WO2020175503A1 - Vacuum insulating material - Google Patents

Vacuum insulating material Download PDF

Info

Publication number
WO2020175503A1
WO2020175503A1 PCT/JP2020/007575 JP2020007575W WO2020175503A1 WO 2020175503 A1 WO2020175503 A1 WO 2020175503A1 JP 2020007575 W JP2020007575 W JP 2020007575W WO 2020175503 A1 WO2020175503 A1 WO 2020175503A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
resin
composite material
heat insulating
Prior art date
Application number
PCT/JP2020/007575
Other languages
French (fr)
Japanese (ja)
Inventor
明子 香村
橋田 卓
明山 悠香子
梅田 章広
蛯名 武雄
吉田 肇
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020175503A1 publication Critical patent/WO2020175503A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a vacuum heat insulating material including a gas barrier structure having a good gas barrier property as a jacket material.
  • a vacuum heat insulating material has a structure in which a core material (core material), a water adsorbent, and the like are enclosed (decompressed and sealed) in a reduced pressure sealed state (substantially vacuum state) inside an outer covering material.
  • the jacket material has a gas barrier property in order to maintain a substantially vacuum state inside.
  • a film laminate including a gas barrier film is generally used as the outer cover material. It is known to use a gas barrier film using a layered clay mineral as one of the methods for improving the gas barrier property in such an outer covering material.
  • a jacket material for a vacuum heat insulating material has a welding layer and a gas barrier layer, and the gas barrier layer includes a layered clayey material (layered clay mineral) and a polymer material.
  • the composition contained is disclosed.
  • the covering material has the gas barrier layer containing the layered clay mineral, it is possible to effectively suppress the permeation and invasion of gas from the outer surface of the vacuum heat insulating material toward the inside.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 09 9-085 25 55
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a vacuum heat insulating material that can be favorably used even under high temperature and high humidity conditions.
  • a vacuum heat insulating material in order to solve the above-mentioned problems, comprises a core material, a moisture adsorbent, and a jacket material, and the core material and the moisture adsorbent are provided on the jacket material. It is a vacuum heat insulating material that is encapsulated and the inside of the outer jacket material is vacuum-sealed.
  • the outer jacket material has a composite material layer containing an inorganic filler and a resin material formed on a base material.
  • a film laminate including a gas barrier structure as a gas barrier film wherein the resin material is a nylon resin, the inorganic filler is an inorganic layered compound, and the content of the inorganic layered compound in the composite material layer is 3 In the range of 0 to 90% by weight, further, in the gas barrier structure ⁇ 0 2020/175503 3 ⁇ (: 170? 2020 /007575
  • the base material of the gas barrier structure is made of nylon resin, and the content of the inorganic layered compound contained in the composite material layer is 30 to 90% by weight.
  • the upper limit of water vapor transmission rate under high temperature and high humidity conditions can be lowered.
  • the gas barrier structure including the gas barrier layer containing the inorganic stratiform compound good gas barrier properties under high temperature and high humidity conditions can be realized. Therefore, by using a film laminate having such a gas barrier structure as a covering material for a vacuum heat insulating material, the vacuum heat insulating material has a good heat insulating effect even under high temperature and high humidity conditions. Can be realized.
  • FIG. 1 Fig. 18 and Fig. 1 M are schematic cross-sectional views showing a configuration of a gas barrier film which is an example of a gas barrier structure according to a typical embodiment of the present invention.
  • Figs. 28 to 20 are schematic cross-sectional views showing typical configurations of a film laminated body including the gas barrier film shown in Fig. 1.
  • FIG. 3 is a schematic cross-sectional view showing a typical structure of a vacuum heat insulating material including the film laminate shown in FIG. 2 as a jacket material.
  • FIG. 4 is a graph showing the relationship between the content of the inorganic layered compound in the composite material layer of the gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention.
  • FIG. 5 Composite material layer of gas barrier structure, which is the result of a representative embodiment of the present invention. ⁇ 0 2020/175 503 4 ⁇ (: 170? 2020 /007575
  • 3 is a graph showing the relationship between the content rate of montmorillonite in and the water vapor permeability of the gas barrier structure.
  • FIG. 6 is a graph showing the relationship between the water content in the composite material layer of the gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention.
  • FIG. 7 is a graph showing the relationship between the content rate of ammonia in the composite material layer of the gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention.
  • FIG. 8 is a graph showing the relationship between the addition rate of a low molecular weight amine compound in a composite material layer of a gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention. ..
  • a vacuum heat insulating material includes a core material, a moisture adsorbent, and an outer coating material, and the core material and the moisture adsorbent are included in the outer coating material, and the inside of the outer coating material is included.
  • the outer coating material includes a gas barrier structure in which a composite material layer containing an inorganic filler and a resin material is formed on a base material as a gas barrier film.
  • the resin material is a nylon resin
  • the inorganic filler is an inorganic layered compound
  • the content of the inorganic layered compound in the composite material layer is in the range of 30 to 90% by weight.
  • the gas barrier structure has a temperature of 40 ° ⁇ and a relative humidity of 9 5% (9 5 It has a configuration of 3 or less.
  • the base material of the gas barrier structure is made of a nylon resin, and the content of the inorganic stratiform compound contained in the composite material layer is 30 to 90% by weight.
  • the upper limit of water vapor transmission rate under high temperature and high humidity conditions can be lowered.
  • the vacuum heat insulating material can realize a good heat insulating effect even under high temperature and high humidity conditions.
  • the inorganic layered compound may be a smectite.
  • the smectite is at least one selected from the group consisting of montmorillonite, stephensite, support, and hexite. Good.
  • the smectite is a mixture of the montmorillonite and the stevensite, and the content ratio of the montmorillonite in the mixture is 65% by weight or more.
  • the composition may be less than 100% by weight.
  • the smectite contains at least one of an ammonium ion (1 ⁇ 1 1 to 1 4 + ) and a proton (1 to 1 + ) as an interlayer cation. It may be configured.
  • the interlayer cation of smectite is replaced with sodium ion from ammonium ion or proton. Therefore, without using relatively expensive material (ion) such as conventional lithium ion ⁇ 0 2020/175 503 6 ⁇ (: 170? 2020 /007575
  • the water resistance of the composite material layer can be improved.
  • the composite material layer may have a water content of 2.5 wt% or less.
  • the composite material layer may have a configuration in which the content of ammonia is 1.0 wt% or less.
  • the resin material has a molecular weight of 2
  • It may be configured such that a water-soluble low molecular weight amine compound having a molecular weight of 0 or less is added.
  • the composite material layer has a thickness of 10
  • the base material may be a resin film having an inorganic vapor deposition layer.
  • the base material is the resin film having the inorganic vapor deposition layer
  • the gas barrier structure provided in the film laminate that is the outer covering material has a good gas barrier property.
  • the rear property can be realized, and the adhesion of the composite material layer formed on the base material can be improved.
  • the specific structure of the gas barrier structure is not particularly limited, but as shown in Fig. 18 and Fig. 1m, a film-shaped one, that is, gas barrier film 108, 10m.
  • the gas barrier film 108 the gas barrier film 108,
  • the gas barrier structure according to the present disclosure will be specifically described with reference to No. 10.
  • the gas barrier film 108 shown in FIG. 18 includes a base material 11, a composite material layer 12 and an inorganic vapor deposition layer 13 and the gas barrier film 1 0 shown in FIG. 1 is a base material 1 1. And a composite material layer 12 but not an inorganic vapor deposition layer 13.
  • the form of the substrate 11 is not particularly limited, and may take various forms such as a film shape, a flat plate shape, and a container shape. Further, the specific type of the substrate 11 is not particularly limited, and various types can be used depending on the application of the gas barrier structure. As described above, when the gas barrier structure is the gas barrier film 108, 108, a resin film can be used as the substrate 11.
  • Representative resin films include, for example, polyethylene terephthalate (Mita), polyethylene naphthalate (Mita 1 ⁇ !), polytrimethylene terephthalate (Mitsume), polyptyrene terephthalate (Mitsume), and polyethylene naphthaphthalate.
  • (Min) Polyester such as; Polyethylene (Min), Poly ⁇ 0 2020/175503 8 ⁇ (: 170? 2020/007575
  • Polypropylene such as propylene (), polymethylpentene (custom); nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 46, nylon 61, nylon 6 12, nylon 6 and nylon 6 ⁇ , Nylon 9 pcs, Nylon IV! 5 pcs, etc.
  • Nylon polyamide
  • Triacetyl cellulose Chome 80, etc.
  • Cellulosic resin Polymethylmethacrylate (1 ⁇ /1 1 ⁇ /1)
  • acrylic resin include polyvinyl chloride (VO); polycarbonate (O); and the like, but are not particularly limited. A combination of two or more kinds of these resin (plastic) materials (polymer alloy) may be used, or a known additive or the like may be contained.
  • the thickness of the resin film as the base material 11 is not particularly limited, and can be appropriately set according to the use of the gas barrier film 108, 10m. Moreover, the resin film may be a single layer, or may be a plurality of layers of two or more layers. If the base material 11 is a resin film, it usually has flexibility, but if the base material 11 is plate-shaped, it has rigidity. If the base material 11 has various container shapes, it may have flexibility or rigidity depending on the shape of the container. The thickness when the base material 11 is plate-shaped or container-shaped is not particularly limited. In addition, conditions and physical properties other than the thickness of the base material 11 are not particularly limited.
  • the resin film as the base material 11 includes the composite material layer 1
  • An inorganic vapor deposition layer 13 may be formed on the surface on which 2 is formed. That is, in the present disclosure, a resin film having the inorganic vapor deposition layer 13 on the formation surface of the composite material layer 12 may be used as the base material 11. Of course, as shown in FIG. 1, the inorganic vapor deposition layer 13 may not be formed on the surface of the base material 11 on which the composite material layer 12 is formed.
  • Specific types of the inorganic vapor deposition layer 13 include, for example, silica (silicon oxide).
  • Alumina aluminum oxide
  • magnesia magnesium oxide
  • titania titanium oxide
  • tin oxide cerium oxide
  • cerium oxide zinc oxide
  • spinel IV! 9 8 I 2 0 4 etc. oxides
  • aluminum nitride, silicon nitride etc. Nitride
  • Fluoride such as calcium fluoride and cerium fluoride
  • Oxynitride such as silicon oxynitride
  • Examples thereof include metals such as nickel; but are not particularly limited.
  • a vapor-deposited layer of oxide such as silica or alumina is preferably used.
  • the thickness of the inorganic vapor deposition layer 13 is not particularly limited, but if the thickness is too large,
  • the method for forming the inorganic vapor deposition layer 13 on the resin film (base material 11) is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition method, sputtering method and ion plating method ( ⁇ method); plasma Known methods such as chemical vapor deposition (XX method); such as chemical vapor deposition and thermochemical vapor deposition can be preferably used.
  • the composite material layer 12 may be one containing an inorganic filler and a resin material.
  • the resin material is a nylon resin
  • the inorganic filler is an inorganic layered compound. is there.
  • the composite material layer 12 basically has a configuration in which a nylon resin that is a resin material is used as a binder component, and an inorganic layered compound that is an inorganic filler is dispersed in this binder component. Therefore, the composite material layer 12 may be composed of at least an inorganic filler and a resin material, but may contain known components other than these.
  • the inorganic filler constituting the composite material layer 12 may be an inorganic layered compound as described above.
  • a layered silicic acid such as clay mineral, synthetic hectite, modified bentonite, or the like.
  • Salt Aluminum scales, iron oxide scales, strontium titanate scales, silver scales, stainless scales, zinc scales, and other metal or metal compound scale-like (flake-like, flaky) particles; aluminum foil, tin foil, bronze foil , Nickel foil, metal foil such as indium foil; layered silica, hexagonal boron nitride, graphite, silicon scale, layered non-metallic inorganic compound such as layered niobium titanate; Not limited.
  • These inorganic layered compounds may be used alone or in combination of two or more kinds.
  • clay minerals are preferably used as the inorganic layered compound.
  • Specific clay minerals include, for example, lizardite, amethite, and kaori. ⁇ 0 2020/175 503 10 ⁇ (: 170? 2020 /007575
  • 1:1 layer type such as night, dickite, haloite, pyrophyllite; montmorillonite, stephensite, support, hexite, baiderite, nontronite, soconite, 3 octahedral vermiculite.
  • Two or more kinds may be appropriately combined and used, and one or more kinds of inorganic layered compounds other than the clay mineral may be appropriately combined and used.
  • a 2:1 layer type clay mineral can be preferably used, and among them, smectite can be particularly preferably used.
  • the smectite holds exchangeable cations between layers, and has a property that the layers expand and swell when water molecules are taken in between the layers by the interlayer cations.
  • Specific smectites include, for example, montmorillonite, stephenite, savonite, hexite, baiderite, nontronai, sauconite, and the like. These smectites may be used alone or in a suitable combination of two or more.
  • At least one selected from the group consisting of montmorillonite, stevensite, sabonate, and hexite is preferably used.
  • a combination of montmorillonite and stevensite can be preferably used, but only monmorillonite may be used, or only one other smectite may be used, It may be a combination of smecties other than montmorillonite and stevensite.
  • the combination of smectites is not limited to two types and may be three or more types. ⁇ 0 2020/175 503 1 1 ⁇ (: 170? 2020 /007575
  • the type of interlayer cation is not particularly limited.
  • the interlayer cation of smectite is sodium ion (N 3 + ), but this sodium ion may be replaced by another cation.
  • lithium ion (!_ ⁇ + ) can be used as disclosed in Reference 1: International Publication ⁇ 2 0 1 1/1 5 2 5 0 0. may be mentioned, in the present disclosure, particularly preferable examples thereof include Anne Moniumuion (1 ⁇ 1 1 to 1 4 +).
  • the water resistance can be improved by substituting the interlayer cations with lithium ions for lithium ions and performing heat treatment.
  • lithium is relatively expensive, and the heat treatment temperature must be set relatively high in order to suppress the attraction of moisture due to lithium ions.
  • compounds containing ammonium ions are cheaper than lithium and the heat treatment temperature after substitution can be relatively low. Then, by heat treatment, the substituted ammonium ions are converted into ammonia. By desorbing, the interlayer cations finally become proteins (1 to 1 + ), which makes it possible to achieve good water resistance.
  • ⁇ 1 4 +) is preferably at least one of us and protons (1-1 +).
  • the specific type of the nylon-based resin which is the resin material forming the composite material layer 12, is not particularly limited.
  • the nylon-based resin that can be preferably used in the present disclosure for example, various nylons (polyamides) listed as an example of the base material 11 can be preferably used. These nylon resins may be used alone or as a polymer alloy in which two or more kinds are appropriately blended.
  • water-soluble nylon can be mentioned.
  • the specific structure of the water-soluble nylon is not particularly limited, and examples thereof include those using an amine compound as a monomer, and those using an alkylene oxide compound as a monomer.
  • a water-soluble nylon containing a large amount of an amine compound can improve the gas barrier properties of the composite material layer 12 and a water-soluble nylon containing a large amount of an alkylene oxide compound can form a composite material.
  • the peel resistance of the layer 12 can be improved.
  • a resin material other than a nylon resin may be contained. That is, in the present disclosure, the nylon resin may be used as the main component of the binder component, but other resin materials may be blended with the nylon resin depending on various conditions. Other resin materials are not particularly limited, and examples thereof include urea resin, melamine resin, phenol resin, epoxy resin, blocked isocyanate and the like. Only one kind of these other resin materials may be used, or two or more kinds thereof may be appropriately combined and used. Since a crosslinked structure can be formed in the composite material layer 12 by mixing these other resin materials with a nylon resin and heat-treating them, the moisture resistance of the obtained gas barrier structure can be improved. ..
  • the amount of the other resin material added to the nylon-based resin is not particularly limited as long as it does not impede the gas barrier properties of the composite material layer 12 and may be, for example, 10% by weight or less. it can. If the binder component is mainly made of nylon resin, other resin materials can be less than 50% by weight. ⁇ 0 2020/175 503 13 (: 17 2020 /007575
  • the content of the nylon resin in the binder component is, for example, 90% by weight or more.
  • the nylon resin may contain known additives.
  • Specific additives are not particularly limited, and examples thereof include antioxidants, light stabilizers, antistatic agents, flame retardants, plasticizers, lubricants, colorants, thickeners, and known fillers other than inorganic layered compounds. You can When the resin material which is the binder component of the composite material layer 12 is regarded as the first component and the inorganic layered compound which is the inorganic filler is regarded as the second component, these additives constitute the composite material layer 12 May be considered the third component. In other words, as described above, the composite material layer 12 contains at least the inorganic filler and the resin material, but may further contain known additives and the like.
  • a thickener can be mentioned as a typical example of the above-mentioned third component. It is preferable that the thickener is a material that not only increases the viscosity but also imparts stringiness (property of extending into a filament shape).
  • the specific thickener is not particularly limited, and examples thereof include polyvinyl alcohol ( ⁇ ) and ruboxymethyl cellulose. , Polyethylene oxide, and the like. These thickeners may be used alone or in an appropriate combination of two or more. Of these, it is desirable to use fully saponified products from the viewpoint of moisture resistance of composite material layer 12 (gas barrier structure).
  • a water-soluble low molecular weight amine compound having a molecular weight of 200 or less is added to the nylon resin.
  • You can Specific low molecular weight amine compounds include, for example, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, low-molecular weight diamines of 1,4-cyclohexanediamine; Examples thereof include low molecular weight diaminocarboxylic acids; low molecular weight amino alcohols such as diethanolamine; ⁇ 0 2020/175503 14 ⁇ (: 170? 2020 /007575
  • low molecular weight amine compounds may be used alone or in appropriate combination of two or more.
  • the addition amount of the low molecular weight amine compound to the nylon resin is not particularly limited, but the addition amount can be set based on the weight of the nylon resin. Specifically, change the weight of nylon resin And the weight of the low molecular weight amine compound, the addition ratio of the low molecular weight amine compound is And the weight of low molecular weight amine compounds Weight of low molecular weight amine compound relative to Can be expressed as a percentage ( 8 / (I +1) X 100) (unit: weight %).
  • the total weight of the binder component (resin component) (weight of nylon resin) It is also possible to set the addition ratio of the low molecular weight amine compound (by replacing the weight with the total weight of the binder component).
  • the addition ratio of the low molecular weight amine compound is not particularly limited as long as it is within a range capable of exhibiting a good water vapor barrier property.
  • the content can be in the range of to 75% by weight, and preferably in the range of 40 to 70% by weight.
  • the content of the low molecular weight amine compound is within this range, the water vapor barrier property of the obtained gas barrier structure is improved, and the peel strength of the composite material layer 12 from the base material 11 is improved. Can also be expected.
  • the ratio (content ratio) of the inorganic layered compound contained in the composite material layer 12 is
  • the upper limit value or the lower limit value of the temperature content of the inorganic layered compound can be appropriately selected according to the water vapor barrier property required in the use environment.
  • the inorganic layered compound contained in the composite material layer 12 is a smectite
  • the smectite is:
  • the above-mentioned mixture of montmorillonite and stephensite can be preferably used.
  • the compounding ratio of montmorillonite and stephensite in the mixture is not particularly limited, and can be set within an appropriate range according to various conditions.
  • Example 2 As a typical example, as shown in Example 2 (and Fig. 5) to be described later, a mixing ratio such that the content of montmorillonite in the mixture is 65% by weight or more and less than 100% by weight is used. Can be mentioned. In other words, the content of the step-site in the mixture may be 0% by weight or more and less than 35% by weight. When the content rate of monmonylonite exceeds 65% by mass, 40 ° ⁇ 9 5% [3 ⁇ 4
  • the specific conditions of the composite material layer 12 in the gas barrier structure (gas barrier film 108, 110) according to the present disclosure are not particularly limited, and may be changed depending on the use of the gas barrier structure. Suitable conditions can be set as appropriate.
  • the thickness of the composite material layer 12 is not particularly limited, but typically, if the thickness after drying is within the range of 10 1 ⁇ 111 ( ⁇ 0.01 000 or more and 501 or less).
  • the upper limit value may be 3 or less, or may be 2 or less. If the thickness of the composite material layer 1 2 is less than 1 O nm, the composite material layer 1 may vary depending on various conditions.
  • the composite material layer 1 2 may be too thin to realize sufficient gas barrier properties.On the other hand, if the thickness of the composite material layer 1 2 exceeds 5, it may not be possible to achieve gas barrier properties matching the thickness, depending on various conditions. If, for example, the base material 11 is a resin film, the composite material layer 12 may become too thick and sufficient flexibility may not be obtained.
  • the method for forming the composite material layer 12, that is, the method for producing the gas barrier structure (gas barrier film 108, 110) is not particularly limited, and the inorganic layered material as the inorganic filler on the substrate 11 is not limited.
  • the composite material layer 12 containing a compound and a nylon resin as a resin material (binder component) may be formed by a known method.
  • a coating solution containing an inorganic layered compound and a nylon resin is prepared by a known method, and this coating solution is formed on the surface of the substrate 11 (inorganic vapor deposition layer 13 by the known method). In the case of having it, it may be formed on the inorganic vapor deposition layer 13 of the substrate 11) and dried.
  • a dispersion liquid prepared by dispersing an inorganic layered compound and a nylon resin in a known solvent can be mentioned.
  • concentrations of the organic layered compound and the nylon resin in the coating liquid are not particularly limited, and can be appropriately set according to various conditions such as the coating method and the drying method.
  • the coating liquid may contain components other than the inorganic layered compound and the nylon resin, if necessary.
  • the kind of the solvent (dispersion medium) is not particularly limited, and can be appropriately set depending on the kinds of the inorganic layered compound and the nylon resin. ⁇ 0 2020/175503 17 ⁇ (: 170? 2020/007575).
  • At least water is used as the solvent (dispersion medium), and in addition thereto, alcohol or other water-soluble organic solvent or the like can be used in combination.
  • the coating liquid can be applied by bar coating, mouth coating, spray coating, dip coating, spin coating, lamina-flow coating, die coating, gravure coating, knife coating, force-ten coating, Known coating methods such as rod coating, air doctor coating, blade coating, and comma coating can be mentioned, but not particularly limited.
  • Examples of the method for drying the applied coating film include, but are not limited to, heat drying, reduced pressure drying, and combinations thereof.
  • the heating or depressurizing conditions are not particularly limited, and can be appropriately set according to various conditions such as the composition of the coating liquid or the type of the substrate 11.
  • ammonium ion is converted from ammonium ion by heat treatment.
  • the heat treatment step and the coating film drying step may be carried out in a single step.
  • the thickness of the coating liquid before drying has a correlation with the thickness after drying.
  • the solid content of the coating liquid that is, at least the inorganic layered compound and nylon resin (when other inorganic filler or other resin material is used together, these other components are also included in the solid content)
  • the concentration is about 3% by weight as shown in Examples 1 to 4 described later or about 2% by weight as shown in Example 5
  • the thickness of the coating film before drying is It is proportional to the film thickness (thickness of the solvent/dispersion medium removed substantially).
  • the film thickness after drying (the thickness of the composite material layer 12) was , Within the range of 1.3 to 2.8, and when a coating film was formed with a film thickness of 100% measured at a solid content concentration of about 2% by weight, the film thickness after drying was 0.9 to 1. ⁇ 0 2020/175 503 18 ⁇ (: 170? 2020 /007575
  • the residual amount of water and the residual amount of ammonia can also be specified. That is, in the dried composite material layer 12, it is possible to determine that the composite material layer 12 is sufficiently dried by defining the upper limit value of the residual amount of water. Further, as described above, when the inorganic layered compound is a smectite and the interlayer cation is an ammonium ion (1 ⁇ 1 1 to 1 4 + ), the heat treatment step and the drying step are collectively performed. In this case, by defining the upper limit value of the residual amount of ammonia in the dried composite material layer 12, it can be determined that ammonia is sufficiently desorbed in the composite material layer 12.
