装置を有するマイクロ波加熱処理装置 。
The ninth configuration according to the present invention is
In a microwave heating device that performs heat treatment using microwaves in a heat treatment chamber, a voltage application part that applies a voltage between two specific points of the fiber to be heated, and a voltage value applied between the two points. , The current value flowing between the two points, the distance between the two points, the conductivity measuring unit that measures the conductivity of the heated fiber from the cross-sectional area of the heated fiber, the measured conductivity, and the microwave. A microwave heat treatment device having a control device for determining the relationship between electric power and the carbonized state of the fiber to be heated in advance and adjusting the output of microwave power used for heat treatment of the fiber to be heated based on the relationship.

本発明に係る第10の構成は、
所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造装置において、
ポリマー原料を投入する前駆体繊維投入部と、
該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸部と、
該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素 化部とより構成され、
前記マイクロ波炭素化部は、加熱処理室を備え、
該加熱処理室は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであって 、
前記被加熱繊維は、前記加熱処理室の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射部を備えたことを特徴とする炭素繊維の製造装置。
The tenth configuration according to the present invention is
In a carbon fiber manufacturing apparatus that carbonizes a predetermined precursor fiber to produce carbon fiber,
Precursor fiber input section for inputting polymer raw material and
A spinning portion in which the charged precursor fiber is processed into a thread shape or a string shape to obtain a fiber to be heated, and a spinning portion.
It is composed of a microwave carbonized portion that heats the heated fiber processed into a thread-like or string-like shape into carbon fiber.
The microwave carbonization unit includes a heat treatment chamber and is provided with a heat treatment chamber.
In the heat treatment chamber, the fibers to be heated are heat-treated by microwave irradiation.
A voltage is applied to the fibers to be heated between two specific points in the heat treatment chamber.
The conductivity of the heated fiber was calculated from the applied voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber.
It is provided with a microwave irradiation unit that adjusts the output of the microwave irradiation so that the heat treatment is performed according to the carbonization rate of the fiber to be heated calculated in advance, the microwave irradiation, and the calculated conductivity rate. A carbon fiber manufacturing device characterized by the fact that.

本発明に係る第11の構成は、
前記第10の構成の炭素繊維の製造装置であって、
前記マイクロ波炭素化部より出力される炭素繊維に所定の加工を施し、所望の炭素繊維 を製造することを特徴とする炭素繊維の製造装置。
The eleventh configuration according to the present invention is
The carbon fiber manufacturing apparatus having the tenth configuration.
A carbon fiber manufacturing apparatus, characterized in that the carbon fiber output from the microwave carbonized portion is subjected to a predetermined process to produce a desired carbon fiber.

本発明に係る第12の構成は、
所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造方法において、
ポリマー原料を投入する前駆体繊維投入手段と、 該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸手段と、 該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素化 手段とより構成され、
前記マイクロ波炭素化手段は、加熱処理手段を備え、
該加熱処理手段は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであっ て、
前記被加熱繊維は、前記加熱処理手段の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射手段を備えたことを特徴とする炭素繊維の製造方法。
The twelfth configuration according to the present invention is
In a method for producing carbon fibers by carbonizing a predetermined precursor fiber to produce carbon fibers,
A precursor fiber charging means for charging a polymer raw material, a spinning means for processing the charged precursor fiber into a thread or string to obtain a fiber to be heated, and a fiber to be heated processed into a thread or string. Consists of microwave carbonization means that heats to carbon fiber,
The microwave carbonization means includes heat treatment means.
The heat treatment means heat-treats the fiber to be heated by microwave irradiation.
A voltage is applied to the heated fiber between two specific points in the heat treatment means.
The conductivity of the heated fiber was calculated from the applied voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber.
A microwave irradiation means for adjusting the output of the microwave irradiation is provided so that the heat treatment is performed according to the carbonization rate of the fiber to be heated calculated in advance, the microwave irradiation, and the calculated conductivity rate. A method for producing carbon fiber, which is characterized in that.

本発明に係る第13の構成は、
前記第12の構成の炭素繊維の製造方法であって、
前記マイクロ波炭素化手段より出力される炭素繊維に所定の加工を施し、所望の炭素繊 維を製造することを特徴とする炭素繊維の製造方法。
The thirteenth configuration according to the present invention is
The method for producing carbon fiber having the twelfth constitution.
A method for producing carbon fibers, which comprises subjecting carbon fibers output from the microwave carbonizing means to a predetermined process to produce a desired carbon fiber.

