CN111916998A - 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法 - Google Patents

基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法 Download PDF

Info

Publication number
CN111916998A
CN111916998A CN202010671274.9A CN202010671274A CN111916998A CN 111916998 A CN111916998 A CN 111916998A CN 202010671274 A CN202010671274 A CN 202010671274A CN 111916998 A CN111916998 A CN 111916998A
Authority
CN
China
Prior art keywords
waveguide
photonic crystal
layer
micropore
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010671274.9A
Other languages
English (en)
Inventor
黄翊东
崔开宇
刘仿
冯雪
张巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huahui Kerui Tianjin Technology Co ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202010671274.9A priority Critical patent/CN111916998A/zh
Publication of CN111916998A publication Critical patent/CN111916998A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明实施例提供一种基于W3光子晶体缺陷波导的分布式反馈激光器及制备方法,分布式反馈激光器包括P电极、P掺杂层、量子阱有源层、N掺杂层和N电极;有源光子晶体波导层中包括有两个微孔波导阵列,分布在P电极的两侧,微孔波导阵列由多个微孔按照预设阵列结构排列形成,每个微孔均贯穿P掺杂层、量子阱有源层和N掺杂层,并在衬底上表面截止;沿线缺陷光子晶体波导方向去除二维图形结构中的3列微孔,形成W3光子晶体缺陷波导。本发明实施例利用W3光子晶体缺陷波导中前向波与反向波耦合产生的慢光效应设计超短激光谐振腔,从而可以降低芯片体积,进而可以降低器件成本并提高芯片可集成性能。

Description

基于W3光子晶体缺陷波导的分布式反馈激光器及制备方法
技术领域
本发明涉及集成光电子器件领域,尤其涉及一种基于W3光子晶体缺陷波导的分布式反馈激光器及制备方法。
背景技术
分布式反馈激光器(DFB-LD)是在半导体激光器中建立布拉格光栅,依靠光栅的选模原理来获取特定激射波长的激光器。DFB激光器的光栅分布在整个激光器的谐振腔中,光波在反馈的同时可以获得增益。DFB-LD一般可以分为两种:增益耦合和折射率耦合,前者是把光栅结构刻制到有源区,使得有源区的增益周期性变化,从而对激光腔中的光导模产生反馈作用。后者是把光栅结构刻制在有源区上方,通过对有源区光导模倏逝场的作用而对激光腔的光导模产生反馈作用。但是,增益耦合的DFB-LD制造工艺复杂,制造成本较高,成品率较低。所以目前主要采用均匀光栅的折射率耦合,一般以III-V族半导体材料作为多量子阱结构有源层。DFB激光器最大特点是具有非常好的单色性(即光谱纯度),它的线宽普遍可以做到1MHz以内,以及具有非常高的边模抑制比(SMSR),可高达40-50dB以上。DFB-LD芯片是目前10G、100G光纤通信网络,企业以太网,云计算中心以及第五代移动通信网络的核心器件,是当前国内外高速光纤传输网中信息传输载体的通用理想光源。
DFB-LD芯片凭其良好的单色性广泛应用于光纤通信,可调谐半导体激光吸收光谱技术,包括成分检测、医疗、大气测量、环境测量,原子光谱学,包括原子钟、磁力计,以及精密测量、夜视仪、同位素检测等领域。
然而,目前DFB-LD芯片存在一个问题:尺寸较大,因而不利于芯片集成,同时由于尺寸较大,使得器件成本也较高。
发明内容
针对现有技术中的问题,本发明实施例提供一种基于W3光子晶体缺陷波导的分布式反馈激光器及制备方法。
具体地,本发明实施例提供了以下技术方案:
第一方面,本发明实施例提供了一种分布式反馈激光器,包括:自顶向下依次设置的P电极、P掺杂层、量子阱有源层、N掺杂层、衬底和N电极;
所述P掺杂层、所述量子阱有源层和所述N掺杂层组成有源光子晶体波导层;
所述有源光子晶体波导层中包括有两个微孔波导阵列,所述微孔波导阵列由多个微孔按照预设阵列结构排列形成,每个所述微孔均贯穿所述P掺杂层、所述量子阱有源层和所述N掺杂层,并在所述衬底上表面截止;
所述两个微孔波导阵列分布在所述P电极的两侧;其中,所述P电极的位置设置在没有微孔的光子晶体波导层的上方;
其中,所述两个微孔波导阵列中的微孔形成二维图形结构,所述二维图形结构形成二维平板光子晶体,所述二维平板光子晶体产生光子禁带,形成线缺陷光子晶体波导;
其中,沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导。
进一步地,所述预设阵列结构至少包括三角晶格结构或四方晶格结构。
进一步地,所述微孔的截面形状至少包括圆形、椭圆形、正多边形或矩形。
进一步地,在每个微孔波导阵列中,各个微孔的形状和大小均相同,与其周边临近微孔间晶格周期相同。
进一步地,所述微孔的深度超过500nm。
进一步地,所述微孔的半径为80-180nm。
进一步地,P电极两侧的微孔波导阵列形成光子晶体慢光波导结构超短腔,所述光子晶体慢光波导结构超短腔的长度小于100μm。
第二方面,本发明实施例还提供了一种如第一方面所述的分布式反馈激光器的制备方法,包括:
利用气相沉积法PECVD在含有量子阱或量子点的衬底片上生长SiO2层;
在SiO2层的表面涂覆电子束胶;
利用电子束曝光的方法在所述电子束胶上制备所述微孔波导阵列的掩膜图形;
利用ICP干法刻蚀技术,将形成的掩膜图形刻蚀到SiO2层上;
去除刻蚀残留的电子束胶,完成掩膜图形转移和SiO2硬掩膜的制备;
再进行一次ICP干法刻蚀,实现P掺杂层、N掺杂层、量子阱有源层以及微孔波导阵列的刻蚀,得到含有量子阱或量子点的有源光子晶体波导,所述光子晶体波导中的微孔波导阵列由微孔按照预设阵列结构排布形成;
沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导;
去除SiO2层,并在所述P掺杂层远离所述量子阱有源层的一侧制备P电极,以及,在N掺杂层远离所述量子阱有源层的一侧制备N电极。
由上面技术方案可知,本发明实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器及制备方法,在P电极两侧分别设置有一个微孔波导阵列,所述微孔波导阵列由按照第一预设排布结构排布的多个微孔形成,每个微孔均贯穿所述P掺杂层、所述量子阱有源层和所述N掺杂层,并在所述衬底上表面截止。由此可见,本发明实施例通过设计深度刻蚀空气微孔结构,形成二维平板光子晶体,产生光子禁带,在完整的光子晶体中引入缺陷,利用光子禁带将光限制在缺陷中传播,形成线缺陷光子晶体波导。本发明实施例利用W3光子晶体缺陷波导中的异常色散使得其具有特殊的光增益特性,在光子带隙,缺陷模式产生的慢光效应可以增大单位传输距离的光增益,易于实现增益超过损耗的激光激射条件,因而可以缩短传统DFB-LD激光器的谐振腔结构。W3光子晶体缺陷波导中,由于W3较宽的光子晶体缺陷波导中存在前向波和后向波等多个波导模式,相同对称性的前向波和后向波在发生能带交叉的频率处,前向波和后向波将产生强烈的耦合,使原本相交点处的色散曲线***并形成平坦区,进而产生了慢光效应,即光在传输方向上反复前后振荡前行。本实施例的优势在于缺陷波导的宽度增大,光子晶体波导因基模与高阶模式耦合产生了微带隙效应,存在基模的慢光区。本实施例的波导的传输谱上产生了微带隙的滤波特性。相比其他频段,慢光使光增益产生了明显的增强,波导的增益谱上产生了增益双峰,此外,可以通过设计光子晶体波导色散关系来实现对增益谱的调控。本发明实施例利用光子晶体慢光效应设计缩短传统DFB-LD激光器芯片的谐振腔结构,可以缩小DFB-LD激光器芯片体积一倍以上,因此同一尺寸的晶圆可以生产超过一倍数量的DFB-LD激光器芯片,从而可以降低器件成本。此外,本发明实施例使得DFB-LD激光器芯片更易于后期集成,从而实现工艺更复杂、功能更多的有源光电器件的设计和制备。由此可见,本发明实施例利用光子晶体慢光效应设计超短激光谐振腔,从而可以降低芯片体积,进而可以降低器件成本并提高芯片可集成性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器的俯视图;
图2为本发明一实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器的剖视图;
图3为本发明一实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器的三维立体示意图;
图4为本发明一实施例制备的有源光子晶体波导结构示意图;
图5为本发明一实施例提供的未去除3列微孔的分布式反馈激光器的俯视图;
图6为本发明一实施例提供的未去除3列微孔的分布式反馈激光器的剖视图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了本发明实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器的俯视图;图2示出了本发明实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器的剖视图。图3示出了本发明实施例提供的基于W3光子晶体缺陷波导的分布式反馈激光器的三维立体示意图。如图1、图2和图3所示,本实施例提供的分布式反馈激光器,包括:自顶向下依次设置的P电极9、P掺杂层8、量子阱有源层3、N掺杂层5、衬底6和N电极7;
所述P掺杂层8、所述量子阱有源层3和所述N掺杂层5组成有源光子晶体波导层1;所述有源光子晶体波导层1中包括有两个微孔波导阵列4,所述微孔波导阵列4由多个微孔2按照预设阵列结构排列形成,每个所述微孔2均贯穿所述P掺杂层8、所述量子阱有源层3和所述N掺杂层5,并在所述衬底6上表面截止;
所述两个微孔波导阵列4分布在所述P电极9的两侧;其中,所述P电极的位置设置在没有微孔的光子晶体波导层的上方,所述P电极不能沉积到两侧的微孔里;
其中,所述两个微孔波导阵列4中的微孔2形成二维图形结构,所述二维图形结构形成二维平板光子晶体,所述二维平板光子晶体产生光子禁带,形成线缺陷光子晶体波导;
其中,沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导。