  • the upper limit of the residual amount of water in the composite material layer 12 may be, for example, 2.5% by weight or less, as shown in Example 3 (and Fig. 6) described later. If the water content in the composite material layer 12 is less than this value, it can be determined that the composite material layer 12 is sufficiently dry. Further, the upper limit of the residual amount of ammonia in the composite material layer 12 may be 1.0% by weight or less as shown in Example 3 (and FIG. 7) described later. If the content of ammonia in the composite material layer 12 is less than this value, it is possible to suppress the attraction of water in a humid environment due to the presence of ammonium ions.
  • the method for measuring the water or ammonia content in the composite material layer 12 is not particularly limited, but as described later, the water content can be measured by a force Fischer moisture meter. The content of may be measured by ion chromatography.
  • the gas barrier film as the gas barrier structure according to the present disclosure As described above, the gas barrier film as the gas barrier structure according to the present disclosure
  • each of 10 and 10 has a structure having at least two layers, that is, a base material 11 and a composite material layer 12, and a preferable example is shown in FIG. ⁇ 0 2020/175 503 19 ⁇ (: 170? 2020/007575
  • the specific structure of the gas barrier film 108, 10 gas barrier structure is not limited to these, and the layers other than the base material 11, the composite material layer 12 and the inorganic vapor deposition layer 13 may be used. May have a configuration
  • the gas barrier structure (gas barrier film 108, 110) according to the present disclosure has the above-described configuration, and can achieve good gas barrier properties under conditions of high temperature and high humidity.
  • the water vapor permeability of the gas barrier structure according to the present disclosure is at least 1.09 / under an environment of high temperature and high humidity of 40 ° ⁇ 9 5% [3 ⁇ 4 1 to 1].
  • the water vapor transmission rate when the composite material layer 1 2 content of no machine layered compound is 0% ⁇ 2 0 9 / ⁇ -
  • the water vapor permeability is affected not only by the composite material layer 12 but also by the gas barrier properties of the substrate 11. Therefore, in Example 1, the experimental result in which the content of the inorganic layered compound is 0% is positioned as a “reference example” for considering the influence of the base material 11 in Example 1, and falls within the scope of the present invention. I can't enter.
  • the base material 11 is made of nylon-based resin, and the content ratio of the inorganic layered compound contained in the composite material layer 12 is 30 to 9.
  • the content is set to 0% by weight, the upper limit of the water vapor permeability under high temperature and high humidity conditions can be lowered. Therefore, good gas barrier properties (particularly water vapor barrier properties) can be exhibited under conditions of high temperature and high humidity.
  • a film laminate including the gas barrier structure according to the present disclosure as a gas barrier film 108, 10 will be specifically described with reference to FIGS. 28 to 20.
  • the film laminated body 208 to 200 according to the present embodiment is the same as the gas barrier film 108 described above in “gas barrier film”. ⁇ 0 2020/175 503 20 (: 170? 2020 /007575
  • the gas barrier film 108 has a three-layer structure of a substrate 11, a vapor-deposited layer 13 and a composite material layer 12, although 28-Fig. 20 are shown as a "single film" in which the gas barrier film 108 is shaded for the sake of clarity to distinguish it from other laminated films. Further, it is needless to say that the gas barrier film 108 in FIGS. 28 to 20 can be replaced with the gas barrier film 10 shown in FIG. 1 or a gas barrier film having another structure.
  • the film laminated body 28 shown in FIG. 28 includes a protective film 21, a heat-sealing film 22 and a gas barrier film 108, and a protective film 21 and a heat-sealing film. It has a three-layer structure in which a gas barrier film 108 is sandwiched between 22.
  • the protective film 21 becomes the outer surface of the bag when the film laminate 20 is formed into a bag, and the heat-sealing film 22 becomes the inner surface of the bag.
  • the side of the protective film 21, that is, the side that is the outer surface of the bag body is referred to as "upper side”
  • the side of the heat-sealing film 2 2 that is, the side that is the inner surface of the bag body is "lower side”.
  • the film laminated body 20 shown in Fig. 2 includes a protective film 21, a heat-sealing film 22 and a two-layer gas barrier film 23 and a gas barrier film 108. It has a four-layer structure in which two layers of gas barrier films 23 and 108 are sandwiched between the protective film 21 and the heat-sealing film 22.
  • the film laminated body 20 is laminated from the upper side to the lower side in the order of the protective film 21, the gas barrier film 23, the gas barrier film 108, and the heat-sealing film 22.
  • the lower gas barrier film 108 is the gas barrier structure according to the present disclosure, but the upper gas barrier film 23 is different from the gas barrier structure according to the present disclosure. Any configuration will do.
  • the gas barrier film 10 may be on the upper side (the side in contact with the protective film 21) instead of the lower side (the side in contact with the heat-sealing film 22).
  • a protective film ⁇ 0 2020/175503 21 ⁇ (: 170? 2020 /007575
  • a gas barrier film having three or more layers may be sandwiched between the film 21 and the heat-sealing film 22 and at least one layer may be the gas barrier film 108 (gas barrier structure).
  • Omi has a structure including a protective film 21, a heat-sealing film 22 and one or more gas barrier films 108, but the specific structure of the film laminate is not limited to these.
  • the film laminate 200 shown in FIG. 20 it may have a two-layer structure in which the upper side is the gas barrier film 108 and the lower side is the heat fusion film 22.
  • the side may be the protective film 21 and the lower side may be the gas barrier film 108, or a four-layer structure in which a film other than the protective film 21, the heat-sealing film 22 and the gas barrier film 10 is laminated.
  • the above configuration may be adopted.
  • the film laminates 208 to 200 shown in FIGS. 28 to 20 have a structure in which one layer of the gas barrier structure according to the present disclosure is provided as the gas barrier film 10.
  • the specific configuration of the body is not limited to this.
  • a gas barrier film 108 may be obtained by laminating two or more layers of the gas barrier structure according to the present disclosure.
  • the protective film 21 may be a layer (outer surface protective layer) for protecting the outer surface (surface) of the bag body, and its specific material is appropriately selected according to the application of the bag body, and in particular, Not limited.
  • various resins having a certain degree of durability may be used. Specific resins include, for example, polyethylene terephthalate (Mita), nylon (polyamide, eight), polycarbonate ( ⁇ ), polyimide (I), polyetheretherketone (Mimi), polyphenylene sulfide. (3), Polysulfone (3), Ultra high molecular weight polyethylene (11- However, the present invention is not limited to these. ⁇ 0 2020/175 503 22 ⁇ (: 170? 2020 /007575).
  • the polymer alloy may contain a resin other than the resin suitable as the protective film 21.
  • the protective film 21 may contain components (various additives, etc.) other than the resin described above. That is, the protective film 21 may be composed of only the resin described above, but may be composed of a resin composition containing other components.
  • the thickness of the protective film 21 is not particularly limited as long as it has a thickness that can protect the outer surface of the bag body.
  • the heat-sealing film 22 is a layer (adhesive layer) for adhering the film laminates 20 to 200 to each other by facing each other (adhesive layer), and a layer for protecting the inner surface of the bag body (inner surface protection). Layer).
  • the heat fusion film 22 as an adhesive layer will be described.
  • the heat fusion film 2 of the film laminate 20 The inner surfaces of the film laminate 208 can be heat-sealed by facing each other and heating. Therefore, the film laminate 208 can be formed into a bag by heat-sealing the periphery of the film laminate 208 facing each other.
  • the heat fusion film 22 as the inner surface protective layer will be described.
  • the gas barrier film 1 is a three-layer structure film laminate 208 shown in Fig. 28.
  • One surface (outer surface) of No. 08 is protected by the protective film 21 while the other surface (inner surface) is protected by the heat fusion film 22. Therefore, from the perspective of the gas barrier film 108, the protective film 21 functions as an “outer surface protective layer”, and the heat fusion film 22 functions as an “inner surface protective layer” as described above.
  • the heat-sealing film 22 covers the surface (inner surface) of the gas barrier film 108, ⁇ 0 2020/175 503 23 ⁇ (: 170? 2020 /007575
  • the material used as the heat-sealing film 22 is not particularly limited as long as it is a material having a heat-sealing property that can be fused by heating and can be bonded, but typically, various thermoplastic resins ( A heat-fusible resin) may be used.
  • resins include, for example, high-density polyethylene (1 to 10 ??), low-density polyethylene (!_ 0?)
  • Linear low-density polyethylene (!_ !_ 0?), ultra-high molecular weight polyethylene (II —, Examples thereof include, but are not limited to, polypropylene (), ethylene-vinyl acetate copolymer (Minhachi), nylon (polyamide, 8), and the like.
  • the polymer alloy may contain a resin other than the resin suitable as the heat-sealing film 22.
  • the heat-sealing film 22 may contain components (various additives, etc.) other than the resin described above. That is, the heat-sealing film 22 may be composed of only the resin described above, but may be composed of a resin composition containing other components.
  • the heat-sealing film 22 is a single-layer (single-layer) resin film like the protective film 21. Although it is configured, it may be configured by laminating a plurality of resin films.
  • the thickness of the heat-sealing film 22 is not particularly limited as long as it has a thickness capable of exhibiting sufficient adhesiveness when the film laminates 208 to 200 are bonded together, As long as it has a thickness that can protect the inner surface of the film laminate 208 to 200 as an inner surface protective layer.
  • Another gas barrier film 23 illustrated in FIG. 2 is the gas barrier film 1
  • any known film having a structure different from that of No. 08 and having a suitable gas barrier property may be used.
  • metal foil such as aluminum foil, copper foil, and stainless steel foil; a vapor deposition film having a vapor deposition layer in which a metal or metal oxide is vapor deposited on a resin film as a base material; on the surface of this vapor deposition film Further known ⁇ 0 2020/175 503 24 ⁇ (: 170? 2020 /007575).
  • a film and the like that have been subjected to coating treatment may be mentioned, but the film is not particularly limited.
  • Examples of the base material used for the vapor-deposited film include, but are not limited to, the same resin films as the base material of the gas barrier film 108, 10 according to the present disclosure.
  • Examples of the metal or metal oxide include, but are not limited to, aluminum, copper, alumina and silica.
  • the other gas barrier film 23 may be composed of a single layer of film or foil, or may be composed of a plurality of films or foils laminated.
  • the gas barrier film 108, 10 (gas barrier structure) according to the present disclosure has a good barrier property especially against water vapor under high temperature and high humidity conditions, but it does not protect against other gases under other conditions.
  • the overall gas barrier property of the film laminate 20 can be further improved.
  • the vacuum heat insulating material 40 includes a core material 31, a moisture adsorbent 32, and a jacket material 20. It is included in the material 20 and the inside of the outer covering material 20 is vacuum-sealed. And, as the outer covering material 20, the above-mentioned film laminates 208 to 20 (3 are used. There is.
  • the outer covering material 20 is a bag-shaped member composed of the above-mentioned film laminates 208 to 200, and in the present embodiment, for example, two film laminates 20 It is formed into a bag by placing ⁇ 200 facing each other and sealing the surrounding area.
  • the surrounding sealed part is a state in which the core material 31 does not exist inside and the outer covering materials 20 (film laminated bodies 20 to 200) are in contact with each other,
  • the fins extend from the main body of the vacuum heat insulating material 40 toward the outer periphery.
  • the core material 31 is not particularly limited as long as it has a heat insulating property.
  • ⁇ 0 2020/175 503 25 (: 170? 2020 /007575
  • inorganic fibers are used as the core material 31.
  • the inorganic fiber may be a fiber made of an inorganic material, and specific examples thereof include glass fiber, ceramic fiber, slag wool fiber and rock wool fiber.
  • a known binder material, powder or the like may be included in addition to these inorganic fibers. These materials contribute to the improvement of physical properties such as strength, uniformity, and rigidity of the core material 31.
  • thermosetting foam As a material that can be used as the core material 31 other than the inorganic fiber, a thermosetting foam can be mentioned.
  • the thermosetting foam may be formed by foaming a thermosetting resin or a resin composition containing the same (thermosetting resin composition) by a known method.
  • the thermosetting resin include, but are not limited to, an epoxy resin, a phenol resin, an unsaturated polyester resin, a urea resin, a melamine resin, a polyimide and a polyurethane.
  • the foaming method is also not particularly limited, and may be foamed under known conditions using a known foaming agent.
  • a known organic fiber fiber made of an organic material
  • the specific type thereof is not particularly limited. Not limited.
  • the water adsorbent 32 is not particularly limited as long as it is a known adsorbent capable of adsorbing and removing water or water vapor.
  • Specific water adsorbents 32 include, for example, alkali metal oxides, alkaline earth metal oxides, alkali metal hydroxides, and alkaline earth metal hydroxides. However, it is not particularly limited. However, if it is a compound of a metal element of Group 1 of the periodic table such as an alkali metal or an alkaline earth metal or a metal element of Group 2 of the periodic table, water is chemically adsorbed and immobilized. be able to. Therefore, it is preferable because moisture can be better immobilized as compared with physical adsorption.
  • a known gas adsorbent may be enclosed in the jacket material 20 together with the core material 31 and the water adsorbent 32.
  • the vacuum heat insulating material 40 is made of the outer coating material 20 (film laminated body 20 to 200, core material 31 and moisture absorbent 32 ⁇ 0 2020/175 503 26 ⁇ (: 170? 2020 /007575
  • the specific manufacturing method of the vacuum heat insulating material 40 is not particularly limited, and a known manufacturing method can be preferably used.
  • the outer cover material 20, that is, the film laminate 20 to 20 (3 is formed into a bag shape, and then the core material 3 1, the moisture adsorbent 3 2 and, if necessary, the A manufacturing method is adopted in which another member or the like (for example, a gas adsorbent or the like) is inserted and the bag-shaped jacket material 20 is hermetically sealed under a reduced pressure environment (substantially vacuum state).
  • the method for forming the outer covering material 20 into a bag shape is not particularly limited, but the film laminates 20 to 20 (three two sheets of the outer covering material 20 are prepared and heat-bonded to each of them.
  • An example is a method of forming a bag shape by heat-sealing most of the peripheral edge portions in a state where the films 22 are arranged opposite to each other. If so, leave only one of the four sides as an opening, and heat-seal the remaining part of the peripheral edge excluding the opening so as to surround the central part (the part in which the core 31 is housed). Good.
  • the core material 31 or the like may be inserted into the bag-shaped jacket material 20 through the opening, and the pressure may be reduced in a pressure reducing facility such as a pressure reducing chamber.
  • a pressure reducing facility such as a pressure reducing chamber.
  • the bag-shaped outer covering material 20 is not limited to the structure using two film laminated bodies 208 to 200.
  • one film laminated body 208 to 20 (3 is folded in half and both side edges are heat-welded to obtain a bag-shaped jacket material 20 having an opening.
  • the film laminates 208 to 200 may be formed into a cylindrical shape and one of the openings may be sealed.
  • the vacuum heat insulating material 40 manufactured in this manner has a depressurized and sealed state inside (almost true). ⁇ 0 2020/175 503 27 ⁇ (: 170? 2020 /007575).
  • the film laminate 20-8 to 200 which is the jacket material 20 includes at least one layer of the gas barrier film 108 and 10 which is the gas barrier structure according to the present disclosure. Therefore, it is possible to sufficiently prevent the water vapor contained in the outside air from entering the inside of the vacuum heat insulating material 40, and it is possible to maintain a good internal vacuum state. As a result, the vacuum heat insulating material 40 can continuously realize excellent heat insulating performance.
  • such a vacuum heat insulating material 40 can be suitably used for various heat insulating applications.
  • Home appliances can be cited as an example of typical heat insulation applications.
  • the specific type of home electric appliance is not particularly limited, and may be, for example, a refrigerator, a water heater, a rice cooker, or a jarpot.
  • a housing wall can be mentioned as an example of another heat insulation application.
  • Still another example of heat insulation is transportation equipment.
  • the specific type of transportation equipment is not particularly limited, and examples thereof include ships such as tankers, automobiles, and aircraft.
  • the vacuum heat insulating material 40 according to the present disclosure is a gas barrier structure (gas barrier film 108, 100) as described above for the covering material 20 (film laminated body 208-200). Since it is equipped with, it can be used satisfactorily not only in a standard humidity environment but also in a humid environment such as a hot and humid area. Therefore, the air insulating material 40 according to the present disclosure can be suitably used for a house wall, a home electric appliance, or a transportation device that is expected to be used in a humid environment.
  • a coating solution was applied onto a glass substrate, dried, and then scraped off to prepare a sample for content measurement. ..
  • the above sample was heated to 200 °C in a nitrogen atmosphere, and the volatilized water was collected to obtain a force Fischer moisture meter (manufactured by Mitsubishi Chemical Corporation, product name).
  • the water content was measured by CA-200, VA-200) and evaluated as the water content of the composite material layer.
  • ammonia ion-exchanged water was added to the above sample and then adjusted to be alkaline by adding N a ⁇ H, and ammonia was recovered from the sample in an aqueous sulfuric acid solution by heating and distillation. ..
  • the recovered aqueous solution containing ammonia was diluted to a constant volume, and the amount of ammonia was measured by ion chromatography (manufactured by Dio nex, product name ICS-200) to evaluate as the ammonia content of the composite material layer.
  • a commercially available cation exchange resin was adjusted to an ammonium ion type and packed in a column. Further, a natural smectite (montmorillonite or stevensite), which is an inorganic layered compound having interlayer sodium ions, was dispersed in water to prepare a smectite dispersion. By passing this smectite dispersion through the above column, a smectite in which interlayer sodium ions were exchanged for ammonium ions was obtained. ⁇ 0 2020/175 503 29 ⁇ (: 170? 2020 /007575).
  • inorganic layered compound ammonium ion-exchanged montmorillonite and stevensite were used as described above, commercially available water-soluble modified nylon was used as the resin material (binder component), and water and water were used as the dispersion medium.
  • ethanol a plurality of types of coating liquids were prepared in which the mixing ratio (weight ratio) of the inorganic layered compound and the resin material was changed.
  • the inorganic layered compound and the resin material were used as solid contents, and the solid content concentration of the coating liquid was adjusted to about 3% by weight.
  • the weight of montmorillonite, and the weight of Steven site Is the mixing ratio of montmorillonite and stephensite in the inorganic layered compound. Fixed at 15.
  • silica-deposited polyethylene terephthalate (Ningo) having a thickness of about 12 was prepared, and a plurality of types of the above-mentioned coating liquids were respectively applied to the vapor-deposited surface of the base material by a bar coating to a thickness of about 100
  • the dispersion medium water and ethanol
  • the water vapor transmission rate is 0. 1 1 9/01 2- ⁇ 1 Met.
  • the water vapor permeability was measured as described above, and the water and ammonia contents were calculated. The results are shown in the graphs in Figures 6 and 7.
  • the horizontal axis represents the water content in the composite material layer (unit: weight %), and the vertical axis represents the water vapor permeability (unit: weight%). 3 ).
  • the horizontal axis represents the ammonia content rate (unit: wt %) in the composite material layer, and the vertical axis represents the water vapor permeability (unit:%). 3).
  • the ratio (content rate) of the inorganic layered compound contained in the composite material layer was 30 to 90% by weight. It can be seen that a low water vapor permeability can be achieved even under high temperature and high humidity conditions within the range of %. Furthermore, if the content of the inorganic layered compound is in the range of 45 to 85% by weight, the water vapor permeability becomes lower,
  • the water vapor permeability is particularly low in the range of 80% by weight.
  • the inorganic layered compound contained in the composite material layer was smectite and montmorillonite and When the content of montmorillonite in the mixture is 65% by weight or more and less than 100% by weight in the case of a mixture of stevensite, lower water vapor permeability even under high temperature and high humidity conditions. It turns out that can be realized.
  • the water vapor permeability When added, if the addition rate is in the range of 20 to 75% by weight, the water vapor permeability can be significantly reduced under high temperature and high humidity conditions, and preferably 40 to 70% by weight. It is understood that the water vapor permeability can be further reduced within the range.
  • the composite material layer is thus provided as the gas barrier layer containing the organic layered compound
  • the resin material is a nylon resin
  • the inorganic filler is Since it is an inorganic layered compound and the content rate of the inorganic layered compound in the composite material layer is within the range of 30 to 90% by weight, a good gas barrier property under high temperature and high humidity conditions is realized in the gas barrier structure. can do.
  • the present invention can be widely and suitably used in the field of a vacuum heat insulating material having a gas barrier structure including a gas barrier film as an outer covering material.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This vacuum insulating material comprises an outer covering material that is a film layered product including a gas barrier structure as a gas barrier film. In the gas barrier structure, a composite material layer containing an inorganic filler and a resin material is formed on a substrate. The resin material is a nylon resin. The inorganic filler is an inorganic layered compound. The content rate of the inorganic layered compound in the composite material is in the range of 30-90 wt%. Furthermore, the gas barrier structure has a water vapor permeability of 1.0 g/m2·day or less in an environment of 40°C with a relative humidity of 95%.

Description

\¥0 2020/175503 1 卩(:17 2020 /007575 明 細 書 \¥0 2020/175503 1 卩(: 17 2020/007575 Clarification
発明の名称 : 真空断熱材 Title of invention: Vacuum insulation
技術分野 Technical field
[0001 ] 本発明は、 良好なガスバリア性を有するガスバリア構造体を外被材として 備える真空断熱材に関する。 The present invention relates to a vacuum heat insulating material including a gas barrier structure having a good gas barrier property as a jacket material.
背景技術 Background technology
[0002] 真空断熱材は、 外被材の内部に芯材 (コア材) および水分吸着剤等を減圧 密閉状態 (略真空状態) で封入 (減圧封止) した構成を有している。 外被材 は、 内部の略真空状態を維持するためにガスバリア性を有している。 外被材 としては、 _般的には、 ガスバリアフィルムを備えるフィルム積層体が用い られる。 このような外被材において、 そのガスバリア性を向上させる手法の —つとしては、 層状粘土鉱物を用いたガスバリアフィルムを用いることが知 られている。 [0002] A vacuum heat insulating material has a structure in which a core material (core material), a water adsorbent, and the like are enclosed (decompressed and sealed) in a reduced pressure sealed state (substantially vacuum state) inside an outer covering material. The jacket material has a gas barrier property in order to maintain a substantially vacuum state inside. As the outer cover material, a film laminate including a gas barrier film is generally used. It is known to use a gas barrier film using a layered clay mineral as one of the methods for improving the gas barrier property in such an outer covering material.
[0003] 例えば、 特許文献 1 には、 真空断熱材の外被材が、 溶着層およびガスバリ ア層を有し、 このガスバリア層が、 層状粘土質材 (層状粘土鉱物) と高分子 材とを含有する構成を開示している。 このように、 外被材が層状粘土鉱物を 含有するガスバリア層を有していれば、 真空断熱材の外面から内部に向かっ ての気体の透過侵入を有効に抑制することが可能である。 [0003] For example, in Patent Document 1, a jacket material for a vacuum heat insulating material has a welding layer and a gas barrier layer, and the gas barrier layer includes a layered clayey material (layered clay mineral) and a polymer material. The composition contained is disclosed. Thus, if the covering material has the gas barrier layer containing the layered clay mineral, it is possible to effectively suppress the permeation and invasion of gas from the outer surface of the vacuum heat insulating material toward the inside.
[0004] ただし、 一般的な層状粘土鉱物は親水性であるため、 層状粘土鉱物を含有 するガスバリア層は、 湿度の高い環境下ではガスバリア性が低下する。 そこ で、 特許文献 1では、 高温 ·高湿度条件でも長期間に亙ってガスバリア性を 実現するために、 層状粘土質材 (層状粘土鉱物) および高分子材としていず れも疎水性のものを用いている。 このような疎水性の層状粘土質材は一般的 でなく、 例えば、 特許文献 1の実施例では、 モンモリロナイ ト等に含まれる 無機カチオンを有機カチオンにイオン交換することで、 層状粘土質材に疎水 性を付与している。 [0004] However, since a general layered clay mineral is hydrophilic, the gas barrier layer containing the layered clay mineral has a reduced gas barrier property in a high humidity environment. Therefore, in Patent Document 1, in order to realize a gas barrier property over a long period of time even under high temperature and high humidity conditions, both of the layered clayey material (layered clay mineral) and the polymer material are hydrophobic. Is used. Such a hydrophobic layered clayey material is not common, and for example, in the example of Patent Document 1, the inorganic cations contained in montmorillonite and the like are ion-exchanged with organic cations to form a hydrophobic layered clayey material. It imparts sex.