本発明に係る第14の構成は、
加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱方法において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加手段と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出手段と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記算出した導電率とに 応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射手段とを備えた ことを特徴とするマイクロ波加熱処理方法。
The fourteenth configuration according to the present invention is
In a microwave heating method in which heat treatment is performed by microwaves in a heat treatment room,
A voltage applying means for applying a voltage between two specific points of the fiber to be heated, and
A conductivity calculating means for calculating the conductivity of the fiber to be heated from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the fiber to be heated.
It is characterized by being provided with a microwave irradiation means for adjusting the microwave output so as to perform heat treatment according to the carbonization rate of the fiber to be heated calculated in advance, the microwave output, and the calculated conductivity. Microwave heat treatment method.

本発明の実施の形態によれば、炭素繊維の製造プロセスにおいて、マイクロ波加熱装置 による加熱処理を可能とし、加熱処理における被加熱繊維の温度を演算測定し、炭素化状 態に応じた加熱処理制御を行うことを可能とするものである。
本発明の実施形態について詳細に説明したが、本発明は上述した実施形態に限定される ものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。
According to the embodiment of the present invention, in the carbon fiber manufacturing process, heat treatment by a microwave heating device is possible, the temperature of the fiber to be heated in the heat treatment is calculated and measured, and the heat treatment is performed according to the carbonization state. It makes it possible to control.
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明は、炭素繊維製造プロセスにおける被加熱繊維(前駆体繊維)の炭素化に有効で利 用可能である。
また、マイクロ波電力の照射により前駆体繊維を炭素化するマイクロ波加熱処理装置、 及び、これを用いた炭素繊維の製造装置及び製造方法に有効で利用可能である。 この出願は、2016年12月27日に出願された日本出願特願2016−253258を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
INDUSTRIAL APPLICABILITY The present invention can be effectively used for carbonization of a fiber to be heated (precursor fiber) in a carbon fiber production process.
In addition, it can be effectively used in a microwave heat treatment device that carbonizes precursor fibers by irradiation with microwave power, and a carbon fiber manufacturing device and manufacturing method using the microwave heat treatment device. This application claims the benefit of priority on the basis of Japanese application Japanese Patent Application No. 2016-253258 filed on December 27, 2016, the entire disclosure of which is incorporated herein by reference.

1:加熱処理室、2:加熱処理室壁、3:被加熱繊維、4:マイクロ波照射部、5:マイ クロ波、6:ローラ、7:導電率測定用ローラ、8:滑車状端子、9:電圧計、10:電 流計、11:電源、12:端子選択ユニット、13:ロータリコネクタ、14:導電率測 定部、15:第1導電率測定部、16:第2導電率測定部、17:第1マイクロ波照射部 、18:第2マイクロ波照射部、19:第3マイクロ波照射部、20:位相差、21:ロ ーラの電流、23:マグネトロン、24:アイソレータ、25:方向性結合器、26:整 合器、27:導波管、28:スリット、29:節、30:腹。 1: Heat treatment chamber 2: Heat treatment chamber wall 3: Heated fiber 4: Microwave irradiation part, 5: Microwave, 6: Roller, 7: Roller for conductivity measurement, 8: Slider-shaped terminal, 9: Waveguide, 10: Waveguide, 11: Power supply, 12: Terminal selection unit, 13: Rotary connector, 14: Conductivity measuring unit, 15: 1st conductivity measuring unit, 16: 2nd conductivity measurement Unit, 17: 1st microwave irradiation unit, 18: 2nd microwave irradiation unit, 19: 3rd microwave irradiation unit, 20: phase difference, 21: roller current, 23: magnetron, 24: isolator, 25: Directional coupler, 26: Combiner, 27: Waveguide, 28: Slit, 29: Node, 30: Abdomen.

Claims (13)

加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装置において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、
前記特定の2点間の電圧値と、前記特定の2点間に流れる電流値と、前記特定の2点間の距離と、前記被加熱繊維の断面積から前記被加熱繊維の導電率を算出する制御部と、
前記被加熱繊維の導電率に対応した前記マイクロ波の出力と温度との関係から、前記被加熱繊維の温度が所定の温度となるように前記マイクロ波の出力を調整するマイクロ波照射部と、
を備えたことを特徴とするマイクロ波加熱処理装置。
In a microwave heating device that performs heat treatment with microwaves in a heat treatment room
A voltage application part that applies a voltage between two specific points of the fiber to be heated,
The conductivity of the heated fiber is calculated from the voltage value between the specific two points, the current value flowing between the specific two points, the distance between the specific two points, and the cross-sectional area of the heated fiber. Control unit and
From the relationship between the microwave output and the temperature corresponding to the conductivity of the heated fiber, the microwave irradiation unit that adjusts the microwave output so that the temperature of the heated fiber becomes a predetermined temperature ,
A microwave heat treatment device characterized by being equipped with.
前記被加熱繊維はロール トゥ ロール方式で加熱処理されることを特徴とする請求項1に記載のマイクロ波加熱処理装置。 The microwave heat treatment apparatus according to claim 1, wherein the heated fiber is heat-treated by a roll-to-roll method. 炭素化処理を行っている前記被加熱繊維の導電率を測定するために、前記被加熱繊維の前記特定の2点間に電圧を印加する部分において前記被加熱繊維と接触する端子が滑車状であって、この滑車状の端子が回転ローラにそれぞれの回転軸が共通となるように設けられ、且つ滑車状の端子の前記被加熱繊維との接触部と前記回転ローラは絶縁され、前記被加熱繊維の進行と共に滑車状の端子が前記回転ローラと一体となって回転しながら一対の滑車状の端子を経由して前記被加熱繊維に電流を流すことを特徴とする請求項2に記載のマイクロ波加熱処理装置。 In order to measure the conductivity of the heated fiber being carbonized, the terminal in contact with the heated fiber is pulley-shaped at the portion where a voltage is applied between the specific two points of the heated fiber. there, this pulley-like terminals are provided so that each rotary shaft to the rotary roller is common, and the pulley-like terminal the rotating roller and the contact portion between the heated fibers are insulated, the object to be heated The micro according to claim 2, wherein the pulley-shaped terminals rotate integrally with the rotating roller as the fibers progress, and an electric current is passed through the pair of pulley-shaped terminals to the fibers to be heated. Wave heat treatment equipment. 前記被加熱繊維の炭素化を行っている前記被加熱繊維の導電率を測定するために、前記被加熱繊維の前記特定の2点間に電圧を印加する電源ラインは前記回転ローラの端部に設けたロータリ式のコネクタを経由して加熱処理室の外部に設けた電源に接続されていることを特徴とする請求項3に記載のマイクロ波加熱処理装置。 A power supply line that applies a voltage between the specific two points of the heated fiber in order to measure the conductivity of the heated fiber that is carbonizing the heated fiber is located at the end of the rotating roller. provided a microwave heating apparatus according thingsMotomeko 3 you said that are connected to a power source provided outside the heat treatment chamber via the rotary connector. 帯状に複数の前記被加熱繊維の炭素化処理を行っている前記被加熱繊維の導電率測定を複数で行い、それぞれの導電率が予め設定した所定の範囲に入るように前記マイクロ波の出力を制御することを特徴とする請求項1〜4のいずれか一項に記載のマイクロ波加熱処理装置。 Perform conductivity measurement of the heated fiber is performed carbonization process of the plurality of heated fiber strip in a plurality, the output of the microwave so that the respective conductivity falls within a predetermined range set in advance The microwave heat treatment apparatus according to any one of claims 1 to 4, wherein the microwave heat treatment apparatus is controlled. 前記被加熱繊維の炭素化を行っている前記被加熱繊維の導電率を測定するために、被加熱繊維の前記特定の2点間に印加する電圧が直流または交流の何れかであることを特徴とする請求項1〜5のいずれか一項に記載のマイクロ 波加熱処理装置。 In order to measure the conductivity of the heated fiber that is carbonizing the heated fiber, the voltage applied between the two specific points of the heated fiber is either direct current or alternating current. The microwave heat treatment apparatus according to any one of claims 1 to 5. 導電率測定部をマイクロ波照射部の上流側または下流側又は両側に設けたことを特徴とする請求項1〜6のいずれか一項に記載のマイクロ波加熱処理装置。 The microwave heat treatment apparatus according to any one of claims 1 to 6, wherein the conductivity measuring unit is provided on the upstream side, the downstream side, or both sides of the microwave irradiation unit. 前記導電率測定部の電圧を印加する端子を前記マイクロ波照射部の上流側と下流側に設けて、前記マイクロ波照射部で加熱処理中の前記被加熱繊維の導電率を測定することを特徴とする請求項7に記載のマイクロ波加熱処理装置。 Terminals for applying the voltage of the conductivity measuring unit are provided on the upstream side and the downstream side of the microwave irradiation unit, and the conductivity of the heated fiber being heat-treated by the microwave irradiation unit is measured. The microwave heat treatment apparatus according to claim 7. 投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸部と、 該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素化部と、マイクロ波の出力を調節するマイクロ波照射部と、前記被加熱繊維の伝導率を算出する制御部より構成され、
前記マイクロ波炭素化部は、加熱処理室を備え、
該加熱処理室は、前記被加熱繊維をマイクロ波により加熱処理を行うものであって 、 前記被加熱繊維は、前記加熱処理室の中の特定の2点間で電圧を印加され、
前記制御部は、該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
前記マイクロ波照射部は、前記被加熱繊維の導電率に対応した前記マイクロ波の出力と温度との関係から、前記被加熱繊維の温度が所定の温度となるように前記マイクロ波の出力を調節することを特徴とする炭素繊維の製造装置。
A spinning part that processes the input precursor fiber into a thread or string to make it a heated fiber, and a microwave carbonized part that heats the threaded or stringed fiber to be heated into a carbon fiber. It is composed of a microwave irradiation unit that adjusts the microwave output and a control unit that calculates the conductivity of the fiber to be heated.
The microwave carbonization unit includes a heat treatment chamber and is provided with a heat treatment chamber.
In the heat treatment chamber, the fibers to be heated are heat-treated by microwaves, and a voltage is applied to the fibers to be heated between two specific points in the heat treatment chamber.
The control unit determines the voltage value between the applied two points, the current value flowing between the two points, the distance between the two points, and the conductivity of the heated fiber from the cross-sectional area of the heated fiber. Calculate and
The microwave irradiation unit adjusts the output of the microwave so that the temperature of the fiber to be heated becomes a predetermined temperature from the relationship between the output of the microwave corresponding to the conductivity of the fiber to be heated and the temperature. A carbon fiber manufacturing apparatus characterized by
前記マイクロ波炭素化部より出力される炭素繊維に所定の加工を施し、所望の炭素繊維 を製造することを特徴とする請求項に記載の炭素繊維の製造装置。 The carbon fiber manufacturing apparatus according to claim 9 , wherein the carbon fiber output from the microwave carbonization unit is subjected to a predetermined process to produce a desired carbon fiber. 投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸工程と、
前記糸状またはひも状に加工された被加熱繊維をマイクロ波により加熱して炭素繊維とするマイクロ波炭素化工程と、を備える炭素繊維の製造方法であって、
前記マイクロ波炭素化工程は、
前記被加熱繊維の特定の2点間に電圧を印加する工程と、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該被加熱繊維の断面積から被加熱繊維の導電率を算出する工程と、
前記被加熱繊維の導電率に対応した前記マイクロ波の出力と温度との関係から、前記非加熱繊維の温度が所定の温度になるように前記マイクロ波の出力を調節する工程と、
を有することを特徴とする炭素繊維の製造方法。
A spinning process in which the charged precursor fibers are processed into filaments or strings to form fibers to be heated.
A method for producing carbon fibers, which comprises a microwave carbonization step of heating the heated fibers processed into a thread shape or a string shape with microwaves to form carbon fibers.
The microwave carbonization step is
A step of applying a voltage between two specific points of the fiber to be heated and
The step of calculating the conductivity of the heated fiber from the applied voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber.
From the relationship between the output of the microwave and the temperature corresponding to the conductivity of the fiber to be heated, the step of adjusting the output of the microwave so that the temperature of the non-heated fiber becomes a predetermined temperature ,
A method for producing carbon fiber, which is characterized by having.
前記マイクロ波炭素化工程では、炭素繊維に所定の加工を施し、所望の炭素繊維を製造することを特徴とする請求項11に記載の炭素繊維の製造方法。 The method for producing carbon fiber according to claim 11 , wherein in the microwave carbonization step, the carbon fiber is subjected to a predetermined process to produce a desired carbon fiber. 被加熱繊維の特定の2点間に電圧を印加する電圧印加工程と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊維の断面積から被加熱繊維の導電率を算出する導電率算出工程と、
前記被加熱繊維の導電率に対応したマイクロ波の出力と温度との関係から、前記非加熱繊維の温度が所定の温度になるように前記被加熱繊維に照射されるマイクロ波の出力を調節するマイクロ波照射工程と、
を有することを特徴とするマイクロ波加熱処理方法。
A voltage application process in which a voltage is applied between two specific points of the fiber to be heated, and
A conductivity calculation step of calculating the conductivity of the heated fiber from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber.
From the relationship between the microwave output corresponding to the conductivity of the heated fiber and the temperature, the output of the microwave irradiated to the heated fiber is adjusted so that the temperature of the non-heated fiber becomes a predetermined temperature. Microwave irradiation process and
A microwave heat treatment method characterized by having.
JP2018558854A 2016-12-27 2017-10-31 Microwave heat treatment equipment and carbon fiber manufacturing equipment and manufacturing method Active JP6826613B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016253258 2016-12-27
JP2016253258 2016-12-27
PCT/JP2017/039325 WO2018123249A1 (en) 2016-12-27 2017-10-31 Microwave heating device, and device and method for producing carbon fibers

Publications (2)

Publication Number Publication Date
JPWO2018123249A1 JPWO2018123249A1 (en) 2019-08-08
JP6826613B2 true JP6826613B2 (en) 2021-02-03

Family

ID=62707401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018558854A Active JP6826613B2 (en) 2016-12-27 2017-10-31 Microwave heat treatment equipment and carbon fiber manufacturing equipment and manufacturing method

Country Status (2)

Country Link
JP (1) JP6826613B2 (en)
WO (1) WO2018123249A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667339B (en) * 2018-09-06 2019-08-01 永虹先進材料股份有限公司 High-temperature carbonization furnace
CN111099917B (en) * 2018-10-29 2022-01-04 中国石油化工股份有限公司 Porous composite material for generating electric arc in microwave and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144125A (en) * 1982-02-10 1983-08-27 Hirochiku:Kk Microwave heating apparatus for preparing carbon fiber
JP2006128075A (en) * 2004-10-01 2006-05-18 Seiko Epson Corp High-frequency heating device, semiconductor manufacturing device, and light source device
JP5510970B2 (en) * 2012-04-18 2014-06-04 テックワン株式会社 Carbon fiber, carbon fiber manufacturing method, and material having carbon fiber
US20160038283A1 (en) * 2014-08-06 2016-02-11 The University Of Iowa Research Foundation Systems and methods utilizing expandable transcatheter valve
KR101689861B1 (en) * 2015-05-26 2016-12-26 한국과학기술연구원 Nanocarbon composite carbon fiber with low cost and high performance and their preparation method

Also Published As

Publication number Publication date
JPWO2018123249A1 (en) 2019-08-08
WO2018123249A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6826613B2 (en) Microwave heat treatment equipment and carbon fiber manufacturing equipment and manufacturing method
JP5654947B2 (en) Graphitization furnace and method for producing graphite
JP2009250474A (en) Heating drying device of cylindrical body by high-frequency induction heating
JPH0774392B2 (en) Induction heating device
CN113818103B (en) Carbon fiber and method for producing carbon fiber
TWI480443B (en) Stabilization of polyacrylonitrile precursor yarns
JP2013002767A (en) Heating device utilizing microwave
EP3745817B1 (en) Microwave processing device and carbon fiber production method
US20160333502A1 (en) Furnace for continuously graphitizing carbon fiber
CN105420484A (en) Pre-treatment system and method for nanocrystalline magnetically soft alloy strip
JP2013231244A (en) Apparatus for producing carbon fiber
US10378125B2 (en) Method and device for processing carbon fiber strands
JP6869052B2 (en) Microwave heat treatment equipment
CN102839362A (en) Substrate treatment apparatus
KR20120037044A (en) Apparatus for maunfacturing carbon fiber using electrode
JP2001172724A (en) Method and apparatus for manufacturing precision wire
KR20200142286A (en) Insulating materials drying apparatus and drying method using the same
KR102110574B1 (en) Device for metal product heat treatment
JP2011174097A (en) Thermal cvd method and thermal cvd apparatus, and method and apparatus for manufacturing carbon nanotube
KR20200110765A (en) Microwave processing apparatus and manufacturing method of carbon fiber
KR101236199B1 (en) Apparatus for maunfacturing carbon fiber
JP6686983B2 (en) Steel plate heat treatment method and heat treatment apparatus
KR101754444B1 (en) Drying device for electrode
US20240052531A1 (en) Method and apparatus for heating fiber bundle
DE102011100024A1 (en) METHOD FOR FORMING A LAYER ON A SUBSTRATE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6826613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250