JP6798173B2 - 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム - Google Patents

電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム Download PDF

Info

Publication number
JP6798173B2
JP6798173B2 JP2016141878A JP2016141878A JP6798173B2 JP 6798173 B2 JP6798173 B2 JP 6798173B2 JP 2016141878 A JP2016141878 A JP 2016141878A JP 2016141878 A JP2016141878 A JP 2016141878A JP 6798173 B2 JP6798173 B2 JP 6798173B2
Authority
JP
Japan
Prior art keywords
drain electrode
source electrode
forming
effect transistor
embedded layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016141878A
Other languages
English (en)
Other versions
JP2018014373A (ja
Inventor
雄司 曽根
雄司 曽根
植田 尚之
尚之 植田
中村 有希
有希 中村
由希子 安部
由希子 安部
真二 松本
真二 松本
遼一 早乙女
遼一 早乙女
定憲 新江
定憲 新江
嶺秀 草柳
嶺秀 草柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016141878A priority Critical patent/JP6798173B2/ja
Publication of JP2018014373A publication Critical patent/JP2018014373A/ja
Application granted granted Critical
Publication of JP6798173B2 publication Critical patent/JP6798173B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、電界効果型トランジスタ及びその製造方法、表示素子、表示装置、及びシステムに関する。
電界効果型トランジスタ(Field Effect Transistor;FET)は、ゲート電流が低いことに加え、構造が平面的であるため、バイポーラトランジスタと比較して作製及び集積化が容易である。そのため、FETは、現在の電子機器で使用される集積回路では必要不可欠な素子となっており、例えば、電界効果型トランジスタをマトリックス状に配列したアクティブマトリックスは、液晶等のディスプレイの駆動回路として用いられている。
アクティブマトリックスにおける配線としては、低抵抗であるAlと、バリアメタルを積層させた構成を用いることが一般的である。バリアメタルとしては一般的にはMoが用いられるが、低コスト化、薬液や熱に対する高耐性化を可能とするTiが注目されている。
Ti、Ti合金、又はTi若しくはTi合金を含む積層体は、塩素系ガスを用いたドライエッチングによりパターンニング可能であるが、塩素系ガスの危険性が高い、環境負荷が大きい、使用する装置が高価である等のデメリットがあり好ましくない。そこで、ウェットエッチングによるパターンニングを可能とするため、フッ素化合物を含んだエッチング液が開発されている(例えば、特許文献1参照)。
しかしながら、フッ素化合物を含んだエッチング液はガラス基板を溶解させる。そのため、ガラス基板上にTi、Ti合金、又はTi若しくはTi合金を含む積層体からなる金属膜を形成した場合、金属膜をウェットエッチングしてソース電極及びドレイン電極を形成する際に、ガラス基板に溝が形成される。そのため、ソース電極及びドレイン電極上に半導体層を形成する際に、半導体層をソース電極及びドレイン電極上から溝内の深い位置まで形成する必要があり、その結果、半導体層に亀裂や断線が生じやすいという問題がある。
本発明は、ガラス基板上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜をウェットエッチングしてソース電極及びドレイン電極を形成する工程を含む電界効果型トランジスタの製造方法において、ソース電極及びドレイン電極上に形成される半導体層に亀裂や断線が生じ難くすることを目的とする。
本電界効果型トランジスタの製造方法は、ガラス基板を有する電界効果型トランジスタの製造方法であって、ガラス基板上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜を成膜する工程と、ウェットエッチングにより、前記金属膜からソース電極及びドレイン電極を形成すると共に、前記ソース電極及び前記ドレイン電極が形成された領域以外の前記ガラス基板に溝を形成する工程と、前記溝に、アルカリ土類金属化合物を含む埋め込み層を形成する工程と、前記ソース電極、前記ドレイン電極、及び前記埋め込み層上に半導体層を形成する工程と、を有することを要件とする。
開示の技術によれば、ガラス基板上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜をウェットエッチングしてソース電極及びドレイン電極を形成する工程を含む電界効果型トランジスタの製造方法において、ソース電極及びドレイン電極上に形成される半導体層に亀裂や断線が生じ難くすることができる。
第1の実施の形態に係る電界効果型トランジスタを例示する断面図である。 第1の実施の形態に係る電界効果型トランジスタの製造工程を例示する図(その1)である。 第1の実施の形態に係る電界効果型トランジスタの製造工程を例示する図(その2)である。 比較例に係る電界効果型トランジスタを例示する断面図である。 第1の実施の形態の変形例1に係る電界効果型トランジスタを例示する断面図である。 第1の実施の形態の変形例1に係る電界効果型トランジスタの製造工程を例示する図である。 第1の実施の形態の変形例2に係る電界効果型トランジスタを例示する断面図である。 第1の実施の形態の変形例2に係る電界効果型トランジスタの製造工程を例示する図である。 第2の実施の形態におけるテレビジョン装置の構成を示すブロック図である。 第2の実施の形態におけるテレビジョン装置の説明図(その1)である。 第2の実施の形態におけるテレビジョン装置の説明図(その2)である。 第2の実施の形態におけるテレビジョン装置の説明図(その3)である。 第2の実施の形態における表示素子の説明図である。 第2の実施の形態における有機ELの説明図である。 第2の実施の形態におけるテレビジョン装置の説明図(その4)である。 第2の実施の形態における他の表示素子の説明図(その1)である。 第2の実施の形態における他の表示素子の説明図(その2)である。
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
〈第1の実施の形態〉
[電界効果型トランジスタの構造]
図1は、第1の実施の形態に係る電界効果型トランジスタを例示する断面図であり、図1(a)は全体図、図1(b)は図1(a)のA部の部分拡大図である。
図1を参照するに、電界効果型トランジスタ10は、ガラス基板11と、ソース電極12と、ドレイン電極13と、埋め込み層14と、半導体層15と、ゲート絶縁層16と、ゲート電極17とを有するトップゲート/ボトムコンタクト型の電界効果型トランジスタである。なお、電界効果型トランジスタ10は、本発明に係る半導体装置の代表的な一例である。
なお、本実施の形態では、便宜上、ゲート電極17側を上側又は一方の側、ガラス基板11側を下側又は他方の側とする。又、各部位のゲート電極17側の面を上面又は一方の面、ガラス基板11側の面を下面又は他方の面とする。但し、電界効果型トランジスタ10は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物をガラス基板11の上面の法線方向から視ることを指し、平面形状とは対象物をガラス基板11の上面の法線方向から視た形状を指すものとする。
ガラス基板11の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。ガラス基板11の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、無アルカリガラス、シリカガラス等が挙げられる。より具体的には、SiO、GeO、B、P等のガラスであってもよいし、TiO、Al、V、Sb、LiO、NaO、KO、MgO、BaO、CaO、SrO、BaO等を更に含んだ多成分系ガラスであってもよい。
ガラス基板11上にはソース電極12及びドレイン電極13が形成されている。より詳しくは、ソース電極12は、ガラス基板11に形成された断面形状が略台形状の凸部11y上に形成されている。図1(b)に示すように、断面視において、凸部11yの下底のドレイン電極13側の底角はθである。又、ソース電極12の断面形状も略台形状であり、ソース電極12の下底のドレイン電極13側の底角もθである。又、埋め込み層14の上面のソース電極12側端の延長面と、ソース電極12のドレイン電極13側の側面とのなす角はθである。
同様に、ドレイン電極13は、ガラス基板11に形成された断面形状が略台形状の凸部11z上に形成されている。断面視において、凸部11zの下底のソース電極12側の底角はθと略同一の角度である(ここでは、便宜上、θとする)。又、ドレイン電極13の断面形状も略台形状であり、ドレイン電極13の下底のソース電極12側の底角もθと略同一の角度である。又、埋め込み層14の上面のドレイン電極13側端の延長面と、ドレイン電極13のソース電極12側の側面とのなす角はθと略同一の角度である(ここでは、便宜上、θとする)。
ここで、θ(≒θ)は、例えば、50〜70度程度とすることができ、θ(≒θ)はθ(≒θ)以下である。θ(≒θ)の値は、後述の製造工程において、埋め込み層14を形成する材料を選定することにより、適宜調整することができる。なお、本実施の形態の例では、θ(≒θ)が約60度、θ(≒θ)が約50度である。
ソース電極12及びドレイン電極13は、ゲート電極17へのゲート電圧の印加に応じて電流を取り出すための電極である。なお、ソース電極12及びドレイン電極13と共に、ソース電極12及びドレイン電極13と接続される配線が同一層に形成されてもよい。
ソース電極12及びドレイン電極13の材料は、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかである。具体的には、ソース電極12及びドレイン電極13の材料として、Ti、TiN、Ti/Al/Tiの積層体、Ti/Cu/Tiの積層体、TiN/Al/TiNの積層体、TiN/Cu/TiNの積層体等が挙げられる。
ソース電極12及びドレイン電極13の平均膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、20nm〜1μmが好ましく、50nm〜500nmがより好ましい。
ソース電極12及びドレイン電極13が形成された領域以外のガラス基板11には、溝11xが形成されている。つまり、ガラス基板11において、ソース電極12が形成された凸部11y、及びドレイン電極13が形成された凸部11z以外の領域が溝11xである。溝11xの深さ(ソース電極12及びドレイン電極13と接するガラス基板11の面(凸部11y及び凸部11zの上面)と、溝11xの底面との距離)は、例えば、10〜500nm程度とすることができる。
溝11xには、埋め込み層14が形成されている。埋め込み層14の材質としては、絶縁性材料である限り、特に制限はなく、目的に応じて適宜選択することができる。埋め込み層14の材質としては、例えば、平坦化性を有するスピンオングラス材料を用いることができる。具体的には、SiOやBPSG(Boron Phosphor Silicate Glass)、PSG(Phosphor Silicate Glass)等を用いることが可能である。
埋め込み層14は、更にアルカリ土類金属元素を含むことが好ましい。アルカリ土類金属元素を含むことで、埋め込み層14の線膨張係数を制御することが可能となり、後工程の熱プロセスによるクラック、剥離といった不具合を回避することができるからである。
例えば、埋め込み層14がSiOのみからなる場合、周囲の層(半導体層15等)に比べて線膨張係数が小さくなる。そこで、アルカリ土類金属元素を含ませて埋め込み層14の線膨張係数を大きくし、周囲の層の線膨張係数と近い値に調整することで、後工程の熱プロセスにより半導体層15等にクラックや剥離が生じることを防止できる。
なお、ソース電極12及びドレイン電極13の膜厚をA、溝11xの深さをB、埋め込み層14の最小膜厚をCとしたとき、B<C<A+Bを満たすことが好ましい。
半導体層15は、ソース電極12、ドレイン電極13、及び埋め込み層14上に形成されている。半導体層15は、ソース電極12及びドレイン電極13の少なくとも一部を覆うように形成すればよい。ソース電極12とドレイン電極13の間に位置する半導体層15は、チャネル領域となる。半導体層15の平均膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm〜500nmが好ましく、5nm〜100nmがより好ましく、5nm〜50nmが特に好ましい。
半導体層15の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリコン半導体、酸化物半導体、有機半導体等が挙げられる。シリコン半導体としては、例えば、多結晶シリコン(p−Si)、アモルファスシリコン(a−Si)等が挙げられる。酸化物半導体としては、例えば、In−Ga−Zn−O、I−Z−O、In−Mg−O等が挙げられる。有機半導体としては、例えば、ペンタセン等が挙げられる。これらの中でも、酸化物半導体を用いることが好ましい。
ゲート絶縁層16は、半導体層15とゲート電極17との間に設けられている。ゲート絶縁層16は、半導体層15の全部と、ソース電極12、ドレイン電極13、及び埋め込み層14の一部とを被覆している。ゲート絶縁層16は、ソース電極12及びドレイン電極13とゲート電極17とを絶縁するための層である。ゲート絶縁層16の平均膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、50nm〜1000nmが好ましく、100nm〜500nmがより好ましい。
ゲート絶縁層16の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、SiO、SiN等の既に広く量産に利用されている材料や、La、HfO等の高誘電率材料、ポリイミド(PI)やフッ素系樹脂等の有機材料等が挙げられる。
ゲート絶縁層16の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタ、化学気相蒸着(CVD)、原子層蒸着(ALD)等の真空成膜法、スピンコート、ダイコート、インクジェット等の印刷法等が挙げられる。
ゲート電極17は、半導体層15上にゲート絶縁層16を介して積層されている。ゲート電極17は、ゲート電圧を印加するための電極である。ゲート電極17の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルミニウム、金、白金、パラジウム、銀、銅、亜鉛、ニッケル、クロム、タンタル、モリブデン、チタン等の金属、これらの合金、これら金属の混合物等を用いることができる。又、酸化インジウム、酸化亜鉛、酸化スズ、酸化ガリウム、酸化ニオブ等の導電性酸化物、これらの複合化合物、これらの混合物等を用いてもよい。ゲート電極17の平均膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、40nm〜2μmが好ましく、70nm〜1μmがより好ましい。
[電界効果型トランジスタの製造方法]
次に、図1に示す電界効果型トランジスタの製造方法について説明する。図2及び図3は、第1の実施の形態に係る電界効果型トランジスタの製造工程を例示する図である。
まず、図2(a)に示す工程では、ガラス基板11を準備し、ガラス基板11上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜120を成膜する。ガラス基板11の材料や厚さは、前述の通り適宜選択することができる。又、ガラス基板11の表面の清浄化及び密着性向上の点で、酸素プラズマ、UVオゾン、UV照射洗浄等の前処理が行われることが好ましい。
金属膜120を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタ法、真空蒸着法、ディップコーティング法、スピンコート法、ダイコート法等を挙げることができる。金属膜120の平均膜厚は、特に制限はなく、目的に応じて適宜選択することができるが、20nm〜1μmが好ましく、50nm〜500nmがより好ましい。
次に、図2(b)に示す工程では、ウェットエッチングにより、金属膜120からソース電極12及びドレイン電極13を形成する。
具体的には、例えば、金属膜120上にフォトレジストを塗布し、プリベーク、露光装置による露光及び現像により、ソース電極12及びドレイン電極13となる部分を被覆するレジストパターンを形成する。そして、ウェットエッチングにより、レジストパターンに被覆されていない領域の金属膜120を除去し、その後レジストパターンを除去する。
ウェットエッチングに用いるエッチング液としては、特に制限されるものではないが、フッ化水素又はフッ化アンモニウムを含むエッチング液を用いることが好ましい。更に、必要に応じて、硝酸、硫酸、過酸化水素水、酢酸等の酸を含んでもよい。
ウェットエッチングの際、ソース電極12及びドレイン電極13を確実に形成するためにオーバーエッチングを行うが、オーバーエッチングの間に、ソース電極12及びドレイン電極13が形成された領域以外のガラス基板11が溶解する。
これにより、ガラス基板11に断面形状が略台形状の凸部11yが形成され、凸部11y上にソース電極12が形成される。又、ガラス基板11に断面形状が略台形状の凸部11zが形成され、凸部11z上にドレイン電極13が形成される。又、ソース電極12及びドレイン電極13が形成された領域以外のガラス基板11に、溝11xが形成される。溝11xの深さは、ガラス基板11の材質、エッチング液、エッチング時間等に依存するが、概ね10〜500nm程度となる。
次に、図2(c)及び図2(d)に示す工程では、溝11xに埋め込み層14を形成する。まず、図2(c)に示す工程では、溝11x、ソース電極12、及びドレイン電極13上に、スピンコート法等により、埋め込み層形成用塗布液140を塗布する。埋め込み層形成用塗布液140は、例えば、スピンオングラス形成用塗布液であり、少なくとも有機溶媒と、シラン化合物を含んでいることが好ましい。埋め込み層形成用塗布液140は、更にアルカリ土類金属化合物を含んでいることが好ましい。
次に、図2(d)に示す工程では、埋め込み層形成用塗布液140を焼成して埋め込み層14を形成する。埋め込み層形成用塗布液140は、塗布工程後は溝11x、ソース電極12、及びドレイン電極13上に形成されるが、焼成工程の間に粘度が低下するため、ソース電極12及びドレイン電極13上から溝11x内へ流動し、溝11xを埋め込むことができる。
ここで、ソース電極12及びドレイン電極13の最大段差をXnm、焼成後の埋め込み層14の最大段差をYnmとすると、埋め込み層の平坦化率Pは"P[%]=(X−Y)/X ×100"と表すことができる。溝11xの埋め込み易さの観点から、平坦化率Pは50%以上であることが好ましい。
ソース電極12及びドレイン電極13の最大段差(Xnm)とは、ソース電極12及びドレイン電極13における表面の最高部と最低部との高さの差(膜厚)である。又、焼成後の埋め込み層14の最大段差(Ynm)とは、焼成後の埋め込み層14における表面の最高部と最低部との高さの差である。これらX及びYの値は、触針式段差計(例えば、Alpha−Step IQ、KLA Tencor Japan社製)により求めることができる。
なお、図2(d)に示すように、焼成工程後に、ソース電極12及びドレイン電極13上に埋め込み層14(焼成した埋め込み層形成用塗布液140)が残っている場合は、図3(a)に示す工程で埋め込み層14の全面をエッチバックする。これにより、ソース電極12及びドレイン電極13上の埋め込み層14を除去し、ソース電極12及びドレイン電極13の表面を露出することができる。
この際、ソース電極12及びドレイン電極13の膜厚をA、溝11xの深さをB、埋め込み層14の最小膜厚をCとしたとき、B<C<A+Bを満たすようにエッチバックすることが好ましい。溝11xを埋め込み層14で十分に埋め込み、ソース電極12及びドレイン電極13のそれぞれの上面と、埋め込み層14の上面との段差を小さくするためである。
次に、図3(b)に示す工程では、ソース電極12、ドレイン電極13、及び埋め込み層14上に半導体層15を形成する。半導体層15を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)ソース電極12、ドレイン電極13、及び埋め込み層14上の全面に成膜後、フォトリソグラフィによってパターニングする方法、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する方法等が挙げられる。(i)の成膜プロセスとしては、スパッタ等の真空成膜や、スピンコート、ダイコート、スリットコート等による塗布の後に焼成するプロセスが適用可能である。半導体層15の材料や厚さは、前述の通り適宜選択することができる。
次に、図3(c)に示す工程では、ガラス基板11上に、半導体層15の全部と、ソース電極12、ドレイン電極13、及び埋め込み層14の一部とを被覆するゲート絶縁層16を形成する。ゲート絶縁層16を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタ法、パルスレーザーデポジッション(PLD)法、化学気相蒸着(CVD)法、原子層蒸着(ALD)法等の真空プロセス、ディップコーティング法、スピンコート法、ダイコート法等の溶液プロセスによる成膜工程が挙げられる。他の例としては、インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程が挙げられる。ゲート絶縁層16の材料や厚さは、前述の通り適宜選択することができる。
次に、図3(d)に示す工程では、ゲート絶縁層16上にゲート電極17を形成する。まず、ゲート絶縁層16上にゲート電極17となる金属膜を形成する。ゲート電極17となる金属膜を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタ法、真空蒸着法、ディップコーティング法、スピンコート法、ダイコート法等を挙げることができる。
次に、形成した金属膜をフォトリソグラフィとエッチングによりパターニングすることにより、所定形状のゲート電極17を形成することができる。ゲート電極17となる金属の材料や厚さは、前述の通り適宜選択することができる。
以上の工程により、図1に示すトップゲート/ボトムコンタクト型の電界効果型トランジスタ10を作製できる。
図4は、比較例に係る電界効果型トランジスタを例示する断面図である。図4を参照するに、比較例に係る電界効果型トランジスタ10Xは、埋め込み層14を有していない点が電界効果型トランジスタ10と相違する。
電界効果型トランジスタ10Xのように埋め込み層14を有していないと、nmオーダーの薄い半導体層15をソース電極12及びドレイン電極13上から溝11x内の深い位置まで形成する必要があるため、半導体層15に亀裂や断線が生じ易くなる。半導体層15に亀裂や断線が生じると、移動度等のトランジスタ特性が低下したり、トランジスタとして動作しなくなったりする。
これに対して、本実施の形態では、ガラス基板11上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜120を成膜し、ウェットエッチングにより、金属膜120からソース電極12及びドレイン電極13を形成する。そして、ウェットエッチングの際のオーバーエッチングの間にソース電極12及びドレイン電極13の周囲に位置するガラス基板11に形成される溝11xに、埋め込み層14を形成する。
これにより、ソース電極12、ドレイン電極13、及び埋め込み層14上に半導体層15を形成することができるため、比較例のように埋め込み層14を有していない場合と異なり、半導体層15を溝11x内の深い位置まで形成する必要がなくなる。その結果、半導体層15に亀裂や断線が生じ難くなり、移動度等のトランジスタ特性を向上できる。なお、この効果は、半導体層15が薄くなるほど顕著となる。
又、埋め込み層14の平坦化率を調整することで、断面視において、埋め込み層14の上面のソース電極12側端の延長面と、ソース電極12のドレイン電極13側の側面とのなす角θを、凸部11yの下底のドレイン電極13側の底角θ以下とすることができる。これにより、ソース電極12上から埋め込み層14上に至る部分において、半導体層15の急峻な形状変化が抑制可能となり、半導体層15に亀裂や断線が生じるおそれを一層低減できる。ドレイン電極13側においても同様の効果を奏する。
〈第1の実施の形態の変形例〉
第1の実施の形態の変形例では、第1の実施の形態とはθの値が異なる例を示す。なお、第1の実施の形態の変形例において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図5は、第1の実施の形態の変形例1に係る電界効果型トランジスタを例示する断面図であり、図5(a)は全体図、図5(b)は図5(a)のA部の部分拡大図である。図5に示す電界効果型トランジスタは、本発明に係る半導体装置の代表的な一例である。
図5に示す電界効果型トランジスタ10Aは、θが電界効果型トランジスタ10よりも小さい。本実施の形態の例では、θが約60度、θが約30度である。
電界効果型トランジスタ10Aは、電界効果型トランジスタ10と同様の工程により作製することができるが、本実施の形態では、図2(c)に示す工程で用いる埋め込み層形成用塗布液140として、第1の実施の形態よりも平坦化率の低いスピンオングラス形成用塗布液を用いる。本実施の形態で用いる埋め込み層形成用塗布液140の平坦化率は、例えば、50%程度とすることができる。
これにより、埋め込み層形成用塗布液140を焼成したときに、図6(a)に示すように、図2(d)よりも平坦化率の低い埋め込み層14を形成できる。その後、図6(b)に示すように、焼成工程後にソース電極12及びドレイン電極13上に残っている埋め込み層14の全面をエッチバックすることで、ソース電極12及びドレイン電極13上の埋め込み層14を除去する。そして、図3(b)〜図3(d)と同様の工程を実行することで、電界効果型トランジスタ10Aが完成する。
図7は、第1の実施の形態の変形例2に係る電界効果型トランジスタを例示する断面図であり、図7(a)は全体図、図7(b)は図7(a)のA部の部分拡大図である。図7に示す電界効果型トランジスタは、本発明に係る半導体装置の代表的な一例である。
図7に示す電界効果型トランジスタ10Bは、θが電界効果型トランジスタ10よりも大きい。本実施の形態の例では、θが約60度、θが約60度である。
電界効果型トランジスタ10Bは、電界効果型トランジスタ10と同様の工程により作製することができる。本実施の形態では、図8(a)に示す工程でソース電極12及びドレイン電極13を形成後、図8(b)に示す工程で埋め込み層形成用塗布液140を塗布するが、埋め込み層形成用塗布液140として、第1の実施の形態よりも平坦化率の高いスピンオングラス形成用塗布液を用いる。本実施の形態で用いる埋め込み層形成用塗布液140の平坦化率は、例えば、90%程度とすることができる。平坦化率の高い埋め込み層形成用塗布液140は粘性が低いため、ソース電極12及びドレイン電極13上に塗布せずに溝11x内のみに塗布することができる。
図8(b)に示す工程後に焼成を行って埋め込み層14を形成し、その後エッチバックを行うことなく図3(b)〜図3(d)と同様の工程を実行することで、電界効果型トランジスタ10Bが完成する。
このように、埋め込み層形成用塗布液140の平坦化率を適宜選択することで、埋め込み層14の平坦化率を変えることができる。すなわち、θに対してθを小さくしたり、θとθを同程度にしたり、目的に応じて適宜選択することができる。
〈実施例1〉
実施例1では、トップゲート/ボトムコンタクト型の電界効果型トランジスタ10を作製した。
−ソース電極12及びドレイン電極13の形成−
まず、ガラス基板11上に、ソース電極12及びドレイン電極13を形成した。具体的には、ガラス基板11上に、DCスパッタリングにより金属膜120を成膜した。金属膜120としては、Ti/Al/Tiの積層膜を用い、平均膜厚が約30nm/100nm/30nmとなるようガラス基板11上に成膜した。
この後、金属膜120上にフォトレジストを塗布し、プリベーク、露光装置による露光、及び現像によりレジストパターンを形成した。更に約35℃に調整したフッ化アンモニウムを含むエッチング液に浸漬することでレジストパターンの形成されていない領域の金属膜120を溶解させて除去した。オーバーエッチングは約50%とした。オーバーエッチングの間にガラス基板11が約40nm溶解し、溝11xが形成された。最後にレジストパターンを除去することで、ソース電極12及びドレイン電極13が形成された。なお、θ(図1参照)は約60°であった。
−埋め込み層14の形成−
次に、溝11xを埋め込む埋め込み層14を形成した。具体的には、埋め込み層形成用塗布液140として、平坦化率が約70%のスピンオングラス材料を準備した。そして、溝11x、ソース電極12、及びドレイン電極13上に、スピンコート法により、埋め込み層形成用塗布液140を塗布した。埋め込み層形成用塗布液140は、少なくとも有機溶媒と、シラン化合物を含んでいるスピンオングラス形成用塗布液である。
埋め込み層形成用塗布液140を塗布した後、約400℃で約1時間の焼成を実施することで、SiO膜によって溝11xを埋め込んだ。溝11x上のSiO膜の平均膜厚は250nmであり、ソース電極12及びドレイン電極13上にも埋め込み層14が形成された。
続いてCFとOとの混合ガスによって埋め込み層14の全面をエッチバックし、SiOを130nmエッチングすることで、ソース電極12及びドレイン電極13上の埋め込み層14を除去した。なお、θ(図1参照)は約50°であった。
−半導体層15の形成−
次に、ソース電極12、ドレイン電極13、及び埋め込み層14上に、半導体層15を形成した。具体的には、DCスパッタリングにより、Mg−In系酸化物(InMgO)膜を平均膜厚が約10nmとなるように成膜した。この後、Mg−In系酸化物膜上に、フォトレジストを塗布し、プリベーク、露光装置による露光、及び現像によりレジストパターンを形成した。
更に、RIEにより、レジストパターンの形成されていない領域のMg−In系酸化物膜を除去した。この後、レジストパターンも除去することにより、酸化物半導体よりなり、ソース電極12とドレイン電極13との間にチャネルを形成する半導体層15が形成された。
−ゲート絶縁層16の形成−
次に、ガラス基板11上に、半導体層15の全部と、ソース電極12、ドレイン電極13、及び埋め込み層14の一部とを被覆するゲート絶縁層16を形成した。具体的には、RFスパッタリングにより、SiO膜を平均膜厚が約300nmとなるように成膜した。この後、SiO膜上に、フォトレジストを塗布し、プリベーク、露光装置による露光、及び現像によりレジストパターンを形成した。更に、RIEにより、レジストパターンの形成されていない領域のSiO膜を除去した。この後、レジストパターンも除去することにより、ゲート絶縁層16が形成された。
−ゲート電極17の形成−
次に、ゲート絶縁層16上にゲート電極17を形成した。具体的には、DCスパッタリングにより、Mo/Al/Mo積層膜を平均膜厚が約30nm/100nm/30nmとなるよう成膜した。この後、Mo/Al/Mo積層膜上に、フォトレジストを塗布し、プリベーク、露光装置による露光、及び現像によりレジストパターンを形成した。更に、RIEにより、レジストパターンの形成されていない領域のMo/Al/Mo積層膜を除去した。この後、レジストパターンも除去することにより、ゲート電極17が形成された。最後に300℃の熱処理を加えることにより、電界効果型トランジスタ10を完成させた。
その後、得られた電界効果型トランジスタ10について、半導体パラメータ・アナライザ装置(アジレントテクノロジー社製、半導体パラメータ・アナライザB1500A)を用いて、トランジスタ性能評価を実施した。具体的には、ソース/ドレイン電圧Vdsを10Vとし、ゲート電圧をVg=−15Vから+15Vに変化させてソース/ドレイン電流Ids及びゲート電流|Ig|を測定し、電流−電圧特性を評価した。そして、評価した電流−電圧特性の飽和領域において移動度を算出した。
〈実施例2〉
実施例2では、埋め込み層14の材料を平坦化率が約50%のスピンオングラス材料としたこと以外は実施例1と同じ方法で、図5に示すトップゲート/ボトムコンタクト型の電界効果型トランジスタ10Aを作製した。なお、θ(図5参照)は約50°であった。又、電界効果型トランジスタ10Aの完成後、電界効果型トランジスタ10Aの移動度を測定した。
〈実施例3〉
実施例3では、埋め込み層14の材料を平坦化率が約90%のスピンオングラス材料とし、埋め込み層14の形成工程における全面エッチバックを省略したこと以外は実施例1と同じ方法で、図7に示すトップゲート/ボトムコンタクト型の電界効果型トランジスタ10Bを作製した。なお、θ(図7参照)は約60°であった。又、電界効果型トランジスタ10Bの完成後、電界効果型トランジスタ10Bの移動度を測定した。
〈比較例〉
比較例では、埋め込み層14を形成しない以外は実施例1と全く同じ方法で、図4に示す電界効果型トランジスタ10Xを作製した。
〈結果のまとめ〉
Figure 0006798173
結果を表1にまとめた。表1に示すように、実施例1で作製した電界効果型トランジスタは移動度が5.7cm/Vsであり、良好なトランジスタ特性を示した。又、実施例2で作製した電界効果型トランジスタは移動度が6.1cm/Vsであり、良好なトランジスタ特性を示した。又、実施例3で作製した電界効果型トランジスタは移動度が5.9cm/Vsであり、良好なトランジスタ特性を示した。なお、平坦化率やθの値による移動度の顕著な差は見られなかった。
一方、比較例で作製した電界効果型トランジスタ10Xは、移動度が1cm/Vs以下となり、実施例1〜3よりも大幅に低かった。これは、埋め込み層14を形成していない電界効果型トランジスタ10Xでは、nmオーダーの薄い半導体層15をソース電極12及びドレイン電極13上から溝11x内の深い位置(底面)まで形成したため、半導体層15に亀裂等が生じ、移動度が低下したものと考えられる。
言い換えれば、埋め込み層14を形成することで、半導体層15に亀裂や断線が生じ難くすることが可能となり、移動度等のトランジスタ特性を向上させることができる。
〈第2の実施の形態〉
第2の実施の形態では、第1の実施の形態に係る電界効果型トランジスタを用いた表示素子、画像表示装置、及びシステムの例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
(表示素子)
第2の実施の形態に係る表示素子は、少なくとも、光制御素子と、光制御素子を駆動する駆動回路とを有し、更に必要に応じて、その他の部材を有する。光制御素子としては、駆動信号に応じて光出力を制御する素子である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、エレクトロルミネッセンス(EL)素子、エレクトロクロミック(EC)素子、液晶素子、電気泳動素子、エレクトロウェッティング素子等が挙げられる。
駆動回路としては、第1の実施の形態に係る電界効果型トランジスタを有する限り、特に制限はなく、目的に応じて適宜選択することができる。その他の部材としては、特に制限はなく、目的に応じて適宜選択することができる。
第2の実施の形態に係る表示素子は、第1の実施の形態に係る電界効果型トランジスタを有しているため、移動度等のトランジスタ特性が良好である。その結果、高品質の表示を行うことが可能となる。
(画像表示装置)
第2の実施の形態に係る画像表示装置は、少なくとも、第2の実施の形態に係る複数の表示素子と、複数の配線と、表示制御装置とを有し、更に必要に応じて、その他の部材を有する。複数の表示素子としては、マトリックス状に配置された複数の第2の実施の形態に係る表示素子である限り、特に制限はなく、目的に応じて適宜選択することができる。
複数の配線は、複数の表示素子における各電界効果型トランジスタにゲート電圧と画像データ信号とを個別に印加可能である限り、特に制限はなく、目的に応じて適宜選択することができる。
表示制御装置としては、画像データに応じて、各電界効果型トランジスタのゲート電圧と信号電圧とを複数の配線を介して個別に制御可能である限り、特に制限はなく、目的に応じて適宜選択することができる。その他の部材としては、特に制限はなく、目的に応じて適宜選択することができる。
第2の実施の形態に係る画像表示装置は、第1の実施の形態に係る電界効果型トランジスタを備えた表示素子を有しているため、高品質の画像を表示することが可能となる。
(システム)
第2の実施の形態に係るシステムは、少なくとも、第2の実施の形態に係る画像表示装置と、画像データ作成装置とを有する。画像データ作成装置は、表示する画像情報に基づいて画像データを作成し、画像データを前記画像表示装置に出力する。
システムは、第2の実施の形態に係る画像表示装置を備えているため、画像情報を高精細に表示することが可能となる。
以下、第2の実施の形態に係る表示素子、画像表示装置、及びシステムについて、具体的に説明する。
図9には、第2の実施の形態に係るシステムとしてのテレビジョン装置500の概略構成が示されている。なお、図9における接続線は、代表的な信号や情報の流れを示すものであり、各ブロックの接続関係の全てを表すものではない。
第2の実施の形態に係るテレビジョン装置500は、主制御装置501、チューナ503、ADコンバータ(ADC)504、復調回路505、TS(Transport Stream)デコーダ506、音声デコーダ511、DAコンバータ(DAC)512、音声出力回路513、スピーカ514、映像デコーダ521、映像・OSD合成回路522、映像出力回路523、画像表示装置524、OSD描画回路525、メモリ531、操作装置532、ドライブインターフェース(ドライブIF)541、ハードディスク装置542、光ディスク装置543、IR受光器551、及び通信制御装置552等を備えている。
主制御装置501は、テレビジョン装置500の全体を制御し、CPU、フラッシュROM、及びRAM等から構成されている。フラッシュROMには、CPUにて解読可能なコードで記述されたプログラム、及びCPUでの処理に用いられる各種データ等が格納されている。又、RAMは、作業用のメモリである。
チューナ503は、アンテナ610で受信された放送波の中から、予め設定されているチャンネルの放送を選局する。ADC504は、チューナ503の出力信号(アナログ情報)をデジタル情報に変換する。復調回路505は、ADC504からのデジタル情報を復調する。
TSデコーダ506は、復調回路505の出力信号をTSデコードし、音声情報及び映像情報を分離する。音声デコーダ511は、TSデコーダ506からの音声情報をデコードする。DAコンバータ(DAC)512は、音声デコーダ511の出力信号をアナログ信号に変換する。
音声出力回路513は、DAコンバータ(DAC)512の出力信号をスピーカ514に出力する。映像デコーダ521は、TSデコーダ506からの映像情報をデコードする。映像・OSD合成回路522は、映像デコーダ521の出力信号とOSD描画回路525の出力信号を合成する。
映像出力回路523は、映像・OSD合成回路522の出力信号を画像表示装置524に出力する。OSD描画回路525は、画像表示装置524の画面に文字や図形を表示するためのキャラクタ・ジェネレータを備えており、操作装置532やIR受光器551からの指示に応じて表示情報が含まれる信号を生成する。
メモリ531には、AV(Audio−Visual)データ等が一時的に蓄積される。操作装置532は、例えばコントロールパネル等の入力媒体(図示省略)を備え、ユーザから入力された各種情報を主制御装置501に通知する。ドライブIF541は、双方向の通信インターフェースであり、一例としてATAPI(AT Attachment Packet Interface)に準拠している。
ハードディスク装置542は、ハードディスクと、このハードディスクを駆動するための駆動装置等から構成されている。駆動装置は、ハードディスクにデータを記録するとともに、ハードディスクに記録されているデータを再生する。光ディスク装置543は、光ディスク(例えば、DVD)にデータを記録するとともに、光ディスクに記録されているデータを再生する。
IR受光器551は、リモコン送信機620からの光信号を受信し、主制御装置501に通知する。通信制御装置552は、インターネットとの通信を制御する。インターネットを介して各種情報を取得することができる。
画像表示装置524は、一例として図10に示されるように、表示器700、及び表示制御装置780を有している。表示器700は、一例として図11に示されるように、複数(ここでは、n×m個)の表示素子702がマトリックス状に配置されたディスプレイ710を有している。
又、ディスプレイ710は、一例として図12に示されるように、X軸方向に沿って等間隔に配置されているn本の走査線(X0、X1、X2、X3、・・・・・、Xn−2、Xn−1)、Y軸方向に沿って等間隔に配置されているm本のデータ線(Y0、Y1、Y2、Y3、・・・・・、Ym−1)、Y軸方向に沿って等間隔に配置されているm本の電流供給線(Y0i、Y1i、Y2i、Y3i、・・・・・、Ym−1i)を有している。そして、走査線とデータ線とによって、表示素子702を特定することができる。
各表示素子702は、一例として図13に示されるように、有機EL(エレクトロルミネッセンス)素子750と、この有機EL素子750を発光させるためのドライブ回路720とを有している。すなわち、ディスプレイ710は、いわゆるアクティブマトリックス方式の有機ELディスプレイである。又、ディスプレイ710は、カラー対応の32インチ型のディスプレイである。なお、大きさは、これに限定されるものではない。
有機EL素子750は、一例として図14に示されるように、有機EL薄膜層740と、陰極712と、陽極714とを有している。
有機EL素子750は、例えば、電界効果型トランジスタの横に配置することができる。この場合、有機EL素子750と電界効果型トランジスタとは、同一の基材上に形成することができる。但し、これに限定されず、例えば、電界効果型トランジスタの上に有機EL素子750が配置されても良い。この場合には、ゲート電極に透明性が要求されるので、ゲート電極には、ITO(Indium Tin Oxide)、In、SnO、ZnO、Gaが添加されたZnO、Alが添加されたZnO、Sbが添加されたSnO等の導電性を有する透明な酸化物が用いられる。
有機EL素子750において、陰極712には、Alが用いられている。なお、Mg−Ag合金、Al−Li合金、ITO等を用いても良い。陽極714には、ITOが用いられている。なお、In、SnO、ZnO等の導電性を有する酸化物、Ag−Nd合金等を用いても良い。
有機EL薄膜層740は、電子輸送層742と発光層744と正孔輸送層746とを有している。そして、電子輸送層742に陰極712が接続され、正孔輸送層746に陽極714が接続されている。陽極714と陰極712との間に所定の電圧を印加すると発光層744が発光する。
又、図13に示すように、ドライブ回路720は、2つの電界効果型トランジスタ810及び820、コンデンサ830を有している。電界効果型トランジスタ810は、スイッチ素子として動作する。ゲート電極Gは、所定の走査線に接続され、ソース電極Sは、所定のデータ線に接続されている。又、ドレイン電極Dは、コンデンサ830の一方の端子に接続されている。
コンデンサ830は、電界効果型トランジスタ810の状態、すなわちデータを記憶しておくためのものである。コンデンサ830の他方の端子は、所定の電流供給線に接続されている。
電界効果型トランジスタ820は、有機EL素子750に大きな電流を供給するためのものである。ゲート電極Gは、電界効果型トランジスタ810のドレイン電極Dと接続されている。そして、ドレイン電極Dは、有機EL素子750の陽極714に接続され、ソース電極Sは、所定の電流供給線に接続されている。
そこで、電界効果型トランジスタ810が「オン」状態になると、電界効果型トランジスタ820によって、有機EL素子750は駆動される。
表示制御装置780は、一例として図15に示されるように、画像データ処理回路782、走査線駆動回路784、及びデータ線駆動回路786を有している。
画像データ処理回路782は、映像出力回路523の出力信号に基づいて、ディスプレイ710における複数の表示素子702の輝度を判断する。走査線駆動回路784は、画像データ処理回路782の指示に応じてn本の走査線に個別に電圧を印加する。データ線駆動回路786は、画像データ処理回路782の指示に応じてm本のデータ線に個別に電圧を印加する。
以上の説明から明らかなように、本実施の形態に係るテレビジョン装置500では、映像デコーダ521と映像・OSD合成回路522と映像出力回路523とOSD描画回路525とによって画像データ作成装置が構成されている。
又、上記においては、光制御素子が有機EL素子の場合について説明したが、これに限定されるものではなく、液晶素子、エレクトロクロミック素子、電気泳動素子、エレクトロウェッティング素子であってもよい。
例えば、光制御素子が液晶素子の場合は、上記ディスプレイ710として、液晶ディスプレイ用いる。この場合においては、図16に示されるように、表示素子703における電流供給線は不要となる。
又、この場合では、一例として図17に示されるように、ドライブ回路730は、図13に示される電界効果型トランジスタ(810、820)と同様な1つの電界効果型トランジスタ840のみで構成することができる。電界効果型トランジスタ840では、ゲート電極Gが所定の走査線に接続され、ソース電極Sが所定のデータ線に接続されている。又、ドレイン電極Dが液晶素子770の画素電極、及びコンデンサ760に接続されている。なお、図17における符号762、772は、夫々コンデンサ760、液晶素子770の対向電極(コモン電極)である。
又、上記実施の形態では、システムがテレビジョン装置の場合について説明したが、これに限定されるものではない。要するに画像や情報を表示する装置として上記画像表示装置524を備えていれば良い。例えば、コンピュータ(パソコンを含む)と画像表示装置524とが接続されたコンピュータシステムであっても良い。
又、携帯電話、携帯型音楽再生装置、携帯型動画再生装置、電子BOOK、PDA(Personal Digital Assistant)等の携帯情報機器、スチルカメラやビデオカメラ等の撮像機器における表示手段に画像表示装置524を用いることができる。又、車、航空機、電車、船舶等の移動体システムにおける各種情報の表示手段に画像表示装置524を用いることができる。更に、計測装置、分析装置、医療機器、広告媒体における各種情報の表示手段に画像表示装置524を用いることができる。
以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。
10、10A、10B 電界効果型トランジスタ
11 ガラス基板
11x 溝
11y、11z 凸部
12 ソース電極
13 ドレイン電極
14 埋め込み層
15 半導体層
16 ゲート絶縁層
17 ゲート電極
120 金属膜
140 埋め込み層形成用塗布液
特開2007−67367号公報

Claims (13)

  1. ガラス基板を有する電界効果型トランジスタの製造方法であって、
    ガラス基板上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜を成膜する工程と、
    ウェットエッチングにより、前記金属膜からソース電極及びドレイン電極を形成すると共に、前記ソース電極及び前記ドレイン電極が形成された領域以外の前記ガラス基板に溝を形成する工程と、
    前記溝に、アルカリ土類金属化合物を含む埋め込み層を形成する工程と、
    前記ソース電極、前記ドレイン電極、及び前記埋め込み層上に半導体層を形成する工程と、を有することを特徴とする電界効果型トランジスタの製造方法。
  2. 前記埋め込み層を形成する工程は、少なくとも前記溝に埋め込み層形成用塗布液を塗布する工程と、
    前記埋め込み層形成用塗布液を焼成する工程と、を含むことを特徴とする請求項1に記載の電界効果型トランジスタの製造方法。
  3. ガラス基板を有する電界効果型トランジスタの製造方法であって、
    ガラス基板上に、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなる金属膜を成膜する工程と、
    ウェットエッチングにより、前記金属膜からソース電極及びドレイン電極を形成すると共に、前記ソース電極及び前記ドレイン電極が形成された領域以外の前記ガラス基板に溝を形成する工程と、
    前記溝に、埋め込み層を形成する工程と、
    前記ソース電極、前記ドレイン電極、及び前記埋め込み層上に半導体層を形成する工程と、を有し、
    前記埋め込み層を形成する工程は、少なくとも前記溝に埋め込み層形成用塗布液を塗布する工程と、
    前記埋め込み層形成用塗布液を焼成する工程と、を含むことを特徴とする電界効果型トランジスタの製造方法。
  4. 前記埋め込み層を形成する工程は、焼成した前記埋め込み層形成用塗布液をエッチバックして前記ソース電極及び前記ドレイン電極の表面を露出する工程を含むことを特徴とする請求項2又は3に記載の電界効果型トランジスタの製造方法。
  5. 前記埋め込み層形成用塗布液は、有機溶媒と、シラン化合物と、を含むことを特徴とする請求項2乃至4の何れか一項に記載の電界効果型トランジスタの製造方法。
  6. 前記埋め込み層形成用塗布液は、アルカリ土類金属化合物を含むことを特徴とする請求項2乃至5の何れか一項に記載の電界効果型トランジスタの製造方法。
  7. ガラス基板を有する電界効果型トランジスタであって、
    ガラス基板上に形成された、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなるソース電極及びドレイン電極と、
    前記ソース電極及び前記ドレイン電極が形成された領域以外の前記ガラス基板に形成された溝と、
    前記溝に形成された埋め込み層と、
    前記ソース電極、前記ドレイン電極、及び前記埋め込み層上に形成された半導体層と、を有し、
    前記ソース電極は、前記ガラス基板に形成された断面形状が台形状の第1凸部上に形成され、
    断面視において、前記第1凸部の下底の前記ドレイン電極側の底角はθ であり、前記埋め込み層の上面の前記ソース電極側端の延長面と、前記ソース電極の前記ドレイン電極側の側面とのなす角はθ であり、θ はθ 以下であり、
    前記ドレイン電極は、前記ガラス基板に形成された断面形状が台形状の第2凸部上に形成され、
    断面視において、前記第2凸部の下底の前記ソース電極側の底角はθ であり、前記埋め込み層の上面の前記ドレイン電極側端の延長面と、前記ドレイン電極の前記ソース電極側の側面とのなす角はθ であり、θ はθ 以下であることを特徴とする電界効果型トランジスタ。
  8. ガラス基板を有する電界効果型トランジスタであって、
    ガラス基板上に形成された、Ti、Ti合金、又はTi若しくはTi合金を含む積層体、の何れかからなるソース電極及びドレイン電極と、
    前記ソース電極及び前記ドレイン電極が形成された領域以外の前記ガラス基板に形成された溝と、
    前記溝に形成された埋め込み層と、
    前記ソース電極、前記ドレイン電極、及び前記埋め込み層上に形成された半導体層と、を有し、
    前記埋め込み層は、アルカリ土類金属化合物を含むことを特徴とする電界効果型トランジスタ。
  9. 前記ソース電極及び前記ドレイン電極の膜厚をA、前記溝の深さをB、前記埋め込み層の最小膜厚をCとしたとき、B<C<A+Bを満たすことを特徴とする請求項7又は8に記載の電界効果型トランジスタ。
  10. 駆動回路と、
    前記駆動回路からの駆動信号に応じて光出力が制御される光制御素子と、
    を有し、
    前記駆動回路は、請求項乃至9の何れか一項に記載の電界効果型トランジスタにより前記光制御素子を駆動することを特徴とする表示素子。
  11. 前記光制御素子は、エレクトロルミネッセンス素子、エレクトロクロミック素子、液晶素子、電気泳動素子、又はエレクトロウェッティング素子であることを特徴とする請求項10に記載の表示素子。
  12. 請求項10又は11に記載の表示素子を複数個マトリクス状に配置した表示器と、
    夫々の前記表示素子を個別に制御する表示制御装置と、
    を有することを特徴とする表示装置。
  13. 請求項12に記載の表示装置と、
    前記表示装置に画像データを供給する画像データ作成装置と、
    を有することを特徴とするシステム。
JP2016141878A 2016-07-19 2016-07-19 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム Active JP6798173B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141878A JP6798173B2 (ja) 2016-07-19 2016-07-19 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141878A JP6798173B2 (ja) 2016-07-19 2016-07-19 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム

Publications (2)

Publication Number Publication Date
JP2018014373A JP2018014373A (ja) 2018-01-25
JP6798173B2 true JP6798173B2 (ja) 2020-12-09

Family

ID=61020465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141878A Active JP6798173B2 (ja) 2016-07-19 2016-07-19 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム

Country Status (1)

Country Link
JP (1) JP6798173B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230109516A1 (en) * 2020-03-11 2023-04-06 Sharp Kabushiki Kaisha Display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824185B2 (ja) * 1985-03-08 1996-03-06 セイコー電子工業株式会社 薄膜トランジスタ装置とその製造方法
JPH06260504A (ja) * 1993-03-09 1994-09-16 Hitachi Ltd 薄膜トランジスタの製造方法
JP2007109733A (ja) * 2005-10-11 2007-04-26 Seiko Epson Corp 半導体装置および半導体装置の製造方法
JP4935138B2 (ja) * 2006-03-23 2012-05-23 セイコーエプソン株式会社 回路基板、回路基板の製造方法、電気光学装置および電子機器
JP4363425B2 (ja) * 2006-08-02 2009-11-11 セイコーエプソン株式会社 Tft、電気回路、電子デバイス、および電子機器、ならびにそれらの製造方法
JP5415001B2 (ja) * 2007-02-22 2014-02-12 株式会社半導体エネルギー研究所 半導体装置
KR20190018049A (ko) * 2010-03-08 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치를 제작하는 방법
JP6015389B2 (ja) * 2012-11-30 2016-10-26 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
US9246011B2 (en) * 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014208442A1 (ja) * 2013-06-26 2014-12-31 シャープ株式会社 薄膜トランジスタ
JP2015201465A (ja) * 2014-04-04 2015-11-12 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法

Also Published As

Publication number Publication date
JP2018014373A (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6736743B2 (ja) 半導体装置
JP7058724B2 (ja) Tft基板とその製造方法、及びoledパネルの製造方法
TWI286338B (en) Semiconductor device and manufacturing method thereof
US8044905B2 (en) TFT arrangement for display device
JP5371341B2 (ja) 電気泳動方式の表示装置
TWI535034B (zh) 畫素結構及其製作方法
TWI356497B (en) Display device and method for fabricating the same
JP6330207B2 (ja) 表示装置及び薄膜トランジスタ基板
TW201319666A (zh) 半導體裝置及顯示裝置
TWI634377B (zh) 場效型電晶體及其製造方法、顯示元件、顯示裝置及系統
WO2016026207A1 (zh) 阵列基板及其制作方法和显示装置
TWI379138B (en) Light-emitting device and method for manufacturing the same
CN106920753B (zh) 薄膜晶体管及其制作方法、阵列基板和显示器
JP6907512B2 (ja) 電界効果型トランジスタの製造方法
JP2016025100A (ja) 半導体装置、表示装置および電子機器
JP6798173B2 (ja) 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム
CN107910301A (zh) 显示基板的制作方法、显示基板及显示装置
JP6852296B2 (ja) 電界効果型トランジスタの製造方法
JP6662038B2 (ja) 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム
TWI673874B (zh) 場效電晶體及其製造方法、顯示元件、顯示裝置及系統
KR101930371B1 (ko) 박막 트랜지스터, 박막 트랜지스터 기판 및 그 제조방법
JP2017118043A (ja) 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R151 Written notification of patent or utility model registration

Ref document number: 6798173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151