JP6795853B2 - 熱輻射光源 - Google Patents

熱輻射光源 Download PDF

Info

Publication number
JP6795853B2
JP6795853B2 JP2018503008A JP2018503008A JP6795853B2 JP 6795853 B2 JP6795853 B2 JP 6795853B2 JP 2018503008 A JP2018503008 A JP 2018503008A JP 2018503008 A JP2018503008 A JP 2018503008A JP 6795853 B2 JP6795853 B2 JP 6795853B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
light source
photonic crystal
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503008A
Other languages
English (en)
Other versions
JPWO2017150160A1 (ja
Inventor
野田 進
進 野田
卓也 井上
卓也 井上
安▲キ▼ 紀
安▲キ▼ 紀
卓 浅野
卓 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2017150160A1 publication Critical patent/JPWO2017150160A1/ja
Application granted granted Critical
Publication of JP6795853B2 publication Critical patent/JP6795853B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は熱輻射光源に関する。熱輻射光源は、熱輻射により放射される電磁波を光源とする装置であるが、熱を入力とし、光(電磁波)を出力する熱−光変換装置と捉えることができる。この入力たる熱が電磁波(赤外線)で与えられる場合、波長変換装置とも捉えることができる。また、熱ではなく電気エネルギーを投入することにより熱輻射を発生させる装置と捉えることもできる。本発明における「熱輻射光源」は、これらいずれをも対象とする。
熱輻射光源は、物体に熱を与えるだけで発光を得ることができる、という利点を有する。熱輻射光源は、例えば赤外線を用いた各種センサの光源に用いることができ、特に、エンジンの排ガス中の成分を分析するガスセンサにおいて、エンジンの廃熱をセンシングのための赤外線に変換する光源として好適に用いることができる。
熱が与えられた物体が発する電磁波は、その温度に依存した波長範囲に広がるスペクトルを有する。例えば物体を数十℃〜数百℃に加熱することにより得られる電磁波の波長範囲は数μm〜数十μmとなり、高温になるほど、その範囲は短波長側に広がる。しかし、前述の赤外線センサでは一般に特定の1又は複数の波長の赤外線のみを利用するため、このような熱輻射光源を用いると、特定波長以外の不要な赤外線が被測定物に照射されてしまい、被測定物が加熱されてしまう等の悪影響が生じる。また、電気エネルギーを投入することにより熱輻射を発生させる場合において、広帯域の輻射が生じる光源では消費電力の増大が問題となる。
このような問題点を解決するべく、特許文献1では、フォトニック結晶内に量子井戸構造が形成された熱輻射光源が提案されている。フォトニック結晶とは、周期的な屈折率分布を有する物であって、当該周期に対応した特定の波長を有する光の定在波が形成され得るものである。フォトニック結晶には、特許文献1では主に板材に該基材とは屈折率が異なる領域である異屈折率領域(典型的には空孔)が周期的に設けられているものが用いられているが、基台上(空気中)に柱状の部材(異屈折率部材)を周期的に配置することにより、基台上の部分(空気及び異屈折率部材)をフォトニック結晶として用いることもできる。量子井戸構造とは、エネルギーバンドギャップの大きさが異なる複数種の、厚さ数nm〜十数nm程度の半導体の層を積層することにより井戸型のエネルギーポテンシャル(量子井戸)を形成した物の構造をいう。
この熱輻射光源では、熱源から熱が供給されると、量子井戸構造の量子井戸内に形成される離散的な複数のエネルギー準位(サブバンド)間において遷移(サブバンド間遷移)が生じ、その遷移エネルギーに対応した波長中心とした有限の帯域幅を有する発光が生じる。そして、当該量子井戸構造が設けられたフォトニック結晶内において、該フォトニック結晶の周期により定まる1つの波長を有する光が共振して増幅され、当該1つの波長において鋭いピークを有する波長スペクトルを持つ光が生成される。
この熱輻射光源にはさらに、量子井戸構造に電圧を印加するための電極が設けられている。この電圧の印加のON/OFFにより、量子井戸内の電子又は正孔の数を変化させ、それにより上記特定波長の光の強度を制御することができる。
国際公開WO2015/129668号
例えばエンジンの排ガス中の成分を分析する上記のガスセンサでは、アンモニア(NH3)や亜酸化窒素(N2O)等の複数の気体成分を検出する必要がある。赤外線の吸収波長は検出対象の成分毎に異なる(例えば、アンモニアでは10.3μm、亜酸化窒素では7.7μm)ため、複数の波長の光(赤外線)を区別して検出する必要がある。そのために、それら複数の波長の重畳光を試料(排ガス等)に照射したうえで、波長の識別が可能な検出器を用いて各波長の光を検出することも可能ではあるが、そのような検出器は高価である。それに対して、それら複数の波長の光を1波長ずつ高速で切り替えながら試料に照射すれば、それ自体では波長の識別を行わない安価な検出器を用いて、波長毎の光の検出を行うことができる。しかしながら、特許文献1に記載の熱輻射光源は、1つの波長の光のみが増幅されるため、このような目的で使用することができない。
本発明が解決しようとする課題は、複数の波長を1波長ずつ高速で切り替えて生成することができる熱輻射光源を提供することである。
上記課題を解決するために成された本発明に係る熱輻射光源は、
a) 量子井戸構造を有する層であって量子井戸内のサブバンド間の遷移エネルギーの大きさが異なるm個(mは2以上の整数)の量子井戸構造層が積層され、各量子井戸構造層を積層方向の両側から挟むようにn型半導体から成る層であるn層及びp型半導体から成る層であるp層が設けられた積層体と、
b) 前記m個の量子井戸構造層の各々において、該量子井戸構造層を挟む前記n層及び前記p層に直接又は間接的に接続された、該量子井戸構造層の量子井戸内の電荷を前記n層又は前記p層に移動させる電圧を印加する電圧印加手段と、
c) 前記m個の量子井戸構造層の各々への前記電圧の印加のON/OFFを切り替える電圧切替手段と、
d) 前記積層体内又は該積層体に隣接して設けられた、前記m個の量子井戸構造層の各々から該量子井戸構造層の量子井戸におけるサブバンド間の遷移エネルギーに対応して1種類ずつ生じる合計m種類の波長の光がいずれも共振するように、単一の周期から成る周期的屈折率分布が形成されているフォトニック結晶部と
を備えることを特徴とする。
従来、フォトニック結晶を用いた熱輻射光源では、フォトニック結晶において基本モードの共振に基づいて1つの波長の光を増幅していた。しかし、フォトニック結晶では高次モードの共振も生じ得ることから、基本モードの共振と共に1又は複数の高次モードの共振も(あるいは基本モードの共振ではなく複数の高次モードの共振を)利用することにより、複数の波長の光を共振して増幅することができる。これら複数の波長の値は、屈折率分布の周期に依存する他、屈折率分布を構成する異屈折率領域や異屈折率部材の大きさ、あるいはフォトニック結晶全体の厚さ(光がフォトニック結晶よりも拡がって分布するため、フォトニック結晶の厚さによって有効屈折率が相違する)を調整することにより、設定することができる。
そこで、本発明に係る熱輻射光源では、量子井戸内のサブバンド間の遷移エネルギーの大きさが異なるm個の量子井戸構造層を設け、加熱時に生じる波長が遷移エネルギーの大きさにより異なることから1つの量子井戸構造層から1波長ずつ、合計m種類の波長の光が生成されることを利用する。すなわち、当該m種類の波長の光が共振するようにフォトニック結晶部を形成しておく。これにより、電圧切替手段の操作により電圧印加手段から電圧が印加されていない量子井戸構造層からは、その量子井戸構造層における所定波長の光が生成されてフォトニック結晶部において増幅される。それに対して、電圧が印加された量子井戸構造層では、量子井戸内の電荷がn層又はp層に移動するため、その量子井戸構造層における所定波長の光の強度が弱くなる。こうして、m個の量子井戸構造層に対応したm種類の波長の光につき、それぞれ光の強弱を制御することができる。
本発明に係る熱輻射光源によれば、該熱輻射光源を加熱したうえで、電圧切替手段を用いてm個の量子井戸構造層の各々への電圧の印加のON/OFFを切り替えることにより、m種類の波長のうちの任意の1又は複数の波長を含む光をフォトニック結晶部で増幅して放出することができる。放出される光の波長は、前記電圧のON/OFFで切り替えることができるため応答が速く、波長の切り替えを高速で行うことができる。例えば、電圧の印加をOFFにする量子井戸構造層を1個ずつ切り替えてゆくと、m種類の波長の光が1種類ずつ順に切り替わって放出されるため、それ自体では波長の識別を行わない安価な検出器を用いて波長毎の光の検出を行うことができる。
フォトニック結晶部は、積層体内に設けられていてもよいし、それら各層とは別に設けられていてもよい。但し、各量子井戸構造層との距離の差が生じないように、フォトニック結晶部は前記複数の量子井戸構造層、n層及びp層と一体にとなるように設けられていることが望ましい。例えば、前記フォトニック結晶部は、前記積層体と、該積層体の各層を貫くように積層方向に設けられ、前記量子井戸構造層、前記n層及び前記p層に平行に周期的に配置された空孔から成る、という構成を取ることができる。
前記n層及び前記p層は、1個の量子井戸構造層に対して1個ずつ設けてもよいが、隣接する量子井戸構造層間で共有することが望ましい。例えば、「n層、量子井戸構造層、p層、量子井戸構造層」を1周期として繰り返すように各層を設けることができる。なお、量子井戸に電子が存在する量子井戸構造層を用いる場合には該量子井戸構造層と前記p層の間に、量子井戸に正孔が存在する量子井戸構造層を用いる場合には該量子井戸構造層と前記n層の間に、絶縁体から成るi層を設けてもよい。
前記電圧印加手段は、前記n層及び前記p層に直接接続されていてもよいし、前記n層又は前記p層に間接的に接続されていてもよい。電圧印加手段がn層又はp層に間接的に接続されている例として、
前記積層体において、第1半導体層、第1の前記量子井戸構造層である第1量子井戸構造層、第2半導体層、第2の前記量子井戸構造層である第2量子井戸構造層、及び第3半導体層がこの順で積層されており、
前記第1半導体層及び前記第3半導体層が前記n層及び前記p層のいずれか一方であって、前記第2半導体層が前記n層及び前記p層のうち前記第1半導体層及び前記第3半導体層のものとは異なる方であり、
前記第1半導体層及び前記第3半導体層に前記電圧印加手段が接続されている
ものが挙げられる。
第1及び第3半導体層がn層、第2半導体層がp層の場合には、第1半導体層を正、第3半導体層を負とする電圧を両層の間に印加すると、第1量子井戸構造層の量子井戸内の電荷は、該電荷が電子である場合には第1半導体層(n層)に移動し、該電荷が正孔である場合には第2半導体層(p層)に移動するのに対して、第2量子井戸構造層の量子井戸内の電荷(電子及び正孔のいずれの場合も)は第2半導体層、第3半導体層(n層)のいずれにも移動しない。それに対して第1半導体層を負、第3半導体層を正とする電圧を両層の間に印加すると、第1量子井戸構造層の量子井戸内の電荷(同上)は移動しないのに対して、第2量子井戸構造層の量子井戸内の電荷は第3半導体層(電子の場合)又は第2半導体層(正孔の場合)に移動する。つまり、量子井戸構造層から見て、隣接する半導体層のうち、電位が高い方がn層であれば当該量子井戸層内からの電荷の移動が生じ、電位が低い方がn層であれば当該量子井戸層内からの電荷の移動が生じない。
第1及び第3半導体層がp層、第2半導体層がn層の場合も同様に、量子井戸構造層に隣接する半導体層のうち、電位が高い方がn層であれば当該量子井戸層内からの電荷の移動が生じ、電位が低い方がn層であれば当該量子井戸層内からの電荷の移動が生じない。
なお、第1、2量子井戸構造層及び第1〜第3半導体層以外にも、量子井戸構造層、n層あるいはp層が存在してもよい。
本発明に係る熱輻射光源用素子は、
a) 量子井戸構造を有する層であって量子井戸内のサブバンド間の遷移エネルギーの大きさが異なるm個(mは2以上の整数)の量子井戸構造層が積層され、各量子井戸構造層を積層方向の両側から挟むようにn型半導体から成る層であるn層及びp型半導体から成る層であるp層が設けられた積層体と、
b) 前記積層体内又は該積層体に隣接して設けられた、前記m個の量子井戸構造層の各々から前記遷移エネルギーに対応して1種類ずつ生じる合計m種類の波長の光がいずれも共振するように、単一の周期から成る周期的屈折率分布が形成されているフォトニック結晶部と
を備えることを特徴とする。
本発明により、複数の波長を1波長ずつ高速で切り替えて生成することができる熱輻射光源が得られる。
本発明に係る熱輻射光源の第1の実施形態を示す縦断面図(a)及び上面図(b)。 空孔の周期長を一定とした場合と、母材の厚みを一定とした場合のそれぞれについて、フォトニック結晶部における基本モードと第1高次モードの共振波数の関係を計算で求めた結果を示すグラフ。 電極間に電圧を印加していない状態(a)及び印加した状態(b)におけるn層、量子井戸構造層及びp層の電子のエネルギー状態を示す図。 第1実施形態の熱輻射光源の変形例を示す縦断面図。 第1実施形態の熱輻射光源における熱輻射スペクトルを計算で求めた結果を示すグラフ。 第1実施形態の変形例の熱輻射光源を用いて、熱輻射スペクトルを測定した結果を示すグラフ。 第1スイッチ又は第2スイッチのいずれかのみがONである場合の熱輻射スペクトルの測定結果を、第1スイッチ及び第2スイッチが共にOFFである場合の熱輻射スペクトルの測定結果から差し引いた結果を示すグラフ。 本発明に係る熱輻射光源の第2の実施形態を示す縦断面図(a)及び上面図(b)。 第2実施形態の熱輻射光源における熱輻射スペクトルを計算で求めた結果を示すグラフ。 積層体の外にフォトニック結晶部を設けた熱輻射光源の一例を示す縦断面図。 積層体の外にフォトニック結晶部を設けた熱輻射光源の別の例を示す縦断面図(a)及びそのフォトニック結晶部の上面図(b)。
図1〜図11を用いて、本発明に係る熱輻射光源の実施形態を示す。
(1) 本発明に係る熱輻射光源の第1実施形態
(1-1) 第1実施形態の熱輻射光源の構成
図1に、本発明に係る熱輻射光源の第1実施形態を示す。この熱輻射光源10は、互いに平行に離間して配置された第1量子井戸構造層111及び第2量子井戸構造層112と、第1量子井戸構造層111と第2量子井戸構造層112に挟まれたp層13と、第1量子井戸構造層111のp層13とは反対側に設けられた第1n層121と、第2量子井戸構造層112のp層13とは反対側に設けられた第2n層122を有する。また、第1量子井戸構造層111とp層13の間には第1i層141が、第2量子井戸構造層112とp層13の間には第2i層142が、それぞれ設けられている。すなわち、第1n層121、第1量子井戸構造層111、第1i層141、p層13、第2i層142、第2量子井戸構造層112、第2n層122がこの順で積層された積層体10Sが形成されている。
第1量子井戸構造層111及び第2量子井戸構造層112はいずれも、GaAsから成り電荷がドープされていないGaAs層と、Al1-xGaxAsのうちx=0.66であるAl0.34Ga0.66Asから成り1×1017cm-3の密度で電子がドープされているAlGaAs層が交互に多数積層されている構造を有する。これら第1量子井戸構造層111及び第2量子井戸構造層112では、GaAsとAl0.34Ga0.66Asはバンドギャップが重なり、Al0.34Ga0.66AsよりもGaAsの方がバンドギャップが小さいため、GaAs側を底とする量子井戸が形成され、GaAsに電子が捕らえられると共にGaAsにサブバンドが形成される。サブバンドのエネルギーはGaAs層の厚み及びAlGaAs層におけるAlの組成比に依存する。GaAs層の厚みは、第1量子井戸構造層111では結晶構造の21周期分(1周期は約0.283nm)である約5.943nm、第2量子井戸構造層112では結晶構造の28周期分である約7.924nmである。このGaAs層の厚みの相違に基づくサブバンドのエネルギーの相違により、第1量子井戸構造層111及び第2量子井戸構造層112では加熱時に、互いに異なる波長の光が生成される。それらの波長は、設計上、第1量子井戸構造層111では約7.7μm(亜酸化窒素の吸収波長と同じ)、第2量子井戸構造層112では10.3μm(アンモニアの吸収波長と同じ)である。第1量子井戸構造層111全体の厚みは278nmとし、第2量子井戸構造層112全体の厚みは306nmとした。
第1量子井戸構造層111及び第2量子井戸構造層112はGaAs層とAlGaAs層から成るものには限られず、例えば窒化物半導体から成る量子井戸構造層を用いてもよい。窒化物半導体から成る量子井戸構造層として、例えばGaNから成り電子がドープされた層とAl1-xGaxN(0<x<1)から成る層を交互に積層したものが挙げられる。量子井戸構造層にGaN/Al1-xGaxNを用いることにより、加熱温度を少なくとも600℃程度まで高くすることができ、それにより光の出力を大きくすることができると共に、波長の選択範囲を広くすることができる。AlGaN層におけるGa原子1個当たりのAl原子の数(1-x)の値が大きく(xの値が小さく)なるほど、GaNとのバンドギャップの大きさの差が大きくなるため、より短波長の熱輻射が生じる。
p層13はp型半導体から成り、第1n層121及び第2n層122はn型半導体から成る。本実施形態では、p型半導体には正孔が密度2×1017cm-3でドープされたGaAsを、n型半導体には電子が密度1×1017cm-3でドープされたGaAsを用いた。各層の厚みは、p層13では200nm、第1n層121では500nm、第2n層122では650nmとした。
第1i層141及び第2i層142は、ドープされていない真性半導体であるGaAsを用いた。なお、これら第1i層141及び第2i層142は、積層体10Sの電気容量を調整するために設けられている。積層体10Sの電気容量は、前記n型半導体及び前記p型半導体の電気抵抗と共に熱輻射光源の動作速度を左右する物理量であり、電気容量及び電気抵抗が小さいほど動作速度が速くなる。第1i層141及び第2i層142を厚くするほど積層体10Sの電気容量は小さくなって動作速度を速くする方向に寄与するのに対して、電気抵抗は大きくなって動作速度を遅くする方向に寄与する。従って、動作速度の点では第1i層141及び第2i層142の厚みが厚いほど良いが、当該厚みが厚いほど光の強度変調に必要な電圧値が増大してしまう。そのため、これら動作速度や電圧値を勘案して、第1i層141及び第2i層142の厚みを定めるとよい。また、第1i層141及び第2i層142は本発明の熱輻射光源における必須要素ではなく、省略してもよい。
第1n層121には第1スイッチ161を介して第1電源151の正極が、第2n層122には第2スイッチ162を介して第2電源152の正極が、それぞれ接続されている。また、p層13には第1電源151の負極及び第2電源152の負極が接続されている。第1スイッチ161及び第2スイッチ162には、それらの開閉(ON/OFF)を制御する制御部17が接続されている。これら第1電源151及び第2電源152が前記電圧印加手段に該当し、第1スイッチ161、第2スイッチ162及び制御部17が前記電圧切替手段に該当する。
積層体10Sのうち第2n層122を除く各層を貫くように、円柱状の空孔(異屈折率領域)22が設けられている。空孔22は、積層体10Sの各層に垂直に延びており、各層に平行な方向に周期的に複数配置されている。各層に垂直な方向から見ると、空孔22は三角格子状に配置されており、周期長aは5.9μm、空孔22の半径rは0.27a(約1.59μm)である。このように積層体10Sのうち第2n層122を除く部分(これを「母材21」と呼ぶ)と空孔22を合わせて、フォトニック結晶部20が構成される。
このフォトニック結晶部20は、以下に述べるように、波長が第1量子井戸構造層111の発光波長と同じ約7.7μmである光と、波長が第2量子井戸構造層112の発光波長と同じ約10.3μmである光の双方が共振するように設計されている。
フォトニック結晶部20における共振波長は、空孔22が配置された周期長a及びフォトニック結晶部20において光が感じる有効屈折率に依存する。有効屈折率は、母材21を構成する各層の屈折率や空孔22(空気)の屈折率、フォトニック結晶部20中で空孔22が占める割合、及び積層体10Sの厚みにより定まる。ここで積層体10Sの厚みは、それが薄くなるほどフォトニック結晶部20で共振する光の電界が積層体10Sの外側の空気中に染み出す割合が大きくなることから、有効屈折率に影響を及ぼす。なお、本実施形態では、母材21の材料がいずれも(AlGaAsを含む)GaAs系であるため、母材21を構成する各層の屈折率はほぼ同じとみなすことができる。
そこで、(i)空孔22の周期長を一定とした場合と、(ii)積層体10Sの厚みを一定とした場合のそれぞれについて、フォトニック結晶部20における基本モードと第1高次モードの共振波数の関係を計算で求めた。その結果を図2のグラフに示す。図2では、(i)については実線で示し、(ii)については破線で示した。(i)では、周期長を5.5〜6.5μmの範囲内の1つの値に固定した計算を、11種の周期長について行った。(ii)では、厚みを1.9〜2.7μmの範囲内の1つの値に固定した計算を、9種の厚みについて行った。グラフ上で(i)の実線と(ii)の破線が交差する点は、当該実線に対応する厚み及び当該破線に対応する周期長を有するフォトニック結晶部20において、横軸の値が基本モードの共振波数であって、縦軸の値が第1高次モードの共振波数の値であることを示している。図2中に丸印で囲んだ点から、フォトニック結晶部20の周期長が約5.9μm、積層体10Sの厚みが約2.3μmのときに、基本モードの共振波数が約970cm-1、第1高次モードの共振波数が約1300cm-1となる。これらの共振波数に対応する共振波長は、基本モードではλ2(約10.3μm)、第1高次モードではλ1(約7.7μm)であり、上述の第2量子井戸構造層112及び第1量子井戸構造層111の発光波長と一致する。
(1-2) 第1実施形態の熱輻射光源の動作
本実施形態の熱輻射光源10の動作を説明する。第1スイッチ161及び第2スイッチ162が共にOFFの状態で熱輻射光源10が加熱されると、第1量子井戸構造層111及び第2量子井戸構造層112ではそれぞれ、量子井戸に形成されているサブバンド間で電子が遷移し、その遷移エネルギーに対応した波長の光が生成される(図3(a))。このとき第1量子井戸構造層111では波長λ1を中心とした有限の帯域幅の発光が生じ、第2量子井戸構造層112では波長λ2中心とした有限の帯域幅の発光が生じる。これらの光のうち、フォトニック結晶部20の共振波長である波長λ1及びλ2の光のみがフォトニック結晶部20で共振して増幅され、熱輻射光源10の外部に放出される。
第2スイッチはOFFのままで第1スイッチ161をOFFからONに切り替えると、第1量子井戸構造層111では、ドープされていた電子が第1n層121へと移動し、量子井戸内の電子の数が減少する(図3(b))。これにより、第1量子井戸構造層111からの光の強度が低下し、フォトニック結晶部20で共振して増幅されて熱輻射光源10の外部に放出される波長λ1の光の強度も低下する。それに対して第2量子井戸構造層112では、第2スイッチがOFFのままであるため、波長λ2を中心とした有限の帯域幅の発光が生じる。そのため、波長λ2の光はフォトニック結晶部20で共振して増幅され、熱輻射光源10の外部に放出される。
同様の理由により、第1スイッチ161をOFFとし、第2スイッチ162をONにすると、波長λ2の光の強度が低下し、波長λ1の光がフォトニック結晶部20で増幅されて熱輻射光源10の外部に放出される。
以上のように、第1スイッチ161及び第2スイッチ162のいずれか一方をON、他方をOFFにすることにより、波長λ1の光と波長λ2の光を選択的に熱輻射光源10の外部に放出させることができる。
(1-3) 第1実施形態の熱輻射光源の変形例
図4を用いて、第1実施形態の熱輻射光源の変形例を説明する。この熱輻射光源10Aは、積層体10S及びフォトニック結晶部20は第1実施形態の熱輻射光源10のものと同じ構成を有する。第1電源151A及びそれに直列に接続された第1スイッチ161A、並びに第2電源152A及びそれに直列に接続された第2スイッチ162Aは、並列に設けられており、いずれも第1n層121及び第2n層122に接続されている。第1電源151Aは第1n層121側が正極、第2電源152Aは第2n層122側が正極となるように設けられている。p層13には、直接的には電源が接続されていないが、第1量子井戸構造層111への電圧印加という点では第2n層122、第2量子井戸構造層112及び第2i層142を介して間接的に第1電源151A及び第2電源152Aに接続されている。第2量子井戸構造層112の電圧印加の場合も同様である。
この熱輻射光源10Aでは、加熱された状態で第1スイッチ161AをON、第2スイッチ162AをOFFにすると、第1量子井戸構造層111ではドープされていた電子が第1n層121へと移動するのに対して、第2量子井戸構造層112ではドープされていた電子の移動が生じない。これにより、前述の熱輻射光源10と同様の理由により波長λ2の光のみが選択的に熱輻射光源10の外部に放出される。同様に、第1スイッチ161AをOFF、第2スイッチ162AをONにすると、波長λ1の光のみが選択的に熱輻射光源10の外部に放出される。
その他、熱輻射光源10及び10Aにおいて、第1量子井戸構造層111及び第2量子井戸構造層112の一方又は両方に、電子の代わりに正孔をドープしてもよい。この場合には、熱輻射光源10における第1電源151及び第2電源152の極性は上記の例と同じにする。また、熱輻射光源10及び10Aや上述のように2つの量子井戸構造層の一方又は両方に正孔をドープした場合において、第1n層121及び第2n層122の代わりにp型半導体から成る層を、p層13の代わりにn型半導体から成る層を、それぞれ用いてもよい。この場合には、熱輻射光源10では、第1電源151及び第2電源152の極性を上記の例とは逆にする。
(1-4) 第1実施形態の熱輻射光源に関する計算結果及び測定結果
図5に、第1実施形態の熱輻射光源10につき、光源から面垂直方向に得られる熱輻射スペクトルを計算で求めた結果をグラフで示す。グラフの縦軸は、光源の熱輻射強度を、同じ温度の黒体輻射強度で規格化した値である放射率で示した。第1スイッチ161及び第2スイッチ162が共にOFFの場合には波数が約1300cm-1(共振波長λ1に対応)及び約970cm-1(共振波長λ2に対応)にピークが見られる。それに対して、第1スイッチ161をONにすると波数約1300cm-1のピーク強度が減少し、第2スイッチ162をONにすると波数約970cm-1のピーク強度が減少する。これは、上記の動作通りである。
図6に、熱輻射スペクトルを実験で求めた結果を示す。ここでは変形例の熱輻射光源10Aを用い、フォトニック結晶20の格子定数aを6.2μmとした。実験では面垂直方向からずれた角度の放射も集光しているため、波数約1300cm-1及び約970cm-1のピーク以外にも複数の小さなピークが見られるものの、上記2波数(2波長)のピークの強度が電圧により変化しており、計算結果に対応する測定結果が得られた。
このように得られた測定結果につき、第1スイッチ及び第2スイッチが共にOFFである場合のデータから、(i)第1スイッチ161がONであって第2スイッチがOFFである場合のデータを差し引いたもの、及び(ii)第1スイッチ161がOFFであって第2スイッチがONである場合のデータを差し引いたものを図7に示す。図7では上記2波数から離れた複数の小さなピークがほぼ差し引かれると共に、スイッチがOFFである方の量子井戸構造層からの発光も差し引かれてほぼ0になっている。図7でピークとして現れているのは、第1スイッチ161がONの時に波数約1300cm-1のピーク強度が減少した結果として当該波数において差として現れたものと、第2スイッチ162がONの時に波数約970cm-1のピーク強度が減少した結果として当該波数において差として現れたものである。
この熱輻射光源10Aをセンサの光源として使用する際にも、検出器で得られたデータに対してスイッチがOFFの(発光が強い)ときの値とスイッチがONの(発光が弱い)ときの差し引きを行うことにより、他の帯域のピークを除去することができる。
(2) 本発明に係る熱輻射光源の第2実施形態
(2-1) 第2実施形態の熱輻射光源の構成
図8を用いて、第2実施形態の熱輻射光源の構成を説明する。この熱輻射光源10Bは、量子井戸構造を有する第1量子井戸構造層111B、第2量子井戸構造層112B及び第3量子井戸構造層113Bと、n型半導体から成る第1n層121B及び第2n層122Bと、p型半導体から成る第1p層131B及び第2p層132Bと、真性半導体から成る第1i層141B、第2i層142B及び第3i層143Bが平行に設けられた積層体10SBを有する。積層体10SBでの各層の積層順(及び厚み)は、第1n層121B(200nm)、第1量子井戸構造層111B(280nm)、第1i層141B(150nm)、第1p層131B(200nm)、第2i層142B(150nm)、第2量子井戸構造層112B(306nm)、第2n層122B(200nm)、第3量子井戸構造層113B(263nm)、第3i層143B(150nm)、第2p層132B(200nm)である。量子井戸構造の構成、並びにp型半導体、n型半導体及び真性半導体の材料には、第1実施形態と同じものを用いる。p型半導体にドープした正孔の密度、及びn型半導体にドープした電子の密度は、共に2×1017cm-3である。
上記3つの量子井戸構造層におけるGaAs層の厚みは、第1量子井戸構造層111Bでは結晶構造の22周期分である約6.226nm、第2量子井戸構造層112Bでは28周期分である約7.924nm、第3量子井戸構造層113Bでは17周期分である約4.811nmとした。これにより、加熱時に、第1量子井戸構造層111Bでは波数約1250cm-1(波長約8.0μm)、第2量子井戸構造層112Bでは波数約970cm-1(波長約10.3μm)、第3量子井戸構造層113Bでは波数約1500cm-1(波長約6.7μm)の光が生成される。
積層体10SBのうち第2p層132B及び第3i層143Bを除く各層を貫くように該各層に垂直に、円柱状の空孔22Bが設けられている。空孔22Bは、各層に垂直な方向から見ると正方格子状に配置されており、周期長aは4.8μm、空孔22の半径rは0.28a(約1.34μm)である。このように積層体10SBのうち第2p層132B及び第3i層143Bを除く部分(母材21B)と空孔22Bを合わせて、フォトニック結晶部20Bが構成される。
また、第1量子井戸構造層111B、第2量子井戸構造層112B及び第3量子井戸構造層113Bにそれぞれ電圧を印加するように、それら各層に対応して第1電源151B、第2電源152B及び第3電源153Bが設けられており、各電源は各量子井戸構造層を挟むp層及びn層に接続されている。また、第1電源151B、第2電源152B及び第3電源153Bに対応して、第1スイッチ161B、第2スイッチ162B及び第3スイッチ163Bが設けられている。これら第1スイッチ161B、第2スイッチ162B及び第3スイッチ163Bは、互いに独立にON/OFFすることができる。
(2-2) 第2実施形態の熱輻射光源の動作
本実施形態の熱輻射光源10Bの動作を説明する。第1スイッチ161B〜第3スイッチ163BがいずれもOFFの状態で熱輻射光源10Bが加熱されると、第1量子井戸構造層111B、第2量子井戸構造層112B及び第3量子井戸構造層113Bでは、各量子井戸構造層の量子井戸のサブバンドにおける遷移エネルギーに対応して、それぞれ波長λ1、λ2及びλ3を中心とした有限の帯域幅の発光が生じる。フォトニック結晶部20Bには、これら3種の波長を中心とした発光が混合した状態で導入され、波長λ1、λ2及びλ3の光のみがフォトニック結晶部20Bで共振して増幅され、熱輻射光源10Bの外部に放出される。
第1スイッチ161BをONにすると、第1量子井戸構造層111Bにドープされていた電子が第1n層121Bへと移動し、量子井戸内の電子の数が減少するため、フォトニック結晶部20Bに導入される波長λ1の光の強度が減少する。その結果、熱輻射光源10Bの外部に放出される波長λ1の光の強度も減少する。同様に、第2スイッチ162BをONにすると波長λ2の光の強度が減少し、第3スイッチ163BをONにすると波長λ3の光の強度が減少する。第1スイッチ161B〜第3スイッチ163Bは互いに独立にON/OFFすることができるため、熱輻射光源10Bの外部に放出される波長λ1、λ2及びλ3の光の強弱を独立に制御することができる。
(2-3) 第2実施形態の熱輻射光源に関する計算結果
図9に、第2実施形態の熱輻射光源10Bの熱輻射スペクトルを計算で求めた結果をグラフで示す。第1スイッチ161B〜第3スイッチ163Bが全てOFFの場合には、波数が約970cm-1(共振波長λ2に対応)、約1230cm-1(共振波長λ1に対応)及び約1530cm-1(共振波長λ3に対応)にピークが見られる。第1スイッチ161BをONにすると波数約1230cm-1のピーク強度が減少する。同様に、第2スイッチ162BをONにすると波数約970cm-1のピーク強度が減少し、第3スイッチ163BをONにすると波数約1530cm-1のピーク強度が減少する。この結果より、第1スイッチ161B〜第3スイッチ163BのON/OFFを切り替えることによって3種の波長(波数)の光の強弱が独立に制御されることが確認できる。
(3) その他
ここまで、量子井戸構造層がサブバンド間の遷移エネルギーの異なる2層及び3層である場合を例として説明したが、4層以上の場合においても、各量子井戸構造層の遷移エネルギーに対応する波長の光が共振するフォトニック結晶部を設計することで、4種以上の波長の光の強弱を独立に制御することができる熱輻射光源が得られる。
また、ここまではフォトニック結晶部を積層体内に設ける例を示したが、積層体に隣接して、すなわち積層体の外にフォトニック結晶部を設けてもよい。図10に示した熱輻射光源10Cでは、積層体10Sの外側である第1n層121の表面に隣接して、母材21Cに空孔(異屈折率領域)22Cを周期的に配置したフォトニック結晶部20Cが設けられている。積層体10Sには空孔は設けられていない。空孔22Cは第1実施形態における空孔22と同様に三角格子状に配置してもよいし(図1(b)参照)、正方格子状等の他の配置としてもよい。母材21Cの材料は特に問わないが、例えば積層体10S中のn層、i層又はp層と同じ材料を用いることができ、特に自由キャリア吸収に由来する不要な発光を防ぐという点でi層と同じ材料を好適に用いることができる。
図11に示した熱輻射光源10Dでは、積層体10Sの外側である第1n層121の表面から垂直に延びる柱状の部材である異屈折率部材23が周期的に配置されている。異屈折率部材23及び該異屈折率部材23の周囲の空気と合わせてフォトニック結晶部20Dが構成されている。異屈折率部材23は、図11(b)に示した例では三角格子状に配置されているが、正方格子状等の他の配置としてもよい。
これら熱輻射光源10C及び熱輻射光源10Dはいずれも、第1実施形態の熱輻射光源10と同様の動作により、第1スイッチ161及び第2スイッチ162のON/OFFに応じた目的波長を含む帯域幅の発光が第1量子井戸構造層111及び/又は第2量子井戸構造層112で生じ、フォトニック結晶部20C、20Dで当該目的波長の光が共振して増幅され、外部に放出される。
10、10A、10B、10C、10D…熱輻射光源
10S、10SB…積層体
111、111B…第1量子井戸構造層
112、112B…第2量子井戸構造層
113B…第3量子井戸構造層
121、121B…第1n層
122、122B…第2n層
13…p層
131B…第1p層
132B…第2p層
141、141B…第1i層
142、142B…第2i層
143B…第3i層
151、151A、151B…第1電源
152、152A、152B…第2電源
153B…第3電源
161、161A、161B…第1スイッチ
162、162A、162B…第2スイッチ
163B…第3スイッチ
17…制御部
20、20B、20C、20D…フォトニック結晶部
21、21B、21C…母材
22、22B、22C…空孔
23…異屈折率部材

Claims (8)

  1. a) 量子井戸構造を有する層であって量子井戸内のサブバンド間の遷移エネルギーの大きさが異なるm個(mは2以上の整数)の量子井戸構造層が積層され、各量子井戸構造層を積層方向の両側から挟むようにn型半導体から成る層であるn層及びp型半導体から成る層であるp層が設けられた積層体と、
    b) 前記m個の量子井戸構造層の各々において、該量子井戸構造層を挟む前記n層及び前記p層に直接又は間接的に接続された、該量子井戸構造層の量子井戸内の電荷を前記n層又は前記p層に移動させる電圧を印加する電圧印加手段と、
    c) 前記m個の量子井戸構造層の各々への前記電圧の印加のON/OFFを切り替える電圧切替手段と、
    d) 前記積層体内又は該積層体に隣接して設けられた、前記m個の量子井戸構造層の各々から該量子井戸構造層の量子井戸におけるサブバンド間の遷移エネルギーに対応して1種類ずつ生じる合計m種類の波長の光がいずれも共振するように、単一の周期から成る周期的屈折率分布が形成されているフォトニック結晶部と
    を備えることを特徴とする熱輻射光源。
  2. 前記mが2であることを特徴とする請求項1に記載の熱輻射光源。
  3. 前記積層体及び前記フォトニック結晶部が一体で構成されていることを特徴とする請求項1又は2に記載の熱輻射光源。
  4. 前記フォトニック結晶部が、前記積層体と、該積層体の各層を貫くように積層方向に設けられ、前記量子井戸構造層、前記n層及び前記p層に平行に周期的に配置された空孔から成ることを特徴とする請求項3に記載の熱輻射光源。
  5. 前記積層体において、第1半導体層、第1の前記量子井戸構造層である第1量子井戸構造層、第2半導体層、第2の前記量子井戸構造層である第2量子井戸構造層、及び第3半導体層がこの順で積層されており、
    前記第1半導体層及び前記第3半導体層が前記n層及び前記p層のいずれか一方であって、前記第2半導体層が前記n層及び前記p層のうち前記第1半導体層及び前記第3半導体層のものとは異なる方であり、
    前記第1半導体層及び前記第3半導体層に前記電圧印加手段が接続されている
    ことを特徴とする請求項1〜4のいずれかに記載の熱輻射光源。
  6. 前記m種類の波長が、前記フォトニック結晶部の基本モードの共振波長及び1又は複数の高次モードの共振波長、又は該フォトニック結晶部の複数の高次モードの共振波長であることを特徴とする請求項1〜5のいずれかに記載の熱輻射光源。
  7. 前記フォトニック結晶部が、板材に該板材とは屈折率が異なる領域である異屈折率領域が三角格子状又は正方格子状に配置されているものであることを特徴とする請求項1〜6のいずれかに記載の熱輻射光源。
  8. a) 量子井戸構造を有する層であって量子井戸内のサブバンド間の遷移エネルギーの大きさが異なるm個(mは2以上の整数)の量子井戸構造層が積層され、各量子井戸構造層を積層方向の両側から挟むようにn型半導体から成る層であるn層及びp型半導体から成る層であるp層が設けられた積層体と、
    b) 前記積層体内又は該積層体に隣接して設けられた、前記m個の量子井戸構造層の各々から前記遷移エネルギーに対応して1種類ずつ生じる合計m種類の波長の光がいずれも共振するように、単一の周期から成る周期的屈折率分布が形成されているフォトニック結晶部と
    を備えることを特徴とする熱輻射光源用素子。
JP2018503008A 2016-02-29 2017-02-13 熱輻射光源 Active JP6795853B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016037217 2016-02-29
JP2016037217 2016-02-29
PCT/JP2017/005160 WO2017150160A1 (ja) 2016-02-29 2017-02-13 熱輻射光源

Publications (2)

Publication Number Publication Date
JPWO2017150160A1 JPWO2017150160A1 (ja) 2019-01-10
JP6795853B2 true JP6795853B2 (ja) 2020-12-02

Family

ID=59743827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503008A Active JP6795853B2 (ja) 2016-02-29 2017-02-13 熱輻射光源

Country Status (4)

Country Link
US (1) US10777972B2 (ja)
EP (1) EP3425754B1 (ja)
JP (1) JP6795853B2 (ja)
WO (1) WO2017150160A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916998A (zh) * 2020-07-13 2020-11-10 清华大学 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298183A (ja) 2002-04-05 2003-10-17 Hitachi Cable Ltd 化合物半導体レーザ及び化合物半導体レーザ素子
JP2005045162A (ja) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp 半導体素子およびその製造方法
JP4642527B2 (ja) * 2004-04-12 2011-03-02 キヤノン株式会社 積層型3次元フォトニック結晶及び発光素子及び画像表示装置
JP5300078B2 (ja) * 2009-10-19 2013-09-25 国立大学法人京都大学 フォトニック結晶発光ダイオード
JP5549011B2 (ja) 2010-07-30 2014-07-16 浜松ホトニクス株式会社 半導体面発光素子及びその製造方法
US9070613B2 (en) * 2011-09-07 2015-06-30 Lg Innotek Co., Ltd. Light emitting device
WO2015129668A1 (ja) * 2014-02-28 2015-09-03 国立研究開発法人科学技術振興機構 熱輻射光源、及び該光源に用いる2次元フォトニック結晶

Also Published As

Publication number Publication date
EP3425754A4 (en) 2019-03-20
US10777972B2 (en) 2020-09-15
EP3425754A1 (en) 2019-01-09
WO2017150160A1 (ja) 2017-09-08
EP3425754B1 (en) 2021-03-31
JPWO2017150160A1 (ja) 2019-01-10
US20190067910A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
US20200264048A1 (en) Photoconductive Detector Device with Plasmonic Electrodes
US8507890B1 (en) Photoconversion device with enhanced photon absorption
JP6538648B2 (ja) 熱輻射光源、及び該光源に用いる2次元フォトニック結晶
CN107800040B (zh) 太赫兹量子级联激光装置
JP4538516B2 (ja) 光半導体装置
JP6227627B2 (ja) 熱輻射光源
US9761750B2 (en) Large caliber array type terahertz wave generating device having photonic crystal structure
Jin et al. Terahertz detectors based on carbon nanomaterials
Chanana et al. Manifestation of kinetic inductance in terahertz plasmon resonances in thin-film Cd3As2
JP6795853B2 (ja) 熱輻射光源
Zhou et al. Highly efficient multiple exciton generation and harvesting in few-layer black phosphorus and heterostructure
JP6618145B2 (ja) 熱輻射光源
JP2009224467A (ja) 電磁波放射素子
Duan et al. Photovoltaic-driven flexible single-walled carbon nanotubes for self-powered and polarization-sensitive infrared photodetection
JP6102142B2 (ja) 赤外線検出器
WO2011126799A2 (en) Quantum cascade laser soure with ultrabroadband spectral coverage
Shafraniuk Unconventional electromagnetic properties of the graphene quantum dots
Jia et al. High-temperature photon-noise-limited performance terahertz quantum-well photodetectors
US20100108983A1 (en) Photocathode semiconductor device
US20230178610A1 (en) Graphene optical sensor
US20130153793A1 (en) Electromagnetic radiation generating element, electromagnetic radiation generating device, and method of generating electromagnetic radiation
Hoseini et al. Studying thermal performance of the PIN-photodiode photodetectors based on MGL and GNR
Joseph et al. Scheme of a quantum well infrared photodetector (QWIP) for astronomical application
JP2011086774A (ja) 太陽電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6795853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250