如图5和图6所示,本实施例提供的分布式反馈激光器,包括有源光子晶体波导层1,该有源光子晶体波导层1包括两个微孔波导阵列4,该微孔波导阵列4内的所有微孔2均贯穿P掺杂层8、量子阱有源层3及N掺杂层5。该微孔波导阵列4内的所有微孔2均具有相同的特定截面形状,本实施例以图1所示的圆形为例。所有微孔2按照激光器对应输出波长设计好的结构参数排布成二维图形结构,本实施例以图1所示的三角晶格为例,即该二维图形结构中,所有微孔2成阵列排布,并且所有微孔2半径相同,与其周边临近微孔2间晶格周期相同,从而使得所有微孔2在有源光子晶体波导层1上整体组成了一个矩形微孔波导阵列4,其长边边长范围为5-100μm、其短边边长范围为2-50μm,P电极9所处区域不设置光子晶体孔。
在本实施例中,所述微孔组合排布成特殊二维图形结构,微孔尺寸及排布根据DFB-LD芯片工作波长设计不同的结构、长度、周期、结构参数,其排布结构包括但不仅限于三角晶格或四方晶格结构。
在本实施例中,需要说明的是,P电极9两侧排布的微孔的列数一般在4列以上,以保证足够的周期结构形成光子带隙。
可理解的是,上述的微孔2的特定截面形状可以包括圆形、椭圆形、正多边形或矩形等。相对应的,上述的微孔2的结构参数包括内径、长轴长度、短轴长度、旋转角度或边长等。对应的微孔波导阵列4的特定二维形状为矩形,包括不同的长、短边边长、内涵光子晶体孔半径、晶格周期。
本实施例所述的P掺杂层8,量子阱有源层3、N掺杂层5、衬底6的总厚度超过1微米,在P掺杂层8上方沉积金属P电极9,且P电极9的位置在没有微孔2刻蚀的光子晶体波导区上方,即有源光子晶体波导层1平面上除去两个微孔波导阵列4以外区域,P电极9不能沉积到两侧的微孔2里,P电极9长度小于100微米,宽度与微孔波导阵列4中微孔2的半径及晶格周期相关。
在图5和图6的基础上,本实施例需要进行3列微孔去除的操作,如图1、图2和图3所示,本实施例除了在有源光子晶体波导层1中设置两个微孔波导阵列4之外,还进一步沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导。
需要说明的是,在本实施例中,在原有微孔波导阵列4的基础上去除部分列微孔,也即使得列数比原来减少3列,同时可以使得相应的电极宽度增加,进而得到本实施例的缺陷波导,由于本实施例的缺陷波导宽度较在,存在多个波导模式,其中前向波和后向波的波导模式产生强烈的耦合,使原本相交点处的色散曲线***并形成平坦区,进而产生了慢光效应,即光在传输方向上反复前后振荡前行。本实施例的优势在于光子晶体波导因基模与高阶模式耦合产生了微带隙效应,存在基模的慢光区。本实施例的波导的传输谱上产生了微带隙的滤波特性。相比其他频段,慢光使光增益产生了明显的增强,波导的增益谱上产生了增益双峰,可以通过设计光子晶体波导色散关系来实现对增益谱的调控。
由上面技术方案可知,本发明实施例提供的分布式反馈激光器,在P电极两侧分别设置有一个微孔波导阵列,所述微孔波导阵列由按照第一预设排布结构排布的多个微孔形成,每个微孔均贯穿所述P掺杂层、所述量子阱有源层和所述N掺杂层,并在所述衬底上表面截止。由此可见,本发明实施例通过设计深度刻蚀空气微孔结构,形成二维平板光子晶体,产生光子禁带,在完整的光子晶体中引入缺陷,利用光子禁带将光限制在缺陷中传播,形成线缺陷光子晶体波导。由此可见,本实施例在完整的光子晶体中引入缺陷,利用光子禁带将光限制在缺陷中传播,形成线缺陷光子晶体波导。本发明实施例利用光子晶体波导中的异常色散使得其具有特殊的光增益特性,在光子带隙,缺陷模式产生的慢光效应可以增大单位传输距离的光增益,易于实现增益超过损耗的激光激射条件,因而可以缩短传统DFB-LD激光器的谐振腔结构。此外,本发明实施例利用光子晶体波导中的异常色散使得其具有特殊的光增益特性,在光子带隙,缺陷模式产生的慢光效应可以增大单位传输距离的光增益,易于实现增益超过损耗的激光激射条件,因而可以缩短传统DFB-LD激光器的谐振腔结构。此外,在此基础之上,本发明实施例还进一步在原有微孔波导阵列的基础上,减少3列微孔形成W3光子晶体缺陷波导,由于经过这样处理得到的波导宽度较大,存在多个波导模式,使前向波和后向波产生强烈的耦合,使原本相交点处的色散曲线***并形成平坦区,进而产生了慢光效应,即光在传输方向上反复前后振荡前行。本实施例的优势在于光子晶体波导因基模与高阶模式耦合产生了微带隙效应,存在基模的慢光区。本实施例的波导的传输谱上产生了微带隙的滤波特性。相比其他频段,慢光使光增益产生了明显的增强,波导的增益谱上产生了增益双峰,此外,可以通过设计光子晶体波导色散关系来实现对增益谱的调控。本实施例利用光子晶体慢光效应设计缩短传统DFB-LD激光器芯片的谐振腔结构,可以缩小DFB-LD激光器芯片体积一倍以上,因此同一尺寸的晶圆可以生产超过一倍数量的DFB-LD激光器芯片,从而可以降低器件成本。此外,本实施例使得DFB-LD激光器芯片更易于后期集成,从而实现工艺更复杂、功能更多的有源光电器件的设计和制备。由此可见,本实施例利用光子晶体慢光效应设计超短激光谐振腔,从而可以降低芯片体积,进而可以降低器件成本并提高芯片可集成性能。
基于上述实施例的内容,在本实施例中,所述微孔的深度超过500nm。
在本实施例中,需要说明的是,光场的纵向限制依靠P掺杂层,量子阱有源层,N掺杂层的折射率差,因此,光场在纵向上的分布超过500nm,超过500nm才可以实现光场的有效局域和调控。
基于上述实施例的内容,在本实施例中,所述微孔的半径为80-180nm。
在本实施例中,需要说明的是,针对通信波段1550nm的激光器,半径位于80-180nm才有实现有效的带隙限制和慢光增强效应。
基于上述实施例的内容,在本实施例中,P电极两侧的微孔波导阵列形成光子晶体慢光波导结构超短腔,所述光子晶体慢光波导结构超短腔的长度小于100μm。
在本实施例中,需要说明的是,传统DFB激光器腔长在200μm以上,本实施例的腔长能够控制在100μm以下,因此可以至少缩短一半的腔长,同时产率提升至少一倍。
本实施例提供的超短腔光子晶体DFB-LD,通过特殊设计的深度刻蚀空气孔结构,形成二维平板光子晶体,产生光子禁带,在完整的光子晶体中引入缺陷,利用光子禁带将光限制在缺陷中传播,形成线缺陷光子晶体波导。利用光子晶体波导中的异常色散使得其具有特殊的光增益特性,在光子带隙,缺陷模式产生的慢光效应可以增大单位传输距离的光增益,易于实现增益超过损耗的激光激射条件,因而可以缩短传统DFB-LD激光器的谐振腔结构。
图4给出了根据以上实施例实际制备的有源光子晶体波导结构。按照前述制备工艺成功实现了深度超过1微米的InP基光子晶体空气孔2的深刻蚀(空气孔2半径100nm左右),获得了深宽比大于14的InP基有源光子晶体波导。
本发明另一实施例提供了如上述实施例提供的分布式反馈激光器的制备方法,该方法包括如下处理过程:
步骤101:利用气相沉积法PECVD在含有量子阱或量子点的衬底片上生长SiO2层;
步骤102:在SiO2层的表面涂覆电子束胶;
步骤103:利用电子束曝光的方法在所述电子束胶上制备所述微孔波导阵列的掩膜图形;
步骤104:利用ICP干法刻蚀技术,将形成的掩膜图形刻蚀到SiO2层上;
步骤105:去除刻蚀残留的电子束胶,完成掩膜图形转移和SiO2硬掩膜的制备;
步骤106:再进行一次ICP干法刻蚀,实现P掺杂层、N掺杂层、量子阱有源层以及微孔波导阵列的刻蚀,得到含有量子阱或量子点的有源光子晶体波导,所述光子晶体波导中的微孔波导阵列由微孔按照预设阵列结构排布形成,如图5和图6所示,沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导,如图1和图2所示。
步骤107:去除SiO2层,并在所述P掺杂层远离所述量子阱有源层的一侧制备P电极,以及,在N掺杂层远离所述量子阱有源层的一侧制备N电极。
在本实施例中,所述量子阱有源层可以为InGaAsP材料的量子阱有源层。
在本实施例提供的分布式反馈激光器中,整个光子晶体有源波导结构制备工艺是在含有量子阱有源区的III-V族半导体外延片上进行的。
具体的,其生长方式包括:利用PECVD技术在InP衬底片上生长上厚度200-300nm的SiO 2层;在SiO2的表面甩上约200nm厚的电子束胶Zep520A;利用电子束曝光的方法在电子束胶上制作掩膜图形;利用ICP干法刻蚀技术,将形成的电子束胶掩膜图形刻蚀到SiO2层上;去掉上一步刻蚀残留的电子束胶,完成图形转移和SiO2硬掩膜的制备;再进行一次ICP干法刻蚀,实现InP材料的P掺杂层8和N掺杂层5及InGaAsP材料的量子阱有源层3的刻蚀,至此制备出含有量子阱有源区的InP光子晶体波导,波导中(光子晶体)微孔波导阵列4由微孔2规则排布而成;去除SiO2层;最后经减薄、溅射等工艺制备N电极7及P电极9。在本实施例中,需要说明的是,当需要沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体的缺陷波导。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本发明实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
此外,在本发明中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
此外,在本发明中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种基于W3光子晶体缺陷波导的分布式反馈激光器,其特征在于,包括:自顶向下依次设置的P电极、P掺杂层、量子阱有源层、N掺杂层、衬底和N电极;
所述P掺杂层、所述量子阱有源层和所述N掺杂层组成有源光子晶体波导层;
所述有源光子晶体波导层中包括有两个微孔波导阵列,所述微孔波导阵列由多个微孔按照预设阵列结构排列形成,每个所述微孔均贯穿所述P掺杂层、所述量子阱有源层和所述N掺杂层,并在所述衬底上表面截止;
所述两个微孔波导阵列分布在所述P电极的两侧;其中,所述P电极的位置设置在没有微孔的光子晶体波导层的上方;
其中,所述两个微孔波导阵列中的微孔形成二维图形结构,所述二维图形结构形成二维平板光子晶体,所述二维平板光子晶体产生光子禁带,通过线缺陷形成光子晶体波导;
其中,沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导。
2.根据权利要求1所述的分布式反馈激光器,其特征在于,所述预设阵列结构至少包括三角晶格结构或四方晶格结构。
3.根据权利要求1所述的分布式反馈激光器,其特征在于,所述微孔的截面形状至少包括圆形、椭圆形、正多边形或矩形。
4.根据权利要求1所述的分布式反馈激光器,其特征在于,在每个微孔波导阵列中,各个微孔的形状和大小均相同,与其周边临近微孔间晶格周期相同。
5.根据权利要求1所述的分布式反馈激光器,其特征在于,所述微孔的深度超过500nm。
6.根据权利要求1所述的分布式反馈激光器,其特征在于,所述微孔的半径为80-180nm。
7.根据权利要求1所述的分布式反馈激光器,其特征在于,P电极两侧的微孔波导阵列形成光子晶体慢光波导结构超短腔,所述光子晶体慢光波导结构超短腔的长度小于100μm。
8.一种如权利要求1~7任一项所述的分布式反馈激光器的制备方法,其特征在于,包括:
利用气相沉积法PECVD在含有量子阱或量子点的衬底片上生长SiO2层;
在SiO2层的表面涂覆电子束胶;
利用电子束曝光的方法在所述电子束胶上制备所述微孔波导阵列的掩膜图形;
利用ICP干法刻蚀技术,将形成的掩膜图形刻蚀到SiO2层上;
去除刻蚀残留的电子束胶,完成掩膜图形转移和SiO2硬掩膜的制备;
再进行一次ICP干法刻蚀,实现P掺杂层、N掺杂层、量子阱有源层以及微孔波导阵列的刻蚀,得到含有量子阱或量子点的有源光子晶体波导,所述光子晶体波导中的微孔波导阵列由微孔按照预设阵列结构排布形成;
沿线缺陷光子晶体波导方向去除所述二维图形结构中的3列微孔,得到W3光子晶体缺陷波导;
去除SiO2层,并在所述P掺杂层远离所述量子阱有源层的一侧制备P电极,以及,在N掺杂层远离所述量子阱有源层的一侧制备N电极。
CN202010671274.9A 2020-07-13 2020-07-13 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法 Pending CN111916998A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010671274.9A CN111916998A (zh) 2020-07-13 2020-07-13 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010671274.9A CN111916998A (zh) 2020-07-13 2020-07-13 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法

Publications (1)

Publication Number Publication Date
CN111916998A true CN111916998A (zh) 2020-11-10

Family

ID=73226458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010671274.9A Pending CN111916998A (zh) 2020-07-13 2020-07-13 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法

Country Status (1)

Country Link
CN (1) CN111916998A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361940A (zh) * 2021-12-13 2022-04-15 中国科学院上海微***与信息技术研究所 一种超表面结构调控太赫兹量子级联激光器色散的方法
US20220187535A1 (en) * 2020-12-10 2022-06-16 University Public Corporation Osaka Photonic crystal device and spectroscopic system comprising the same, detection kit and system that detects analyte, and method for manufacturing photonic crystal device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013156A1 (en) * 2002-07-18 2004-01-22 Hongyu Deng Edge emitting lasers using photonic crystals
CN1874092A (zh) * 2005-05-31 2006-12-06 中国科学院半导体研究所 光子晶体波导分布反馈激光器及制作方法
US20070013991A1 (en) * 2004-02-17 2007-01-18 Toshihiko Baba Photonic crystal semiconductor device and production method thereof
CN106471687A (zh) * 2014-02-28 2017-03-01 国立研究开发法人科学技术振兴机构 热辐射光源以及在该光源中使用的二维光子晶体
CN108701963A (zh) * 2016-03-15 2018-10-23 株式会社东芝 分布反馈型半导体激光器
US20190067910A1 (en) * 2016-02-29 2019-02-28 Kyoto University Thermal radiation light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013156A1 (en) * 2002-07-18 2004-01-22 Hongyu Deng Edge emitting lasers using photonic crystals
US20070013991A1 (en) * 2004-02-17 2007-01-18 Toshihiko Baba Photonic crystal semiconductor device and production method thereof
CN1874092A (zh) * 2005-05-31 2006-12-06 中国科学院半导体研究所 光子晶体波导分布反馈激光器及制作方法
CN106471687A (zh) * 2014-02-28 2017-03-01 国立研究开发法人科学技术振兴机构 热辐射光源以及在该光源中使用的二维光子晶体
US20190067910A1 (en) * 2016-02-29 2019-02-28 Kyoto University Thermal radiation light source
CN108701963A (zh) * 2016-03-15 2018-10-23 株式会社东芝 分布反馈型半导体激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAYED ELSHAHAT等: ""Ultra-wideband slow light transmission with high normalized delay bandwidth product in W3 photonic crystal waveguide"", 《SUPERLATTICES AND MICROSTRUCTURES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220187535A1 (en) * 2020-12-10 2022-06-16 University Public Corporation Osaka Photonic crystal device and spectroscopic system comprising the same, detection kit and system that detects analyte, and method for manufacturing photonic crystal device
CN114361940A (zh) * 2021-12-13 2022-04-15 中国科学院上海微***与信息技术研究所 一种超表面结构调控太赫兹量子级联激光器色散的方法

Similar Documents

Publication Publication Date Title
US7440666B2 (en) Buried heterostucture device having integrated waveguide grating fabricated by single step MOCVD
CN108988123B (zh) 基于超表面的单片集成面发射半导体激光器及其制备方法
JP2959902B2 (ja) 半導体レーザとそれを有する装置とその製造方法
US5208183A (en) Method of making a semiconductor laser
CN105720479B (zh) 一种具有光束扩散结构的高速半导体激光器
CN112290382B (zh) 一种半导体激光器及其制作方法
US7696098B2 (en) Tuneable unipolar lasers
CN102570307A (zh) 一种单模大功率太赫兹量子级联激光器及其制作工艺
CN107230931B (zh) 分布反馈半导体激光芯片及其制备方法、光模块
EP1719003B1 (en) Buried heterostructure device fabricated by single step mocvd
CN111916997B (zh) 基于空气孔的分布式反馈激光器及制备方法
KR20040102018A (ko) 양자 나노구조 반도체 레이저 및 양자 나노구조 어레이
US7539228B2 (en) Integrated photonic semiconductor devices having ridge structures that are grown rather than etched, and methods for making same
CN215896966U (zh) 一种高阶光栅单纵模沟槽激光器
CN105140779B (zh) 基于重构-等效啁啾技术的备份型半导体激光器
CN102496853B (zh) 选择区域外延自脉动dfb激光器的制作方法
CN111916998A (zh) 基于w3光子晶体缺陷波导的分布式反馈激光器及制备方法
CN111916999B (zh) 具有槽结构的分布式反馈激光器及制备方法
KR100413527B1 (ko) 단일 집적 반도체 광소자 제작방법
CN109449756B (zh) 一种半导体激光器及其制备方法
CN111917000A (zh) 具有微腔结构的分布式反馈激光器及制备方法
CN108400523B (zh) 一种高速集成dfb半导体激光器芯片及制备方法
TWM603189U (zh) 倒晶式之電激發光子晶體面射型雷射元件
KR20030069879A (ko) 반도체레이저 및 이를 포함하는 광집적반도체소자의제조방법
CN108808442B (zh) 多波长分布反馈半导体激光器阵列及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210702

Address after: Room 101, 11 / F, Qifa building, eco Tech Park, 1620 Zhongtian Avenue, Zhongxin Tianjin eco city, Binhai New Area, Tianjin 300467

Applicant after: Huahui Kerui (Tianjin) Technology Co.,Ltd.

Address before: Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084

Applicant before: TSINGHUA University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201110