先行技術文献 \¥0 2020/175503 2 卩(:17 2020 /007575 特許文献 Prior art documents \¥0 2020/175503 2 (: 17 2020/007575 Patent Document
[0005] 特許文献 1 :特開 2 0 0 9— 0 8 5 2 5 5号公報 Patent Document 1: Japanese Patent Laid-Open No. 20 09 9-085 25 55
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0006] ところで、 例えば、 一年中高温多湿の蒸暑地域でも、 近年、 省エネルギー 化の進展が想定されるため、 真空断熱材の需要が見込まれる。 また、 温暖化 の進行によって地域によっては湿度が上昇する可能性がある。 しかしながら 、 真空断熱材の外被材のガスバリア性が層状粘土物質に由来するものであれ ば、 このような真空断熱材を多湿環境で用いると、 前記の通り、 層状粘土鉱 物の含水によりガスバリア性が低下して真空断熱材の断熱効果が低下する。 [0006] By the way, for example, even in a hot and humid area where the temperature is high and high all year round, it is expected that the energy saving will progress in recent years, so that the demand for the vacuum insulation material is expected. Humidity may increase in some regions due to the progress of global warming. However, if the gas barrier property of the jacket material of the vacuum heat insulating material is derived from the layered clay material, if such a vacuum heat insulating material is used in a humid environment, as described above, the water barrier property of the layered clay mineral causes the gas barrier property. Lowers, and the heat insulating effect of the vacuum heat insulating material decreases.
[0007] そこで、 蒸暑地域のような多湿環境に対応するために、 特許文献 1のよう に、 ガスバリア性の低下を抑制するために疎水性の層状粘土鉱物を用いるこ とが考えられる。 しかしながら、 このような疎水性の層状粘土鉱物は、 一般 的な層状粘土鉱物に対して特別な加工が必要になるため、 真空断熱材が高コ スト化する。 [0007] Therefore, in order to cope with a humid environment such as a hot and humid area, it is conceivable to use a hydrophobic layered clay mineral as in Patent Document 1 in order to suppress the deterioration of the gas barrier property. However, such a hydrophobic layered clay mineral requires special processing for a general layered clay mineral, so that the cost of the vacuum heat insulating material becomes high.
[0008] 本発明はこのような課題を解決するためになされたものであって、 高温多 湿の条件下であっても良好に使用することが可能な、 真空断熱材を提供する ことを目的とする。 [0008] The present invention has been made to solve such problems, and an object of the present invention is to provide a vacuum heat insulating material that can be favorably used even under high temperature and high humidity conditions. And
課題を解決するための手段 Means for solving the problem
[0009] 本発明に係る真空断熱材は、 前記の課題を解決するために、 芯材、 水分吸 着剤、 および外被材を備え、 前記芯材および前記水分吸着剤は前記外被材に 内包され、 当該外被材の内部は減圧封止されている真空断熱材であって、 前 記外被材は、 基材上に、 無機フィラーおよび樹脂材料を含有する複合材料層 が形成された、 ガスバリア構造体をガスバリアフィルムとして含むフィルム 積層体であり、 前記樹脂材料がナイロン系樹脂であり、 前記無機フィラーが 無機層状化合物であり、 前記複合材料層中の前記無機層状化合物の含有率が 3 0〜 9 0重量%の範囲内であり、 さらに、 前記ガスバリア構造体における \¥0 2020/175503 3 卩(:170? 2020 /007575 [0009] A vacuum heat insulating material according to the present invention, in order to solve the above-mentioned problems, comprises a core material, a moisture adsorbent, and a jacket material, and the core material and the moisture adsorbent are provided on the jacket material. It is a vacuum heat insulating material that is encapsulated and the inside of the outer jacket material is vacuum-sealed. The outer jacket material has a composite material layer containing an inorganic filler and a resin material formed on a base material. A film laminate including a gas barrier structure as a gas barrier film, wherein the resin material is a nylon resin, the inorganic filler is an inorganic layered compound, and the content of the inorganic layered compound in the composite material layer is 3 In the range of 0 to 90% by weight, further, in the gas barrier structure \¥0 2020/175503 3 卩 (: 170? 2020 /007575
4 0 °0, 相対湿度 9 5 % (以下 9 と記載する) 環境下での水蒸気透 過度が 1 . 〇 9 / 2 - 〇1 3ソ以下である構成である。 4 0 ° 0, (hereinafter referred to 9) Relative humidity 95% water vapor permeability excessive in environments 1 〇 9/2 -. Rei_1 a 3 Seo or less configuration.
[0010] 前記構成によれば、 ガスバリア構造体の基材をナイロン系樹脂製とすると ともに、 前記複合材料層に含有される無機層状化合物の含有率を 3 0〜 9 0 重量%とすることにより、 高温多湿条件下での水蒸気透過度の上限を低下さ せることができる。 これにより、 無機層状化合物を含有するガスバリア層を 備えるガスバリア構造体において、 高温多湿の条件下での良好なガスバリア 性を実現することができる。 それゆえ、 このようなガスバリア構造体を備え るフィルム積層体を、 真空断熱材の外被材として用いることにより、 当該真 空断熱材は、 高温多湿の条件下であっても良好な断熱効果を実現することが できる。 [0010] According to the above configuration, the base material of the gas barrier structure is made of nylon resin, and the content of the inorganic layered compound contained in the composite material layer is 30 to 90% by weight. The upper limit of water vapor transmission rate under high temperature and high humidity conditions can be lowered. Thereby, in the gas barrier structure including the gas barrier layer containing the inorganic stratiform compound, good gas barrier properties under high temperature and high humidity conditions can be realized. Therefore, by using a film laminate having such a gas barrier structure as a covering material for a vacuum heat insulating material, the vacuum heat insulating material has a good heat insulating effect even under high temperature and high humidity conditions. Can be realized.
[001 1] 本発明の上記目的、 他の目的、 特徴、 および利点は、 添付図面参照の下、 以下の好適な実施態様の詳細な説明から明らかにされる。 [001 1] The above objects, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
発明の効果 Effect of the invention
[0012] 本発明では、 以上の構成により、 高温多湿の条件下であっても良好に使用 することが可能な、 真空断熱材を提供することができる、 という効果を奏す る。 [0012] According to the present invention, with the above configuration, it is possible to provide a vacuum heat insulating material that can be favorably used even under high temperature and high humidity conditions.
図面の簡単な説明 Brief description of the drawings
[0013] [図 1]図 1 八, 図 1 巳は、 本発明の代表的な実施の形態に係るガスバリア構造 体の一例であるガスバリアフィルムの構成を示す模式的断面図である。 [0013] [Fig. 1] Fig. 18 and Fig. 1 M are schematic cross-sectional views showing a configuration of a gas barrier film which is an example of a gas barrier structure according to a typical embodiment of the present invention.
[図 2]図 2八~図 2〇は、 図 1 に示すガスバリアフィルムを備えるフィルム積 層体の代表的な構成を示す模式的断面図である。 [Fig. 2] Figs. 28 to 20 are schematic cross-sectional views showing typical configurations of a film laminated body including the gas barrier film shown in Fig. 1.
[図 3]図 2に示すフィルム積層体を外被材として備える真空断熱材の代表的な 構成を示す模式的断面図である。 FIG. 3 is a schematic cross-sectional view showing a typical structure of a vacuum heat insulating material including the film laminate shown in FIG. 2 as a jacket material.
[図 4]本発明の代表的な実施例の結果である、 ガスバリア構造体の複合材料層 における無機層状化合物の含有率と、 当該ガスバリア構造体の水蒸気透過度 との関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the content of the inorganic layered compound in the composite material layer of the gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention.
[図 5]本発明の代表的な実施例の結果である、 ガスバリア構造体の複合材料層 \¥0 2020/175503 4 卩(:170? 2020 /007575 [FIG. 5] Composite material layer of gas barrier structure, which is the result of a representative embodiment of the present invention. \\0 2020/175 503 4 卩 (: 170? 2020 /007575
におけるモンモリロナイ トの含有率と、 当該ガスバリア構造体の水蒸気透過 度との関係を示すグラフである。 3 is a graph showing the relationship between the content rate of montmorillonite in and the water vapor permeability of the gas barrier structure.
[図 6]本発明の代表的な実施例の結果である、 ガスバリア構造体の複合材料層 における水の含有率と、 当該ガスバリア構造体の水蒸気透過度との関係を示 すグラフである。 FIG. 6 is a graph showing the relationship between the water content in the composite material layer of the gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention.
[図 7]本発明の代表的な実施例の結果である、 ガスバリア構造体の複合材料層 におけるアンモニアの含有率と、 当該ガスバリア構造体の水蒸気透過度との 関係を示すグラフである。 FIG. 7 is a graph showing the relationship between the content rate of ammonia in the composite material layer of the gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention.
[図 8]本発明の代表的な実施例の結果である、 ガスバリア構造体の複合材料層 における低分子量アミン化合物の添加率と、 当該ガスバリア構造体の水蒸気 透過度との関係を示すグラフである。 FIG. 8 is a graph showing the relationship between the addition rate of a low molecular weight amine compound in a composite material layer of a gas barrier structure and the water vapor permeability of the gas barrier structure, which is the result of a representative example of the present invention. ..
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0014] 本開示に係る真空断熱材は、 芯材、 水分吸着剤、 および外被材を備え、 前 記芯材および前記水分吸着剤は前記外被材に内包され、 当該外被材の内部は 減圧封止されている真空断熱材であって、 前記外被材は、 基材上に、 無機フ ィラーおよび樹脂材料を含有する複合材料層が形成された、 ガスバリア構造 体をガスバリアフィルムとして含むフィルム積層体であり、 前記樹脂材料が ナイロン系樹脂であり、 前記無機フィラーが無機層状化合物であり、 前記複 合材料層中の前記無機層状化合物の含有率が 3 0〜 9 0重量%の範囲内であ り、 さらに、 前記ガスバリア構造体における 4 0 °〇、 相対湿度 9 5 % ( 9 5
Figure imgf000006_0001
3ソ以下である構成で ある。
[0014] A vacuum heat insulating material according to the present disclosure includes a core material, a moisture adsorbent, and an outer coating material, and the core material and the moisture adsorbent are included in the outer coating material, and the inside of the outer coating material is included. Is a vacuum heat insulating material that is sealed under reduced pressure, and the outer coating material includes a gas barrier structure in which a composite material layer containing an inorganic filler and a resin material is formed on a base material as a gas barrier film. A film laminate, the resin material is a nylon resin, the inorganic filler is an inorganic layered compound, and the content of the inorganic layered compound in the composite material layer is in the range of 30 to 90% by weight. Further, the gas barrier structure has a temperature of 40 ° 〇 and a relative humidity of 9 5% (9 5
Figure imgf000006_0001
It has a configuration of 3 or less.
[0015] 前記構成によれば、 ガスバリア構造体の基材をナイロン系樹脂製とすると ともに、 前記複合材料層に含有される無機層状化合物の含有率を 3 0〜 9 0 重量%とすることにより、 高温多湿条件下での水蒸気透過度の上限を低下さ せることができる。 これにより、 無機層状化合物を含有するガスバリア層を 備えるガスバリア構造体において、 高温多湿の条件下での良好なガスバリア 性を実現することができる。 それゆえ、 このようなガスバリア構造体を備え \¥0 2020/175503 5 卩(:170? 2020 /007575 [0015] According to the above configuration, the base material of the gas barrier structure is made of a nylon resin, and the content of the inorganic stratiform compound contained in the composite material layer is 30 to 90% by weight. The upper limit of water vapor transmission rate under high temperature and high humidity conditions can be lowered. Thereby, in the gas barrier structure including the gas barrier layer containing the inorganic stratiform compound, good gas barrier properties under high temperature and high humidity conditions can be realized. Therefore, with such a gas barrier structure \¥ 2020/175503 5 卩 (: 170? 2020 /007575
るフィルム積層体を、 真空断熱材の外被材として用いることにより、 当該真 空断熱材は、 高温多湿の条件下であっても良好な断熱効果を実現することが できる。 By using the film laminate according to the present invention as a covering material for a vacuum heat insulating material, the vacuum heat insulating material can realize a good heat insulating effect even under high temperature and high humidity conditions.
[0016] 前記構成の真空断熱材においては、 前記無機層状化合物がスメクタイ トで ある構成であってもよい。 [0016] In the vacuum heat insulating material having the above structure, the inorganic layered compound may be a smectite.
[0017] 前記構成によれば、 無機層状化合物としてスメクタイ トを用いることで、 外被材であるフィルム積層体において、 高温多湿の条件下におけるより良好 なガスバリア性を実現することができる。 [0017] According to the above configuration, by using smectite as the inorganic layered compound, it is possible to achieve better gas barrier properties under high temperature and high humidity conditions in the film laminate that is the covering material.
[0018] また、 前記構成の真空断熱材においては、 前記スメクタイ トが、 モンモリ ロナイ ト、 スティーブンサイ ト、 サポナイ ト、 ヘクトライ トからなる群から 選択される少なくとも 1種以上である構成であってもよい。 [0018] In addition, in the vacuum heat insulating material having the above-mentioned configuration, even if the smectite is at least one selected from the group consisting of montmorillonite, stephensite, support, and hexite. Good.
[0019] 前記構成によれば、 スメクタイ トとして前述したいずれか 1種を少なくも 用いることで、 外被材であるフィルム積層体において、 高温多湿の条件下に おけるより良好なガスバリア性を実現することができる。 [0019] According to the above configuration, by using at least one of the aforementioned smectites, a better gas barrier property under high temperature and high humidity conditions is realized in the film laminate that is the jacket material. be able to.
[0020] また、 前記構成の真空断熱材においては、 前記スメクタイ トが、 前記モン モリロナイ トおよび前記スティーブンサイ トの混合物であるとともに、 当該 混合物中における前記モンモリロナイ トの含有率が 6 5重量%以上 1 0 0重 量%未満である構成であってもよい。 [0020] Further, in the vacuum heat insulating material having the above-mentioned configuration, the smectite is a mixture of the montmorillonite and the stevensite, and the content ratio of the montmorillonite in the mixture is 65% by weight or more. The composition may be less than 100% by weight.
[0021 ] 前記構成によれば、 スメクタイ トとして、 モンモリロナイ トおよびスティ —ブンサイ トの混合物を用いるとともにモンモリロナイ トの含有率を特定す ることにより、 外被材であるフィルム積層体において、 高温多湿の条件下に おけるより良好なガスバリア性を実現することができる。 [0021] According to the above configuration, a mixture of montmorillonite and stevenite is used as the smectite, and the content of montmorillonite is specified. It is possible to realize a better gas barrier property under the conditions.
[0022] また、 前記構成の真空断熱材においては前記スメクタイ トが、 層間陽イオ ンとしてアンモニウムイオン (1\1 1~14 +) およびプロトン (1~1 +) の少なくとも一 方を含有する構成であってもよい。 [0022] Further, in the vacuum heat insulating material having the above structure, the smectite contains at least one of an ammonium ion (1\1 1 to 1 4 + ) and a proton (1 to 1 + ) as an interlayer cation. It may be configured.
[0023] 前記構成によれば、 スメクタイ トの層間陽イオンをナトリウムイオンから アンモニウムイオンまたはプロトンに置換することになる。 それゆえ、 従来 のリチウムイオンのような相対的に高価な材料 (イオン) を用いることなく \¥0 2020/175503 6 卩(:170? 2020 /007575 According to the above configuration, the interlayer cation of smectite is replaced with sodium ion from ammonium ion or proton. Therefore, without using relatively expensive material (ion) such as conventional lithium ion \¥0 2020/175 503 6 卩 (: 170? 2020 /007575
、 複合材料層の耐水性を向上することができる。 The water resistance of the composite material layer can be improved.
[0024] また、 前記構成の真空断熱材においては、 前記複合材料層は、 水分の含有 量が 2 . 5重量%以下である構成であってもよい。 [0024] In the vacuum heat insulating material having the above structure, the composite material layer may have a water content of 2.5 wt% or less.
[0025] 前記構成によれば、 乾燥後の複合材料層における水分の含有量の上限を規 定することにより、 複合材料層が十分に乾燥していると判断することができ る。 それゆえ、 外被材であるフィルム積層体において良好な水蒸気バリア性 を実現することができる。 [0025] According to the above configuration, it is possible to determine that the composite material layer is sufficiently dried by defining the upper limit of the water content in the composite material layer after drying. Therefore, a good water vapor barrier property can be realized in the film laminate as the outer covering material.
[0026] また、 前記構成の真空断熱材においては、 前記複合材料層は、 アンモニア の含有量が 1 . 〇重量%以下である構成であってもよい。 [0026] Further, in the vacuum heat insulating material having the above configuration, the composite material layer may have a configuration in which the content of ammonia is 1.0 wt% or less.
[0027] 前記構成によれば、 複合材料層におけるアンモニアの含有量の上限を規定 することにより、 アンモニウムイオンの存在による多湿環境下での水の誘引 を抑制することができる。 それゆえ、 外被材であるフィルム積層体において 良好な水蒸気バリア性を実現することができる。 [0027] According to the above configuration, by defining the upper limit of the content of ammonia in the composite material layer, it is possible to suppress the attraction of water in the humid environment due to the presence of ammonium ions. Therefore, a good water vapor barrier property can be realized in the film laminate that is the outer covering material.
[0028] また、 前記構成の真空断熱材においては、 前記樹脂材料には、 分子量が 2 [0028] Further, in the vacuum heat insulating material having the above structure, the resin material has a molecular weight of 2
0〇以下の水溶性の低分子量アミン化合物が添加されている構成であっても よい。 It may be configured such that a water-soluble low molecular weight amine compound having a molecular weight of 0 or less is added.
[0029] 前記構成によれば、 低分子量アミン化合物を添加することで、 外被材であ るフィルム積層体において、 水蒸気バリア性が向上することに加え、 複合材 料層における基材からの剥離強度の改善も期待することができる。 [0029] According to the above-mentioned constitution, by adding the low molecular weight amine compound, in the film laminate as the jacket material, in addition to improving the water vapor barrier property, peeling from the base material in the composite material layer Improvement in strength can also be expected.
[0030] また、 前記構成の真空断熱材においては、 前記複合材料層の厚さが 1 〇门
Figure imgf000008_0001
[0030] Further, in the vacuum heat insulating material having the above structure, the composite material layer has a thickness of 10
Figure imgf000008_0001
[0031 ] 前記構成によれば、 複合材料層の厚さを前記の範囲内に限定することで、 外被材であるフィルム積層体において、 高温多湿の条件下での良好なガスバ リア性を実現することができる。 [0031] According to the above configuration, by limiting the thickness of the composite material layer within the above range, good gas barrier properties under high temperature and high humidity conditions are realized in the film laminate that is the outer coating material. can do.
[0032] また、 前記構成の真空断熱材においては、 前記基材が、 無機蒸着層を有す る樹脂フィルムである構成であってもよい。 [0032] Further, in the vacuum heat insulating material having the above structure, the base material may be a resin film having an inorganic vapor deposition layer.
[0033] 前記構成によれば、 基材が、 無機蒸着層を有する樹脂フィルムであるので 、 外被材であるフィルム積層体が備えるガスバリア構造体は、 良好なガスバ \¥0 2020/175503 7 卩(:170? 2020 /007575 [0033] According to the above configuration, since the base material is the resin film having the inorganic vapor deposition layer, the gas barrier structure provided in the film laminate that is the outer covering material has a good gas barrier property. \\0 2020/175503 7 卩(: 170? 2020/007575
リア性を実現できるとともに、 基材上に形成される複合材料層の密着性を向 上させることができる。 The rear property can be realized, and the adhesion of the composite material layer formed on the base material can be improved.
[0034] 以下、 本発明の代表的な実施の形態を、 図面を参照しながら説明する。 な お、 以下では全ての図を通じて同一又は相当する要素には同一の参照符号を 付して、 その重複する説明を省略する。 [0034] Hereinafter, representative embodiments of the present invention will be described with reference to the drawings. In the following, the same or corresponding elements will be denoted by the same reference symbols throughout all the drawings, and redundant description will be omitted.
[0035] [ガスバリア構造体] [0035] [Gas barrier structure]
本開示に係るガスバリア構造体は、 基材上に、 無機フィラーおよび樹脂材 料を含有する複合材料層が形成された構成である。 言い換えれば、 本開示に 係るガスバリア構造体は、 基材の層と複合材料層とを備える少なくとも 2層 の構成であればよい。 したがって、 本開示に係るガスバリア構造体は、 基材 および複合材料層以外の層を備えてもよい。 The gas barrier structure according to the present disclosure has a structure in which a composite material layer containing an inorganic filler and a resin material is formed on a base material. In other words, the gas barrier structure according to the present disclosure may have a structure of at least two layers including a base material layer and a composite material layer. Therefore, the gas barrier structure according to the present disclosure may include layers other than the base material and the composite material layer.
[0036] ガスバリア構造体の具体的な構成は特に限定されないが、 図 1 八, 図 1 巳 に示すように、 フィルム状のものすなわちガスバリアフィルム 1 0八, 1 0 巳を挙げることができる。 本実施の形態では、 ガスバリアフィルム 1 0八, [0036] The specific structure of the gas barrier structure is not particularly limited, but as shown in Fig. 18 and Fig. 1m, a film-shaped one, that is, gas barrier film 108, 10m. In this embodiment, the gas barrier film 108,
1 0巳を挙げて、 本開示に係るガスバリア構造体について具体的に説明する 。 図 1 八に示すガスバリアフィルム 1 〇八は、 基材 1 1、 複合材料層 1 2、 および無機蒸着層 1 3を備えており、 図 1 巳に示すガスバリアフィルム 1 0 巳は、 基材 1 1および複合材料層 1 2を備えているが、 無機蒸着層 1 3は備 えていない。 The gas barrier structure according to the present disclosure will be specifically described with reference to No. 10. The gas barrier film 108 shown in FIG. 18 includes a base material 11, a composite material layer 12 and an inorganic vapor deposition layer 13 and the gas barrier film 1 0 shown in FIG. 1 is a base material 1 1. And a composite material layer 12 but not an inorganic vapor deposition layer 13.
[0037] 基材 1 1の形態は特に限定されず、 フィルム状、 平板状、 容器状等のさま ざま形態をとり得る。 また、 基材 1 1の具体的な種類は特に限定されず、 ガ スバリア構造体の用途に応じて、 様々な種類のものを用いることができる。 前記の通り、 ガスバリア構造体がガスバリアフィルム 1 〇八, 1 0巳であれ ば、 基材 1 1 としては樹脂フィルムを用いることができる。 The form of the substrate 11 is not particularly limited, and may take various forms such as a film shape, a flat plate shape, and a container shape. Further, the specific type of the substrate 11 is not particularly limited, and various types can be used depending on the application of the gas barrier structure. As described above, when the gas barrier structure is the gas barrier film 108, 108, a resin film can be used as the substrate 11.
[0038] 代表的な樹脂フィルムとしては、 例えば、 ポリエチレンテレフタレート ( 巳丁) 、 ポリエチレンナフタレート ( 巳 1\!) 、 ポリ トリメチレンテレフ タレート ( 丁丁) 、 ポリプチレンテレフタレート ( 巳丁) 、 ポリプチレ ンナフタレート ( 巳 ) 等のポリエステル;ポリエチレン ( 巳) 、 ポリ \¥0 2020/175503 8 卩(:170? 2020 /007575 [0038] Representative resin films include, for example, polyethylene terephthalate (Mita), polyethylene naphthalate (Mita 1\!), polytrimethylene terephthalate (Mitsume), polyptyrene terephthalate (Mitsume), and polyethylene naphthaphthalate. (Min) Polyester such as; Polyethylene (Min), Poly \¥0 2020/175503 8 卩(: 170? 2020/007575
プロピレン ( ) 、 ポリメチルペンテン (丁 乂) 等のポリオレフィン; ナイロン 6、 ナイロン 1 1、 ナイロン 1 2、 ナイロン 6 6、 ナイロン 4 6、 ナイロン 6 1 0、 ナイロン 6 1 2、 ナイロン 6丁、 ナイロン 6 丨、 ナイロン 9丁、 ナイロン IV! 5丁等のナイロン (ポリアミ ド) ; トリアセチルセルロー ス (丁八〇) 等のセルロース系樹脂;ポリメチルメタクリレート ( 1\/1 1\/1八 ) 等のアクリル樹脂;ポリ塩化ビニル ( V〇) ;ポリカーボネート ( 〇 ) ;等が挙げられるが特に限定されない。 また、 これら樹脂 (プラスチック ) 材料を 2種類以上組み合わせたもの (ポリマーアロイ) が用いられてもよ いし、 公知の添加剤等を含有してもよい。 Polypropylene such as propylene (), polymethylpentene (custom); nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 46, nylon 61, nylon 6 12, nylon 6 and nylon 6丨, Nylon 9 pcs, Nylon IV! 5 pcs, etc. Nylon (polyamide); Triacetyl cellulose (Chome 80), etc. Cellulosic resin; Polymethylmethacrylate (1\/1 1\/1) Examples of the acrylic resin include polyvinyl chloride (VO); polycarbonate (O); and the like, but are not particularly limited. A combination of two or more kinds of these resin (plastic) materials (polymer alloy) may be used, or a known additive or the like may be contained.
[0039] 基材 1 1 としての樹脂フィルムの厚さは特に限定されず、 ガスバリアフィ ルム 1 〇八, 1 0巳の用途等に応じて適宜設定することができる。 また、 樹 脂フィルムは単層であってもよいが、 2層以上の複数層であってもよい。 基 材 1 1が樹脂フィルムであれば、 通常は柔軟性を有するが、 基材 1 1が板状 であれば剛性を有する。 基材 1 1が種々の容器状であれば、 容器の形態によ って柔軟性を有してもよいし剛性を有してもよい。 基材 1 1が板状または容 器状であるときの厚さについても特に限定されない。 また、 基材 1 1 におけ る厚さ以外の諸条件または物性についても特に限定されない。 [0039] The thickness of the resin film as the base material 11 is not particularly limited, and can be appropriately set according to the use of the gas barrier film 108, 10m. Moreover, the resin film may be a single layer, or may be a plurality of layers of two or more layers. If the base material 11 is a resin film, it usually has flexibility, but if the base material 11 is plate-shaped, it has rigidity. If the base material 11 has various container shapes, it may have flexibility or rigidity depending on the shape of the container. The thickness when the base material 11 is plate-shaped or container-shaped is not particularly limited. In addition, conditions and physical properties other than the thickness of the base material 11 are not particularly limited.
[0040] 基材 1 1 としての樹脂フィルムには、 図 1 に示すように、 複合材料層 1 [0040] As shown in FIG. 1, the resin film as the base material 11 includes the composite material layer 1
2を形成する側の面に無機蒸着層 1 3が形成されてもよい。 すなわち、 本開 示においては、 複合材料層 1 2の形成面に無機蒸着層 1 3を有する樹脂フィ ルムが基材 1 1 として用いられてもよい。 もちろん図 1 巳に示すように、 基 材 1 1 における複合材料層 1 2の形成面に無機蒸着層 1 3が形成されていな くてもよい。 An inorganic vapor deposition layer 13 may be formed on the surface on which 2 is formed. That is, in the present disclosure, a resin film having the inorganic vapor deposition layer 13 on the formation surface of the composite material layer 12 may be used as the base material 11. Of course, as shown in FIG. 1, the inorganic vapor deposition layer 13 may not be formed on the surface of the base material 11 on which the composite material layer 12 is formed.
[0041 ] 無機蒸着層 1 3の具体的な種類としては、 例えば、 シリカ (酸化ケイ素) [0041] Specific types of the inorganic vapor deposition layer 13 include, for example, silica (silicon oxide).
、 アルミナ (酸化アルミニウム) 、 マグネシア (酸化マグネシウム) 、 チタ ニア (酸化チタン) 、 酸化スズ、 酸化セリウム、 酸化亜鉛、 スピネル (IV! 9 八 I 24等の酸化物;窒化アルミニウム、 窒化ケイ素等の窒化物; フッ化カル シウム、 フッ化セリウム等のフッ化物;酸窒化ケイ素等の酸窒化物; アルミ \¥0 2020/175503 9 卩(:170? 2020 /007575 , Alumina (aluminum oxide), magnesia (magnesium oxide), titania (titanium oxide), tin oxide, cerium oxide, zinc oxide, spinel (IV! 9 8 I 2 0 4 etc. oxides; aluminum nitride, silicon nitride etc.) Nitride; Fluoride such as calcium fluoride and cerium fluoride; Oxynitride such as silicon oxynitride; Aluminum \¥0 2020/175 503 9 卩 (: 170? 2020 /007575
ニウム等の金属;等が挙げられるが特に限定されない。 代表的には、 シリカ またはアルミナ等の酸化物の蒸着層が好適に用いられる。 Examples thereof include metals such as nickel; but are not particularly limited. Typically, a vapor-deposited layer of oxide such as silica or alumina is preferably used.
[0042] 無機蒸着層 1 3の厚さは特に限定されないが、 厚さが大きすぎると、 基材 [0042] The thickness of the inorganic vapor deposition layer 13 is not particularly limited, but if the thickness is too large,
1 1 としての柔軟性等に影響を及ぼす恐れがあるため、 例えば 2 以下で あればよく、 好ましくは 1 以下であればよい。 樹脂フィルム (基材 1 1 ) に無機蒸着層 1 3を形成する方法も特に限定されず、 例えば、 真空蒸着法 、 スパッタリング法、 イオンプレーティング法等の物理気相成長法 ( 〇 法) ; プラズマ化学気相成長法、 熱化学気相成長法等の化学気相成長法 (〇 〇法) ;等の公知の方法を好適に用いることができる。 Since it may affect the flexibility etc. as 1 1, it may be, for example, 2 or less, preferably 1 or less. The method for forming the inorganic vapor deposition layer 13 on the resin film (base material 11) is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition method, sputtering method and ion plating method (○ method); plasma Known methods such as chemical vapor deposition (XX method); such as chemical vapor deposition and thermochemical vapor deposition can be preferably used.
[0043] 複合材料層 1 2は、 前記の通り、 無機フィラーおよび樹脂材料を含有する ものであればよいが、 本開示においては、 樹脂材料がナイロン系樹脂であり 、 無機フィラーが無機層状化合物である。 複合材料層 1 2は、 基本的には、 樹脂材料であるナイロン系樹脂をバインダー成分とし、 このバインダー成分 中に無機フィラーである無機層状化合物が分散している構成である。 したが って、 複合材料層 1 2は、 無機フィラーおよび樹脂材料から少なくとも構成 されていればよいが、 これら以外の公知の成分を含有してもよい。 As described above, the composite material layer 12 may be one containing an inorganic filler and a resin material. In the present disclosure, the resin material is a nylon resin, and the inorganic filler is an inorganic layered compound. is there. The composite material layer 12 basically has a configuration in which a nylon resin that is a resin material is used as a binder component, and an inorganic layered compound that is an inorganic filler is dispersed in this binder component. Therefore, the composite material layer 12 may be composed of at least an inorganic filler and a resin material, but may contain known components other than these.
[0044] 複合材料層 1 2を構成する無機フィラーは、 前記の通り無機層状化合物で あればよいが、 具体的には、 例えば、 粘土鉱物、 合成ヘクトライ ト、 変性べ ントナイ ト等の層状ケイ酸塩; アルミニウム鱗片、 酸化鉄鱗片、 チタン酸ス トロンチウム鱗片、 銀鱗片、 ステンレス鱗片、 亜鉛鱗片等の金属または金属 化合物の鱗片状 (フレーク状、 薄片状) 粒子; アルミニウム箔、 スズ滔、 青 銅箔、 ニッケル箔、 インジウム箔等の金属箔;層状シリカ、 六方晶窒化ホウ 素、 グラファイ ト、 シリコン鱗片、 層状ニオブ ·チタン酸塩等の層状非金属 系無機化合物;等を挙げることができるが、 特に限定されない。 これら無機 層状化合物は単独で用いてもよいし、 2種類以上を適宜組み合わせて用いて もよい。 [0044] The inorganic filler constituting the composite material layer 12 may be an inorganic layered compound as described above. Specifically, for example, a layered silicic acid such as clay mineral, synthetic hectite, modified bentonite, or the like. Salt: Aluminum scales, iron oxide scales, strontium titanate scales, silver scales, stainless scales, zinc scales, and other metal or metal compound scale-like (flake-like, flaky) particles; aluminum foil, tin foil, bronze foil , Nickel foil, metal foil such as indium foil; layered silica, hexagonal boron nitride, graphite, silicon scale, layered non-metallic inorganic compound such as layered niobium titanate; Not limited. These inorganic layered compounds may be used alone or in combination of two or more kinds.
[0045] 特に本開示では、 無機層状化合物としては、 粘土鉱物が好適に用いられる 。 具体的な粘土鉱物としては、 例えば、 リザーダイ ト、 アメサイ ト、 カオリ \¥0 2020/175503 10 卩(:170? 2020 /007575 [0045] In particular, in the present disclosure, clay minerals are preferably used as the inorganic layered compound. Specific clay minerals include, for example, lizardite, amethite, and kaori. \\0 2020/175 503 10 卩 (: 170? 2020 /007575
ナイ ト、 ディツカイ ト、 ハロイサイ ト、 パイロフィライ ト等の 1 : 1層型; モンモリロナイ ト、 スティーブンサイ ト、 サポナイ ト、 へクトライ ト、 バイ デライ ト、 ノントロナイ ト、 ソーコナイ ト、 3八面体型バーミキュライ ト、1:1 layer type such as night, dickite, haloite, pyrophyllite; montmorillonite, stephensite, support, hexite, baiderite, nontronite, soconite, 3 octahedral vermiculite. ,
2八面体型バーミキュライ ト、 タルク、 金雲母、 黒雲母、 レピドライ ト、 イ ライ ト、 白雲母、 パラゴナイ ト、 クリントナイ ト、 マーガライ ト、 クリノク ロア、 シャモサイ ト、 ニマイ ト、 ドンバサイ ト、 クツケアイ ト (クーカイ ト ) 、 スドーアイ ト等の 2 : 1層型; アンチゴライ ト、 グリーナライ ト、 カリ オピライ ト等のミスフィツ ト類;等を挙げることができるが、 特に限定され ない (クリントナイ トは、 2 : 1層型だけでなくミスフィツ ト類にも分類で きる) 。 これら粘土鉱物は、 無機層状化合物として単独で用いてもよいし、2 Octahedron vermiculite, talc, phlogopite, biotite, lepidite, illite, muscovite, paragonite, clintnight, margarite, clinochlore, chamosite, animite, donbasite, kutsukeite (Coupite), sudite, etc., 2:1 layer type; antigorite, greenerite, cariopilite, etc. misfits; etc., but not particularly limited (the clintite is 2: Not only single-layer type but also misfit type). These clay minerals may be used alone as an inorganic layered compound,
2種類以上を適宜組み合わせて用いてもよいし、 粘土鉱物以外の 1種類以上 の無機層状化合物と適宜組み合わせて用いてもよい。 Two or more kinds may be appropriately combined and used, and one or more kinds of inorganic layered compounds other than the clay mineral may be appropriately combined and used.
[0046] 本開示では、 無機層状化合物としては、 2 : 1層型の粘土鉱物を好適に用 いることができ、 中でもスメクタイ トを特に好適に用いることができる。 ス メクタイ トは、 層間に陽イオンを交換可能に保持しており、 この層間陽イオ ンにより水分子が層間に取り込まれることで層間が拡大して膨潤する性質を 有する。 具体的なスメクタイ トとしては、 例えば、 モンモリロナイ ト、 ステ ィーブンサイ ト、 サボナイ ト、 ヘクトライ ト、 バイデライ ト、 ノントロナイ 卜、 ソーコナイ ト等を挙げることができる。 これらスメクタイ トは 1種類の み用いてもよいし 2種類以上を適宜組み合わせて用いてもよい。 [0046] In the present disclosure, as the inorganic layered compound, a 2:1 layer type clay mineral can be preferably used, and among them, smectite can be particularly preferably used. The smectite holds exchangeable cations between layers, and has a property that the layers expand and swell when water molecules are taken in between the layers by the interlayer cations. Specific smectites include, for example, montmorillonite, stephenite, savonite, hexite, baiderite, nontronai, sauconite, and the like. These smectites may be used alone or in a suitable combination of two or more.
[0047] 本実施の形態では、 これらスメクタイ トの中でも、 モンモリロナイ ト、 ス ティーブンサイ ト、 サボナイ ト、 へクトライ トからなる群から選択される少 なくとも 1種以上が好適に用いられる。 代表的には、 例えば、 モンモリロナ イ トおよびスティーブンサイ トの組合せを好適に用いることができるが、 モ ンモリロナイ トのみであってもよいし、 他のスメクタイ ト 1種類のみであっ てもよいし、 モンモリロナイ トおよびスティーブンサイ ト以外のスメクタイ 卜の組合せであってもよい。 このスメクタイ トの組合せは 2種類に限定され ず 3種類以上であってもよい。 \¥0 2020/175503 1 1 卩(:170? 2020 /007575 [0047] In the present embodiment, among these smectites, at least one selected from the group consisting of montmorillonite, stevensite, sabonate, and hexite is preferably used. Typically, for example, a combination of montmorillonite and stevensite can be preferably used, but only monmorillonite may be used, or only one other smectite may be used, It may be a combination of smecties other than montmorillonite and stevensite. The combination of smectites is not limited to two types and may be three or more types. \\0 2020/175 503 1 1 卩 (: 170? 2020 /007575
[0048] 無機層状化合物がスメクタイ トである場合、 層間陽イオンの種類は特に限 定されない。 一般的には、 スメクタイ トの層間陽イオンはナトリウムイオン (N 3 + ) であるが、 このナトリウムイオンが他の陽イオンに置換されてもよ い。 置換し得る他の陽イオンとしては、 例えば、 参考文献 1 :国際公開 〇 2 0 1 1 / 1 5 2 5 0 0号明細書に開示されているように、 リチウムイオン (!_ 丨 + ) を挙げることができるが、 本開示においては、 特に好ましくはアン モニウムイオン (1\1 1~14 +) を挙げることができる。 [0048] When the inorganic layered compound is a smectite, the type of interlayer cation is not particularly limited. Generally, the interlayer cation of smectite is sodium ion (N 3 + ), but this sodium ion may be replaced by another cation. As other cations that can be substituted, for example, lithium ion (!_ 丨+ ) can be used as disclosed in Reference 1: International Publication 〇 2 0 1 1/1 5 2 5 0 0. may be mentioned, in the present disclosure, particularly preferable examples thereof include Anne Moniumuion (1 \ 1 1 to 1 4 +).
[0049] 参考文献 1 に記載されるように、 層間陽イオンをナトリウムイオンからリ チウムイオンに置換して熱処理することにより、 耐水性を向上することがで きる。 ただし、 リチウムは相対的に高価であるとともに、 リチウムイオンに 起因する、 水分の誘引を抑制するためには、 熱処理温度も比較的高めに設定 する必要がある。 これに対して、 アンモニウムイオンを含む化合物はリチウ ムよりも安価であり、 また、 置換後の熱処理温度を相対的に低くすることが 可能である。 そして、 熱処理によって、 置換されたアンモニウムイオンから アンモニア
Figure imgf000013_0001
が脱離することにより、 層間陽イオンは最終的にプロト ン (1~1 + ) となるため、 良好な耐水性を実現することが可能となる。
[0049] As described in Reference Document 1, the water resistance can be improved by substituting the interlayer cations with lithium ions for lithium ions and performing heat treatment. However, lithium is relatively expensive, and the heat treatment temperature must be set relatively high in order to suppress the attraction of moisture due to lithium ions. On the other hand, compounds containing ammonium ions are cheaper than lithium and the heat treatment temperature after substitution can be relatively low. Then, by heat treatment, the substituted ammonium ions are converted into ammonia.
Figure imgf000013_0001
By desorbing, the interlayer cations finally become proteins (1 to 1 + ), which makes it possible to achieve good water resistance.
[0050] したがって、 本開示に係るガスバリア構造体 (ガスバリアフィルム 1 0八 , 1 〇巳) では、 複合材料層 1 2中の無機層状化合物 (無機フィラー) がス メクタイ トであるときに、 層間陽イオンは、 アンモニウムイオン (1\] |~14 +) お よびプロトン (1~1 +) の少なくとも一方であることが好ましい。 ガスバリア構 造体の用途等によって要求される耐水性に応じて、 熱処理の条件を適宜設定 することにより、 層間陽イオンをアンモニウムイオンからプロトンにする比 率を調整することができる。 それゆえ、 複合材料層 1 2中のスメクタイ トに おける層間陽イオンとしては、 アンモニウムイオンおよびプロトンが共存し てもよい。 もちろん、 熱処理前であれば層間陽イオンのほとんどがアンモニ ウムイオンであり、 十分に熱処理すれば層間陽イオンのほとんどがプロトン となり得る。 また、 元々の層間陽イオンであるナトリウムイオンが一部残存 してもよいことはいうまでもない。 \¥0 2020/175503 12 卩(:170? 2020 /007575 [0050] Therefore, in the gas barrier structure (gas barrier film 108, 110) according to the present disclosure, when the inorganic layered compound (inorganic filler) in the composite material layer 12 is a smectite, the interlayer positive ions, ammonium ion (1 \] | ~ 1 4 +) is preferably at least one of us and protons (1-1 +). By appropriately setting the heat treatment conditions according to the water resistance required by the use of the gas barrier structure and the like, it is possible to adjust the ratio of the interlayer cations changed from ammonium ions to protons. Therefore, ammonium ions and protons may coexist as interlayer cations in the smectite in the composite material layer 12. Of course, before the heat treatment, most of the interlayer cations are ammonium ions, and if sufficiently heat-treated, most of the interlayer cations can become protons. It goes without saying that some of the original interlayer cations, sodium ions, may remain. \\0 2020/175 503 12 (: 170? 2020 /007575
[0051 ] 複合材料層 1 2を構成する樹脂材料であるナイロン系樹脂の具体的な種類 は特に限定されない。 本開示において好適に用いることのできるナイロン系 樹脂としては、 例えば、 前述した基材 1 1の一例として挙げた各種ナイロン (ポリアミ ド) を好適に用いることができる。 これらナイロン系樹脂は 1種 類のみを用いてもよいし 2種類以上を適宜ブレンドしたポリマーアロイとし て用いてもよい。 [0051] The specific type of the nylon-based resin, which is the resin material forming the composite material layer 12, is not particularly limited. As the nylon-based resin that can be preferably used in the present disclosure, for example, various nylons (polyamides) listed as an example of the base material 11 can be preferably used. These nylon resins may be used alone or as a polymer alloy in which two or more kinds are appropriately blended.
[0052] 複合材料層 1 2を構成するナイロン系樹脂の代表的な一例としては、 水溶 性ナイロンを挙げることができる。 水溶性ナイロンの具体的な構成は特に限 定されないが、 例えば、 モノマーとしてアミン化合物を用いたもの、 あるい は、 モノマーとしてアルキレンオキサイ ド化合物を用いたものを挙げること ができる。 アミン化合物を多く用いた水溶性ナイロンであれば、 複合材料層 1 2のガスバリア性をより良好なものにすることができ、 アルキレンオキサ イ ド化合物を多く用いた水溶性ナイロンであれば、 複合材料層 1 2の耐剥離 性をより良好なものとすることができる。 [0052] As a typical example of the nylon resin forming the composite material layer 12, water-soluble nylon can be mentioned. The specific structure of the water-soluble nylon is not particularly limited, and examples thereof include those using an amine compound as a monomer, and those using an alkylene oxide compound as a monomer. A water-soluble nylon containing a large amount of an amine compound can improve the gas barrier properties of the composite material layer 12 and a water-soluble nylon containing a large amount of an alkylene oxide compound can form a composite material. The peel resistance of the layer 12 can be improved.
[0053] また、 複合材料層 1 2を構成するバインダー成分としては、 ナイロン系樹 脂以外の樹脂材料を含有してもよい。 つまり、 本開示においては、 バインダ —成分の主成分としてナイロン系樹脂が用いられればよいが、 諸条件に応じ て、 ナイロン系樹脂に他の樹脂材料がブレンドされてもよい。 他の樹脂材料 は特に限定されないが、 例えば、 ユリア樹脂、 メラミン樹脂、 フエノール樹 月旨、 エポキシ樹脂、 ブロックイソシアネート等を挙げることができる。 これ ら他の樹脂材料は 1種類のみを用いてもよいし 2種類以上を適宜組み合わせ て用いてもよい。 これら他の樹脂材料とナイロン系樹脂とを混合して熱処理 することで、 複合材料層 1 2に架橋構造を形成することができるので、 得ら れるガスバリア構造体の耐湿性を向上することができる。 [0053] Further, as the binder component constituting the composite material layer 12, a resin material other than a nylon resin may be contained. That is, in the present disclosure, the nylon resin may be used as the main component of the binder component, but other resin materials may be blended with the nylon resin depending on various conditions. Other resin materials are not particularly limited, and examples thereof include urea resin, melamine resin, phenol resin, epoxy resin, blocked isocyanate and the like. Only one kind of these other resin materials may be used, or two or more kinds thereof may be appropriately combined and used. Since a crosslinked structure can be formed in the composite material layer 12 by mixing these other resin materials with a nylon resin and heat-treating them, the moisture resistance of the obtained gas barrier structure can be improved. ..
[0054] ナイロン系樹脂に対する他の樹脂材料の添加量は特に限定されず、 複合材 料層 1 2によるガスバリア性を妨げない範囲内であればよいが、 例えば 1 0 重量%以下を挙げることができる。 バインダー成分がナイロン系樹脂を主成 分とするのであれば、 他の樹脂材料は 5 0重量%未満とすることもできるが \¥0 2020/175503 13 卩(:17 2020 /007575 [0054] The amount of the other resin material added to the nylon-based resin is not particularly limited as long as it does not impede the gas barrier properties of the composite material layer 12 and may be, for example, 10% by weight or less. it can. If the binder component is mainly made of nylon resin, other resin materials can be less than 50% by weight. \¥0 2020/175 503 13 (: 17 2020 /007575
、 ナイロン系樹脂に由来する良好な物性を実現する観点では、 バインダー成 分が含有するナイロン系樹脂は例えば 9 0重量%以上であることが好ましい From the viewpoint of achieving good physical properties derived from the nylon resin, it is preferable that the content of the nylon resin in the binder component is, for example, 90% by weight or more.
[0055] また、 ナイロン系樹脂には、 公知の添加剤が含有されてもよい。 具体的な 添加剤は特に限定されないが、 酸化防止剤、 光安定剤、 帯電防止剤、 難燃剤 、 可塑剤、 滑剤、 着色剤、 増粘剤、 無機層状化合物以外の公知のフィラー等 を挙げることができる。 複合材料層 1 2のバインダー成分である樹脂材料を 第一の成分とし、 無機フィラーである無機層状化合物を第二の成分と見なし たときに、 これら添加剤は、 複合材料層 1 2を構成する第三の成分と見なし てもよい。 言い換えれば、 前記の通り、 複合材料層 1 2は、 少なくとも無機 フィラーおよび樹脂材料を含有しているが、 公知の添加剤等をさらに含有し てもよい。 In addition, the nylon resin may contain known additives. Specific additives are not particularly limited, and examples thereof include antioxidants, light stabilizers, antistatic agents, flame retardants, plasticizers, lubricants, colorants, thickeners, and known fillers other than inorganic layered compounds. You can When the resin material which is the binder component of the composite material layer 12 is regarded as the first component and the inorganic layered compound which is the inorganic filler is regarded as the second component, these additives constitute the composite material layer 12 May be considered the third component. In other words, as described above, the composite material layer 12 contains at least the inorganic filler and the resin material, but may further contain known additives and the like.
[0056] 本開示においては、 前述した第三の成分の代表的な一例として増粘剤を挙 げることができる。 増粘剤は、 単に粘度を上昇させるだけでなく糸曳性 (長 く糸状に伸びる性質) を付与できる材料であることが好ましい。 具体的な増 粘剤は特に限定されないが、 例えば、 ポリビニルアルコール ( 〇) 、 力 ルボキシメチルセルロース
Figure imgf000015_0001
、 ポリエチレンオキサイ ド等を挙げる ことができる。 これら増粘剤は 1種類のみを用いてもよいし 2種類以上を適 宜組み合わせて用いてもよい。 これらのうち 〇は、 複合材料層 1 2 (ガ スバリア構造体) の耐湿性の観点から完全けん化品を用いることが望ましい
[0056] In the present disclosure, a thickener can be mentioned as a typical example of the above-mentioned third component. It is preferable that the thickener is a material that not only increases the viscosity but also imparts stringiness (property of extending into a filament shape). The specific thickener is not particularly limited, and examples thereof include polyvinyl alcohol (○) and ruboxymethyl cellulose.
Figure imgf000015_0001
, Polyethylene oxide, and the like. These thickeners may be used alone or in an appropriate combination of two or more. Of these, it is desirable to use fully saponified products from the viewpoint of moisture resistance of composite material layer 12 (gas barrier structure).
[0057] 本開示においては、 ガスバリア構造体の水蒸気バリア性をより良好なもの とする観点では、 ナイロン系樹脂に対して、 分子量が 2 0 0以下の水溶性の 低分子量アミン化合物を添加することができる。 具体的な低分子量アミン化 合物としては、 例えば、 1 , 2 -シクロヘキサンジアミン、 1 , 3 -シクロ ヘキサンジアミン、 1 , 4—シクロヘキサンジアミンの低分子量ジアミン; 2 , 6 -ジアミノアブロン酸等の低分子量ジアミノカルボン酸;ジエタノー ルアミン等の低分子量アミノアルコール;等を挙げることができるが、 特に \¥0 2020/175503 14 卩(:170? 2020 /007575 [0057] In the present disclosure, from the viewpoint of improving the water vapor barrier property of the gas barrier structure, a water-soluble low molecular weight amine compound having a molecular weight of 200 or less is added to the nylon resin. You can Specific low molecular weight amine compounds include, for example, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, low-molecular weight diamines of 1,4-cyclohexanediamine; Examples thereof include low molecular weight diaminocarboxylic acids; low molecular weight amino alcohols such as diethanolamine; \¥0 2020/175503 14 卩 (: 170? 2020 /007575
限定されない。 これら低分子量アミン化合物は 1種類のみを用いてもよいし 2種類以上を適宜組み合わせて用いてもよい。 Not limited. These low molecular weight amine compounds may be used alone or in appropriate combination of two or more.
[0058] ナイロン系樹脂に対する低分子量アミン化合物の添加量は特に限定されな いが、 ナイロン系樹脂の重量を基準として添加量を設定することができる。 具体的には、 ナイロン系樹脂の重量を
Figure imgf000016_0001
とし、 低分子量アミン化合物の重量 としたときに、 低分子量アミン化合物の添加率 は、 ナイロン系樹脂 の重量
Figure imgf000016_0002
と低分子量アミン化合物の重量
Figure imgf000016_0003
との和に対する低分子量アミン 化合物の重量
Figure imgf000016_0004
の百分率 ( 8 / (I +1) X 1 〇〇) で表すこと ができる (単位:重量%) 。 なお、 前記の通り、 ナイロン系樹脂以外の樹脂 をバインダー成分として含む場合には、 バインダー成分 (樹脂成分) 全体の 重量を基準として (ナイロン系樹脂の重量
Figure imgf000016_0005
をバインダー成分全体の重量に 置き換えて) 低分子量アミン化合物の添加率 を設定してもよい。
[0058] The addition amount of the low molecular weight amine compound to the nylon resin is not particularly limited, but the addition amount can be set based on the weight of the nylon resin. Specifically, change the weight of nylon resin
Figure imgf000016_0001
And the weight of the low molecular weight amine compound, the addition ratio of the low molecular weight amine compound is
Figure imgf000016_0002
And the weight of low molecular weight amine compounds
Figure imgf000016_0003
Weight of low molecular weight amine compound relative to
Figure imgf000016_0004
Can be expressed as a percentage ( 8 / (I +1) X 100) (unit: weight %). As described above, when a resin other than nylon resin is included as a binder component, the total weight of the binder component (resin component) (weight of nylon resin
Figure imgf000016_0005
It is also possible to set the addition ratio of the low molecular weight amine compound (by replacing the weight with the total weight of the binder component).
[0059] 低分子量アミン化合物の添加率 は特に限定されず、 良好な水蒸気バリア 性を発揮できる範囲内であればよいが、 例えば後述する実施例 4 (および図 8) に示すように、 2 0〜 7 5重量%の範囲内を挙げることができ、 好まし くは 4 0〜 7 0重量%の範囲内を挙げることができる。 低分子量アミン化合 物の含有量がこの範囲内であれば、 得られるガスバリア構造体において水蒸 気バリア性が向上することに加え、 複合材料層 1 2における基材 1 1からの 剥離強度の改善も期待することができる。 [0059] The addition ratio of the low molecular weight amine compound is not particularly limited as long as it is within a range capable of exhibiting a good water vapor barrier property. For example, as shown in Example 4 (and Fig. 8) described later, 20 The content can be in the range of to 75% by weight, and preferably in the range of 40 to 70% by weight. When the content of the low molecular weight amine compound is within this range, the water vapor barrier property of the obtained gas barrier structure is improved, and the peel strength of the composite material layer 12 from the base material 11 is improved. Can also be expected.
[0060] 低分子量アミン化合物が良好な水蒸気バリア性を実現できるとともに、 剥 離強度の改善にも寄与する理由は現時点では明らかではないが、 (1) 無機 層状化合物に含まれる対イオンであるアンモニウムイオン (1\] |~14 +) がプロト ン (1 1 + ) を放出し、 低分子量アミン化合物のアミノ基が、 より疎水的なアン モニウム型の対イオンを形成することで、 複合材料層 1 2の水和が抑制され ること、 並びに、 (2) 樹脂材料の主成分であるナイロン系樹脂の親水基 ( 例えばアミノ基) と低分子量アミン化合物のアミノ基とが水素結合を形成す ることで、 バインダー成分 (樹脂材料) の凝集力が増大するとともに、 前記 の疎水的なアンモニウム型の対イオンによるバインダー成分と無機層状化合 \¥0 2020/175503 15 卩(:170? 2020 /007575 [0060] The reason why the low molecular weight amine compound can realize good water vapor barrier properties and contribute to the improvement of the peel strength is not clear at this time. (1) Ammonium which is a counter ion contained in the inorganic layered compound Ions (1\] | ~ 1 4 + ) release protons (1 1 + ), and the amino group of the low molecular weight amine compound forms a more hydrophobic ammonium-type counterion, forming a composite material. Inhibition of hydration of Layer 12 and (2) Hydrophilic group (eg amino group) of nylon resin which is the main component of resin material and amino group of low molecular weight amine compound form hydrogen bond. As a result, the cohesive force of the binder component (resin material) is increased, and at the same time, the binder component and the inorganic layered compound are formed by the hydrophobic ammonium counterion. \\0 2020/175 503 15 卩 (: 170? 2020 /007575
物との凝集力も増大すること、 という 2つの理由が推測される。 It is speculated that there are two reasons that the cohesive force with the object also increases.
[0061 ] 本開示に係るガスバリア構造体 (ガスバリアフィルム 1 〇八, 1 〇巳) に おいては、 複合材料層 1 2が含有する無機層状化合物の比率 (含有率) は、 [0061] In the gas barrier structure (gas barrier film 108, 110) according to the present disclosure, the ratio (content ratio) of the inorganic layered compound contained in the composite material layer 12 is
3 0〜 9 0重量%の範囲内であればよいが、 例えば後述する実施例 1 (およ び図 4) に示すように、 4 5〜 8 5重量%の範囲内であってもよく、 5 0〜It may be in the range of 30 to 90% by weight, but may be in the range of 45 to 85% by weight, for example, as shown in Example 1 (and FIG. 4) described later, 50 ~
8 5重量%の範囲内であってもよく、 6 0〜 8 0重量%の範囲内であっても よい。 高温多湿の環境下で良好な水蒸気バリア性を実現する観点では、 6 0 重量%を超えて 8 0重量%未満となる範囲内であってもよいし、 6 5〜 7 5 重量%の範囲内であってもよい。 無機層状化合物温含有率は、 使用環境に求 められる水蒸気バリア性に応じて、 その上限値または下限値を適宜選択する ことができる。 It may be in the range of 85% by weight, or in the range of 60 to 80% by weight. From the viewpoint of achieving a good water vapor barrier property in a hot and humid environment, it may be in the range of more than 60% by weight and less than 80% by weight, or in the range of 65 to 75% by weight. May be The upper limit value or the lower limit value of the temperature content of the inorganic layered compound can be appropriately selected according to the water vapor barrier property required in the use environment.
[0062] 複合材料層 1 2が含有する無機層状化合物がスメクタイ トである場合であ って、 例えば、 高温多湿の環境下で良好な水蒸気バリア性を実現する観点で は、 スメクタイ トとしては、 例えば、 前述したモンモリロナイ トおよびステ ィーブンサイ トの混合物を好適に用いることができる。 このとき、 当該混合 物中におけるモンモリロナイ トおよびスティーブンサイ トの配合比は特に限 定されず、 種々の条件に応じて適宜の範囲内に設定することができる。 [0062] In the case where the inorganic layered compound contained in the composite material layer 12 is a smectite, for example, from the viewpoint of achieving a good water vapor barrier property in a hot and humid environment, the smectite is: For example, the above-mentioned mixture of montmorillonite and stephensite can be preferably used. At this time, the compounding ratio of montmorillonite and stephensite in the mixture is not particularly limited, and can be set within an appropriate range according to various conditions.
[0063] 代表的な一例としては、 後述する実施例 2 (および図 5) に示すように、 混合物中におけるモンモリロナイ トの含有率が 6 5重量%以上 1 0 0重量% 未満となる配合比を挙げることができる。 言い換えれば、 混合物におけるス ティーブンサイ トの含有率は 0重量%以上 3 5重量%未満であればよい。 モ ンモリロナイ トの含有率が 6 5質量%を超えることにより、 4 0 °〇9 5 % [¾ [0063] As a typical example, as shown in Example 2 (and Fig. 5) to be described later, a mixing ratio such that the content of montmorillonite in the mixture is 65% by weight or more and less than 100% by weight is used. Can be mentioned. In other words, the content of the step-site in the mixture may be 0% by weight or more and less than 35% by weight. When the content rate of monmonylonite exceeds 65% by mass, 40 ° 〇 9 5% [¾
! !環境下という高温多湿の環境下でも良好な水蒸気バリア性 (例えば、 〇.!! Good water vapor barrier property even in hot and humid environments (for example, ◯.
0 7 9 / ^ - 〇1 3ソ以下) を実現することができる。 なお、 モンモリロナイ 卜の含有率が 1 0 0重量%すなわちスメクタイ ト (無機層状化合物) として モンモリロナイ トのみが用いられても、 良好な水蒸気バリア性を実現するこ とができる。 また、 ガスバリア構造体の使用条件等によっては、 後述する実 施例 2に例示するようにスティーブンサイ トの含有率が 1 0 0重量%であっ \¥0 2020/175503 16 卩(:170? 2020 /007575 0 7 9 / ^-0 13 or less) can be realized. Even if the content of montmorillonite is 100% by weight, that is, only montmorillonite is used as the smectite (inorganic layered compound), a good water vapor barrier property can be realized. In addition, depending on the usage conditions of the gas barrier structure, the content of Stevensite is 100% by weight, as illustrated in Example 2 described later. \¥0 2020/175 503 16 卩 (: 170? 2020 /007575
てもよい。 May be.
[0064] 本開示に係るガスバリア構造体 (ガスバリアフィルム 1 〇八, 1 〇巳) に おける複合材料層 1 2の具体的な条件は特に限定されず、 当該ガスバリア構 造体の用途等に応じて好適な条件を適宜設定することができる。 例えば、 複 合材料層 1 2の厚さは特に限定されないものの、 代表的には、 乾燥後の厚さ が 1 0 1^ 111 (〇. 0 1 〇〇 以上 5 01以下の範囲内であればよく、 上限値 は 3 以下であってもよいし、 2 以下であってもよい。 複合材料層 1 2の厚さが 1 O n m未満であると、 諸条件にもよるが当該複合材料層 1 2が 薄すぎて十分なガスバリア性を実現できない場合がある。 一方、 複合材料層 1 2の厚さが 5 を超えると、 諸条件にもよるが厚さに見合ったガスバリ ア性を実現できないだけでなく、 例えば基材 1 1が樹脂フィルムであれば、 複合材料層 1 2が厚くなり過ぎて十分な柔軟性が得られなくなる可能性があ る。 [0064] The specific conditions of the composite material layer 12 in the gas barrier structure (gas barrier film 108, 110) according to the present disclosure are not particularly limited, and may be changed depending on the use of the gas barrier structure. Suitable conditions can be set as appropriate. For example, the thickness of the composite material layer 12 is not particularly limited, but typically, if the thickness after drying is within the range of 10 1^ 111 (○ 0.01 000 or more and 501 or less). Well, the upper limit value may be 3 or less, or may be 2 or less.If the thickness of the composite material layer 1 2 is less than 1 O nm, the composite material layer 1 may vary depending on various conditions. 2 may be too thin to realize sufficient gas barrier properties.On the other hand, if the thickness of the composite material layer 1 2 exceeds 5, it may not be possible to achieve gas barrier properties matching the thickness, depending on various conditions. If, for example, the base material 11 is a resin film, the composite material layer 12 may become too thick and sufficient flexibility may not be obtained.
[0065] 複合材料層 1 2の形成方法、 すなわち、 ガスバリア構造体 (ガスバリアフ ィルム 1 〇八, 1 〇巳) の製造方法は特に限定されず、 基材 1 1上に、 無機 フィラーとしての無機層状化合物と、 樹脂材料 (バインダー成分) としての ナイロン系樹脂とを含有する複合材料層 1 2を公知の方法で形成すればよい 。 代表的には、 無機層状化合物およびナイロン系樹脂を含有する塗工液を公 知の方法で調製し、 この塗工液を公知の方法で基材 1 1の表面上 (無機蒸着 層 1 3を有する場合には、 基材 1 1 における無機蒸着層 1 3の上) に形成し 、 乾燥すればよい。 [0065] The method for forming the composite material layer 12, that is, the method for producing the gas barrier structure (gas barrier film 108, 110) is not particularly limited, and the inorganic layered material as the inorganic filler on the substrate 11 is not limited. The composite material layer 12 containing a compound and a nylon resin as a resin material (binder component) may be formed by a known method. Typically, a coating solution containing an inorganic layered compound and a nylon resin is prepared by a known method, and this coating solution is formed on the surface of the substrate 11 (inorganic vapor deposition layer 13 by the known method). In the case of having it, it may be formed on the inorganic vapor deposition layer 13 of the substrate 11) and dried.
[0066] 代表的な塗工液としては、 無機層状化合物およびナイロン系樹脂を公知の 溶剤に分散させて調製した分散液を挙げることができる。 塗工液における無 機層状化合物およびナイロン系樹脂の濃度 (塗工液の組成) は特に限定され ず、 塗工方法または乾燥方法等の諸条件に応じて適宜設定することができる 。 塗工液には、 必要に応じて無機層状化合物およびナイロン系樹脂以外の成 分が含まれてもよい。 また、 溶剤 (分散媒) の種類も特に限定されず、 無機 層状化合物およびナイロン系樹脂の種類に応じて適宜設定することができる \¥0 2020/175503 17 卩(:170? 2020 /007575 [0066] As a typical coating liquid, a dispersion liquid prepared by dispersing an inorganic layered compound and a nylon resin in a known solvent can be mentioned. The concentrations of the organic layered compound and the nylon resin in the coating liquid (composition of the coating liquid) are not particularly limited, and can be appropriately set according to various conditions such as the coating method and the drying method. The coating liquid may contain components other than the inorganic layered compound and the nylon resin, if necessary. Further, the kind of the solvent (dispersion medium) is not particularly limited, and can be appropriately set depending on the kinds of the inorganic layered compound and the nylon resin. \¥0 2020/175503 17 卩(: 170? 2020/007575
。 後述する実施例に示すように、 溶剤 (分散媒) としては少なくとも水が用 いられ、 これ以外に、 アルコールまたは他の水溶性有機溶媒等を併用するこ とができる。 .. As shown in Examples described later, at least water is used as the solvent (dispersion medium), and in addition thereto, alcohol or other water-soluble organic solvent or the like can be used in combination.
[0067] 塗工液の塗工方法としては、 バーコーティング、 口ールコーティング、 ス プレーコーティング、 ディップコーティング、 スピンコーティング、 ラミナ —フローコーティング、 ダイコーティング、 グラビアコーティング、 ナイフ コーティング、 力ーテンコーティング、 ロッ ドコーティング、 エアードクタ —コーティング、 ブレードコーティング、 コンマコーティング等の公知のコ —ティング方法を挙げることができるが特に限定されない。 [0067] The coating liquid can be applied by bar coating, mouth coating, spray coating, dip coating, spin coating, lamina-flow coating, die coating, gravure coating, knife coating, force-ten coating, Known coating methods such as rod coating, air doctor coating, blade coating, and comma coating can be mentioned, but not particularly limited.
[0068] 塗工された塗膜の乾燥方法としては、 加熱乾燥、 減圧乾燥、 またはこれら の組合せ等を挙げることができるが、 特に限定されない。 加熱または減圧の 条件 (例えば、 温度、 時間、 圧力) も特に限定されず、 塗工液の組成または 基材 1 1の種類等の諸条件に応じて適宜設定することができる。 なお、 前述 したように、 無機層状化合物がスメクタイ トであり、 層間陽イオンがアンモ ニウムイオン (1\1 1~14 +) である場合には、 熱処理によりアンモニウムイオンか らアンモニア
Figure imgf000019_0001
を脱離させるが、 この熱処理工程と塗膜の乾燥工程と をまとめて 1工程で実施してもよい。
[0068] Examples of the method for drying the applied coating film include, but are not limited to, heat drying, reduced pressure drying, and combinations thereof. The heating or depressurizing conditions (for example, temperature, time, pressure) are not particularly limited, and can be appropriately set according to various conditions such as the composition of the coating liquid or the type of the substrate 11. As described above, when the inorganic layered compound is a smectite and the interlayer cation is an ammonium ion (1\1 1 to 1 4 + ), ammonium ion is converted from ammonium ion by heat treatment.
Figure imgf000019_0001
The heat treatment step and the coating film drying step may be carried out in a single step.
[0069] 複合材料層 1 2を塗工液により形成する場合には、 乾燥前の塗工液の厚さ は、 乾燥後の厚さとの間に相関関係を有する。 例えば、 塗工液の固形分、 す なわち、 少なくとも無機層状化合物およびナイロン系樹脂 (他の無機フィラ —または他の樹脂材料を併用する場合には、 これら他の成分も固形分に含む ) の濃度が、 後述する実施例 1〜 4に示すように約 3重量%または実施例 5 に示すように約 2重量%であれば、 乾燥前の塗膜の厚さ (膜厚) は、 乾燥後 の膜厚 (溶剤/分散媒が実質的に除去された厚さ) に比例する。 When the composite material layer 12 is formed by the coating liquid, the thickness of the coating liquid before drying has a correlation with the thickness after drying. For example, the solid content of the coating liquid, that is, at least the inorganic layered compound and nylon resin (when other inorganic filler or other resin material is used together, these other components are also included in the solid content) When the concentration is about 3% by weight as shown in Examples 1 to 4 described later or about 2% by weight as shown in Example 5, the thickness of the coating film before drying (film thickness) is It is proportional to the film thickness (thickness of the solvent/dispersion medium removed substantially).
[0070] 後述する実施例では、 例えば約 3重量%の固形分濃度で実測 1 〇〇 の 膜厚で塗膜を形成したときには、 乾燥後の膜厚 (複合材料層 1 2の厚さ) は 、 1 . 3〜 2 . 8 の範囲内程度となり、 約 2重量%の固形分濃度で実測 1 〇〇 の膜厚で塗膜を形成したときには、 乾燥後の膜厚は〇. 9 ~ 1 . \¥0 2020/175503 18 卩(:170? 2020 /007575 [0070] In Examples described later, for example, when a coating film was formed with a solid content concentration of about 3% by weight and an actually measured film thickness of 100, the film thickness after drying (the thickness of the composite material layer 12) was , Within the range of 1.3 to 2.8, and when a coating film was formed with a film thickness of 100% measured at a solid content concentration of about 2% by weight, the film thickness after drying was 0.9 to 1. \¥0 2020/175 503 18 卩 (: 170? 2020 /007575
9 01の範囲内程度となることが明らかとなっている。 したがって、 本実施 の形態では、 塗工液の固形分濃度 (重量%濃度) の数値に基づいて、 複合材 料層 1 2の乾燥前の膜厚から乾燥後の膜厚を近似する計算値を算出すること ができる。 It is clear that it will be within the range of 901. Therefore, in this embodiment, based on the numerical value of the solid content concentration (weight% concentration) of the coating liquid, a calculated value approximating the film thickness after drying of the composite material layer 12 is calculated. It can be calculated.
[0071 ] 形成された複合材料層 1 2においては、 水の残存量およびアンモニアの残 存量も規定することができる。 すなわち、 乾燥後の複合材料層 1 2において 、 水の残存量の上限値を規定することで、 当該複合材料層 1 2が十分に乾燥 していると判断することができる。 また、 前述したように、 無機層状化合物 がスメクタイ トであり、 層間陽イオンがアンモニウムイオン (1\1 1~14 +) である 場合であって、 熱処理工程と乾燥工程とをまとめて実施する場合には、 乾燥 後の複合材料層 1 2において、 アンモニアの残存量の上限値を規定すること で、 当該複合材料層 1 2においてアンモニアが十分に脱離していると判断す ることができる。 [0071] In the formed composite material layer 12, the residual amount of water and the residual amount of ammonia can also be specified. That is, in the dried composite material layer 12, it is possible to determine that the composite material layer 12 is sufficiently dried by defining the upper limit value of the residual amount of water. Further, as described above, when the inorganic layered compound is a smectite and the interlayer cation is an ammonium ion (1\1 1 to 1 4 + ), the heat treatment step and the drying step are collectively performed. In this case, by defining the upper limit value of the residual amount of ammonia in the dried composite material layer 12, it can be determined that ammonia is sufficiently desorbed in the composite material layer 12.
[0072] 複合材料層 1 2における水の残存量の上限値としては、 例えば、 後述する 実施例 3 (および図 6) に示すように、 2 . 5重量%以下であればよい。 複 合材料層 1 2における水の含有量がこの数値以下であれば、 複合材料層 1 2 が十分に乾燥していると判断することができる。 また、 複合材料層 1 2にお けるアンモニアの残存量の上限値としては、 後述する実施例 3 (および図 7 ) に示すように、 1 . 0重量%以下であればよい。 複合材料層 1 2における アンモニアの含有量がこの数値以下であれば、 アンモニウムイオンの存在に よる多湿環境下での水の誘引を抑制することができる。 なお、 複合材料層 1 2における水またはアンモニアの含有量の測定方法は特に限定されないが、 後述するように、 水の含有量は力ールフィッシャー水分計で測定する方法を 挙げることができ、 アンモニアの含有量はイオンクロマトグラフィーにより 測定する方法を挙げることができる。 [0072] The upper limit of the residual amount of water in the composite material layer 12 may be, for example, 2.5% by weight or less, as shown in Example 3 (and Fig. 6) described later. If the water content in the composite material layer 12 is less than this value, it can be determined that the composite material layer 12 is sufficiently dry. Further, the upper limit of the residual amount of ammonia in the composite material layer 12 may be 1.0% by weight or less as shown in Example 3 (and FIG. 7) described later. If the content of ammonia in the composite material layer 12 is less than this value, it is possible to suppress the attraction of water in a humid environment due to the presence of ammonium ions. The method for measuring the water or ammonia content in the composite material layer 12 is not particularly limited, but as described later, the water content can be measured by a force Fischer moisture meter. The content of may be measured by ion chromatography.
[0073] このように、 本開示に係るガスバリア構造体としてのガスバリアフィルム [0073] As described above, the gas barrier film as the gas barrier structure according to the present disclosure
1 〇 , 1 〇巳は、 図 1 巳に示すように、 基材 1 1および複合材料層 1 2の 少なくとも 2層を有する構成であり、 好ましい一例として、 図 1 八に示すよ \¥0 2020/175503 19 卩(:170? 2020 /007575 As shown in FIG. 1, each of 10 and 10 has a structure having at least two layers, that is, a base material 11 and a composite material layer 12, and a preferable example is shown in FIG. \\0 2020/175 503 19 卩(: 170? 2020/007575
うに、 基材 1 1および複合材料層 1 2の間に無機蒸着層 1 3を有する構成を 挙げることができる。 しかしながら、 ガスバリアフィルム 1 〇八, 1 0巳 ( ガスバリア構造体) の具体的な構成はこれらに限定されず、 基材 1 1、 複合 材料層 1 2および無機蒸着層 1 3以外の他の層を有する構成であってもよい As described above, a structure having the inorganic vapor deposition layer 13 between the base material 11 and the composite material layer 12 can be mentioned. However, the specific structure of the gas barrier film 108, 10 (gas barrier structure) is not limited to these, and the layers other than the base material 11, the composite material layer 12 and the inorganic vapor deposition layer 13 may be used. May have a configuration
[0074] 本開示に係るガスバリア構造体 (ガスバリアフィルム 1 〇八, 1 〇巳) は 、 前述した構成を有しており、 高温多湿の条件下での良好なガスバリア性を 実現することができる。 本開示に係るガスバリア構造体の水蒸気透過度は、 高温多湿の条件下である 4 0 °〇 9 5 % [¾ 1~1環境下で、 少なくとも 1 . 0 9 /[0074] The gas barrier structure (gas barrier film 108, 110) according to the present disclosure has the above-described configuration, and can achieve good gas barrier properties under conditions of high temperature and high humidity. The water vapor permeability of the gas barrier structure according to the present disclosure is at least 1.09 / under an environment of high temperature and high humidity of 40 ° 〇 9 5% [¾ 1 to 1].
6 aソ以下であればよく、 好ましくは〇. 1 9 / ^2 - 6 aソ以下であ り、 より好ましくは〇.
Figure imgf000021_0001
ソ以下であればよい。
As long 6 a Seo less, preferably 〇 1 9 / ^ 2 -. Ri 6 a Seo der less, more preferably 〇.
Figure imgf000021_0001
It may be less than or equal to Seo.
[0075] なお、 後述する実施例 1 (および図 4) では、 複合材料層 1 2において無 機層状化合物の含有率が 0 %であるときの水蒸気透過度は〇. 2 0 9 / ^ -
Figure imgf000021_0002
以下であるが、 水蒸気透過度は、 複合材料層 1 2だけでなく基材 1 1のガスバリア性にも影 響を受ける。 したがって、 実施例 1では、 無機層状化合物の含有率が 0 %で ある実験結果は、 実施例 1 における基材 1 1の影響を考慮するための 「参考 例」 と位置付けられ、 本願発明の範囲内には入らない。
. [0075] In Embodiment below 1 (and FIG. 4), the water vapor transmission rate when the composite material layer 1 2 content of no machine layered compound is 0% 〇 2 0 9 / ^ -
Figure imgf000021_0002
As will be described below, the water vapor permeability is affected not only by the composite material layer 12 but also by the gas barrier properties of the substrate 11. Therefore, in Example 1, the experimental result in which the content of the inorganic layered compound is 0% is positioned as a “reference example” for considering the influence of the base material 11 in Example 1, and falls within the scope of the present invention. I can't enter.
[0076] このように、 本開示に係るガスバリア構造体は、 基材 1 1 をナイロン系樹 脂製とするとともに、 複合材料層 1 2に含有される無機層状化合物の含有率 が 3 0〜 9 0重量%とすることにより、 高温多湿条件下での水蒸気透過度の 上限を低下させることができる。 そのため、 高温多湿の条件下で良好なガス バリア性 (特に水蒸気バリア性) を発揮することができる。 [0076] As described above, in the gas barrier structure according to the present disclosure, the base material 11 is made of nylon-based resin, and the content ratio of the inorganic layered compound contained in the composite material layer 12 is 30 to 9. By setting the content to 0% by weight, the upper limit of the water vapor permeability under high temperature and high humidity conditions can be lowered. Therefore, good gas barrier properties (particularly water vapor barrier properties) can be exhibited under conditions of high temperature and high humidity.
[0077] [フィルム積層体] [0077] [Film laminate]
次に、 本開示に係るガスバリア構造体をガスバリアフィルム 1 〇八, 1 0 巳として備えるフィルム積層体について、 図 2八~図 2〇を参照して具体的 に説明する。 図 2八〜図 2〇に示すように、 本実施の形態に係るフィルム積 層体 2 0八~ 2 0〇は、 前述したガスバリアフィルム 1 〇八を 「ガスバリア \¥0 2020/175503 20 卩(:170? 2020 /007575 Next, a film laminate including the gas barrier structure according to the present disclosure as a gas barrier film 108, 10 will be specifically described with reference to FIGS. 28 to 20. As shown in FIGS. 28 to 20, the film laminated body 208 to 200 according to the present embodiment is the same as the gas barrier film 108 described above in “gas barrier film”. \\0 2020/175 503 20 (: 170? 2020 /007575
層」 として備える積層構造を有している。 It has a laminated structure provided as “layer”.
[0078] なお、 図 1 八に示すように、 ガスバリアフィルム 1 〇八は、 基材 1 1、 無 機蒸着層 1 3、 および複合材料層 1 2の 3層構造を有しているが、 図 2八〜 図 2〇では、 積層される他のフィルムとの区別を明確にする便宜上、 ガスバ リアフィルム 1 0八を網掛けした 「単一のフィルム」 として図示する。 また 、 図 2八~図 2〇においては、 ガスバリアフィルム 1 0八を、 図 1 巳に示す ガスバリアフィルム 1 0巳または他の構成のガスバリアフィルムに置き換え 可能であることはいうまでもない。 [0078] As shown in Fig. 18, the gas barrier film 108 has a three-layer structure of a substrate 11, a vapor-deposited layer 13 and a composite material layer 12, although 28-Fig. 20 are shown as a "single film" in which the gas barrier film 108 is shaded for the sake of clarity to distinguish it from other laminated films. Further, it is needless to say that the gas barrier film 108 in FIGS. 28 to 20 can be replaced with the gas barrier film 10 shown in FIG. 1 or a gas barrier film having another structure.
[0079] 例えば、 図 2八に示すフィルム積層体 2〇八は、 保護フィルム 2 1、 熱融 着フィルム 2 2およびガスバリアフィルム 1 0八を備えており、 保護フィル ム 2 1および熱融着フィルム 2 2の間にガスバリアフィルム 1 0八が挟持さ れた 3層構造となっている。 保護フィルム 2 1は、 当該フィルム積層体 2 0 八を袋体に構成したときに、 当該袋体の外面になり、 熱融着フィルム 2 2は 、 当該袋体の内面になる。 なお、 説明の便宜上、 保護フィルム 2 1の側すな わち袋体の外面となる側を 「上側」 とし、 熱融着フィルム 2 2の側すなわち 袋体の内面となる側を 「下側」 とする。 [0079] For example, the film laminated body 28 shown in FIG. 28 includes a protective film 21, a heat-sealing film 22 and a gas barrier film 108, and a protective film 21 and a heat-sealing film. It has a three-layer structure in which a gas barrier film 108 is sandwiched between 22. The protective film 21 becomes the outer surface of the bag when the film laminate 20 is formed into a bag, and the heat-sealing film 22 becomes the inner surface of the bag. For convenience of explanation, the side of the protective film 21, that is, the side that is the outer surface of the bag body is referred to as "upper side", and the side of the heat-sealing film 2 2 that is, the side that is the inner surface of the bag body is "lower side". And
[0080] また、 図 2巳に示すフィルム積層体 2 0巳は、 保護フィルム 2 1、 熱融着 フィルム 2 2、 および 2層のガスバリアフィルム 2 3およびガスバリアフィ ルム 1 0八を備えており、 保護フィルム 2 1および熱融着フィルム 2 2の間 に 2層のガスバリアフィルム 2 3 , 1 0八が挟持された 4層構造となってい る。 フィルム積層体 2 0巳は、 上側から下側に向かって、 保護フィルム 2 1 、 ガスバリアフィルム 2 3、 ガスバリアフィルム 1 0八、 および熱融着フィ ルム 2 2の順で積層されている。 [0080] Further, the film laminated body 20 shown in Fig. 2 includes a protective film 21, a heat-sealing film 22 and a two-layer gas barrier film 23 and a gas barrier film 108. It has a four-layer structure in which two layers of gas barrier films 23 and 108 are sandwiched between the protective film 21 and the heat-sealing film 22. The film laminated body 20 is laminated from the upper side to the lower side in the order of the protective film 21, the gas barrier film 23, the gas barrier film 108, and the heat-sealing film 22.
[0081 ] 図 2巳に示す例では、 下側のガスバリアフィルム 1 〇八が本開示に係るガ スバリア構造体であるが、 上側のガスバリアフィルム 2 3は、 本開示に係る ガスバリア構造体とは異なる構成であればよい。 なお、 ガスバリアフィルム 1 〇 は、 下側 (熱融着フィルム 2 2に接する側) ではなく、 上側 (保護フ ィルム 2 1 に接する側) であってもよい。 また、 図示しないが、 保護フィル \¥0 2020/175503 21 卩(:170? 2020 /007575 In the example shown in FIG. 2, the lower gas barrier film 108 is the gas barrier structure according to the present disclosure, but the upper gas barrier film 23 is different from the gas barrier structure according to the present disclosure. Any configuration will do. The gas barrier film 10 may be on the upper side (the side in contact with the protective film 21) instead of the lower side (the side in contact with the heat-sealing film 22). Also, although not shown, a protective film \¥0 2020/175503 21 卩 (: 170? 2020 /007575
ム 2 1および熱融着フィルム 2 2の間には、 3層以上のガスバリアフィルム が挟持され、 そのうち少なくとも 1層がガスバリアフィルム 1 〇八 (ガスバ リア構造体) であってもよい。 A gas barrier film having three or more layers may be sandwiched between the film 21 and the heat-sealing film 22 and at least one layer may be the gas barrier film 108 (gas barrier structure).
[0082] 図 2八に示すフィルム積層体 2 0八および図 2巳に示すフィルム積層体 2 [0082] The film laminate 20 shown in FIG. 28 and the film laminate 2 shown in FIG.
0巳は、 保護フィルム 2 1、 熱融着フィルム 2 2および 1層以上のガスバリ アフィルム 1 0八を備える構成であるが、 フィルム積層体の具体的な構成は 、 これらに限定されない。 例えば、 図 2〇に示すフィルム積層体 2 0〇のよ うに、 上側がガスバリアフィルム 1 0八であり下側が熱融着フィルム 2 2で ある 2層構造であってもよいし、 図示しないが上側が保護フィルム 2 1であ り下側がガスバリアフィルム 1 0八であってもよいし、 保護フィルム 2 1、 熱融着フィルム 2 2、 ガスバリアフィルム 1 0 以外の構成のフィルムが積 層された 4層以上の構成であってもよい。 Omi has a structure including a protective film 21, a heat-sealing film 22 and one or more gas barrier films 108, but the specific structure of the film laminate is not limited to these. For example, like the film laminate 200 shown in FIG. 20, it may have a two-layer structure in which the upper side is the gas barrier film 108 and the lower side is the heat fusion film 22. The side may be the protective film 21 and the lower side may be the gas barrier film 108, or a four-layer structure in which a film other than the protective film 21, the heat-sealing film 22 and the gas barrier film 10 is laminated. The above configuration may be adopted.
[0083] また、 図 2八~図 2〇に示すフィルム積層体 2 0八~ 2〇〇では、 ガスバ リアフィルム 1 0 として本開示に係るガスバリア構造体を 1層備える構成 であるが、 フィルム積層体の具体的な構成はこれに限定されない。 例えば、 図 2八に示す構成のフィルム積層体 2 0八において、 本開示に係るガスバリ ア構造体を 2層以上積層したものをガスバリアフィルム 1 0八として用いて もよい。 Further, the film laminates 208 to 200 shown in FIGS. 28 to 20 have a structure in which one layer of the gas barrier structure according to the present disclosure is provided as the gas barrier film 10. The specific configuration of the body is not limited to this. For example, in the film laminate 208 having the configuration shown in FIG. 28, a gas barrier film 108 may be obtained by laminating two or more layers of the gas barrier structure according to the present disclosure.
[0084] 保護フィルム 2 1は、 袋体の外面 (表面) を保護するための層 (外面保護 層) であればよく、 その具体的な材料は袋体の用途に応じて適宜選択され、 特に限定されない。 袋体の用途が後述する真空断熱材の外被材である場合に は、 代表的には、 ある程度の耐久性を有する各種の樹脂であればよい。 具体 的な樹脂としては、 例えば、 ポリエチレンテレフタレート ( 巳丁) 、 ナイ ロン (ポリアミ ド、 八) 、 ポリカーボネート ( 〇) 、 ポリイミ ド ( I ) 、 ポリエーテルエーテルケトン ( 巳巳 ) 、 ポリフエニレンサルフアイ ド ( 3) 、 ポリサルフォン ( 3 ) 、 超高分子量ポリエチレン (11 -
Figure imgf000023_0001
等を挙げることができるが、 これらに 特に限定されない。 \¥0 2020/175503 22 卩(:170? 2020 /007575
[0084] The protective film 21 may be a layer (outer surface protective layer) for protecting the outer surface (surface) of the bag body, and its specific material is appropriately selected according to the application of the bag body, and in particular, Not limited. When the bag is used as an outer covering material for a vacuum heat insulating material, which will be described later, typically, various resins having a certain degree of durability may be used. Specific resins include, for example, polyethylene terephthalate (Mita), nylon (polyamide, eight), polycarbonate (○), polyimide (I), polyetheretherketone (Mimi), polyphenylene sulfide. (3), Polysulfone (3), Ultra high molecular weight polyethylene (11-
Figure imgf000023_0001
However, the present invention is not limited to these. \¥0 2020/175 503 22 卩 (: 170? 2020 /007575
[0085] これら樹脂は単独で用いられてもよいし、 2種類以上を適宜組み合わせた ポリマーアロイとして用いられてもよい。 ポリマーアロイには、 保護フィル ム 2 1 として好適な樹脂以外の樹脂が含まれてもよい。 さらに、 保護フィル ム 2 1 には、 前述した樹脂以外の成分 (各種添加剤等) が含まれてもよい。 つまり、 保護フィルム 2 1は、 前述した樹脂のみで構成されてもよいが、 他 の成分を含む樹脂組成物で構成されてもよい。 [0085] These resins may be used alone or may be used as a polymer alloy in which two or more kinds are appropriately combined. The polymer alloy may contain a resin other than the resin suitable as the protective film 21. Further, the protective film 21 may contain components (various additives, etc.) other than the resin described above. That is, the protective film 21 may be composed of only the resin described above, but may be composed of a resin composition containing other components.
[0086] 図 2八〜図 2〇に示すフィルム積層体 2 0八〜2 0〇では、 保護フィルム [0086] In the film laminates 208 to 200 shown in FIGS.
2 1は1層 (単層) の樹脂フィルムとして構成されているが、 複数の樹脂フ ィルムを積層して構成されてもよい。 保護フィルム 2 1の厚さは特に限定さ れず、 袋体の外面を保護できる範囲の厚さを有していればよい。 21 is configured as a single-layer (single-layer) resin film, but it may be configured by stacking a plurality of resin films. The thickness of the protective film 21 is not particularly limited as long as it has a thickness that can protect the outer surface of the bag body.
[0087] 熱融着フィルム 2 2は、 フィルム積層体 2 0八~ 2〇〇同士を対向させて 貼り合わせるための層 (接着層) であるとともに、 袋体の内面を保護する層 (内面保護層) としても機能する。 接着層としての熱融着フィルム 2 2につ いて説明すると、 例えば、 図 2八に示す 3層構造のフィルム積層体 2 0八で あれば、 当該フィルム積層体 2 0八の熱融着フィルム 2 2同士を対面させて 加熱することにより、 フィルム積層体 2 0八の内面同士を熱融着することが できる。 それゆえ、 対面させたフィルム積層体 2 0八の周囲を熱融着するこ とで、 当該フィルム積層体 2 0八を袋体に構成することができる。 [0087] The heat-sealing film 22 is a layer (adhesive layer) for adhering the film laminates 20 to 200 to each other by facing each other (adhesive layer), and a layer for protecting the inner surface of the bag body (inner surface protection). Layer). The heat fusion film 22 as an adhesive layer will be described. For example, in the case of a three-layer structure film laminate 208 shown in FIG. 28, the heat fusion film 2 of the film laminate 20 The inner surfaces of the film laminate 208 can be heat-sealed by facing each other and heating. Therefore, the film laminate 208 can be formed into a bag by heat-sealing the periphery of the film laminate 208 facing each other.
[0088] また、 内面保護層としての熱融着フィルム 2 2について説明すると、 前述 した例と同様に図 2八に示す 3層構造のフィルム積層体 2 0八であれば、 ガ スバリアフィルム 1 0八の一方の面 (外面) は、 保護フィルム 2 1で保護さ れているが、 他方の面 (内面) は熱融着フィルム 2 2により保護されること になる。 したがって、 ガスバリアフィルム 1 0八から見れば、 保護フィルム 2 1は 「外面保護層」 として機能し、 熱融着フィルム 2 2は前記の通り 「内 面保護層」 として機能する。 [0088] Further, the heat fusion film 22 as the inner surface protective layer will be described. As in the above-described example, the gas barrier film 1 is a three-layer structure film laminate 208 shown in Fig. 28. One surface (outer surface) of No. 08 is protected by the protective film 21 while the other surface (inner surface) is protected by the heat fusion film 22. Therefore, from the perspective of the gas barrier film 108, the protective film 21 functions as an “outer surface protective layer”, and the heat fusion film 22 functions as an “inner surface protective layer” as described above.
[0089] フィルム積層体 2 0 を袋体に構成したときの用途が真空断熱材の外被材 であれば、 真空断熱材の内部には芯材等が封入される。 それゆえ、 熱融着フ ィルム 2 2がガスバリアフィルム 1 〇八の表面 (内面) を覆うことにより、 \¥0 2020/175503 23 卩(:170? 2020 /007575 [0089] If the application when the film laminate 20 is formed into a bag is an outer covering material for a vacuum heat insulating material, a core material or the like is enclosed inside the vacuum heat insulating material. Therefore, the heat-sealing film 22 covers the surface (inner surface) of the gas barrier film 108, \\0 2020/175 503 23 卩 (: 170? 2020 /007575
内部の封入物によりガスバリアフィルム 1 0八に与えられる影響を抑制また は回避することができる。 It is possible to suppress or avoid the influence of the internal inclusions on the gas barrier film 108.
[0090] 熱融着フィルム 2 2として用いられる材料は、 加熱により溶融して接着可 能な熱融着性を有する材料であれば特に限定されないが、 代表的には、 各種 の熱可塑性樹脂 (熱融着性樹脂) であればよい。 具体的な樹脂としては、 例 えば、 高密度ポリエチレン (1~1 0 ?巳) 、 低密度ポリエチレン (!_ 0 巳)[0090] The material used as the heat-sealing film 22 is not particularly limited as long as it is a material having a heat-sealing property that can be fused by heating and can be bonded, but typically, various thermoplastic resins ( A heat-fusible resin) may be used. Specific resins include, for example, high-density polyethylene (1 to 10 ??), low-density polyethylene (!_ 0?)
、 直鎖状低密度ポリエチレン (!_ !_ 0 ?巳) 、 超高分子量ポリエチレン (II — 巳,
Figure imgf000025_0001
ポリプロピレン ( ) 、 エチレ ンー酢酸ビニル共重合体 (巳 八) 、 ナイロン (ポリアミ ド、 八) 等を挙 げることができるが、 これらに限定されない。
, Linear low-density polyethylene (!_ !_ 0?), ultra-high molecular weight polyethylene (II —,
Figure imgf000025_0001
Examples thereof include, but are not limited to, polypropylene (), ethylene-vinyl acetate copolymer (Minhachi), nylon (polyamide, 8), and the like.
[0091 ] これら樹脂は単独で用いられてもよいし、 2種類以上を適宜組み合わせた ポリマーアロイとして用いられてもよい。 ポリマーアロイには、 熱融着フィ ルム 2 2として好適な樹脂以外の樹脂が含まれてもよい。 さらに、 熱融着フ ィルム 2 2には、 前述した樹脂以外の成分 (各種添加剤等) が含まれてもよ い。 つまり、 熱融着フィルム 2 2は、 前述した樹脂のみで構成されてもよい が、 他の成分を含む樹脂組成物で構成されてもよい。 [0091] These resins may be used alone or may be used as a polymer alloy in which two or more kinds are appropriately combined. The polymer alloy may contain a resin other than the resin suitable as the heat-sealing film 22. Furthermore, the heat-sealing film 22 may contain components (various additives, etc.) other than the resin described above. That is, the heat-sealing film 22 may be composed of only the resin described above, but may be composed of a resin composition containing other components.
[0092] 図 2八~図 2〇に示すフィルム積層体 2 0八~ 2 0〇では、 熱融着フィル ム 2 2は、 保護フィルム 2 1 と同様に 1層 (単層) の樹脂フィルムとして構 成されているが、 複数の樹脂フィルムを積層して構成されてもよい。 熱融着 フィルム 2 2の厚さは特に限定されず、 フィルム積層体 2 0八〜2〇〇同士 を貼り合わせたときに十分な接着性を発揮できる厚さを有していればよく、 望ましくは、 内面保護層としてフィルム積層体 2 0八〜 2〇〇の内面を保護 できる範囲の厚さを有していればよい。 In the film laminates 208 to 200 shown in FIGS. 28 to 200, the heat-sealing film 22 is a single-layer (single-layer) resin film like the protective film 21. Although it is configured, it may be configured by laminating a plurality of resin films. The thickness of the heat-sealing film 22 is not particularly limited as long as it has a thickness capable of exhibiting sufficient adhesiveness when the film laminates 208 to 200 are bonded together, As long as it has a thickness that can protect the inner surface of the film laminate 208 to 200 as an inner surface protective layer.
[0093] 図 2巳に例示する他のガスバリアフィルム 2 3は、 ガスバリアフィルム 1 Another gas barrier film 23 illustrated in FIG. 2 is the gas barrier film 1
0八とは異なる構成であって、 好適なガスバリア性を有する公知のフィルム であればよい。 代表的には、 例えば、 アルミニウム箔、 銅箔、 ステンレス箔 等の金属箔;基材となる樹脂フィルムに対して金属または金属酸化物を蒸着 した蒸着層を有する蒸着フィルム; この蒸着フィルムの表面にさらに公知の \¥0 2020/175503 24 卩(:170? 2020 /007575 Any known film having a structure different from that of No. 08 and having a suitable gas barrier property may be used. Typically, for example, metal foil such as aluminum foil, copper foil, and stainless steel foil; a vapor deposition film having a vapor deposition layer in which a metal or metal oxide is vapor deposited on a resin film as a base material; on the surface of this vapor deposition film Further known \¥0 2020/175 503 24 卩 (: 170? 2020 /007575
コーティング処理 (ただし本開示に係る複合材料層 1 2を除く) を施したフ ィルム等が挙げられるが特に限定されない。 A film and the like that have been subjected to coating treatment (however, excluding the composite material layer 12 according to the present disclosure) may be mentioned, but the film is not particularly limited.
[0094] 蒸着フィルムに用いられる基材としては、 本開示に係るガスバリアフィル ム 1 〇八, 1 0巳の基材と同様の樹脂フィルム等を挙げることができるが特 に限定されない。 また、 金属または金属酸化物としては、 アルミニウム、 銅 、 アルミナ、 シリカ等を挙げることができるが、 特に限定されない。 また、 他のガスバリアフィルム 2 3は、 1層のフィルムまたは箔で構成されてもよ いし、 複数のフィルムまたは箔を積層して構成されてもよい。 [0094] Examples of the base material used for the vapor-deposited film include, but are not limited to, the same resin films as the base material of the gas barrier film 108, 10 according to the present disclosure. Examples of the metal or metal oxide include, but are not limited to, aluminum, copper, alumina and silica. The other gas barrier film 23 may be composed of a single layer of film or foil, or may be composed of a plurality of films or foils laminated.
[0095] 本開示に係るガスバリアフィルム 1 〇八, 1 0巳 (ガスバリア構造体) は 、 高温多湿の条件下で特に水蒸気について良好なバリア性を有するが、 他の 条件で他の気体に対して好適なバリア性を有するフィルムを選択して、 ガス バリアフィルム 1 〇八, 1 0巳と併用することで、 フィルム積層体 2 0巳に おける総合的なガスバリア性をより一層向上することができる。 [0095] The gas barrier film 108, 10 (gas barrier structure) according to the present disclosure has a good barrier property especially against water vapor under high temperature and high humidity conditions, but it does not protect against other gases under other conditions. By selecting a film having a suitable barrier property and using it together with the gas barrier film 108, 110, the overall gas barrier property of the film laminate 20 can be further improved.
[0096] [真空断熱材] [0096] [Vacuum insulation]
次に、 本開示に係るガスバリア構造体の代表的な用途として、 前述したフ ィルム積層体 2 0 〜2 0(3を外被材として備える真空断熱材を例示して説 明する。 図 3に示すように、 本実施の形態に係る真空断熱材 4 0は、 芯材 3 1、 水分吸着剤 3 2、 および外被材 2 0を備え、 芯材 3 1および水分吸着剤 3 2は外被材 2 0に内包され、 当該外被材 2 0の内部は減圧封止されている 。 そして、 外被材 2 0として、 前述したフィルム積層体 2 0八~ 2 0(3が用 いられている。 Next, as a typical application of the gas barrier structure according to the present disclosure, a vacuum heat insulating material including the above-described film laminated body 20 to 20 (3 as an outer covering material will be described as an example. As shown, the vacuum heat insulating material 40 according to the present embodiment includes a core material 31, a moisture adsorbent 32, and a jacket material 20. It is included in the material 20 and the inside of the outer covering material 20 is vacuum-sealed. And, as the outer covering material 20, the above-mentioned film laminates 208 to 20 (3 are used. There is.
[0097] 外被材 2 0は、 前述したフィルム積層体 2 0八〜 2〇〇により構成される 袋状の部材であり、 本実施の形態では、 例えば、 2枚のフィルム積層体 2 0 八~ 2〇〇を対向させてその周囲を封止することで、 袋状に形成されている 。 周囲の封止した箇所 (封止部) は、 内部に芯材 3 1が存在せず外被材 2 0 (フィルム積層体 2 0八~ 2〇〇) 同士が接触している状態であり、 真空断 熱材 4 0の本体から外周に向かって延伸するヒレ状となっている。 The outer covering material 20 is a bag-shaped member composed of the above-mentioned film laminates 208 to 200, and in the present embodiment, for example, two film laminates 20 It is formed into a bag by placing ~200 facing each other and sealing the surrounding area. The surrounding sealed part (sealed part) is a state in which the core material 31 does not exist inside and the outer covering materials 20 (film laminated bodies 20 to 200) are in contact with each other, The fins extend from the main body of the vacuum heat insulating material 40 toward the outer periphery.
[0098] 芯材 3 1は、 断熱性を有するものであれば特に限定されない。 具体的には \¥0 2020/175503 25 卩(:170? 2020 /007575 [0098] The core material 31 is not particularly limited as long as it has a heat insulating property. In particular \\0 2020/175 503 25 (: 170? 2020 /007575
、 繊維材料、 発泡材料等の公知の材料を挙げることができる。 例えば、 本実 施の形態では、 芯材 3 1 としては、 無機繊維を用いている。 無機繊維は、 無 機系材料からなる繊維であればよく、 具体的には、 例えば、 ガラス繊維、 セ ラミック繊維、 スラグウール繊維、 ロックウール繊維等を挙げることができ る。 また、 芯材 3 1は板状に成形して用いてもよいため、 これら無機繊維以 外に、 公知のバインダー材、 粉体等を含んでもよい。 これら材料は、 芯材 3 1の強度、 均一性、 剛性等の物性の向上に寄与する。 Known materials such as fiber materials and foam materials can be used. For example, in the present embodiment, inorganic fibers are used as the core material 31. The inorganic fiber may be a fiber made of an inorganic material, and specific examples thereof include glass fiber, ceramic fiber, slag wool fiber and rock wool fiber. Further, since the core material 31 may be formed into a plate shape and used, a known binder material, powder or the like may be included in addition to these inorganic fibers. These materials contribute to the improvement of physical properties such as strength, uniformity, and rigidity of the core material 31.
[0099] 無機繊維以外で芯材 3 1 として用いることができる材料としては、 熱硬化 性発泡体を挙げることができる。 熱硬化性発泡体は、 熱硬化性樹脂またはこ れを含む樹脂組成物 (熱硬化性樹脂組成物) を公知の方法で発泡させて形成 されるものであればよい。 熱硬化性樹脂としては、 具体的には、 例えば、 エ ポキシ樹脂、 フエノール樹脂、 不飽和ポリエステル樹脂、 ユリア樹脂、 メラ ミン樹脂、 ポリイミ ド、 ポリウレタン等を挙げることができるが、 特に限定 されない。 また、 発泡方法も特に限定されず、 公知の発泡剤を用いて公知の 条件で発泡させればよい。 また、 無機繊維および熱硬化性発泡体以外で芯材 3 1 として使用可能な材料としては、 公知の有機繊維 (有機系材料からなる 繊維) を挙げることができるが、 その具体的な種類は特に限定されない。 [0099] As a material that can be used as the core material 31 other than the inorganic fiber, a thermosetting foam can be mentioned. The thermosetting foam may be formed by foaming a thermosetting resin or a resin composition containing the same (thermosetting resin composition) by a known method. Specific examples of the thermosetting resin include, but are not limited to, an epoxy resin, a phenol resin, an unsaturated polyester resin, a urea resin, a melamine resin, a polyimide and a polyurethane. The foaming method is also not particularly limited, and may be foamed under known conditions using a known foaming agent. Further, as a material that can be used as the core material 31 other than the inorganic fiber and the thermosetting foam, a known organic fiber (fiber made of an organic material) can be cited, but the specific type thereof is not particularly limited. Not limited.
[0100] 水分吸着剤 3 2は、 水分または水蒸気を吸着除去できる公知の吸着剤であ れば特に限定されない。 具体的な水分吸着剤 3 2としては、 例えば、 アルカ リ金属の酸化物、 アルカリ土類金属の酸化物、 アルカリ金属の水酸化物、 ア ルカリ土類金属の水酸化物等を挙げることができるが、 特に限定されない。 ただし、 アルカリ金属またはアルカリ土類金属等のような周期表第 1族の金 属元素、 または、 周期表第 2族の金属元素の化合物であれば、 水分を化学的 に吸着して固定化することができる。 そのため、 物理的な吸着に比べて水分 を良好に固定化できるため好ましい。 [0100] The water adsorbent 32 is not particularly limited as long as it is a known adsorbent capable of adsorbing and removing water or water vapor. Specific water adsorbents 32 include, for example, alkali metal oxides, alkaline earth metal oxides, alkali metal hydroxides, and alkaline earth metal hydroxides. However, it is not particularly limited. However, if it is a compound of a metal element of Group 1 of the periodic table such as an alkali metal or an alkaline earth metal or a metal element of Group 2 of the periodic table, water is chemically adsorbed and immobilized. be able to. Therefore, it is preferable because moisture can be better immobilized as compared with physical adsorption.
[0101 ] また、 図示しないが、 芯材 3 1および水分吸着剤 3 2とともに、 公知の気 体吸着剤が外被材 2 0内に封入されてもよい。 さらに、 真空断熱材 4 0は、 外被材 2 0 (フィルム積層体 2 0 〜2〇〇 、 芯材 3 1、 水分吸着剤 3 2 \¥0 2020/175503 26 卩(:170? 2020 /007575 [0101] Although not shown, a known gas adsorbent may be enclosed in the jacket material 20 together with the core material 31 and the water adsorbent 32. Further, the vacuum heat insulating material 40 is made of the outer coating material 20 (film laminated body 20 to 200, core material 31 and moisture absorbent 32 \¥0 2020/175 503 26 卩 (: 170? 2020 /007575
、 および公知の気体吸着剤以外に、 真空断熱材の分野で公知の他の部材等を 備えてもよい。 In addition to the known gas adsorbent, other members known in the field of vacuum heat insulating materials may be provided.
[0102] 真空断熱材 4 0の具体的な製造方法は特に限定されず、 公知の製造方法を 好適に用いることができる。 本実施の形態では、 外被材 2 0すなわちフィル ム積層体 2 0 〜2 0(3を袋状に構成した上で、 その内部に芯材 3 1、 水分 吸着剤 3 2、 必要に応じて他の部材等 (例えば気体吸着剤等) を挿入し、 減 圧環境下 (略真空状態) で袋状の外被材 2 0を密閉封止する製造方法を採用 している。 [0102] The specific manufacturing method of the vacuum heat insulating material 40 is not particularly limited, and a known manufacturing method can be preferably used. In the present embodiment, the outer cover material 20, that is, the film laminate 20 to 20 (3 is formed into a bag shape, and then the core material 3 1, the moisture adsorbent 3 2 and, if necessary, the A manufacturing method is adopted in which another member or the like (for example, a gas adsorbent or the like) is inserted and the bag-shaped jacket material 20 is hermetically sealed under a reduced pressure environment (substantially vacuum state).
[0103] 外被材 2 0を袋状に構成する方法は特に限定されないが、 外被材 2 0であ るフィルム積層体 2 0 ~ 2 0(3を 2枚準備し、 それぞれの熱融着フィルム 2 2同士を対向配置した状態で、 周縁部の大部分を熱溶着することで、 袋状 に構成する方法を挙げることができる。 具体的には、 例えば、 外被材 2 0が 矩形であれば、 4辺のうち 1辺のみを開口部として残しておき、 開口部を除 いた周縁部の残部を、 中央部分 (芯材 3 1が収容される部分) を包囲するよ うに熱溶着すればよい。 [0103] The method for forming the outer covering material 20 into a bag shape is not particularly limited, but the film laminates 20 to 20 (three two sheets of the outer covering material 20 are prepared and heat-bonded to each of them. An example is a method of forming a bag shape by heat-sealing most of the peripheral edge portions in a state where the films 22 are arranged opposite to each other. If so, leave only one of the four sides as an opening, and heat-seal the remaining part of the peripheral edge excluding the opening so as to surround the central part (the part in which the core 31 is housed). Good.
[0104] その後、 開口部から芯材 3 1等を袋状の外被材 2 0の内部に挿入し、 例え ば、 減圧チャンバ等の減圧設備内で減圧すればよい。 これにより、 開口部か ら袋状の外被材 2 0の内部 (袋内部) が十分に減圧され略真空状態となる。 さらにその後、 他の周縁部と同様に開口部を熱溶着により密閉封止すれば、 図 3に示す真空断熱材 4 0を得ることができる。 [0104] After that, the core material 31 or the like may be inserted into the bag-shaped jacket material 20 through the opening, and the pressure may be reduced in a pressure reducing facility such as a pressure reducing chamber. As a result, the inside of the bag-shaped covering material 20 (inside the bag) is sufficiently decompressed from the opening, and a substantially vacuum state is achieved. After that, the vacuum heat insulating material 40 shown in FIG. 3 can be obtained by hermetically sealing the opening by thermal welding similarly to the other peripheral portions.
[0105] なお、 熱溶着、 減圧等の諸条件については特に限定されず、 公知の種々の 条件を好適に採用することができる。 また、 袋状の外被材 2 0は、 2枚のフ ィルム積層体 2 0八~ 2〇〇を用いる構成に限定されない。 例えば、 1枚の フィルム積層体 2 0八〜2 0(3を半分に折り曲げて、 両方の側縁部を熱溶着 すれば、 開口部を有する袋状の外被材 2 0を得ることができる。 あるいは、 フィルム積層体 2 0八〜2〇〇を筒型に成形して、 一方の開口部を封止して もよい。 [0105] Various conditions such as heat welding and reduced pressure are not particularly limited, and various known conditions can be preferably adopted. Further, the bag-shaped outer covering material 20 is not limited to the structure using two film laminated bodies 208 to 200. For example, one film laminated body 208 to 20 (3 is folded in half and both side edges are heat-welded to obtain a bag-shaped jacket material 20 having an opening. Alternatively, the film laminates 208 to 200 may be formed into a cylindrical shape and one of the openings may be sealed.
[0106] このようにして製造された真空断熱材 4 0は、 内部が減圧密閉状態 (略真 \¥0 2020/175503 27 卩(:170? 2020 /007575 [0106] The vacuum heat insulating material 40 manufactured in this manner has a depressurized and sealed state inside (almost true). \¥0 2020/175 503 27 卩 (: 170? 2020 /007575
空状態) にあるので、 非常に優れた断熱性能を発揮することができる。 特に 、 外被材 2 0であるフィルム積層体 2 0八〜 2〇〇は、 本開示に係るガスバ リア構造体であるガスバリアフィルム 1 〇八, 1 0巳を少なくとも 1層含ん でいる。 それゆえ、 外気に含まれる水蒸気が真空断熱材 4 0の内部に侵入す ることが十分に抑制され、 内部の略真空状態を良好に維持することができる 。 その結果、 真空断熱材 4 0は、 優れた断熱性能を継続的に実現することが できる。 Since it is in an empty state, it can exhibit extremely excellent heat insulation performance. In particular, the film laminate 20-8 to 200 which is the jacket material 20 includes at least one layer of the gas barrier film 108 and 10 which is the gas barrier structure according to the present disclosure. Therefore, it is possible to sufficiently prevent the water vapor contained in the outside air from entering the inside of the vacuum heat insulating material 40, and it is possible to maintain a good internal vacuum state. As a result, the vacuum heat insulating material 40 can continuously realize excellent heat insulating performance.
[0107] また、 このような真空断熱材 4 0は、 さまざまな断熱用途に好適に用いる ことができる。 代表的な断熱用途の一例として家電製品を挙げることができ る。 家電製品の具体的な種類は特に限定されないが、 例えば、 冷蔵庫、 給湯 器、 炊飯器、 またはジャーポッ トのいずれかを挙げることができる。 また、 他の断熱用途の一例として住宅壁を挙げることができる。 さらに他の断熱用 途の一例として輸送機器を挙げることができる。 輸送機器の具体的な種類は 特に限定されないが、 例えば、 タンカー等の船舶、 自動車、 航空機等を挙げ ることができる。 [0107] Further, such a vacuum heat insulating material 40 can be suitably used for various heat insulating applications. Home appliances can be cited as an example of typical heat insulation applications. The specific type of home electric appliance is not particularly limited, and may be, for example, a refrigerator, a water heater, a rice cooker, or a jarpot. Moreover, a housing wall can be mentioned as an example of another heat insulation application. Still another example of heat insulation is transportation equipment. The specific type of transportation equipment is not particularly limited, and examples thereof include ships such as tankers, automobiles, and aircraft.
[0108] 特に、 本開示に係る真空断熱材 4 0は、 外被材 2 0 (フィルム積層体 2 0 八~ 2 0〇) が前述したガスバリア構造体 (ガスバリアフィルム 1 〇八, 1 〇巳) を備えているため、 標準的な湿度環境だけでなく蒸暑地域のような多 湿環境下でも良好に使用することが可能である。 それゆえ、 本開示に係る真 空断熱材 4 0は、 多湿環境での使用が想定される住宅壁、 家電製品、 または 輸送機器に好適に用いることができる。 [0108] In particular, the vacuum heat insulating material 40 according to the present disclosure is a gas barrier structure (gas barrier film 108, 100) as described above for the covering material 20 (film laminated body 208-200). Since it is equipped with, it can be used satisfactorily not only in a standard humidity environment but also in a humid environment such as a hot and humid area. Therefore, the air insulating material 40 according to the present disclosure can be suitably used for a house wall, a home electric appliance, or a transportation device that is expected to be used in a humid environment.
実施例 Example
[0109] 本発明について、 実施例、 比較例および参考例に基づいてより具体的に説 明するが、 本発明はこれに限定されるものではない。 当業者は本発明の範囲 を逸脱することなく、 種々の変更、 修正、 および改変を行うことができる。 なお、 以下の実施例における各種合成反応や物性等の測定 ·評価は次に示す ようにして行った。 [0109] The present invention will be described more specifically based on Examples, Comparative Examples and Reference Examples, but the present invention is not limited thereto. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention. The measurement and evaluation of various synthetic reactions and physical properties in the following examples were carried out as follows.
[01 10] (測定 ·評価方法) [水蒸気透過度] [01 10] (Measurement/Evaluation method) [Water vapor permeability]
参考文献 2 : REVIEW OF SCIENTIFIC INSTRUMENTS 88 043301 (2017)に記載 される差圧式質量分析法に基づいて、 環境温度 4 0 °C、 9 5 % R Hの条件下 (高温多湿条件下) で、 各実施例の試料 (ガスバリア構造体) におけるガス 供給側 (曝露側) に水蒸気を導入し、 透過側 (検出側) を真空排気して、 四 重極質量分析計を備えたガス透過率測定装置 (オーウェル株式会社製、 製品 名オメガトランス) で評価した。 Reference 2: Based on the differential pressure mass spectrometry described in REVIEW OF SCIENTIFIC INSTRUMENTS 88 043301 (2017), each test was carried out under conditions of ambient temperature of 40 ° C and 95% RH (high temperature and high humidity conditions). In the sample (gas barrier structure) of the example, water vapor was introduced to the gas supply side (exposed side), the permeation side (detection side) was evacuated, and the gas permeability measurement device equipped with a quadrupole mass spectrometer (Orwell). Made by KK, product name Omega Transformer).
[01 1 1 ] [複合材料層中の水またはアンモニア含有量] [01 1 1] [Water or ammonia content in composite layer]
実施例 3の試料における複合材料層の水またはアンモニアの含有率につい ては、 まず、 塗工液をガラス基板上に塗布、 乾燥してから削り取ったものを 、 含有量測定用の試料として調製した。 Regarding the content of water or ammonia in the composite material layer in the sample of Example 3, first, a coating solution was applied onto a glass substrate, dried, and then scraped off to prepare a sample for content measurement. ..
[01 12] 水の含有量については、 上記試料を窒素雰囲気化で 2 0 0 °Cに加熱し、 揮 発した水分を回収して力ールフィッシャー水分計 (三菱化学株式会社製、 製 品名 C A— 2 0 0 , V A - 2 0 0) により水分量を測定し、 複合材料層の水 含有量として評価した。 [01 12] Regarding the water content, the above sample was heated to 200 °C in a nitrogen atmosphere, and the volatilized water was collected to obtain a force Fischer moisture meter (manufactured by Mitsubishi Chemical Corporation, product name). The water content was measured by CA-200, VA-200) and evaluated as the water content of the composite material layer.
[01 13] アンモニアの含有量については、 上記試料にイオン交換水を加えてから N a〇 Hの添加によりアルカリ性に調整し、 加熱および蒸留して当該試料から のアンモニアを硫酸水溶液中に回収した。 回収したアンモニアを含む水溶液 を希釈定容してイオンクロマトグラフィー (D i 〇 n e x社製、 製品名 I C S - 2 0 0 0) によりアンモニア量を測定し、 複合材料層のアンモニア含有 量として評価した。 [0113] Regarding the content of ammonia, ion-exchanged water was added to the above sample and then adjusted to be alkaline by adding N a 〇 H, and ammonia was recovered from the sample in an aqueous sulfuric acid solution by heating and distillation. .. The recovered aqueous solution containing ammonia was diluted to a constant volume, and the amount of ammonia was measured by ion chromatography (manufactured by Dio nex, product name ICS-200) to evaluate as the ammonia content of the composite material layer.
[01 14] (無機層状化合物のアンモニウムイオン交換) [01 14] (Ammonium ion exchange of inorganic layered compound)
市販の陽イオン交換樹脂をアンモニウムイオン型に調整してカラムに充填 した。 また、 層間ナトリウムイオンを有する無機層状化合物である天然のス メクタイ ト (モンモリロナイ トまたはスティーブンサイ ト) を水に分散して スメクタイ ト分散液を調製した。 このスメクタイ ト分散液を上記カラムに流 通させることにより、 層間ナトリウムイオンをアンモニウムイオンに交換し たスメクタイ トを得た。 \¥0 2020/175503 29 卩(:170? 2020 /007575 A commercially available cation exchange resin was adjusted to an ammonium ion type and packed in a column. Further, a natural smectite (montmorillonite or stevensite), which is an inorganic layered compound having interlayer sodium ions, was dispersed in water to prepare a smectite dispersion. By passing this smectite dispersion through the above column, a smectite in which interlayer sodium ions were exchanged for ammonium ions was obtained. \\0 2020/175 503 29 卩 (: 170? 2020 /007575
[01 15] (実施例 1) [01 15] (Example 1)
無機層状化合物 (無機フィラー) として、 前記の通りそれぞれアンモニウ ムイオン交換されたモンモリロナイ トおよびスティーブンサイ トを用い、 樹 脂材料 (バインダー成分) として、 市販の水溶性変性ナイロンを用い、 分散 媒として水およびエタノールを用いて、 無機層状化合物と樹脂材料との混合 比 (重量比) を変化させた複数種類の塗工液を調製した。 なお、 無機層状化 合物および樹脂材料を固形分として、 塗工液の固形分濃度を約 3重量%に調 整した。 また、 本実施例では、 モンモリロナイ トの重量 ,,としスティーブン サイ トの重量
Figure imgf000031_0001
としたときに、 無機層状化合物におけるモンモリロナイ トと スティーブンサイ トとの混合比
Figure imgf000031_0002
1 5で固定した。
As the inorganic layered compound (inorganic filler), ammonium ion-exchanged montmorillonite and stevensite were used as described above, commercially available water-soluble modified nylon was used as the resin material (binder component), and water and water were used as the dispersion medium. Using ethanol, a plurality of types of coating liquids were prepared in which the mixing ratio (weight ratio) of the inorganic layered compound and the resin material was changed. The inorganic layered compound and the resin material were used as solid contents, and the solid content concentration of the coating liquid was adjusted to about 3% by weight. Also, in this example, the weight of montmorillonite,, and the weight of Steven site
Figure imgf000031_0001
Is the mixing ratio of montmorillonite and stephensite in the inorganic layered compound.
Figure imgf000031_0002
Fixed at 15.
[01 16] 基材として厚さ約 1 2 のシリカ蒸着ポリエチレンテレフタレート ( 巳丁) を準備し、 複数種類の前記塗工液をそれぞれ基材の蒸着面にバーコー 夕一により厚さ約 1 〇〇 となるように塗布し、 1 0 0 °〇以上の温度で乾 燥して分散媒 (水およびエタノール) を除去した。 これにより、 無機層状化 合物の含有率が異なる複合材料層を有するガスバリア構造体 (ガスバリアフ ィルム) の試料を複数作製した。 [0116] As a base material, silica-deposited polyethylene terephthalate (Ningo) having a thickness of about 12 was prepared, and a plurality of types of the above-mentioned coating liquids were respectively applied to the vapor-deposited surface of the base material by a bar coating to a thickness of about 100 And the dispersion medium (water and ethanol) was removed by drying at a temperature of 100 ° C. or higher. As a result, a plurality of samples of gas barrier structure (gas barrier film) having composite material layers having different contents of the inorganic layered compound were prepared.
[01 17] これら試料について、 前記の通り水蒸気透過度を測定した。 その結果を図 4のグラフに示す。 なお、 図 4においては、 横軸が無機層状化合物の含有率 (単位:重量%) であり、 縦軸が水蒸気透過度 (単位: 9 / ^ 3
Figure imgf000031_0003
で ある。 また、 図 4においては図示しないが、 無機層状化合物の含有量が 0重 量%のときは、 水蒸気透過度は〇.
Figure imgf000031_0004
った。
[0117] The water vapor permeability of these samples was measured as described above. The results are shown in the graph in Figure 4. In Fig. 4, the horizontal axis represents the content of the inorganic layered compound (unit: weight %), and the vertical axis represents the water vapor permeability (unit: 9/^ 3).
Figure imgf000031_0003
Is. Although not shown in FIG. 4, when the content of the inorganic layered compound is 0% by weight, the water vapor permeability is ◯.
Figure imgf000031_0004
It was.
[01 18] (実施例 2) [01 18] (Example 2)
無機層状化合物の重量
Figure imgf000031_0005
とし前記の通り樹脂材料 (ナイロン系樹脂) の重 量Iとしたときに、 無機層状化合物と樹脂材料との混合比 。 : = 8 5 : 1 5で固定した上で、 無機層状化合物におけるモンモリロナイ トとスティ —ブンサイ トの混合比 (重量比) を変化させた複数の塗工液を調製した。 こ れ以外は、 実施例 1 と同様にして、 無機層状化合物におけるモンモリロナイ 卜の含有率が異なる複合材料層を有するガスバリア構造体 (ガスバリアフィ \¥0 2020/175503 30 卩(:170? 2020 /007575
Weight of inorganic layered compound
Figure imgf000031_0005
And the weight I of the resin material (nylon-based resin) as described above, the mixing ratio of the inorganic layered compound and the resin material. : = 8 5 :15 After fixing, a plurality of coating solutions were prepared by changing the mixing ratio (weight ratio) of montmorillonite and stevenite in the inorganic layered compound. Except for this, in the same manner as in Example 1, a gas barrier structure (gas barrier film) having composite material layers with different contents of montmorillonite in the inorganic layered compound was prepared. \¥0 2020/175 503 30 卩 (: 170? 2020 /007575
ルム) の試料を複数作製した。 Rum) samples were prepared.
[01 19] これら複数の試料について、 前記の通り水蒸気透過度を測定した。 その結 果を図 5のグラフに示す。 なお、 図 5においては、 横軸が無機層状化合物に おけるモンモリロナイ トの含有率 (単位:重量%) であり、 縦軸が水蒸気透 過度 (単位:
Figure imgf000032_0001
d a V である。 なお、 モンモリロナイ トの含有量が
[0119] The water vapor permeability of these plural samples was measured as described above. The results are shown in the graph in Figure 5. In FIG. 5, the horizontal axis represents the content rate of montmorillonite in the inorganic layered compound (unit: wt %), and the vertical axis represents the water vapor transmission rate (unit:%).
Figure imgf000032_0001
It is da V. The content of montmorillonite is
0重量%のときは、 水蒸気透過度は〇. 1 1 9 / 012 - ¢1
Figure imgf000032_0002
であった。
At 0% by weight, the water vapor transmission rate is 0. 1 1 9/01 2- ¢1
Figure imgf000032_0002
Met.
[0120] (実施例 3) [0120] (Example 3)
無機層状化合物と樹脂材料との混合比 。 ^, = 8 5 : 1 5で固定すると ともに、 無機層状化合物におけるモンモリロナイ トとスティーブンサイ トと の混合比
Figure imgf000032_0003
: \^/12= 8 5 : 1 5で固定した塗工液を調製した。 この塗工液を 複数の基材の蒸着面に塗布し、 乾燥温度を変化させた以外は、 実施例 1 と同 様にして、 複合材料層における水およびアンモニアの含有率が異なるガスバ リア構造体 (ガスバリアフィルム) の試料を複数作製した。
Mixing ratio of inorganic layered compound and resin material. ^, = 8 5: 15 and the mixing ratio of montmorillonite and stevensite in the inorganic layered compound
Figure imgf000032_0003
: \^/ 12 = 8 5 :15 The fixed coating solution was prepared. A gas barrier structure having different contents of water and ammonia in the composite material layer was prepared in the same manner as in Example 1 except that this coating liquid was applied to the vapor deposition surfaces of a plurality of base materials and the drying temperature was changed. A plurality of (gas barrier film) samples were prepared.
[0121 ] これら複数の試料について、 前記の通り水蒸気透過度を測定するとともに 、 水およびアンモニアの含有率を算出した。 その結果を図 6および図 7のグ ラフに示す。 なお、 図 6においては、 横軸が複合材料層における水含有率 ( 単位:重量%) であり、 縦軸が水蒸気透過度 (単位:
Figure imgf000032_0004
3ソ) であ る。 また、 図 7においては、 横軸が複合材料層におけるアンモニア含有率 ( 単位:重量%) であり、 縦軸が水蒸気透過度 (単位:
Figure imgf000032_0005
3ソ) であ る。
[0121] With respect to the plurality of samples, the water vapor permeability was measured as described above, and the water and ammonia contents were calculated. The results are shown in the graphs in Figures 6 and 7. In FIG. 6, the horizontal axis represents the water content in the composite material layer (unit: weight %), and the vertical axis represents the water vapor permeability (unit: weight%).
Figure imgf000032_0004
3 ). Further, in FIG. 7, the horizontal axis represents the ammonia content rate (unit: wt %) in the composite material layer, and the vertical axis represents the water vapor permeability (unit:%).
Figure imgf000032_0005
3).
[0122] (実施例 4) [0122] (Example 4)
無機層状化合物と樹脂材料との混合比 。 ^, = 8 5 : 1 5で固定すると ともに、 無機層状化合物をモンモリロナイ トのみとし (混合比 ,,: \^/12= 1 〇〇 : 〇で固定) 、 さらに無機層状化合物に対して、 低分子量アミン化合物 として 1 , 2—シクロヘキサンジアミンを異なる濃度となるように添加した 複数種類の塗工液を調製した。 これ以外は、 実施例 1 と同様にして、 複合材 料層に低分子量アミン化合物が添加されたガスバリア構造体 (ガスバリアフ ィルム) の試料を複数作製した。 \¥0 2020/175503 31 卩(:170? 2020 /007575 Mixing ratio of inorganic layered compound and resin material. ^, = 85:15, and the inorganic layered compound was montmorillonite only (mixing ratio ,,: \^/ 12 = 1 〇 〇: 〇 fixed). Multiple types of coating solutions were prepared by adding 1,2-cyclohexanediamine as a molecular weight amine compound so as to have different concentrations. Except for this, in the same manner as in Example 1, a plurality of samples of gas barrier structure (gas barrier film) in which a low molecular weight amine compound was added to the composite material layer were prepared. \¥0 2020/175 503 31 卩 (: 170? 2020 /007575
[0123] これら複数の試料について、 前記の通り水蒸気透過度を測定した。 その結 果を図 8のグラフに示す。 なお、 図 8においては、 横軸が低分子量アミン化 合物の添加率 (樹脂材料 (ナイロン系樹脂) の重量
Figure imgf000033_0001
および低分子量アミン 化合物の重量
Figure imgf000033_0003
の合計に対する低分子量アミン化合物の重量
Figure imgf000033_0002
の比、 単位 :重量%) であり、 縦軸が水蒸気透過度 (単位: 9 ^ d a y である。
[0123] The water vapor permeability of these plural samples was measured as described above. The results are shown in the graph in Figure 8. In Fig. 8, the horizontal axis represents the addition rate of the low molecular weight amine compound (weight of resin material (nylon-based resin)).
Figure imgf000033_0001
And low molecular weight amine compound weight
Figure imgf000033_0003
Weight of low molecular weight amine compound relative to total
Figure imgf000033_0002
Ratio, unit:% by weight, and the vertical axis is water vapor permeability (unit: 9 ^ day).
[0124] (各実施例の結果) [0124] (Results of Examples)
実施例 1の結果である図 4のグラフから明らかなように、 本実施例に係る ガスバリア構造体において、 複合材料層が含有する無機層状化合物の比率 ( 含有率) は、 3 0〜 9 0重量%の範囲内であれば、 高温多湿条件下であって も低い水蒸気透過度を実現できることがわかる。 さらに、 無機層状化合物の 含有率が 4 5〜 8 5重量%の範囲内であれば水蒸気透過度がより低くなり、 As is clear from the graph of FIG. 4, which is the result of Example 1, in the gas barrier structure according to this Example, the ratio (content rate) of the inorganic layered compound contained in the composite material layer was 30 to 90% by weight. It can be seen that a low water vapor permeability can be achieved even under high temperature and high humidity conditions within the range of %. Furthermore, if the content of the inorganic layered compound is in the range of 45 to 85% by weight, the water vapor permeability becomes lower,
5 0〜 8 5重量%の範囲内であれば水蒸気透過度はさらに低くなり、 6 0〜If it is in the range of 50 to 85% by weight, the water vapor permeability will be further lowered,
8 0重量%の範囲内であれば、 特に水蒸気透過度が低くなることがわかる。 It can be seen that the water vapor permeability is particularly low in the range of 80% by weight.
[0125] また、 実施例 2の結果である図 5のグラフから明らかなように、 本実施例 に係るガスバリア構造体において、 複合材料層が含有する無機層状化合物が スメクタイ トであってモンモリロナイ トおよびスティーブンサイ トの混合物 である場合に、 当該混合物中におけるモンモリロナイ トの含有率が 6 5重量 %以上 1 0 0重量%未満であれば、 高温多湿条件下であってもより低い水蒸 気透過度を実現できることがわかる。 [0125] Further, as is clear from the graph of Fig. 5 that is the result of Example 2, in the gas barrier structure according to the present example, the inorganic layered compound contained in the composite material layer was smectite and montmorillonite and When the content of montmorillonite in the mixture is 65% by weight or more and less than 100% by weight in the case of a mixture of stevensite, lower water vapor permeability even under high temperature and high humidity conditions. It turns out that can be realized.
[0126] また、 実施例 3の結果である図 6のグラフから明らかなように、 本実施例 に係るガスバリア構造体において、 複合材料層における水の残存量 (含有量 ) が、 2 . 5重量%以下であれば、 高温多湿条件下であっても低い水蒸気透 過度を実現できることがわかる。 同じく実施例 3の結果である図 7のグラフ から明らかなように、 本実施例に係るガスバリア構造体において、 複合材料 層におけるアンモニアの残存量 (含有量) が 1 . 0重量%以下であれば、 高 温多湿条件下であっても低い水蒸気透過度を実現できることがわかる。 [0126] As is clear from the graph of Fig. 6 that is the result of Example 3, in the gas barrier structure according to the present Example, the residual amount (content) of water in the composite material layer was 2.5% by weight. It can be seen that if the content is less than or equal to %, low water vapor permeability can be realized even under high temperature and high humidity conditions. Similarly, as is clear from the graph of FIG. 7 which is the result of Example 3, in the gas barrier structure according to this Example, if the residual amount (content) of ammonia in the composite material layer is 1.0 wt% or less. It can be seen that low water vapor permeability can be achieved even under high temperature and high humidity conditions.
[0127] また、 実施例 4の結果である図 8のグラフから明らかなように、 本実施例 に係るガスバリア構造体において、 複合材料層に低分子量アミン化合物を添 \¥0 2020/175503 32 卩(:170? 2020 /007575 [0127] Further, as is clear from the graph of Fig. 8 that is the result of Example 4, in the gas barrier structure according to the present example, a low molecular weight amine compound was added to the composite material layer. \¥0 2020/175 503 32 卩 (: 170? 2020 /007575
加する場合、 その添加率が 2 0〜 7 5重量%の範囲内であれば、 高温多湿条 件下において水蒸気透過度を有意に低下させることができ、 好ましくは 4 0 〜 7 0重量%の範囲内であれば、 水蒸気透過度をより低下させることができ ることがわかる。 When added, if the addition rate is in the range of 20 to 75% by weight, the water vapor permeability can be significantly reduced under high temperature and high humidity conditions, and preferably 40 to 70% by weight. It is understood that the water vapor permeability can be further reduced within the range.
[0128] このように、 本開示に係るガスバリア構造体においては、 これにより、 無 機層状化合物を含有するガスバリア層として複合材料層を備えており、 樹脂 材料がナイロン系樹脂であり、 無機フィラーが無機層状化合物であり、 複合 材料層中の無機層状化合物の含有率が 3〇〜 9 0重量%の範囲内であるので 、 ガスバリア構造体において、 高温多湿の条件下での良好なガスバリア性を 実現することができる。 [0128] As described above, in the gas barrier structure according to the present disclosure, the composite material layer is thus provided as the gas barrier layer containing the organic layered compound, the resin material is a nylon resin, and the inorganic filler is Since it is an inorganic layered compound and the content rate of the inorganic layered compound in the composite material layer is within the range of 30 to 90% by weight, a good gas barrier property under high temperature and high humidity conditions is realized in the gas barrier structure. can do.
[0129] なお、 本発明は前記実施の形態の記載に限定されるものではなく、 特許請 求の範囲に示した範囲内で種々の変更が可能であり、 異なる実施の形態や複 数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実 施の形態についても本発明の技術的範囲に含まれる。 [0129] The present invention is not limited to the description of the above embodiments, and various modifications can be made within the scope shown in the scope of the patent request, and different embodiments and multiple modifications can be made. Embodiments obtained by appropriately combining the technical means disclosed in the examples are also included in the technical scope of the present invention.
[0130] また、 上記説明から、 当業者にとっては、 本発明の多くの改良や他の実施 形態が明らかである。 従って、 上記説明は、 例示としてのみ解釈されるべき であり、 本発明を実行する最良の態様を当業者に教示する目的で提供された ものである。 本発明の精神を逸脱することなく、 その構造及び/又は機能の 詳細を実質的に変更できる。 [0130] From the above description, many improvements and other embodiments of the present invention will be apparent to those skilled in the art. Therefore, the above description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode for carrying out the present invention. Details of its structure and/or function may be substantially changed without departing from the spirit of the invention.
産業上の利用可能性 Industrial availability
[0131 ] 本発明は、 ガスバリアフィルムを含むガスバリア構造体を外被材として備 える真空断熱材の分野にも広く好適に用いることができる。 [0131] The present invention can be widely and suitably used in the field of a vacuum heat insulating material having a gas barrier structure including a gas barrier film as an outer covering material.
符号の説明 Explanation of symbols
[0132] 1 〇八, 1 0 6 :ガスバリアフィルム (ガスバリア構造体) [0132] 108, 106: Gas barrier film (gas barrier structure)
1 1 :基材 1 1 :Base material
1 2 :複合材料層 1 2 :Composite material layer
1 3 :無機蒸着層 1 3 :Inorganic vapor deposition layer
2 0八, 2 0巳, 2〇〇 : フィルム積層体 (外被材) \¥02020/175503 33 卩(:170? 2020 /007575 20 8 20 20 20: Film laminate (cover material) \¥02020/175503 33 卩 (: 170? 2020 /007575
2 1 :保護フイルム 2 1: Protective film
22 :熱融着フイルム 22: Thermal fusion film
23 :他のガスバリアフイルム 23: Other gas barrier film
3 1 :芯材 3 1: Core material
32 :水分吸着剤 32: Water adsorbent
40 :真空断熱材 40: Vacuum insulation

Claims

\¥0 2020/175503 34 卩(:170? 2020 /007575 請求の範囲 \¥0 2020/175 503 34 卩(: 170? 2020/007575 Claims
[請求項 1 ] 芯材、 水分吸着剤、 および外被材を備え、 前記芯材および前記水分 吸着剤は前記外被材に内包され、 当該外被材の内部は減圧封止されて いる真空断熱材であって、 [Claim 1] A vacuum comprising a core material, a moisture adsorbent, and a jacket material, wherein the core material and the moisture adsorbent are included in the jacket material, and the inside of the jacket material is vacuum-sealed. Insulation,
前記外被材は、 基材上に、 無機フィラーおよび樹脂材料を含有する 複合材料層が形成された、 ガスバリア構造体をガスバリアフィルムと して含むフィルム積層体であり、 The outer coating material is a film laminate including a gas barrier structure as a gas barrier film, in which a composite material layer containing an inorganic filler and a resin material is formed on a base material,
前記樹脂材料がナイロン系樹脂であり、 The resin material is a nylon resin,
前記無機フィラーが無機層状化合物であり、 The inorganic filler is an inorganic layered compound,
前記複合材料層中の前記無機層状化合物の含有率が 3 0〜 9 0重量 %の範囲内であり、 The content of the inorganic layered compound in the composite material layer is in the range of 30 to 90% by weight,
さらに、 前記ガスバリア構造体における 4 0 °〇、 相対湿度 9 5 %環 境下での水蒸気透過度が 1 . 〇 9 / 2 - 〇1 3ソ以下であることを特 徴とする、 Further, the gas barrier structure 4 0 ° in body 〇, relative humidity of 95% ring vapor permeability of at boundary under 1 〇 9/2 - a feature that Rei_1 is 3 Seo less.
真空断熱材。 Vacuum insulation.
[請求項 2] 前記無機層状化合物がスメクタイ トであることを特徴とする、 請求項 1 に記載の真空断熱材。 2. The vacuum heat insulating material according to claim 1, wherein the inorganic layered compound is a smectite.
[請求項 3] 前記スメクタイ トが、 モンモリロナイ ト、 スティーブンサイ ト、 サ ポナイ ト、 へクトライ トからなる群から選択される少なくとも 1種以 上であることを特徴とする、 [Claim 3] The smectite is at least one selected from the group consisting of montmorillonite, stevensite, support, and hexite.
請求項 2に記載の真空断熱材。 The vacuum heat insulating material according to claim 2.
[請求項 4] 前記スメクタイ トが、 前記モンモリロナイ トおよび前記スティーブ ンサイ トの混合物であるとともに、 [Claim 4] The smectite is a mixture of the montmorillonite and the Stevensite, and
当該混合物中における前記モンモリロナイ トの含有率が 6 5重量% 以上 1 0 0重量%未満であることを特徴とする、 The content of the montmorillonite in the mixture is 65 wt% or more and less than 100 wt%,
請求項 3に記載の真空断熱材。 The vacuum heat insulating material according to claim 3.
[請求項 5] 前記スメクタイ トが、 層間陽イオンとしてアンモニウムイオン ( [Claim 5] The smectite is an ammonium ion (
1~14 +) およびプロトン (!~1 +) の少なくとも一方を含有することを特徴 \¥0 2020/175503 35 卩(:170? 2020 /007575 1 ~ 1 4 +) and characterized in that it contains at least one of proton (! ~ 1 +) \¥0 2020/175 503 35 卩 (: 170? 2020 /007575
とする、 And
請求項 2から 4のいずれか 1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 2 to 4.
[請求項 6] 前記複合材料層は、 水分の含有量が 2 . 5重量%以下であることを 特徴とする、 [Claim 6] The composite material layer has a water content of 2.5 wt% or less,
請求項 1から 5のいずれか 1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 5.
[請求項 7] 前記複合材料層は、 アンモニアの含有量が 1 . 0重量%以下である ことを特徴とする、 [Claim 7] The composite material layer is characterized in that the content of ammonia is 1.0% by weight or less,
請求項 1から 6のいずれか 1項に記載に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 6.
[請求項 8] 前記樹脂材料には、 分子量が 2 0 0以下の水溶性の低分子量アミン 化合物が添加されていることを特徴とする、 [Claim 8] A water-soluble low molecular weight amine compound having a molecular weight of 200 or less is added to the resin material,
請求項 1から 7のいずれか 1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 7.
[請求項 9] 前記複合材料層の厚さが 1 O n m以上 5 〇以下であることを特徴 とする、 [Claim 9] The thickness of the composite material layer is 1 O nm or more and 50 or less,
請求項 1から 8のいずれか 1項に記載のガスバリア構造体。 The gas barrier structure according to any one of claims 1 to 8.
[請求項 10] 前記基材が、 無機蒸着層を有する樹脂フィルムであることを特徴と する、 [Claim 10] The base material is a resin film having an inorganic vapor deposition layer,
請求項 1から 9のいずれか 1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 9.
PCT/JP2020/007575 2019-02-26 2020-02-26 Vacuum insulating material WO2020175503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-033364 2019-02-26
JP2019033364 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020175503A1 true WO2020175503A1 (en) 2020-09-03

Family

ID=72239957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007575 WO2020175503A1 (en) 2019-02-26 2020-02-26 Vacuum insulating material

Country Status (1)

Country Link
WO (1) WO2020175503A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085255A (en) * 2007-09-28 2009-04-23 Hitachi Appliances Inc Vacuum heat insulating material and apparatus using the same
JP2015193141A (en) * 2014-03-31 2015-11-05 東レフィルム加工株式会社 Gas barrier film and gas barrier laminate body using the same
JP2018135995A (en) * 2017-02-23 2018-08-30 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2018177634A (en) * 2017-04-17 2018-11-15 株式会社カネカ Inorganic nanosheet dispersion and method for producing same
JP2018176741A (en) * 2017-04-05 2018-11-15 ユニチカ株式会社 Gas barrier laminated film
JP2018189163A (en) * 2017-05-08 2018-11-29 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085255A (en) * 2007-09-28 2009-04-23 Hitachi Appliances Inc Vacuum heat insulating material and apparatus using the same
JP2015193141A (en) * 2014-03-31 2015-11-05 東レフィルム加工株式会社 Gas barrier film and gas barrier laminate body using the same
JP2018135995A (en) * 2017-02-23 2018-08-30 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2018176741A (en) * 2017-04-05 2018-11-15 ユニチカ株式会社 Gas barrier laminated film
JP2018177634A (en) * 2017-04-17 2018-11-15 株式会社カネカ Inorganic nanosheet dispersion and method for producing same
JP2018189163A (en) * 2017-05-08 2018-11-29 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material

Similar Documents

Publication Publication Date Title
KR101447767B1 (en) Vacuum insulation panel for high operating temperature
KR100950834B1 (en) Vacuum heat insulating material, hot water supply apparatus using vacuum heat insulating material, and electric water heating apparatus
CN104565682B (en) Vacuum heat insulation materials, its purposes and its manufacture method
KR20130097204A (en) Sheet-shaped gas adsorbent and insulating body using same
WO2017146165A1 (en) Vacuum insulation material outer packaging material, vacuum insulation material, and article with vacuum insulation material
JP6446901B2 (en) Vacuum heat insulating material, exterior material for vacuum heat insulating material, and heat insulating article
JP6413309B2 (en) Vacuum heat insulating material and outer packaging material for vacuum heat insulating material
WO2020175503A1 (en) Vacuum insulating material
JP7238566B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP6555933B2 (en) Laminate for sulfide gas adsorption
EP3896325A1 (en) Layered body for vacuum thermal insulation material and vacuum thermal insulation material using same
EP3012020B1 (en) Gas-adsorbing material and use of a vacuum insulation material including the same
JP2010138956A (en) Vacuum heat insulating material
CN108779889B (en) Vacuum heat insulation part and household electrical appliance, residential wall or transportation equipment with same
WO2017029727A1 (en) Vacuum heat insulation material and heat insulation box
WO2020262665A1 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and article with vacuum heat insulating material
WO2020175505A1 (en) Gas barrier structure and film laminate
JP6187719B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
WO2020262462A1 (en) Outer packaging member for vacuum heat-insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member
JP2007155087A (en) Vacuum heat insulating material
WO2017159096A1 (en) Vacuum thermal insulation material, and home appliance, house wall and transportation equipment provided with same
CN219639792U (en) Vacuum heat insulating material
CN219159865U (en) Vacuum heat insulating material
CN114867599A (en) Gas barrier film, film laminate, and vacuum heat insulator
CN114341021A (en) Heat insulation bag, heat insulation bag and method for manufacturing heat insulation bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP