JP6784440B2 - Gas adsorbent and vacuum heat insulating material using this - Google Patents

Gas adsorbent and vacuum heat insulating material using this Download PDF

Info

Publication number
JP6784440B2
JP6784440B2 JP2015138132A JP2015138132A JP6784440B2 JP 6784440 B2 JP6784440 B2 JP 6784440B2 JP 2015138132 A JP2015138132 A JP 2015138132A JP 2015138132 A JP2015138132 A JP 2015138132A JP 6784440 B2 JP6784440 B2 JP 6784440B2
Authority
JP
Japan
Prior art keywords
gas
metal
adsorbent
additive
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015138132A
Other languages
Japanese (ja)
Other versions
JP2016083655A (en
Inventor
亮介 神谷
亮介 神谷
長久 佐藤
長久 佐藤
永山 健一
健一 永山
智数 福崎
智数 福崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to EP15190961.1A priority Critical patent/EP3012020B1/en
Priority to US14/920,261 priority patent/US10421059B2/en
Priority to CN201510698278.5A priority patent/CN105536686B/en
Priority to KR1020150147807A priority patent/KR102435766B1/en
Publication of JP2016083655A publication Critical patent/JP2016083655A/en
Priority to US16/533,146 priority patent/US10875009B2/en
Application granted granted Critical
Publication of JP6784440B2 publication Critical patent/JP6784440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Insulation (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、ガス吸着材、および、ガス吸着材を用いた真空断熱材に関するものである。ガス吸着材は、真空保持、希ガス中の微量ガスの除去、蛍光灯中のガスの除去等様々な分野で用いられている。 The present invention relates to a gas adsorbent and a vacuum heat insulating material using the gas adsorbent. The gas adsorbent is used in various fields such as holding a vacuum, removing a trace gas in a rare gas, and removing a gas in a fluorescent lamp.

最近では、省エネルギーを推進する動きが活発化し、家電製品や設備機器で優れた断熱効果を有する真空断熱材が求められている。真空断熱材として、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外装材で覆い、外装材の内部を減圧密封したものが知られている。真空断熱材は、その優れた断熱効果を長期にわたって維持するために、真空断熱材へ侵入する水蒸気や酸素、窒素などのガスを除去する吸着材が芯材とともに真空断熱材に減圧密封されている。 Recently, the movement to promote energy saving has become active, and there is a demand for vacuum heat insulating materials having an excellent heat insulating effect in home appliances and equipment. As a vacuum heat insulating material, a core material having fine voids such as glass wool or silica powder is covered with an exterior material having a gas barrier property, and the inside of the exterior material is sealed under reduced pressure. In the vacuum heat insulating material, in order to maintain its excellent heat insulating effect for a long period of time, an adsorbent that removes gases such as water vapor, oxygen, and nitrogen that enter the vacuum heat insulating material is vacuum-sealed together with the core material in the vacuum heat insulating material. ..

吸着材のうち、水分を吸着剤に不可逆的に固定吸着する化学型吸着材が、真空断熱材に好ましいものとして知られている。酸化カルシウムCaOはこの一例である。しかしながら、真空断熱材の外装材を透過してくる大気中の酸素および窒素に対しては、酸化カルシウム等の吸湿剤は吸着能を有していない。したがって、真空断熱環境における減圧状態を維持するためには、これらガスに対する吸着材が必要である。 Among the adsorbents, the chemical type adsorbent that irreversibly fixes and adsorbs water to the adsorbent is known to be preferable for the vacuum heat insulating material. Calcium oxide CaO is an example of this. However, a hygroscopic agent such as calcium oxide does not have an adsorptive ability to oxygen and nitrogen in the atmosphere that permeate the exterior material of the vacuum heat insulating material. Therefore, in order to maintain the depressurized state in the vacuum insulation environment, an adsorbent for these gases is required.

酸素や窒素に対し吸着能力を示すものとして、バリウムゲッターやジルコニウム−バナジウム−鉄の三元系合金からなる金属吸着材が知られている。ところで、これら金属吸着材は、減圧環境中で400℃以上の高温で活性化される必要があるため、減圧環境をプラスチックフィルムと金属箔を多層化した外装材を利用して構築する態様では、外装材が溶融し破損するため、金属吸着材を加熱することができない。 Metal adsorbents made of barium getters and zirconium-vanadium-iron ternary alloys are known to exhibit adsorption capacity for oxygen and nitrogen. By the way, since these metal adsorbents need to be activated at a high temperature of 400 ° C. or higher in a reduced pressure environment, in the embodiment in which the reduced pressure environment is constructed by using an exterior material in which a plastic film and a metal foil are multilayered. The metal adsorbent cannot be heated because the exterior material melts and breaks.

一方、減圧環境下で活性化する必要のないゲッター材として、例えば、窒素吸着性Ba−Li合金があり、例えば、特許文献1に、Ba−Li合金を窒素のゲッター材として用いた真空断熱材が開示されている。より詳しくは、Ba−Li合金と吸水材(水分吸着材)とを混合することにより、大気中にゲッター材の放置時間を長くできることが特許文献1に開示されている。 On the other hand, as a getter material that does not need to be activated in a reduced pressure environment, for example, there is a nitrogen-adsorbing Ba-Li alloy. For example, in Patent Document 1, a vacuum heat insulating material using a Ba-Li alloy as a nitrogen getter material. Is disclosed. More specifically, Patent Document 1 discloses that the getter material can be left in the atmosphere for a long time by mixing the Ba-Li alloy and the water absorbing material (moisture adsorbing material).

また、特許文献2には、細分化されたBa−Li系合金が、高温活性化を必要とすることがなく窒素に対する高い吸着能を発揮できる開示されている。さらに、特許文献3および4には、Ba−Li合金と吸水材を組み合わせたゲッター装置が開示されている。水分を通さない金属容器等にBa−Li合金を設置し、外部環境と接する部分に吸水材を置くことで、Ba−Li合金の水分による失活を防いでいる。 Further, Patent Document 2 discloses that the subdivided Ba-Li alloy can exhibit high adsorption ability to nitrogen without requiring high temperature activation. Further, Patent Documents 3 and 4 disclose a getter device in which a Ba-Li alloy and a water absorbing material are combined. By installing the Ba-Li alloy in a metal container or the like that does not allow water to pass through and placing a water-absorbing material in a portion that comes into contact with the external environment, deactivation of the Ba-Li alloy due to moisture is prevented.

特開1996−159377号公報Japanese Unexamined Patent Publication No. 1996-159377 特許第2627703号公報Japanese Patent No. 2627703 特許第3105542号公報Japanese Patent No. 3105542 特許第3182083号公報Japanese Patent No. 3182083

Ba−Li合金は、水との反応性が非常に高く、かつ、水と反応すると、直ちに、ガス吸着活性を失うとともに、下記の化学式に示す通り水素ガスを発生させる。近年、使用済み家電製品の破砕処理時に粉塵の飛散を防ぐために散水が行われている。この際、真空断熱材の破砕とともにガス吸着材が破砕されて、ガス吸着性金属が露出し、これに水が触れることにより、水素を急激に大量発生し、発火・爆発といった危険性が指摘されていた。特許文献2〜4のように、バルク状または粒子状の合金を圧縮成形して塊となし、これを水分と反応させたとすると、下記化学式(1)および(2)に基づいて計算されるところによれば、Ba−Li合金のグラム当たり442ccの水素ガスが発生する。
The Ba-Li alloy has very high reactivity with water, and when it reacts with water, it immediately loses its gas adsorption activity and generates hydrogen gas as shown in the following chemical formula. In recent years, water has been sprinkled to prevent the scattering of dust during the crushing process of used home appliances. At this time, the gas adsorbent is crushed along with the crushing of the vacuum heat insulating material, and the gas adsorbent metal is exposed, and when water comes into contact with it, a large amount of hydrogen is rapidly generated, and the danger of ignition and explosion has been pointed out. Was there. Assuming that a bulk or particulate alloy is compression-molded into a mass and reacted with water as in Patent Documents 2 to 4, it is calculated based on the following chemical formulas (1) and (2). According to this, 442 cc of hydrogen gas is generated per gram of Ba-Li alloy.

ところで、消防法の第3類の危険物(自然発火性物質および禁水性物質)に該当するか否かを判断する試験に関する危険性判断基準に記されているように、水と反応させた際、水素のような可燃性ガスを200cc/g以上発生させる固体は、禁水性物質に分類されている。したがって、Ba−Li合金の既述の水素発生率は、この基準を遥かに越えるため、Ba−Li合金は禁水性物質に該当する。そこで、発生する水素ガス量を安全な量まで減少させるために、Ba−Li合金に吸水材等の添加材を混合して、単位質量当たりに含まれる合金量を減少せざるを得ない。しかしながら、本願発明者が検証したところ、Ba−Li合金は、添加材に由来する水分がたとえ僅かであったとしても、これによって容易に失活してしまい、そもそもガス吸着材の破砕以前に、目的とするガス吸着性能を発揮できないという課題があることが分かった。 By the way, when it reacts with water as described in the hazard judgment criteria for the test to judge whether it corresponds to the third class dangerous goods (pyrophoricity and water-reactive materials) of the Fire Service Act. Solids that generate 200 cc / g or more of flammable gas such as hydrogen are classified as water-reactive materials. Therefore, since the hydrogen generation rate of the Ba-Li alloy described above far exceeds this standard, the Ba-Li alloy is a water-reactive material. Therefore, in order to reduce the amount of hydrogen gas generated to a safe amount, it is necessary to mix an additive such as a water absorbing material with the Ba-Li alloy to reduce the amount of the alloy contained per unit mass. However, as verified by the inventor of the present application, the Ba-Li alloy is easily inactivated by this even if the water content derived from the additive is small, and before the gas adsorbent is crushed in the first place, It was found that there is a problem that the desired gas adsorption performance cannot be exhibited.

そこで、本発明は係る課題を解決するために、可燃性ガスの発生量を低減させながら、ガス吸着性能の低下を避けることができるガス吸着材を提供することを目的とする。さらに、本発明の他の目的は、当該ガス吸着材を用いた真空断熱材を提供することにある。 Therefore, in order to solve the above problems, it is an object of the present invention to provide a gas adsorbent capable of avoiding a decrease in gas adsorption performance while reducing the amount of flammable gas generated. Further, another object of the present invention is to provide a vacuum heat insulating material using the gas adsorbent.

本発明は、前記目的を達成するために、水分によって不活化される金属をターゲットガスの吸着成分として含有するガス吸着材であって、前記金属に対する添加材を有し、当該添加材の粒子表面に前記金属が付着しているガス吸着組成物を含有することを特徴とする。本発明の態様の一つは、前記金属が、Li、VおよびZrの少なくとも一種、または、前記金属を含む合金から一種以上選択されるガス吸着材である。前記金属は、Liとアルカリ土類金属との合金であることが好ましく、Ba−Li合金であることがより好ましい。 The present invention is a gas adsorbent containing a metal inactivated by moisture as an adsorbent component of a target gas in order to achieve the above object, and has an additive to the metal, and the particle surface of the additive. It is characterized by containing a gas adsorption composition to which the metal is attached. One aspect of the present invention is a gas adsorbent in which the metal is selected from at least one of Li, V and Zr, or one or more of alloys containing the metal. The metal is preferably an alloy of Li and an alkaline earth metal, more preferably a Ba—Li alloy.

本発明において添加材は、無機酸化物と、遷移金属と、前記遷移金属の酸化物と、前記遷移金属を含有する合金と、前記遷移金属を含有する混合物とからなる群から一種以上選択される。前記の無機酸化物は、吸水性を有するアルカリ土類金属の一つ又は複数の酸化物から一種以上選択され、好ましくは、酸化カルシウムである。また前記の遷移金属は、Tiと、Niと、Feとからなる群から一種以上選択されることが好ましい。 In the present invention, one or more additives are selected from the group consisting of an inorganic oxide, a transition metal, an oxide of the transition metal, an alloy containing the transition metal, and a mixture containing the transition metal. .. The inorganic oxide is selected from one or more oxides of one or a plurality of water-absorbing alkaline earth metals, and calcium oxide is preferable. Further, it is preferable that one or more of the transition metals are selected from the group consisting of Ti, Ni and Fe.

本発明の態様の一つは、前記の金属と添加材とに加え、さらに吸水材を含有するガス吸着材である。本発明は、金属と添加材とを有するガス吸着組成物を吸水材で被覆し、前記ガス吸着組成物のターゲットガス吸着面のガスに対する曝露領域に前記吸水材を配置させることが好ましい。 One aspect of the present invention is a gas adsorbent containing a water absorbing material in addition to the metal and the additive. In the present invention, it is preferable that the gas adsorption composition having a metal and an additive is coated with a water absorbing material, and the water absorbing material is arranged in an exposed region of the target gas adsorption surface of the gas adsorption composition to a gas.

本発明は、前記ガス吸着材から発生する、可燃性ガスの発生量が200cc/g未満になるように、前記添加材に対して前記金属が配合されるガス吸着材である。 The present invention is a gas adsorbent in which the metal is blended with the additive so that the amount of flammable gas generated from the gas adsorbent is less than 200 cc / g.

さらに、他の発明は、内部環境を減圧状態にし、熱伝導領域に置かれることによって、断熱効果を発揮する真空断熱材であって、前記ガス吸着材を備えることを特徴とする。 Further, another invention is a vacuum heat insulating material that exerts a heat insulating effect by depressurizing the internal environment and placing it in a heat conductive region, and is characterized by including the gas adsorbent.

本発明によれば、可燃性ガスの発生量を低減させながら、ガス吸着性能の低下を避け得るガス吸着材、及び、当該ガス吸着材を用いた真空断熱材を提供することができる。 According to the present invention, it is possible to provide a gas adsorbent that can avoid deterioration of gas adsorption performance while reducing the amount of flammable gas generated, and a vacuum heat insulating material using the gas adsorbent.

本発明の真空断熱材の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the vacuum heat insulating material of this invention. 図1に示すガス吸着材の構成を示す説明図である。It is explanatory drawing which shows the structure of the gas adsorbent shown in FIG. 粒子状窒素吸着組成物のEDSマッピングである。(実施例1)EDS mapping of particulate nitrogen adsorption composition. (Example 1) 粒子状窒素吸着組成物のSEM断面図である。(実施例1)It is a SEM sectional view of the particulate nitrogen adsorption composition. (Example 1) 粒子状窒素吸着組成物のEDSマッピングである。(比較例1)EDS mapping of particulate nitrogen adsorption composition. (Comparative Example 1) 粒子状窒素吸着組成物のSEM断面図である。(比較例2)It is a SEM sectional view of the particulate nitrogen adsorption composition. (Comparative Example 2) 窒素吸着のための測定装置を概略的に示す図である。(実施例2)It is a figure which shows schematicly the measuring apparatus for nitrogen adsorption. (Example 2) 図7の測定装置による測定結果を示すグラフである。(実施例2)It is a graph which shows the measurement result by the measuring apparatus of FIG. (Example 2) ガス吸着材の別構成を示す説明図である。(実施例3)It is explanatory drawing which shows another structure of a gas adsorbent. (Example 3) 本発明のガス吸着組成物の例の模式図である。It is a schematic diagram of the example of the gas adsorption composition of this invention. 本発明のガス吸着能の計測装置例の概略図である。It is the schematic of the measuring apparatus example of a gas adsorption capacity of this invention. 本発明の実施例のガス吸着速度の測定結果である。It is a measurement result of the gas adsorption rate of the Example of this invention.

本発明は、Li、VおよびZrの少なくとも一種、または、前記金属を含む合金からなり、窒素吸着能を備え、水分によって不活化される金属を窒素の吸着成分として含有するガス吸着材であって、前記金属に対する添加材を有し、当該添加材の粒子表面に前記金属が付着しているガス吸着組成物を含有することを特徴とするガス吸着材である。 The present invention is a gas adsorbent composed of at least one of Li, V and Zr, or an alloy containing the metal, having a nitrogen adsorbing ability, and containing a metal inactivated by water as a nitrogen adsorbing component. It is a gas adsorbent which has an additive to the metal and contains a gas adsorption composition in which the metal is attached to the particle surface of the additive.

前記の金属は反応性が高いため、製造前の取扱時や製造時に不可避的に窒素や水分と接触すると、ガス吸着能が自然に低下する。しかし本発明は、前記金属を添加材の粒子表面に付着させることにより、前記の金属のガス吸着能を回復させ本来の性能を発揮させることができる。本発明において添加材は、窒素吸着成分としての金属を付着させるための母材である。また添加材は、単位体積中のターゲットガス吸着成分としての金属の含有量を調節するための材料である。本発明は、単位時間あたりの可燃性ガスの発生量を低減できる。具体例として、本発明は水素の発生量を低減できる。したがって本発明と水素との接触による爆発を速度的に抑制でき、安全性の向上に寄与する。 Since the metal is highly reactive, its gas adsorption capacity naturally decreases when it comes into contact with nitrogen or moisture inevitably during handling before production or during production. However, in the present invention, by adhering the metal to the particle surface of the additive, the gas adsorption ability of the metal can be restored and the original performance can be exhibited. In the present invention, the additive material is a base material for adhering a metal as a nitrogen adsorbing component. Further, the additive material is a material for adjusting the content of the metal as the target gas adsorbing component in the unit volume. The present invention can reduce the amount of flammable gas generated per unit time. As a specific example, the present invention can reduce the amount of hydrogen generated. Therefore, the explosion due to the contact between the present invention and hydrogen can be suppressed at a speed, which contributes to the improvement of safety.

本発明は、窒素吸着成分として所定の金属を含有する。当該金属は、水分によって不活化される金属で、Li、VおよびZrの少なくとも一種、または、前記金属を含む合金から一種以上選択される。入手容易性と取扱性との観点から、Liとアルカリ土類金属との合金が好ましく、Ba−Li合金がより好ましい。Ba−Li合金は、従来公知の組成比で製造したものを用いることができ、市販品を用いてもよい。ただし本発明の作用効果を得られる限り、前記の好適例に限定されない。 The present invention contains a predetermined metal as a nitrogen-adsorbing component. The metal is a metal that is inactivated by water, and is selected from at least one of Li, V, and Zr, or one or more alloys containing the metal. From the viewpoint of availability and handleability, an alloy of Li and an alkaline earth metal is preferable, and a Ba-Li alloy is more preferable. As the Ba-Li alloy, one manufactured with a conventionally known composition ratio can be used, and a commercially available product may be used. However, the present invention is not limited to the above-mentioned preferred examples as long as the effects of the present invention can be obtained.

本発明に用いられる添加材は、その粒子表面に、前記の金属を付着させることができる材料であればよい。添加材の粒子表面に所定の金属を付着させたガス吸着組成物とすることで、本発明は、安全性に優れるガス吸着材を実現できる。なお、「付着」の詳細な定義は、後に説明する。 The additive used in the present invention may be any material that can adhere the metal to the surface of the particles. The present invention can realize a gas adsorbent having excellent safety by preparing a gas adsorbent composition in which a predetermined metal is adhered to the particle surface of the additive. The detailed definition of "adhesion" will be described later.

添加材は、無機酸化物と、遷移金属と、前記遷移金属の酸化物と、前記遷移金属を含有する合金と、前記遷移金属を含有する混合物とからなる群から一種以上選択されることが好ましい。無機酸化物としては、アルカリ土類金属の一つ又は複数の酸化物が好ましく、酸化カルシウムがより好ましい。また、遷移金属は、Tiと、Niと、Feとからなる群から一種以上選択されることが好ましく、これらの遷移金属の酸化物や合金や混合物であってもよい。前記の添加材は単独で用いてもよく、併用してもよい。本発明は、金属と添加材と吸水材との配合比を調節して金属の含有量を調節することで、ガス吸着速度を所望の速度に調節できる。 The additive material is preferably selected from the group consisting of an inorganic oxide, a transition metal, an oxide of the transition metal, an alloy containing the transition metal, and a mixture containing the transition metal. .. As the inorganic oxide, one or more oxides of alkaline earth metals are preferable, and calcium oxide is more preferable. Further, the transition metal is preferably selected from the group consisting of Ti, Ni, and Fe, and may be an oxide, an alloy, or a mixture of these transition metals. The above-mentioned additives may be used alone or in combination. In the present invention, the gas adsorption rate can be adjusted to a desired rate by adjusting the mixing ratio of the metal, the additive and the water absorbing material to adjust the metal content.

本発明のガス吸着組成物は、ターゲットガスに接触すると、当該ターゲットガスを吸着する。本発明のガス吸着組成物において、ターゲットガスと接触可能な領域をターゲットガス吸着面という。本発明においては、添加材の粒子表面に所定の金属を付着させたガス吸着組成物を吸水材で被覆し、ガス吸着組成物のターゲットガス吸着面のガスに対する曝露領域に前記吸水材を配置させて成型させてもよい。そのようなガス吸着組成物の成型物を用いて製造された真空断熱材は、製造時のガス吸着組成物とターゲットガスとの接触量を低減できる。これにより、金属の窒素吸着能の急激な失活を回避でき、長寿命の真空断熱材を得られる。 When the gas adsorption composition of the present invention comes into contact with a target gas, it adsorbs the target gas. In the gas adsorption composition of the present invention, the region in contact with the target gas is referred to as a target gas adsorption surface. In the present invention, the gas adsorption composition in which a predetermined metal is adhered to the particle surface of the additive is coated with a water absorbing material, and the water absorbing material is arranged in an exposed region of the target gas adsorption surface of the gas adsorption composition to gas. May be molded. The vacuum heat insulating material produced by using the molded product of such a gas adsorption composition can reduce the amount of contact between the gas adsorption composition and the target gas at the time of production. As a result, the sudden deactivation of the nitrogen adsorption capacity of the metal can be avoided, and a vacuum heat insulating material having a long life can be obtained.

本発明に用いられる吸水材は、公知の材料を用いることができる。具体例として、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム等が挙げられる。 As the water absorbing material used in the present invention, a known material can be used. Specific examples include calcium oxide, magnesium oxide, strontium oxide, barium oxide and the like.

本発明のガス吸着材は、真空断熱材の内部に配置されてターゲットガスを吸着する。本発明のターゲットガスは、主に窒素である。その他、水素や酸素を吸着しうる。本発明のガス吸着能は、所定の容積内のターゲットガスの圧力変化を測定することで評価できる。ターゲットガスの圧力は、公知の圧力測定ゲージを用いて測定できる。また本発明の安全性評価は、大気中に暴露された本発明から発生する可燃性ガスの発生量を測定することで評価できる。可燃性ガスの発生量は、公知のガス量測定装置を用いて測定できる。その詳細は実施例に記載する。 The gas adsorbent of the present invention is arranged inside the vacuum heat insulating material and adsorbs the target gas. The target gas of the present invention is mainly nitrogen. In addition, it can adsorb hydrogen and oxygen. The gas adsorption capacity of the present invention can be evaluated by measuring the pressure change of the target gas within a predetermined volume. The pressure of the target gas can be measured using a known pressure measuring gauge. Further, the safety evaluation of the present invention can be evaluated by measuring the amount of flammable gas generated from the present invention exposed to the atmosphere. The amount of flammable gas generated can be measured using a known gas amount measuring device. The details will be described in Examples.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

図1は、本発明の本発明の真空断熱材の一例を示す模式断面図である。図1において、ガス吸着材7は、外装材2の内部に芯材6と共に密閉される。図2と図9とは、ガス吸着材の構成例を示す説明図である。図2と図9とにおいて、10はガス吸着材、11は水分吸着材である。図10は本発明のガス吸着材の模式図であり、図10中(A)は、所定の金属を添加材に付着させたガス吸着組成物の態様を示す拡大模式図である。 FIG. 1 is a schematic cross-sectional view showing an example of the vacuum heat insulating material of the present invention of the present invention. In FIG. 1, the gas adsorbent 7 is sealed inside the exterior material 2 together with the core material 6. 2 and 9 are explanatory views showing a configuration example of the gas adsorbent. In FIGS. 2 and 9, 10 is a gas adsorbent and 11 is a water adsorbent. FIG. 10 is a schematic view of the gas adsorbent of the present invention, and FIG. 10 (A) is an enlarged schematic view showing an aspect of a gas adsorbent composition in which a predetermined metal is attached to an additive.

図10に示されるように、本発明は、添加材12を母材とし、その粒子表面に前記の金属13が付着する。本発明の窒素吸着能は、前記の金属の含有量が多いほど向上する傾向がある。そのため付着の態様は、図10に例示するように添加材12の粒子表面を、金属13で完全にかつ均一の膜厚で被覆させる態様が好ましい。そのような態様のガス吸着組成物は、内層と当該内層の外側に形成される外層とを備え、添加物が内層を構成し、前記の金属が外層を構成する。 As shown in FIG. 10, in the present invention, the additive 12 is used as a base material, and the metal 13 adheres to the surface of the particles thereof. The nitrogen adsorption capacity of the present invention tends to improve as the content of the metal increases. Therefore, as an example of the adhesion, it is preferable that the particle surface of the additive 12 is completely covered with the metal 13 with a uniform film thickness. The gas adsorption composition of such an embodiment includes an inner layer and an outer layer formed on the outer side of the inner layer, the additive constitutes the inner layer, and the metal constitutes the outer layer.

なおガス吸着組成物の付着の態様は上記の例に限定されない。例えば本発明の作用効果を得られる限り、添加材の粒子表面の一部に被覆されない領域があってもよい。また前記の金属を主成分とする外層は、不均一な膜厚で形成させてもよい。付着の態様は、金属と添加材との配合比や、添加材の粒子径、製造時の温度管理等により、変化させることができる。 The mode of adhesion of the gas adsorption composition is not limited to the above example. For example, as long as the effects of the present invention can be obtained, there may be an uncovered region on a part of the particle surface of the additive. Further, the outer layer containing the metal as a main component may be formed with a non-uniform film thickness. The mode of adhesion can be changed by the compounding ratio of the metal and the additive, the particle size of the additive, the temperature control at the time of production, and the like.

図10において、14は吸水材である。吸水材は、ガス吸着組成物を被覆し、少なくともガス吸着組成物のターゲットガス吸着面のガスに対する曝露領域に配置される。図10では、ターゲットガス吸着面15は、ガス吸着組成物と吸水材との界面に相当する。被覆の態様について、図10に示す例では当該ガス吸着組成物を吸水材中に分散させた状態を示す。 In FIG. 10, reference numeral 14 denotes a water absorbing material. The water absorbing material covers the gas adsorption composition and is arranged at least in the gas exposure region of the target gas adsorption surface of the gas adsorption composition. In FIG. 10, the target gas adsorption surface 15 corresponds to the interface between the gas adsorption composition and the water absorbing material. Regarding the mode of coating, the example shown in FIG. 10 shows a state in which the gas adsorption composition is dispersed in a water absorbing material.

本発明は、ガス吸着組成物を吸水材で被覆した成型体を包含する。該成型体においてガス吸着組成物は、吸水材中に均質に分散させてもよく、不均質な分散であってもよい。成型体とターゲットガスとの接触量が、成型体の各領域で異なる場合、吸水材中に、ガス吸着組成物を不均質に分散させ、ターゲットガスの接触量が多い領域の近傍にガス吸着組成物を局在させれば、効率的にターゲットガスを吸着できる。またターゲットガスの接触量が領域によって変わらない場合には、ガス吸着組成物を均質に分散させれば、いずれの領域でも均質にターゲットガス吸着能を発揮させることができる。なお、ガス吸着組成物と吸水材とは、真空断熱材の製造時のガス吸着組成物とターゲットガスとの接触を低減できるように配置されていればよいため、図10に例示する態様に限定されない。 The present invention includes a molded body in which the gas adsorption composition is coated with a water absorbing material. In the molded body, the gas adsorption composition may be uniformly dispersed in the water absorbing material, or may be inhomogeneously dispersed. When the contact amount between the molded body and the target gas is different in each region of the molded body, the gas adsorption composition is unevenly dispersed in the water absorbing material, and the gas adsorption composition is in the vicinity of the region where the contact amount of the target gas is large. If the object is localized, the target gas can be efficiently adsorbed. Further, when the contact amount of the target gas does not change depending on the region, if the gas adsorption composition is uniformly dispersed, the target gas adsorption ability can be uniformly exhibited in any region. Since the gas adsorption composition and the water absorbing material may be arranged so as to reduce the contact between the gas adsorption composition and the target gas during the production of the vacuum heat insulating material, the gas adsorption composition and the water absorbing material are limited to the embodiments illustrated in FIG. Not done.

なお、図2や図9に例示されるように、本発明のガス吸着材は、水分吸着材で被覆して成型してもよい。水分吸着材の材料例としては、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム等が挙げられる。すなわち、吸水材と水分吸着剤とは同じ材料を使用できる。その場合、本発明の製造工程で、ガス吸着剤を水分吸着材で被覆した成型体を焼結することで、吸水材と水分吸着剤とを一体化させることができる。 As illustrated in FIGS. 2 and 9, the gas adsorbent of the present invention may be coated with a water adsorbent and molded. Examples of materials for the water adsorbent include calcium oxide, magnesium oxide, strontium oxide, barium oxide and the like. That is, the same material can be used for the water absorbing material and the water adsorbent. In that case, in the manufacturing process of the present invention, the water absorbing material and the water adsorbent can be integrated by sintering the molded body in which the gas adsorbent is coated with the water adsorbent.

本発明のガス吸着材の態様の一つに窒素吸着材がある。窒素吸着材は、例えば、真空断熱材内の窒素ガスの除去の用途に用いられる。なお、本発明の吸着材は特定用途のものに限定されるべきものではない。 One of the modes of the gas adsorbent of the present invention is a nitrogen adsorbent. The nitrogen adsorbent is used, for example, for removing nitrogen gas in a vacuum heat insulating material. The adsorbent of the present invention should not be limited to a specific use.

真空断熱材は、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外装材で覆い、外装材の内部を減圧密封したものが知られており、冷蔵庫、冷凍庫、給湯容器、自動車用断熱材、建造物用断熱材、自動販売機、保冷箱、保温庫、保冷車等に使用されている。 As the vacuum heat insulating material, a core material having fine voids such as glass wool or silica powder is covered with an exterior material having a gas barrier property, and the inside of the exterior material is sealed under reduced pressure. Refrigerators, freezers, hot water containers, etc. It is used for heat insulating materials for automobiles, heat insulating materials for buildings, vending machines, cool boxes, heat insulators, refrigerator cars, etc.

図1は、真空断熱材1の一例を示す模式断面図である。図1に示されるように、本発明に係る真空断熱材1は、芯材6およびガス吸着材7を2枚の外装材で挟むように内包、密閉するように構成されている。 FIG. 1 is a schematic cross-sectional view showing an example of the vacuum heat insulating material 1. As shown in FIG. 1, the vacuum heat insulating material 1 according to the present invention is configured to enclose and seal the core material 6 and the gas adsorbent 7 so as to be sandwiched between the two exterior materials.

2枚の外装材2の周囲は、開口端を残して3方が封止(例えば、ヒートシール)されて全体として袋状の形態を成し、これに芯材6およびガス吸着材7を収容した後内部を減圧し開口部を封止(例えば、ヒートシール)する。符号8は、開口部が封止された接合部である。以下、本発明の真空断熱材の各部材について説明する。 The periphery of the two exterior materials 2 is sealed (for example, heat-sealed) on three sides, leaving an open end, to form a bag-like shape as a whole, which accommodates the core material 6 and the gas adsorbent 7. After that, the inside is depressurized and the opening is sealed (for example, heat-sealed). Reference numeral 8 is a joint having a sealed opening. Hereinafter, each member of the vacuum heat insulating material of the present invention will be described.

本発明における外装材2に、ガスバリア性を有し、気体侵入を抑止可能な種々の材料および複合材料であれば、従来の如何なるものも利用できる。通常、外装材は、熱可塑性樹脂からなるプラスチックフィルムや金属箔等をラミネート加工することでバリア性を付与したものであり、芯材を空気や水分から隔離する役割を果たす。 As the exterior material 2 in the present invention, any conventional material and composite material having a gas barrier property and capable of suppressing gas intrusion can be used. Usually, the exterior material is provided with a barrier property by laminating a plastic film made of a thermoplastic resin, a metal foil, or the like, and plays a role of isolating the core material from air and moisture.

好ましい形態によれば、図1に示すように、外装材2に使用できるラミネートフィルムは、最内層を熱溶融層(熱溶融フィルム)5とし、中間層にはガスバリア層(ガスバリアフィルム)4として金属箔あるいは金属蒸着層を有し、最外層には表面保護層(表面保護フィルム)3を有する形態を備えている。 According to a preferred embodiment, as shown in FIG. 1, in the laminated film that can be used for the exterior material 2, the innermost layer is a hot melt layer (heat melt film) 5, and the intermediate layer is a metal as a gas barrier layer (gas barrier film) 4. It has a foil or metal vapor deposition layer, and the outermost layer has a surface protective layer (surface protective film) 3.

熱溶着フィルム5は、外装材2の熱溶着層が熱と圧力により溶融した後に固化したものであり、外装材2を所定の形状に保持する役割を果たすものである。また、ガスや水蒸気が外装材2の端部から真空断熱材1内へ侵入することを抑える役割を果たすものである。 The heat-welded film 5 is formed by melting the heat-welded layer of the exterior material 2 by heat and pressure and then solidifying it, and plays a role of holding the exterior material 2 in a predetermined shape. Further, it plays a role of suppressing gas or water vapor from entering the vacuum heat insulating material 1 from the end portion of the exterior material 2.

熱溶着フィルム5は、通常のシール法(例えば、ヒートシール)によって接着できるものであれば特に限定されない。熱溶着フィルムを構成する材料としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレン−酢酸ビニル共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸エステル共重合体、ポリアクリロニトリル等の熱可塑性樹脂などが挙げられる。なお、前記材料は、単独で使用されてもまたは2種類以上の混合物であってもよい。また、熱溶着フィルム5は、単層であってもまたは2層以上の積層形態であってもよい。後者の場合、各層は、同様の組成を有していてもまたは異なる組成を有していてもよい。 The heat welding film 5 is not particularly limited as long as it can be adhered by a normal sealing method (for example, heat sealing). Examples of the material constituting the heat-welded film include low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene and other polyolefins, ethylene-vinyl acetate copolymer, ethylene-methacrylic acid copolymer, and ethylene-. Examples thereof include an acrylic acid ester copolymer, an ethylene-acrylic acid ester copolymer, and a thermoplastic resin such as polyacrylonitrile. The material may be used alone or as a mixture of two or more kinds. Further, the heat welding film 5 may be a single layer or a laminated form of two or more layers. In the latter case, each layer may have a similar composition or a different composition.

熱溶着フィルム5の厚みは、特に制限されず、公知の厚みと同様の厚みでありうる。具体的には、熱溶着フィルム5の厚みは、好ましくは10〜100μmである。10μmより薄い場合、ヒートシール時に十分な密着強度を得ることができない虞があり、100μmより厚い場合、屈曲性等の加工性が悪くなる虞がある。なお、熱溶着フィルムが2層以上の積層構造を有する場合には、熱溶着フィルムの厚みは、合計厚みを意味する。また、この場合には、各層の厚みは、同じであってもまたは異なっていてもよい。 The thickness of the heat-welded film 5 is not particularly limited and may be the same as the known thickness. Specifically, the thickness of the heat-welded film 5 is preferably 10 to 100 μm. If it is thinner than 10 μm, sufficient adhesion strength may not be obtained during heat sealing, and if it is thicker than 100 μm, processability such as flexibility may deteriorate. When the heat-welded film has a laminated structure of two or more layers, the thickness of the heat-welded film means the total thickness. Further, in this case, the thickness of each layer may be the same or different.

ガスバリアフィルムとしては、特に制限されず、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体へアルミニウムや銅等の金属原子や、アルミナやシリカ等の金属酸化物を蒸着したフィルム等が使用できる。ガスバリアフィルムの厚みは、特に制限されず、公知の厚みと同様の厚みでありうる。 The gas barrier film is not particularly limited, and is limited to metal foils such as aluminum foils and copper foils, polyethylene terephthalate films, ethylene-vinyl alcohol copolymers, metal atoms such as aluminum and copper, and metal oxides such as alumina and silica. Can be used as a film or the like on which The thickness of the gas barrier film is not particularly limited and may be the same as the known thickness.

表面保護フィルム3は、特に制限されず、外装材の表面保護フィルムとして通常使用されるのと同様の材料が使用できる。表面保護フィルムを構成する材料としては、例えば、ナイロン−6、ナイロン−66などのポリアミド(ナイロン)(PA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)などのポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)などのポリオレフィン、ポリイミド、ポリアクリレート、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、エチレンビニルアルコール共重合体(EVOH)、ポリビニルアルコール樹脂(PVA)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)、ポリメチルメタクリレート(PMMA)、ポリアクリルニトリル樹脂(PAN)などが挙げられる。 The surface protective film 3 is not particularly limited, and a material similar to that normally used as a surface protective film for an exterior material can be used. Examples of the material constituting the surface protective film include polyamide (nylon) (PA) such as nylon-6 and nylon-66, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyvinyl terephthalate (PBT). Polyethylene, polyethylene (PE), polypropylene (PP), polyolefins such as polystyrene (PS), polyimide, polyacrylate, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), ethylene vinyl alcohol copolymer (EVOH), polyvinyl Examples thereof include alcohol resin (PVA), polycarbonate (PC), polyether sulfone (PES), polymethyl methacrylate (PMMA), and polyacrylic nitrile resin (PAN).

表面保護フィルム3の厚みは、特に制限されず、公知の厚みと同様の厚みでありうる。具体的には、表面保護フィルム3の厚みは、好ましくは10〜100μmである。10μmより薄い場合、バリア層の保護が十分でない虞がある。また100μmより厚い場合、熱溶着フィルムと同様に屈曲性等の加工性が悪くなる虞がある。なお、表面保護フィルム3が2層以上の積層構造を有する場合には、前記厚みは、合計厚みを意味する。また、この場合には、各層の厚みは、同じであってもまたは異なっていてもよい。 The thickness of the surface protective film 3 is not particularly limited and may be the same as the known thickness. Specifically, the thickness of the surface protective film 3 is preferably 10 to 100 μm. If it is thinner than 10 μm, the barrier layer may not be sufficiently protected. If it is thicker than 100 μm, processability such as flexibility may deteriorate as in the case of the heat-welded film. When the surface protective film 3 has a laminated structure of two or more layers, the thickness means the total thickness. Further, in this case, the thickness of each layer may be the same or different.

また、これらのフィルムは周知の種々の添加剤や安定剤、例えば帯電防止剤、紫外線防止剤、可塑剤、滑剤などが使用されていてもよい。なお、前記材料は、単独で使用されてもまたは2種以上の混合物であってもよい。また、表面保護フィルムは、単層であってもまたは2層以上の積層形態であってもよい。後者の場合、各層は、同様の組成を有していてもまたは異なる組成を有していてもよい。 In addition, various well-known additives and stabilizers, such as antistatic agents, ultraviolet inhibitors, plasticizers, lubricants, and the like may be used in these films. The material may be used alone or as a mixture of two or more kinds. Further, the surface protective film may be a single layer or a laminated form of two or more layers. In the latter case, each layer may have a similar composition or a different composition.

外装材2の厚みは、特に制限されない。具体的には、好ましくは1〜100μmである。前記したような薄さの外装材であれば、ヒートブリッジをより有効に抑制・防止して断熱性能が向上でき、また、ガスバリア性および加工性にも優れる。 The thickness of the exterior material 2 is not particularly limited. Specifically, it is preferably 1 to 100 μm. With the thin exterior material as described above, the heat bridge can be more effectively suppressed / prevented to improve the heat insulating performance, and the gas barrier property and workability are also excellent.

また、別の好ましい形態によれば、ガスバリア性フィルムからなる外装材2は、金属箔を積層したラミネートフィルムからなる面と、金属箔を積層しないラミネートフィルムからなる面の少なくとも2面で構成され、金属箔を積層しないラミネートフィルムからなる面には、少なくとも内層側にアルミニウム蒸着を施したエチレン−ビニルアルコール共重合体樹脂組成物からなるフィルム層、もしくは内層側にアルミニウム蒸着を施したポリエチレンテレフタレート樹脂組成物からなるフィルム層のいずれかを有する。 Further, according to another preferable form, the exterior material 2 made of a gas barrier film is composed of at least two surfaces, one is a surface made of a laminated film in which metal foils are laminated and the other is a surface made of a laminated film in which metal foils are not laminated. On the surface made of a laminated film on which no metal foil is laminated, a film layer made of an ethylene-vinyl alcohol copolymer resin composition having at least an aluminum vapor deposition on the inner layer side, or a polyethylene terephthalate resin composition having an aluminum vapor deposition on the inner layer side. It has any of a film layers made of material.

また、本発明による外装材2は、前記のようなラミネートフィルムでなくてもよく、例えば、金属容器やガラス容器、樹脂と金属の積層されたガスバリア容器のようなものであってもよい。そのようなプラスチックラミネートフィルム容器としては、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエステル、ポリプロピレン、ポリアミド、ポリエチレン、金属蒸着フィルムなどの一種または二種以上のフィルムをラミネートした容器などが使用できる。 Further, the exterior material 2 according to the present invention does not have to be the above-mentioned laminated film, and may be, for example, a metal container, a glass container, or a gas barrier container in which resin and metal are laminated. As such a plastic laminated film container, a container in which one or more kinds of films such as polyvinylidene chloride, polyvinyl alcohol, polyester, polypropylene, polyamide, polyethylene, and metal vapor-deposited film are laminated can be used.

図1に示すように、芯材6は、外装材の内部に配置されている。本発明で使用できる芯材は、真空断熱材のいわば骨格となり、ガス吸着材が適用される空間を形成する。ここで、芯材6の材質としては、特に限定されず、公知の材料を使用できる。具体的には、グラスウール、ロックウール、アルミナ繊維、熱伝導率の低い金属からなる金属繊維等の無機繊維;ポリエステルやポリアミド、アクリル、ポリオレフィン、アラミドなどの合成繊維や木材パルプから製造されるセルロース、コットン、麻、ウール、シルクなどの天然繊維、レーヨンなどの再生繊維、アセテートなどの半合成繊維等の有機繊維などが挙げられる。前記芯材材料は、単独で使用されてもまたは2種以上の混合物であってもよい。これらのうち、グラスウールが好ましい。これらの材料からなる芯材は、繊維自体の弾性が高く、また繊維自体の熱伝導率が低く、なおかつ工業的に安価である。 As shown in FIG. 1, the core material 6 is arranged inside the exterior material. The core material that can be used in the present invention serves as a so-called skeleton of the vacuum heat insulating material and forms a space to which the gas adsorbent is applied. Here, the material of the core material 6 is not particularly limited, and a known material can be used. Specifically, inorganic fibers such as glass wool, rock wool, alumina fibers, and metal fibers made of metals having low thermal conductivity; synthetic fibers such as polyester, polyamide, acrylic, polyolefin, and aramid, and cellulose produced from wood pulp. Examples include natural fibers such as cotton, linen, wool and silk, recycled fibers such as rayon, and organic fibers such as semi-synthetic fibers such as acetate. The core material may be used alone or as a mixture of two or more. Of these, glass wool is preferable. The core material made of these materials has high elasticity of the fiber itself, low thermal conductivity of the fiber itself, and is industrially inexpensive.

図1のガス吸着材7は、図9に示すようなガス透過性開放部を有するハードケース内に、或いは図2に示すようなガス透過性フィルム内に、ガス吸着性金属と添加材とを主として含有する(窒素)ガス吸着組成物10の開放面を水分吸着材11で被覆した圧縮成型体を収納した構成を備えている。ガス吸着組成物を水分吸着材で被覆した結果、図2の例示では、ガス吸着組成物10と水分吸着材11との成型物は、内層とその外部に形成される外層とを備える。当該内層はガス吸着組成物10で形成され、外層は水分吸着材11で形成される。また、図9の例示ではガス吸着組成物10に水分吸着材11を積層させた構造になっている。ガス透過性開放部の一例としては、ハードケースの上端の開放面がある。 The gas adsorbent 7 of FIG. 1 contains a gas adsorbent metal and an additive in a hard case having a gas permeable open portion as shown in FIG. 9 or in a gas permeable film as shown in FIG. It has a configuration in which a compression molded body in which the open surface of the (nitrogen) gas adsorbing composition 10 mainly contained is coated with a moisture adsorbent 11 is housed. As a result of coating the gas adsorbent composition with the water adsorbent, in the example of FIG. 2, the molded product of the gas adsorbent composition 10 and the water adsorbent 11 includes an inner layer and an outer layer formed on the outer layer thereof. The inner layer is formed of the gas adsorbent composition 10, and the outer layer is formed of the water adsorbent 11. Further, in the example of FIG. 9, the structure is such that the water adsorbent 11 is laminated on the gas adsorbent composition 10. As an example of the gas permeable opening portion, there is an open surface at the upper end of the hard case.

ガス吸着材の主体となるガス吸着組成物10は、ターゲットガス(例えば、窒素)濃度を低減する必要がある環境(真空断熱環境)下で使用され、ターゲットガスに対する吸着能を有しながら、水分によって不活化されるおそれがある金属(例えば、Ba−Li合金)を含有し、当該金属をターゲットガスに対する吸着活性を有する状態(水分によって不活性化されない状態)で、金属に対する添加材(例えば、無機酸化物(酸化カルシウム))の粒子表面に付着させた化学組成を有している。 The gas adsorption composition 10 which is the main component of the gas adsorbent is used in an environment (vacuum adiabatic environment) where it is necessary to reduce the concentration of the target gas (for example, nitrogen), and has an adsorbing ability to the target gas and moisture. Additives to metals (eg, not inactivated by moisture) that contain a metal that may be inactivated by (eg, Ba-Li alloy) and have adsorptive activity to the target gas (eg, not inactivated by moisture). It has a chemical composition attached to the particle surface of an inorganic oxide (calcium oxide).

本発明において「付着」とは、金属によって添加材の粒子が被覆(コーティング)されている状態を意味する。添加材の粒子が金属によって被覆されることで、本発明は、内層が添加材であり、当該内層の外側に形成される外層が金属である、本発明に含有されるガス吸着組成物になる。その態様は、金属と添加材との間の金属結合等、金属と添加材との間の化学結合、又は、金属と添加材との間の物理的な結合等によって例示される。前記の「付着」の状態であるとき、本発明を実施する上で、金属と添加材との間の界面の状態は制限されない。 In the present invention, "adhesion" means a state in which particles of an additive are coated with a metal. By coating the particles of the additive material with a metal, the present invention provides the gas adsorption composition contained in the present invention in which the inner layer is the additive material and the outer layer formed on the outside of the inner layer is the metal. .. The embodiment is exemplified by a metal bond between a metal and an additive, a chemical bond between a metal and an additive, a physical bond between a metal and an additive, and the like. In the above-mentioned "adhesive" state, the state of the interface between the metal and the additive is not limited in carrying out the present invention.

ガス吸着性金属は、ターゲットガスの種類に応じて適宜選択される。ターゲットガスが窒素の場合には、Li、VおよびZrの少なくとも一種、例えば、金属Li及び/又は、Li合金である。Li合金の中でもLiとアルカリ土類金属との合金、特に、Li−Ba合金が窒素の吸収特性が高いことから好ましい。 The gas-adsorptive metal is appropriately selected according to the type of target gas. When the target gas is nitrogen, it is at least one of Li, V and Zr, for example, metallic Li and / or Li alloy. Among the Li alloys, an alloy of Li and an alkaline earth metal, particularly a Li-Ba alloy is preferable because it has high nitrogen absorption characteristics.

添加材は、金属の濃度、即ち、ガス吸着材の単位重量当たりの金属量を調整するものである。従って、添加材は「賦形材」等と表現されてもよい。添加材の含有量によって、ガス吸着材の単位重量当たりの金属含有量が低減される。そのため例えば、ガス吸着材の廃棄処理時に窒素ガス吸着組成物が水と反応しても、その反応速度が制限される。その結果、急激に規制値以上の可燃性ガスが発生することを抑制できる。なお、規制値としては、可燃性ガスの爆発下限界(例えば水素ガスの場合、空気中で4容量%)が参照されうる。 The additive adjusts the concentration of the metal, that is, the amount of metal per unit weight of the gas adsorbent. Therefore, the additive material may be expressed as a "forming material" or the like. The content of the additive reduces the metal content per unit weight of the gas adsorbent. Therefore, for example, even if the nitrogen gas adsorption composition reacts with water during the disposal treatment of the gas adsorbent, the reaction rate is limited. As a result, it is possible to suppress the sudden generation of flammable gas exceeding the regulation value. As the regulation value, the lower explosive limit of flammable gas (for example, in the case of hydrogen gas, 4% by volume in air) can be referred to.

添加材としては、金属のガス吸着能に影響がないものから選択されればよく、格別限定されるものではないが、窒素吸着性金属の場合には、併用されることが多い無機酸化物がよい。無機酸化物の中でも、アルカリ土類金属の酸化物(酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム)が好ましい。この中でも、酸化カルシウムは、水蒸気圧の極めて低い環境においても水分を吸着する。 The additive may be selected from those that do not affect the gas adsorption capacity of the metal and is not particularly limited, but in the case of nitrogen-adsorbing metals, inorganic oxides that are often used in combination are used. Good. Among the inorganic oxides, oxides of alkaline earth metals (calcium oxide, magnesium oxide, strontium oxide, barium oxide) are preferable. Among these, calcium oxide adsorbs water even in an environment where the water vapor pressure is extremely low.

ガス吸着材が使用される環境の状態を維持するため、吸湿性無機酸化物を、ガス吸着材とは別に、或いはガス吸着材に含ませるようにしてもよい。なお、金属−添加材からなるガス吸着組成物のガス吸着能を損なわないようにする観点から、添加材粒子の粒径は500μm以下であることが望ましい。500μmを超える粒径の添加材を用いる場合、金属の付着量が少なくなり所望の窒素吸着能を得られない。また、吸水材に均質に分散させ難くなる。粒径の下限は、特段制限されず、現存する添加材粒子の最小粒径で構わない。本発明において、添加材の粒径とは、レーザー回折法等公知の方法で測定され、D50を平均粒径とする。 In order to maintain the state of the environment in which the gas adsorbent is used, the hygroscopic inorganic oxide may be contained in the gas adsorbent separately from the gas adsorbent. The particle size of the additive particles is preferably 500 μm or less from the viewpoint of not impairing the gas adsorption capacity of the gas adsorption composition composed of the metal-additive. When an additive having a particle size of more than 500 μm is used, the amount of metal adhered is reduced and the desired nitrogen adsorption capacity cannot be obtained. In addition, it becomes difficult to disperse uniformly in the water absorbing material. The lower limit of the particle size is not particularly limited, and may be the minimum particle size of the existing additive particles. In the present invention, the particle size of the additive is measured by a known method such as a laser diffraction method, and D 50 is taken as the average particle size.

無機酸化物(例えば、酸化カルシウム)はその水分吸着特性から、無機酸化物が加熱処理されたとしても、ガス吸着材を製造する過程で大気中の水分を不可避的に伴い、この水分によって、ガス吸着性金属と無機酸化物を単に混合しただけでは、ガス吸着性金属が容易に失活してしまう。 Due to the water adsorption characteristics of inorganic oxides (for example, calcium oxide), even if the inorganic oxide is heat-treated, it inevitably involves water in the atmosphere in the process of producing a gas adsorbent, and this water causes gas. Simply mixing an adsorptive metal with an inorganic oxide will easily deactivate the gas adsorbent metal.

しかしながら、本発明者が鋭意検討したところ、ガス吸着性金属が失活する前に(ガス吸着性金属がガス吸着能の活性状態がある状態で)ガス吸着性金属を無機酸化物粒子の表面に、既述のとおり付着させることにより、ガス吸着能の活性を維持できることが明らかとなった。これは、無機酸化物の表面が金属で被覆されることによって、無機酸化物の吸湿反応が制限された結果であると考えられる。なお、添加材は、ガス吸着性金属の濃度を制御するものであるため、ガス吸着性金属に対して、「母材」、或いは、「基材」ともいい得る。 However, as a result of diligent studies by the present inventor, the gas-adsorptive metal was applied to the surface of the inorganic oxide particles before the gas-adsorbent metal was deactivated (in the state where the gas-adsorptive metal was in an active state of gas-adsorbing ability). It was clarified that the activity of gas adsorption ability can be maintained by adhering as described above. It is considered that this is a result of limiting the hygroscopic reaction of the inorganic oxide by coating the surface of the inorganic oxide with the metal. Since the additive material controls the concentration of the gas-adsorbing metal, it can also be referred to as a "base material" or a "base material" with respect to the gas-adsorbing metal.

本発明のガス吸着材を真空断熱材などの減圧環境に含ませることによって、減圧環境下に残存するガス(例えば、真空断熱材の芯材の微細空隙に残存するガス)や、減圧環境に大気から侵入するガスを長期に渡り吸収して、減圧環境の低熱伝導率を維持することができる。「減圧環境」とは、大気圧に比較して小さい圧力環境であることを意味し、真空断熱環境を実現するために、例えば、100Pa以下、好ましくは10Pa以下、さらに、好ましくは、0.01Pa程度である。なお、本発明のガス吸着材は、冷蔵庫に使用され得ることから、ガス吸着性能は、低温環境(摂氏マイナス30度前後)でも、維持されることが好ましい。 By including the gas adsorbent of the present invention in a reduced pressure environment such as a vacuum heat insulating material, the gas remaining in the reduced pressure environment (for example, the gas remaining in the fine voids of the core material of the vacuum heat insulating material) or the atmosphere in the reduced pressure environment. It is possible to maintain the low thermal conductivity of the vacuum environment by absorbing the gas invading from the gas for a long period of time. The "decompression environment" means that the pressure environment is smaller than that of the atmospheric pressure, and in order to realize the vacuum insulation environment, for example, 100 Pa or less, preferably 10 Pa or less, more preferably 0.01 Pa or less. Degree. Since the gas adsorbent of the present invention can be used in a refrigerator, it is preferable that the gas adsorption performance is maintained even in a low temperature environment (around -30 degrees Celsius).

ガス吸着組成物における金属と添加材との配合割合は、ガス吸着材が使用される環境におけるガス濃度の目標値を達成し得る観点、吸着材を設ける空間の体積に対する制限、ガス吸着材を廃棄する際における水と金属の反応による可燃性ガスの発生率に対する低減等の要求から適宜決定されればよい。 The mixing ratio of the metal and the additive in the gas adsorbent composition is such that the target value of the gas concentration in the environment where the gas adsorbent is used can be achieved, the volume of the space where the adsorbent is provided is limited, and the gas adsorbent is discarded. It may be appropriately determined from the requirements such as reduction of the generation rate of flammable gas due to the reaction between water and metal.

金属に対して酸化物が多いと、可燃性ガスの発生率は小さくなるが、酸化物によって、金属のガス吸着能が低下する可能性や、ガス吸着材の容量が増加する可能性がある。一方、金属に対して酸化物が少なくなると、酸化物等の添加材によって、金属のガス吸着能が低下するおそれはなく、そして、ガス吸着材の容量も増加するおそれはないものの、可燃性ガスの発生率が大きくなる可能性がある。 If the amount of oxide is large with respect to the metal, the generation rate of flammable gas is small, but the oxide may reduce the gas adsorbing ability of the metal or increase the capacity of the gas adsorbent. On the other hand, when the amount of oxide is less than that of the metal, there is no possibility that the gas adsorbing ability of the metal will be lowered by the additive such as oxide, and the capacity of the gas adsorbent will not be increased, but the flammable gas. May increase the incidence of.

そこで、例えば、窒素ガス吸収性金属と添加材(無機酸化物や上記の遷移金属等)とからなるガス吸着組成物においては、既述のとおり、ガス吸着組成物を水と反応させた際に、急激に発生し得る可燃性ガスの発生量を規制値(200cc/g)未満になる範囲で、ガス吸着性金属と添加材との配合割合を適宜調整すればよい。例えば、BaLiの組成であるBa−Li合金は、1g当たり約440ccの水素を発生するため、合金と酸化物を混合する際は、合金を45wt%以下で混合することで、発生する可燃性ガスを規制値以下にすることが可能である。 Therefore, for example, in a gas adsorption composition composed of a nitrogen gas-absorbing metal and an additive (inorganic oxide, the above-mentioned transition metal, etc.), as described above, when the gas adsorption composition is reacted with water, The blending ratio of the gas-adsorbing metal and the additive may be appropriately adjusted within the range in which the amount of flammable gas that can be rapidly generated is less than the regulation value (200 cc / g). For example, the Ba-Li alloy having the composition of BaLi 4 generates about 440 cc of hydrogen per gram. Therefore, when mixing the alloy and the oxide, the flammability generated by mixing the alloy at 45 wt% or less. It is possible to keep the gas below the regulation value.

本発明のガス吸着材の製造方法は、添加材の粒子表面に所定の金属を付着させた構造を形成でき、かつ本発明の作用効果を得られるガス吸着材を製造できる限り、限定されない。ただし本発明の製造方法においては、その工程のいずれかで、添加材と金属とを加温する工程を含む。これにより、大気中で自然に低減した金属の窒素吸着能が回復する。また母材中の水分を低減でき、水分との反応による金属のガス吸着能の活性低下を抑制できる。前記の加温工程における温度は、用いられる添加材や金属の種類に対応して設定される。添加材に酸化カルシウムを選択し、金属にBa−Li合金を選択する場合は、180℃以上1300℃以下が好ましく、200℃以上800℃以下がより好ましい。 The method for producing a gas adsorbent of the present invention is not limited as long as a structure in which a predetermined metal is adhered to the particle surface of the additive can be formed and a gas adsorbent capable of obtaining the effects of the present invention can be produced. However, the production method of the present invention includes a step of heating the additive and the metal in any of the steps. As a result, the nitrogen adsorption capacity of the metal, which was naturally reduced in the atmosphere, is restored. In addition, the water content in the base material can be reduced, and the decrease in the activity of the gas adsorption capacity of the metal due to the reaction with the water content can be suppressed. The temperature in the heating step is set according to the type of additive or metal used. When calcium oxide is selected as the additive and Ba-Li alloy is selected as the metal, 180 ° C. or higher and 1300 ° C. or lower is preferable, and 200 ° C. or higher and 800 ° C. or lower is more preferable.

本発明のガス吸着材の製造方法の例として、添加材の表面に前記の金属を付着させたガス吸着組成物を製造する工程と、当該工程により得られたガス吸着組成物を吸水材で被覆させた成型体を製造する工程とを含む製造方法が挙げられる。ガス吸着組成物の製造工程の具体例としては、少なくとも添加材と金属とを所定の配合比で溶融させた後、これを室温になるまで冷却することで、ガス吸着組成物を製造する方法がある。これにより自然と本発明所定の付着の構造を備えるガス吸着組成物を製造できる。当該方法では母材と金属とを同時期に加温することで、金属の不活性化回避と窒素吸着能回復とを、効率的に行える。成型体の製造工程の具体例としては、得られたガス吸着組成物を吸水材に添加し、ガス吸着組成物が吸水材中に均質に分散するまで混合した後、焼成して成型する方法が挙げられる。 As an example of the method for producing a gas adsorbent of the present invention, a step of producing a gas adsorption composition in which the metal is adhered to the surface of an additive, and a step of coating the gas adsorption composition obtained by the step with a water absorbing material. Examples thereof include a manufacturing method including a step of manufacturing the molded body. As a specific example of the production process of the gas adsorption composition, a method of producing a gas adsorption composition by melting at least an additive and a metal at a predetermined compounding ratio and then cooling the mixture to room temperature is used. is there. This makes it possible to naturally produce a gas adsorption composition having a structure of adhesion prescribed by the present invention. In this method, by heating the base metal and the metal at the same time, it is possible to efficiently avoid the inactivation of the metal and restore the nitrogen adsorption capacity. As a specific example of the manufacturing process of the molded body, a method of adding the obtained gas adsorption composition to the water absorbing material, mixing until the gas adsorption composition is uniformly dispersed in the water absorbing material, and then firing and molding is used. Can be mentioned.

<実施例1>
BaLi(Ba−Li合金)0.05g(平均粒子径300μm以下、純度99%以上、高純度化学製)をホットプレート上で500℃に加熱し溶融させた。事前に500℃まで加熱しておいた酸化カルシウム(平均粒子径4μm、宇部マテリアルズ製)0.2gを加熱・溶融状態のBa−Li合金に混合し、均一になるまで混合後、室温まで冷却することにより、被覆処理された粒子状の窒素吸着組成物を得た。
<Example 1>
0.05 g of BaLi 4 (Ba-Li alloy) (average particle diameter 300 μm or less, purity 99% or more, manufactured by high-purity chemicals) was heated to 500 ° C. on a hot plate to melt it. 0.2 g of calcium oxide (average particle size 4 μm, manufactured by Ube Material Industries Ltd.) that has been preheated to 500 ° C. is mixed with the heated and melted Ba-Li alloy, mixed until uniform, and then cooled to room temperature. By doing so, a coated particulate nitrogen adsorption composition was obtained.

作製されたBaLi/CaO粒子(窒素吸着組成物10)は、カーボンテープ上に固定しPtコートした後、SEM/EDS(日立ハイテク製SU−8020)からCaO粒子表面にBaが存在していることを確認した(図3)。また、EDSマッピングにより、Ca、Baの関係がこのとおりであることを確認した(図4)。 The produced BaLi 4 / CaO particles (nitrogen adsorption composition 10) are fixed on a carbon tape and Pt coated, and then Ba is present on the surface of the CaO particles from SEM / EDS (SU-8020 manufactured by Hitachi High-Tech). It was confirmed that (Fig. 3). In addition, it was confirmed by EDS mapping that the relationship between Ca and Ba was as follows (Fig. 4).

<比較例1>
実施例1と同一のBaLi0.05gと酸化カルシウム0.2gを試料皿上で単純に混合した組成物を作成した。得られた組成物を実施例1と同様にSEM/EDS観察およびEDSマッピングを行ったところ、CaO粒子上にBaが存在していないことを確認した(図5および図6)。
<Comparative example 1>
A composition was prepared by simply mixing 0.05 g of BaLi 4 and 0.2 g of calcium oxide, which were the same as in Example 1, on a sample dish. When the obtained composition was subjected to SEM / EDS observation and EDS mapping in the same manner as in Example 1, it was confirmed that Ba was not present on the CaO particles (FIGS. 5 and 6).

<実施例2>
実施例1で作製したBaLi/CaO粒子を、図2に示すように水分吸着材(CaO)11で被覆したガス吸着材7を作製し、これの窒素吸着能を測定した。上記の実施例2は、BaLi/CaO粒子(ガス吸着組成物)は、吸水材(CaO)中に分散させて成型し、該成型体を水分吸着材で被覆した。
<Example 2>
The BaLi 4 / CaO particles prepared in Example 1 were coated with a water adsorbent (CaO) 11 as shown in FIG. 2, and a gas adsorbent 7 was prepared, and the nitrogen adsorbing ability of the gas adsorbent 7 was measured. In Example 2 above, BaLi 4 / CaO particles (gas adsorption composition) were dispersed and molded in a water absorbing material (CaO), and the molded body was coated with a water adsorbent.

窒素吸着は図7に示す装置を用いて測定した。試料室に窒素吸着デバイスを設置後、真空ポンプを用いて弁を介して、気体溜めおよび試料室を0.1Pa以下の真空とした。弁を閉じた後、弁を介して、窒素ガスを気体溜めに弁を開放後、60Paになるように導入した。弁を閉じた後、弁を開放し、試料室に窒素ガスを導入し、窒素ガスの圧力変化を圧力測定ゲージにより測定した。 Nitrogen adsorption was measured using the apparatus shown in FIG. After installing the nitrogen adsorption device in the sample chamber, the gas reservoir and the sample chamber were evacuated to 0.1 Pa or less through a valve using a vacuum pump. After closing the valve, nitrogen gas was introduced into the gas reservoir through the valve so as to reach 60 Pa after opening the valve. After closing the valve, the valve was opened, nitrogen gas was introduced into the sample chamber, and the pressure change of the nitrogen gas was measured with a pressure measuring gauge.

測定結果を表1と図8に示す。時間とともに、圧力の減少が観察され、窒素吸着材による窒素吸収が確認された。 The measurement results are shown in Table 1 and FIG. Over time, a decrease in pressure was observed, confirming nitrogen absorption by the nitrogen adsorbent.

<実施例3>
実施例1で作製したBaLi/CaO粒子を、図9に示すように水分不透過な金属容器の底部に敷き詰め、上部を水分吸着材CaOで被覆した窒素吸着材を作製し、窒素吸着能を実施例2と同様の方法で測定した。測定結果によれば、時間とともに、圧力の減少が観察され、窒素吸着デバイスによる窒素吸収が確認された。BaLi/CaO粒子(ガス吸着組成物)は、吸水材(CaO)中に分散させて成型し、該成型体をハードケース内に配置後、開放面を水分吸着材で被覆した。
<Example 3>
The BaLi 4 / CaO particles prepared in Example 1 were spread on the bottom of a water-impermeable metal container as shown in FIG. 9, and a nitrogen adsorbent whose upper part was coated with the water adsorbent CaO was prepared to obtain nitrogen adsorbing ability. The measurement was carried out in the same manner as in Example 2. According to the measurement results, a decrease in pressure was observed over time, and nitrogen absorption by the nitrogen adsorption device was confirmed. The BaLi 4 / CaO particles (gas adsorption composition) were dispersed and molded in a water absorbing material (CaO), the molded body was placed in a hard case, and then the open surface was covered with a water adsorbent.

<実施例4>
実施例1において、リチウム合金をLiに変更した以外は、実施例1と同様に、粒子状の窒素吸着組成物を用いて窒素吸着材を作製した。窒素吸着材の窒素吸着能を実施例2と同様に測定した。測定結果では、時間とともに、圧力の減少が観察され、窒素吸着材による窒素吸収が確認された。上記の実施例4では、Liを酸化カルシウムの粒子表面に付着させた窒素吸着組成物を吸水材中に分散させて成形し、水分吸着材で被覆した。
<Example 4>
A nitrogen adsorbent was prepared using the particulate nitrogen adsorbent composition in the same manner as in Example 1 except that the lithium alloy was changed to Li in Example 1. The nitrogen adsorption capacity of the nitrogen adsorbent was measured in the same manner as in Example 2. In the measurement results, a decrease in pressure was observed over time, and nitrogen absorption by the nitrogen adsorbent was confirmed. In Example 4 above, a nitrogen adsorption composition in which Li was adhered to the surface of calcium oxide particles was dispersed in a water absorbing material, molded, and coated with a water adsorbing material.

<比較例2>
比較例1で作製した粒子を、実施例2と同様の方法で、窒素吸着能を測定したが、圧力の変化がなく、窒素吸着は確認されなかった。
<Comparative example 2>
The nitrogen adsorption capacity of the particles prepared in Comparative Example 1 was measured by the same method as in Example 2, but there was no change in pressure and nitrogen adsorption was not confirmed.

<比較例3>
実施例4と同一の金属Liと酸化カルシウムCaOを混合した。混合は、加温せずに行った。金属Liが柔らかいため、両者を均一にそもそも混合することはできなかった。
<Comparative example 3>
The same metal Li and calcium oxide CaO as in Example 4 were mixed. Mixing was done without heating. Since the metal Li is soft, it was not possible to mix the two uniformly in the first place.

<実施例5>
前記実施例1で作製したガス吸着材と金属化合物(Ba−Li合金)とを、危険物の試験および性状に関する省令の別表第八に準じた方法で試験し、実施例1で作製したガス吸着材とBa−Li合金とが水と夫々反応した際のガス発生量を測定した。ガス発生量の測定は、図11に示す装置を用いて行った。
<Example 5>
The gas adsorbent prepared in Example 1 and the metal compound (Ba-Li alloy) were tested by a method according to Appendix 8 of the Ministry Ordinance on Dangerous Substances Test and Properties, and the gas adsorbent prepared in Example 1 was adsorbed. The amount of gas generated when the material and the Ba-Li alloy reacted with water was measured. The amount of gas generated was measured using the apparatus shown in FIG.

図11に示す発生ガス量測定装置の滴下ロート以外の所定の箇所に水を入れ、水の温度は20±5℃とした。ウォーターバス中の水の温度を40℃に加熱し、40℃の純水50cmを滴下ロートに入れた。その後丸底フラスコ(容量100cm)に実施例1のガス吸着材2gのを入れ、滴下ロート中の純水を速やかに丸底フラスコに加えるとともに、スターラーにより攪拌を開始した。発生ガス量を1時間ごとに5時間にわたって測定した。1回の試験における発生ガス量は、各1時間当りの発生量を試料1kg当たりに換算した。 Water was poured into a predetermined place other than the dropping funnel of the generated gas amount measuring device shown in FIG. 11, and the temperature of the water was set to 20 ± 5 ° C. The temperature of the water in the water bath was heated to 40 ° C., and 50 cm 3 of pure water at 40 ° C. was placed in a dropping funnel. After that, 2 g of the gas adsorbent of Example 1 was placed in a round-bottom flask (capacity 100 cm 3 ), pure water in the dropping funnel was quickly added to the round-bottom flask, and stirring was started with a stirrer. The amount of generated gas was measured every hour for 5 hours. For the amount of gas generated in one test, the amount generated per hour was converted into 1 kg of sample.

<比較例4>
実施例5と同様に金属化合物(Ba−Li合金)0.2gが水と反応した際のガス発生量を測定した。比較例4では、多量のガス発生量が多量にならないように、金属化合物の使用量を上記の値とした。
<Comparative example 4>
Similar to Example 5, the amount of gas generated when 0.2 g of the metal compound (Ba-Li alloy) reacted with water was measured. In Comparative Example 4, the amount of the metal compound used was set to the above value so that a large amount of gas was not generated.

測定の結果、比較例4(Ba−Li合金)では、550cc/gの水素を含むガス発生が確認された。実施例1で作製した粒子状窒素吸材では、138cc/gとなり、可燃性ガスの発生量が200cc/g未満であった。 As a result of the measurement, in Comparative Example 4 (Ba-Li alloy), it was confirmed that a gas containing 550 cc / g of hydrogen was generated. In the particulate nitrogen absorbing material produced in Example 1, the amount was 138 cc / g, and the amount of flammable gas generated was less than 200 cc / g.

<実施例6>
BaLi(Ba−Li合金)0.05g(平均粒子径300μm以下、純度99%以上、高純度化学製)をホットプレート上で500℃に加熱し溶融させた。事前に500℃まで加熱しておいたTi粉末(平均粒子径26μm、トウホウテック製)0.2gを、加熱・溶融状態のBa−Li合金に添加し、均一になるまで混合した。その後、室温になるまで冷却し、実施例6の窒素吸着組成物を得た。SEM/EDS(日立ハイテク性Su−8020)による観察の結果、実施例6は、Ti粉末の粒子表面に、Ba−Li合金が付着していることを確認した。
<Example 6>
0.05 g of BaLi 4 (Ba-Li alloy) (average particle diameter 300 μm or less, purity 99% or more, manufactured by high-purity chemicals) was heated to 500 ° C. on a hot plate to melt it. 0.2 g of Ti powder (average particle size 26 μm, manufactured by Tohotec), which had been preheated to 500 ° C., was added to the heated and melted Ba-Li alloy and mixed until uniform. Then, it cooled to room temperature, and the nitrogen adsorption composition of Example 6 was obtained. As a result of observation by SEM / EDS (Hitachi High-Tech Su-8020), in Example 6, it was confirmed that the Ba-Li alloy was attached to the particle surface of the Ti powder.

<実施例7>
BaLi(Ba−Li合金)0.05g(平均粒子径300μm以下、純度99%以上、高純度化学製)をホットプレート上で500℃に加熱し溶融させた。事前に500℃まで加熱しておいたFe粉末(平均粒子径4μm、トウホウテック製)0.2gを加熱・溶融状態のBa−Li合金に混合し、均一になるまで混合後、室温まで冷却し、実施例7の窒素吸着組成物を得た。SEM/EDS(日立ハイテク性Su−8020)による観察の結果、実施例7は、Fe粉末の粒子表面にBa−Li合金が付着していることを確認した。
<Example 7>
0.05 g of BaLi 4 (Ba-Li alloy) (average particle diameter 300 μm or less, purity 99% or more, manufactured by high-purity chemicals) was heated to 500 ° C. on a hot plate to melt it. 0.2 g of Fe powder (average particle size 4 μm, manufactured by Tohotec) that has been preheated to 500 ° C. is mixed with the heated and melted Ba-Li alloy, mixed until uniform, and then cooled to room temperature. , The nitrogen adsorption composition of Example 7 was obtained. As a result of observation by SEM / EDS (Hitachi High-Tech Su-8020), it was confirmed in Example 7 that the Ba-Li alloy adhered to the particle surface of the Fe powder.

実施例6と実施例7との窒素吸着組成物を、それぞれ吸水材中に分散させて成型した。得られた実施例6と実施例7との各成型物の窒素吸着能を、実施例2と同様の方法で測定した。窒素吸着能は、図11に示す装置を用いて測定した。図11に示す装置において試料室に窒素吸着デバイスを設置後、真空ポンプを用いて弁を介して、気体溜めおよび試料室を0.1Pa以下の真空とした。弁を閉じた後、弁を介して、窒素ガスを気体溜めに弁を開放後、60Paになるように導入した。弁を閉じた後、弁を開放し、試料室に窒素ガスを導入し、窒素ガスの圧力変化を圧力測定ゲージにより測定した。測定結果を表2と図12とに示す。 The nitrogen adsorption compositions of Example 6 and Example 7 were each dispersed in a water absorbing material and molded. The nitrogen adsorption capacity of the obtained molded products of Examples 6 and 7 was measured by the same method as in Example 2. The nitrogen adsorption capacity was measured using the apparatus shown in FIG. After installing the nitrogen adsorption device in the sample chamber in the device shown in FIG. 11, the gas reservoir and the sample chamber were evacuated to 0.1 Pa or less through a valve using a vacuum pump. After closing the valve, nitrogen gas was introduced into the gas reservoir through the valve so as to reach 60 Pa after opening the valve. After closing the valve, the valve was opened, nitrogen gas was introduced into the sample chamber, and the pressure change of the nitrogen gas was measured with a pressure measuring gauge. The measurement results are shown in Table 2 and FIG.

1 真空断熱材
2 外装材
6 芯材
7 ガス吸着材
10 窒素吸着組成物
11 水分吸着材
12 添加材
13 金属
14 吸水材
15 ターゲットガス吸着面
1 Vacuum heat insulating material 2 Exterior material 6 Core material 7 Gas adsorbent 10 Nitrogen adsorbent composition 11 Moisture adsorbent 12 Additives 13 Metal 14 Water absorbent 15 Target gas adsorbent surface

Claims (5)

Li、VおよびZrの少なくとも一種、または、前記金属を含む合金からなり、窒素吸着能を備え、金属を窒素の吸着成分として含有するガス吸着材であって、前記金属に対する複数の粒子を含む添加材を有し、前記添加材の粒子のうちの少なくとも一つの表面に前記金属が付着しており、前記金属が前記添加材の粒子包含しているガス吸着組成物を含有しており、
さらに、吸水材を含有しており、
前記添加材は、酸化カルシウム、TiおよびFeからなる群から一種以上選択されることを特徴とするガス吸着材。
A gas adsorbent composed of at least one of Li, V and Zr, or an alloy containing the metal, having a nitrogen adsorbing ability, and containing the metal as a nitrogen adsorbing component, and is added containing a plurality of particles to the metal. has a timber, the metal on at least one surface has adhered of particles of the additive material, which contains the metal is being gas adsorption composition includes particles of the additive material,
In addition, it contains a water absorbing material and
The additive is a gas adsorbent, which is selected from the group consisting of calcium oxide, Ti and Fe .
前記金属が、Liとアルカリ土類金属との合金である、請求項1に記載のガス吸着材。 The gas adsorbent according to claim 1, wherein the metal is an alloy of Li and an alkaline earth metal. 前記金属が、Ba−Li合金である、請求項2に記載のガス吸着材。 The gas adsorbent according to claim 2, wherein the metal is a Ba-Li alloy. 前記金属と前記添加材とを有するガス吸着組成物を前記吸水材で被覆し、前記ガス吸着組成物のターゲットガス吸着面のガスに対する曝露領域に前記吸水材を配置させた請求項に記載のガス吸着材。 The gas adsorption composition having said additive material and the metal coated with the water absorbing material, according to claim 1 for the gas of the target gas absorption surface was placed the water absorbing member to the exposed area of the gas adsorption composition Gas adsorbent. 内部環境を減圧状態にし、熱伝導領域に置かれることによって、断熱効果を発揮する真空断熱材であって、前記内部環境に、請求項1から請求項までのいずれか一項に記載のガス吸着材を備える、真空断熱材。 The gas according to any one of claims 1 to 4 , which is a vacuum heat insulating material that exerts a heat insulating effect by depressurizing the internal environment and placing it in a heat conductive region. Vacuum heat insulating material with adsorbent.
JP2015138132A 2014-10-24 2015-07-09 Gas adsorbent and vacuum heat insulating material using this Expired - Fee Related JP6784440B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15190961.1A EP3012020B1 (en) 2014-10-24 2015-10-22 Gas-adsorbing material and use of a vacuum insulation material including the same
US14/920,261 US10421059B2 (en) 2014-10-24 2015-10-22 Gas-adsorbing material and vacuum insulation material including the same
CN201510698278.5A CN105536686B (en) 2014-10-24 2015-10-23 Gas adsorption material and vacuum insulation material including the same
KR1020150147807A KR102435766B1 (en) 2014-10-24 2015-10-23 Gas Adsorbing Material, and Vacuum Insulation Material Including Same
US16/533,146 US10875009B2 (en) 2014-10-24 2019-08-06 Gas-adsorbing material and vacuum insulation material including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014217230 2014-10-24
JP2014217230 2014-10-24

Publications (2)

Publication Number Publication Date
JP2016083655A JP2016083655A (en) 2016-05-19
JP6784440B2 true JP6784440B2 (en) 2020-11-11

Family

ID=55972745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138132A Expired - Fee Related JP6784440B2 (en) 2014-10-24 2015-07-09 Gas adsorbent and vacuum heat insulating material using this

Country Status (2)

Country Link
JP (1) JP6784440B2 (en)
KR (2) KR20160048627A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807661B2 (en) 2016-06-01 2021-01-06 三星電子株式会社Samsung Electronics Co.,Ltd. Gas adsorbent, its manufacturing method, gas adsorbent using this and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1271207B (en) * 1994-07-07 1997-05-27 Getters Spa DEVICE FOR THE MAINTENANCE OF THE VACUUM IN THERMALLY INSULATING SPACES AND PROCEDURE FOR ITS PRODUCTION
IT1277457B1 (en) * 1995-08-07 1997-11-10 Getters Spa COMBINATION OF GETTER MATERIALS AND RELATED DEVICE
JP2003022744A (en) * 2001-07-06 2003-01-24 Sony Corp Non-vaporizing type getter, display device and their manufacturing method
KR20130074608A (en) * 2011-12-26 2013-07-04 (주)엘지하우시스 Vacuum insulation including getter having high specific surface area

Also Published As

Publication number Publication date
KR102435766B1 (en) 2022-08-24
JP2016083655A (en) 2016-05-19
KR20160048627A (en) 2016-05-04
KR20160048681A (en) 2016-05-04

Similar Documents

Publication Publication Date Title
US10875009B2 (en) Gas-adsorbing material and vacuum insulation material including the same
JP6577848B2 (en) Gas adsorbent and vacuum heat insulating material using the same
JP3507776B2 (en) refrigerator
US9901900B2 (en) Gas-adsorbing material and vacuum insulation material including the same
JP6986332B2 (en) Insulation materials, vacuum heat insulating materials, their manufacturing methods and refrigerators equipped with them
JP6784440B2 (en) Gas adsorbent and vacuum heat insulating material using this
JP6807661B2 (en) Gas adsorbent, its manufacturing method, gas adsorbent using this and its manufacturing method
JP4649953B2 (en) Vacuum insulation
JP2009063033A (en) Heat insulator
JP6465754B2 (en) Gas adsorbent and vacuum heat insulating material using the same
JP4797614B2 (en) Insulation
JP6663658B2 (en) Gas adsorbent and vacuum insulation using the same
JP2008095840A (en) Vacuum heat insulating material
JP2007155087A (en) Vacuum heat insulating material
JP4613557B2 (en) VACUUM INSULATOR AND REFRIGERATOR HAVING VACUUM INSULATOR
JP2016107226A (en) Adsorbent and vacuum heat insulation material using the same
KR102455230B1 (en) Adsorbent, vacuum heat insulating material having the same and refrigerator
WO2020175503A1 (en) Vacuum insulating material
JP2009264492A (en) Vacuum heat insulating material
KR20150046846A (en) Skin layer for vacuum insulation panel and vacuum insulation panel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201020

R150 Certificate of patent or registration of utility model

Ref document number: 6784440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees