JP6774244B2 - Grinding device - Google Patents

Grinding device Download PDF

Info

Publication number
JP6774244B2
JP6774244B2 JP2016144143A JP2016144143A JP6774244B2 JP 6774244 B2 JP6774244 B2 JP 6774244B2 JP 2016144143 A JP2016144143 A JP 2016144143A JP 2016144143 A JP2016144143 A JP 2016144143A JP 6774244 B2 JP6774244 B2 JP 6774244B2
Authority
JP
Japan
Prior art keywords
grinding
plate
load current
current value
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016144143A
Other languages
Japanese (ja)
Other versions
JP2018012179A (en
Inventor
壮一 松原
壮一 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2016144143A priority Critical patent/JP6774244B2/en
Priority to CN201710590252.8A priority patent/CN107639541B/en
Publication of JP2018012179A publication Critical patent/JP2018012179A/en
Application granted granted Critical
Publication of JP6774244B2 publication Critical patent/JP6774244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、板状ワークなどの被加工物を研削する研削装置に関する。 The present invention relates to a grinding device for grinding a workpiece such as a plate-shaped workpiece.

板状ワークを研削する加工装置は、板状ワークを保持する保持テーブルと、研削砥石が環状に固着された研削ホイールを有する研削手段と、研削ホイールを回転させるモータと、研削手段を保持テーブルに保持された板状ワークに対して接近及び離反する方向に加工送りする加工送り手段とを少なくとも備えており、研削砥石で板状ワークを押圧しながら研削している。 The processing device for grinding the plate-shaped work includes a holding table for holding the plate-shaped work, a grinding means having a grinding wheel in which a grinding wheel is annularly fixed, a motor for rotating the grinding wheel, and a grinding means on the holding table. It is provided with at least a machining feed means for machining and feeding the held plate-shaped work in a direction of approaching and separating from the held plate-shaped work, and grinding while pressing the plate-shaped work with a grinding wheel.

加工装置において、内部に電極を有する板状ワークを研削して電極を被研削面に露出させる場合においては、研削加工中に研削砥石が電極に達すると、研削ホイールを回転させるモータの負荷電流値が変化する。そのため、加工手段に負荷電流値検出手段を備え、かかる負荷電流値検出手段により、板状ワークを研削する際に発生する負荷電流値の変化を常に監視し加工送り手段を制御して板状ワークを所望の厚みに研削する研削装置がある(例えば、下記の特許文献1及び2を参照)。 In the processing equipment, when a plate-shaped workpiece having an electrode inside is ground to expose the electrode to the surface to be ground, when the grinding wheel reaches the electrode during grinding, the load current value of the motor that rotates the grinding wheel Changes. Therefore, the machining means is provided with a load current value detecting means, and the load current value detecting means constantly monitors changes in the load current value generated when grinding the plate-shaped workpiece and controls the machining feed means to control the plate-shaped workpiece. There is a grinding device that grinds the current to a desired thickness (see, for example, Patent Documents 1 and 2 below).

特開2014−008538号公報Japanese Unexamined Patent Publication No. 2014-008538 特開2013−056392号公報Japanese Unexamined Patent Publication No. 2013-0563692

しかし、上記のような研削装置においては、負荷電流値が予め設定された基準値を超えた時に研削を終了させる制御を行っているので、研削対象となる板状ワークの種類によっては研削が開始された直後に負荷電流値が基準値に達することがある。すなわち、種類が変更される前の板状ワークを研削するときの基準値を研削装置に設定したまま、異なる種類の板状ワークを研削しようとすると、所定の厚みに達していない状態であっても板状ワークの研削を終了してしまうという問題がある。 However, in the above-mentioned grinding apparatus, since the control is performed to end the grinding when the load current value exceeds a preset reference value, the grinding starts depending on the type of the plate-shaped workpiece to be ground. The load current value may reach the reference value immediately after it is applied. That is, if an attempt is made to grind a different type of plate-shaped work while the reference value for grinding the plate-shaped work before the type is changed is set in the grinding device, the predetermined thickness is not reached. However, there is a problem that the grinding of the plate-shaped workpiece is completed.

本発明は、上記の事情に鑑みてなされたもので、研削対象となる板状ワークの種類が変更されても、所定の厚みに至るまで研削できるようにすることを目的としている。 The present invention has been made in view of the above circumstances, and an object of the present invention is to enable grinding to a predetermined thickness even if the type of plate-shaped work to be ground is changed.

本発明は、内部に複数の電極を備えた板状ワークを保持する保持面を有する保持テーブルと、保持テーブルの中心を軸に該保持テーブルを回転させる保持テーブル回転手段と、研削砥石を環状に配設した研削ホイールを回転軸に装着し回転軸を中心に該研削ホイールを回転させる砥石回転手段を備え砥石回転手段で研削ホイールを回転させ保持テーブルが保持する板状ワークを研削する研削手段と、研削手段を保持テーブルに対して接近及び離間する方向に研削送りする研削送り手段と、研削手段により研削される板状ワークの被研削面に該電極が露出したことを判断する判断手段と、を備える研削装置であって、砥石回転手段は、回転軸を回転させるモータと、モータの負荷電流値を検出する負荷電流値検出手段と、を備え、該研削手段により研削される板状ワークの厚みを測定する厚み測定手段を備え、該厚み測定手段は、該保持テーブルに保持される板状ワークの外側で該保持面と同一面に第1の測定子を接触させ該保持面の高さを測定する第1の測定器と、該保持テーブルに保持された板状ワークの上面に第2の測定子を接触させ該板状ワークの上面の高さを測定する第2の測定器と、該第1の測定器の値と該第2の測定器の値との差を板状ワークの厚みとして算出する算出部と、を備え、判断手段は、研削砥石で板状ワークを研削中において電極を研削していないときに負荷電流値検出手段が検出した負荷電流値を記憶する記憶部と、記憶部が記憶した負荷電流値に予め設定された係数を掛けた値を電極が被研削面に露出したときの基準負荷電流値として設定する設定部と、設定部に設定された基準負荷電流値に研削中の負荷電流値が達したときに被研削面に該電極が露出したと判断する判断部と、を備え、該記憶部は、該電極の高さ以上の値を設定厚みとして事前に設定し、該設定厚みに達するまで該厚み測定手段で板状ワークの厚みを測定しながら該研削手段により板状ワークを研削し、研削中に該負荷電流値検出手段が検出した該負荷電流値を該記憶部に記憶させるIn the present invention, a holding table having a holding surface for holding a plate-shaped work having a plurality of electrodes inside, a holding table rotating means for rotating the holding table around the center of the holding table, and an annular grinding wheel A grinding means for mounting the arranged grinding wheel on a rotating shaft and rotating the grinding wheel around the rotating shaft is provided, and the grinding wheel is rotated by the grinding wheel rotating means to grind the plate-shaped workpiece held by the holding table. , A grinding feed means for grinding and feeding the grinding means in a direction approaching and separating from the holding table, and a determining means for determining that the electrode is exposed on the surface to be ground of the plate-shaped work to be ground by the grinding means. The grinding wheel rotating means includes a motor for rotating the rotating shaft and a load current value detecting means for detecting the load current value of the motor, and the plate-shaped workpiece to be ground by the grinding means. A thickness measuring means for measuring the thickness is provided, and the thickness measuring means brings the first stylus into contact with the same surface as the holding surface on the outside of the plate-shaped work held on the holding table, and the height of the holding surface. A first measuring instrument for measuring the above speed, and a second measuring instrument for measuring the height of the upper surface of the plate-shaped work by bringing the second stylus into contact with the upper surface of the plate-shaped work held on the holding table. A calculation unit that calculates the difference between the value of the first measuring instrument and the value of the second measuring instrument as the thickness of the plate-shaped work is provided, and the determination means is during grinding of the plate-shaped work with a grinding grind. The surface of the electrode to be ground is a storage unit that stores the load current value detected by the load current value detecting means when the electrode is not ground, and a value obtained by multiplying the load current value stored by the storage unit by a preset coefficient. When the load current value during grinding reaches the setting unit set as the reference load current value set in the setting unit and the reference load current value set in the setting unit, it is determined that the electrode is exposed on the surface to be ground. The storage unit includes a determination unit , and the storage unit sets a value equal to or higher than the height of the electrode as a set thickness in advance, and measures the thickness of the plate-shaped workpiece with the thickness measuring means until the set thickness is reached. The plate-shaped work is ground by the grinding means, and the load current value detected by the load current value detecting means during grinding is stored in the storage unit .

本発明は、内部に複数の電極を備える板状ワークを保持する保持面を有する保持テーブルと、該保持テーブルの中心を軸に該保持テーブルを回転させる保持テーブル回転手段と、研削砥石を環状に配設した研削ホイールを回転軸に装着し該回転軸を中心に該研削ホイールを回転させる砥石回転手段を備え該砥石回転手段で該研削ホイールを回転させ該保持テーブルが保持する板状ワークを研削する研削手段と、該研削手段を該保持テーブルに対して接近及び離間する方向に研削送りする研削送り手段と、該研削手段により研削される板状ワークの被研削面に該電極が露出したことを判断する判断手段と、を備える研削装置であって、該砥石回転手段は、該回転軸を回転させるモータと、該モータの負荷電流値を検出する負荷電流値検出手段と、を備え、該研削ホイールの種類と板状ワークに備える複数の電極の密度との相関関係により係数を設定した相関関係データを備え、該回転軸に装着した該研削ホイールの種類と板状ワークの電極の密度とに応じて該相関関係データを参照して該係数を選択する選択手段を備え、該判断手段は、該研削砥石で板状ワークの内部の該電極を研削していないときに該負荷電流値検出手段が検出した負荷電流値を記憶する記憶部と、該記憶部が記憶した該負荷電流値に該選択手段で選択された該係数を掛けた値を該電極が板状ワークの被研削面に露出したときの基準負荷電流値として設定する設定部と、該設定部に設定された該基準負荷電流値に研削中の該負荷電流値が達したときに被研削面に該電極が露出したと判断する判断部と、を備える。In the present invention, a holding table having a holding surface for holding a plate-shaped work having a plurality of electrodes inside, a holding table rotating means for rotating the holding table around the center of the holding table, and a grinding grind are annularly formed. The arranged grinding wheel is mounted on a rotating shaft, and a grinding wheel rotating means for rotating the grinding wheel around the rotating shaft is provided. The grinding wheel is rotated by the grinding wheel rotating means to grind a plate-shaped workpiece held by the holding table. The electrode is exposed on the grinding means to be ground, the grinding feeding means for grinding and feeding the grinding means in the directions approaching and separating from the holding table, and the surface to be ground of the plate-shaped work to be ground by the grinding means. The grinding device includes a determining means for determining the above, and the grinding wheel rotating means includes a motor for rotating the rotating shaft and a load current value detecting means for detecting the load current value of the motor. It is provided with correlation data in which a coefficient is set by the correlation between the type of grinding wheel and the densities of a plurality of electrodes provided on the plate-shaped work, and the type of the grinding wheel mounted on the rotating shaft and the density of electrodes of the plate-shaped work. A selection means for selecting the coefficient by referring to the correlation data according to the above is provided, and the determination means detects the load current value when the electrode inside the plate-shaped workpiece is not ground by the grinding wheel. A storage unit that stores the load current value detected by the means and a value obtained by multiplying the load current value stored by the storage unit by the coefficient selected by the selection means are applied to the surface of the plate-shaped workpiece to be ground by the electrode. It is said that the setting unit set as the reference load current value when exposed and the electrode is exposed on the surface to be ground when the load current value during grinding reaches the reference load current value set in the setting unit. It is equipped with a judgment unit for making judgments.

上記研削装置は、上記研削ホイールの種類と板状ワークに備える複数の電極の密度との相関関係により係数を設定した相関関係データを備え、上記回転軸に装着した該研削ホイールの種類と、板状ワークの電極の密度とから該相関関係データを参照して該係数を選択する選択手段を備える構成にしてもよい。 The grinding device includes correlation data in which a coefficient is set according to the correlation between the type of the grinding wheel and the densities of a plurality of electrodes provided in the plate-shaped work, and the type of the grinding wheel mounted on the rotating shaft and the plate. The configuration may include a selection means for selecting the coefficient by referring to the correlation data from the density of the electrodes of the shaped work.

本発明にかかる研削装置は、砥石回転手段で研削ホイールを回転させ保持テーブルが保持する板状ワークを研削する研削手段と、研削手段により研削される板状ワークの被研削面に電極が露出したことを判断する判断手段とを備え、砥石回転手段は、回転軸を回転させるモータと、モータの負荷電流値を検出する負荷電流値検出手段とを備え、判断手段は、研削砥石で板状ワークを研削中において電極を研削していないときに負荷電流値検出手段が検出した負荷電流値を記憶する記憶部と、記憶部が記憶した負荷電流値に予め設定された係数を掛けて電極が被研削面に露出したときの基準負荷電流値として設定する設定部と、設定部に設定された基準負荷電流値に研削中の負荷電流値が達したときに被研削面に電極が露出したと判断する判断部とを備えたため、研削対象の板状ワークが変更されたり研削ホイールの種類が変更されたりする場合でも、板状ワークの研削中に、電極が被研削面から露出しない時の負荷電流値を記億部に記憶させ、かかる負荷電流値に予め設定された係数を掛けるだけで、被研削面に電極が露出したときの判断基準となる基準負荷電流値を設定することができる。よって、確実に電極が被研削面に露出するまで板状ワークを研削することができる。 In the grinding apparatus according to the present invention, the grinding wheel is rotated by the grindstone rotating means to grind the plate-shaped workpiece held by the holding table, and the electrodes are exposed on the surface to be ground of the plate-shaped workpiece to be ground by the grinding means. The grindstone rotating means includes a motor for rotating the rotating shaft and a load current value detecting means for detecting the load current value of the motor, and the determining means is a plate-shaped workpiece with a grinding wheel. The electrode is covered by a storage unit that stores the load current value detected by the load current value detecting means when the electrode is not being ground during grinding, and the load current value stored by the storage unit is multiplied by a preset coefficient. It is determined that the electrode is exposed on the surface to be ground when the load current value during grinding reaches the setting unit set as the reference load current value when exposed to the grinding surface and the reference load current value set in the setting unit. Even if the plate-shaped workpiece to be ground is changed or the type of grinding wheel is changed, the load current when the electrodes are not exposed from the surface to be ground during grinding of the plate-shaped workpiece is provided. The reference load current value, which is a criterion for determining when the electrode is exposed on the surface to be ground, can be set simply by storing the value in 100 million parts and multiplying the load current value by a preset coefficient. Therefore, the plate-shaped workpiece can be reliably ground until the electrodes are exposed on the surface to be ground.

また、本発明にかかる研削装置は、上記研削手段により研削される板状ワークの厚みを測定する厚み測定手段を備え、電極の高さ以上の値を設定厚みとして事前に設定しておき、設定厚みに達するまで厚み測定手段で板状ワークの厚みを測定しながら研削手段により板状ワークを研削する構成としたため、板状ワークの厚みの変化を監視しながら、研削中に上記負荷電流値検出手段が検出した負荷電流値を上記記憶部に記憶させることができる。よって、板状ワークの厚み及び負荷電流値を常に監視しながら、より確実に電極が被研削面に露出するまで板状ワークを研削することができる。 Further, the grinding apparatus according to the present invention is provided with a thickness measuring means for measuring the thickness of a plate-shaped workpiece to be ground by the above-mentioned grinding means, and a value equal to or higher than the height of the electrode is set in advance as a set thickness and set. Since the plate-shaped work is ground by the grinding means while measuring the thickness of the plate-shaped work by the thickness measuring means until the thickness is reached, the load current value is detected during grinding while monitoring the change in the thickness of the plate-shaped work. The load current value detected by the means can be stored in the storage unit. Therefore, while constantly monitoring the thickness and load current value of the plate-shaped work, the plate-shaped work can be more reliably ground until the electrodes are exposed on the surface to be ground.

上記研削装置が、上記研削ホイールの種類と板状ワークに備える複数の電極の密度との相関関係により係数を設定した相関関係データを備え、上記回転軸に装着した該研削ホイールの種類と、板状ワークの電極の密度とに応じた相関関係データを参照して係数を選択する選択手段を備える場合は、研削対象となる板状ワークの種類や研削ホイールの種類に応じて相関関係データを参照して、最適な係数を選択できるため、板状ワークの種類や研削ホイールの種類に応じた的確な基準負荷電流値を設定することが可能となる。 The grinding device includes correlation data in which a coefficient is set according to the correlation between the type of the grinding wheel and the densities of a plurality of electrodes provided in the plate-shaped work, and the type of the grinding wheel mounted on the rotating shaft and the plate. When the selection means for selecting the coefficient by referring to the correlation data according to the density of the electrodes of the shaped work is provided, refer to the correlation data according to the type of the plate-shaped work to be ground and the type of the grinding wheel. Since the optimum coefficient can be selected, it is possible to set an accurate reference load current value according to the type of plate-shaped workpiece and the type of grinding wheel.

研削装置の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of a grinding apparatus. (a)は、相関関係データの第1例である。(b)は、相関関係データの第2例である。(A) is the first example of the correlation data. (B) is a second example of correlation data. 研削手段を保持テーブルに保持された板状ワークに向けて研削送りする状態を示す断面図である。It is sectional drawing which shows the state which grinds feed toward a plate-shaped work held by a holding table, and a state which grinds a means. 研削手段により板状ワークを研削する状態を示しており、電極が板状ワークの被研削面に露出していない状態を示す断面図である。It is sectional drawing which shows the state which grinds a plate-shaped work by the grinding means, and shows the state which the electrode is not exposed to the surface to be ground of a plate-shaped work. 板状ワークが所定の厚みに研削され、電極が板状ワークの被研削面に露出した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a plate-shaped work is ground to a predetermined thickness and electrodes are exposed on the surface to be ground of the plate-shaped work. 研削手段の変形例を保持テーブルに保持された板状ワークに向けて研削送りする状態を示す断面図である。It is sectional drawing which shows the state which grinds feed toward the plate-shaped work held in the holding table, which is the modification of the grinding means. 研削手段の変形例により板状ワークの中央に凹部を形成するとともに外周側に凸部を形成する状態を示しており、電極が板状ワークの被研削面に露出していない状態を示す断面図である。A cross-sectional view showing a state in which a concave portion is formed in the center of the plate-shaped work and a convex portion is formed on the outer peripheral side according to a modified example of the grinding means, and the electrode is not exposed on the surface to be ground of the plate-shaped work. Is. 板状ワークの中央に所定の凹部が形成され、電極が板状ワークの被研削面に露出した状態を示す断面図である。It is sectional drawing which shows the state which a predetermined recess is formed in the center of a plate-shaped work, and the electrode is exposed to the surface to be ground of a plate-shaped work.

図1に示す研削装置1は、内部に複数の電極を備える板状ワークに研削を施すことができる研削装置の一例である。研削装置1は、Y軸方向に延在する装置ベース100と、装置ベース100のY軸方向後部側に立設されたコラム101とを有している。装置ベース100には、内部に複数の電極を備えた板状ワークを保持する保持面2aを有する保持テーブル2と、保持テーブル2の中心を軸に回転させる保持テーブル回転手段4とを備えている。保持テーブル2の保持面2aの周囲は、枠体3により囲繞されており、枠体3の上面は保持面2aと同じ高さを有する基準面3aとなっている。保持テーブル2の周囲はカバー5により覆われており、図示しない移動手段によりY軸方向に移動することができる。保持テーブル回転手段4は、モータであり、保持テーブル2を所定の回転速度で回転させることができる。 The grinding device 1 shown in FIG. 1 is an example of a grinding device capable of grinding a plate-shaped workpiece provided with a plurality of electrodes inside. The grinding apparatus 1 has an apparatus base 100 extending in the Y-axis direction and a column 101 erected on the rear side of the apparatus base 100 in the Y-axis direction. The apparatus base 100 includes a holding table 2 having a holding surface 2a for holding a plate-shaped work having a plurality of electrodes inside, and a holding table rotating means 4 for rotating the center of the holding table 2 as an axis. .. The periphery of the holding surface 2a of the holding table 2 is surrounded by the frame body 3, and the upper surface of the frame body 3 is a reference surface 3a having the same height as the holding surface 2a. The periphery of the holding table 2 is covered with a cover 5, and the holding table 2 can be moved in the Y-axis direction by a moving means (not shown). The holding table rotating means 4 is a motor, and the holding table 2 can be rotated at a predetermined rotation speed.

研削装置1は、保持テーブル2に保持される板状ワークを研削する研削手段10と、研削手段10を保持テーブル2に対して接近及び離間させる方向に研削送りする研削送り手段20と、研削手段10により研削される板状ワークの被研削面に電極が露出したことを判断する判断手段30と、研削送り手段20を制御する制御手段40とを備えている。制御手段40は、CPUやメモリなどの記億素子を少なくとも備え、判断手段30に接続されている。 The grinding device 1 includes a grinding means 10 for grinding a plate-shaped workpiece held on the holding table 2, a grinding feeding means 20 for grinding and feeding the grinding means 10 in a direction approaching and separating from the holding table 2, and a grinding means. A determination means 30 for determining that an electrode is exposed on the surface to be ground of a plate-shaped work to be ground by No. 10 and a control means 40 for controlling the grinding feed means 20 are provided. The control means 40 includes at least 100 million elements such as a CPU and a memory, and is connected to the determination means 30.

研削手段10は、コラム101の前方において、研削送り手段20によって昇降可能に支持されている。研削手段10は、研削砥石16を環状に配設した研削ホイール15と、研削ホイール15を回転させる砥石回転手段11とを備えている。砥石回転手段11は、Z軸方向の軸心を有する回転軸110と、回転軸110を回転させるモータ111と、モータ111の負荷電流値を検出する負荷電流値検出手段112とを備えている。回転軸110はハウジング13によって回転可能に支持され、ハウジング13はホルダ12により保持されている。研削ホイール15は、回転軸110の下端においてマウント14を介して装着されている。砥石回転手段11は、モータ111が回転軸110を回転させ、回転する回転軸110を軸に研削ホイール15を回転させることができる。負荷電流値検出手段112は、モータ111に接続されており、板状ワークの研削中は常にモータ111にかかる研削負荷を負荷電流値として検出することができる。 The grinding means 10 is supported by the grinding feeding means 20 so as to be able to move up and down in front of the column 101. The grinding means 10 includes a grinding wheel 15 in which the grinding wheel 16 is arranged in an annular shape, and a grindstone rotating means 11 for rotating the grinding wheel 15. The grindstone rotating means 11 includes a rotating shaft 110 having an axial center in the Z-axis direction, a motor 111 for rotating the rotating shaft 110, and a load current value detecting means 112 for detecting the load current value of the motor 111. The rotating shaft 110 is rotatably supported by the housing 13, and the housing 13 is held by the holder 12. The grinding wheel 15 is mounted at the lower end of the rotating shaft 110 via the mount 14. In the grindstone rotating means 11, the motor 111 rotates the rotating shaft 110, and the grinding wheel 15 can be rotated around the rotating rotating shaft 110. The load current value detecting means 112 is connected to the motor 111, and can always detect the grinding load applied to the motor 111 as the load current value during grinding of the plate-shaped workpiece.

研削送り手段20は、Z軸方向に延在するボールネジ21と、ボールネジ21の一端に接続されたモータ22と、ボールネジ21と平行に延在する一対のガイドレール23と、一方の面に研削手段10が連結された昇降板24とを備える。一対のガイドレール23は、昇降板24の他方の面が摺接し、昇降板24の他方の面側に形成されたナットにはボールネジ21が螺合している。研削送り手段20は、モータ22によってボールネジ21が回動すると、一対のガイドレール23に沿って昇降板24をZ軸方向に移動させることにより、研削手段10をZ軸方向に昇降させることができる。 The grinding feed means 20 includes a ball screw 21 extending in the Z-axis direction, a motor 22 connected to one end of the ball screw 21, a pair of guide rails 23 extending in parallel with the ball screw 21, and a grinding means on one surface. The elevating plate 24 to which the 10 is connected is provided. In the pair of guide rails 23, the other surface of the elevating plate 24 is in sliding contact with each other, and the ball screw 21 is screwed into the nut formed on the other surface side of the elevating plate 24. When the ball screw 21 is rotated by the motor 22, the grinding feed means 20 can raise and lower the grinding means 10 in the Z-axis direction by moving the elevating plate 24 in the Z-axis direction along the pair of guide rails 23. ..

判断手段30は、負荷電流値検出手段112が検出した負荷電流値を記憶する記憶部31と、記憶部31が記憶した負荷電流値に予め設定された係数を掛けた値を電極が板状ワークの被研削面に露出したときの基準負荷電流値として設定する設定部32と、設定部32に設定された基準負荷電流値に研削中の負荷電流値が達したときに板状ワークの被研削面に電極が露出したと判断する判断部33とを備えている。記億部31には、研削砥石16によって板状ワークを研削する際にモータ111にかかる研削負荷のうち、研削砥石16が板状ワークの内部の電極を研削していないときのモータ111の研削負荷を示した負荷電流値が記億される。設定部32において基準負荷電流値を設定するために使用される係数は、例えば、複数種類の板状ワークや複数種類の研削ホイールを用いて実験的に研削を行うことにより、定数としてあらかじめ決定したものであり、研削ホイール15に備える研削砥石16の粒度や板状ワークに備えた電極の密度等に応じて設定部32に個別に設定される。設定部32では、負荷電流値に上記係数を掛けた値を、電極が板状ワークの被研削面から露出したか否かの判断基準となる基準負荷電流値として設定する。そして、判断部33は、板状ワークの研削中の負荷電流値が基準負荷電流値に到達した場合には、板状ワークの被研削面に電極が露出したものと判断することができ、その判断結果は制御手段40に送られる。 In the determination means 30, the electrode is a plate-shaped workpiece having a storage unit 31 that stores the load current value detected by the load current value detection means 112 and a value obtained by multiplying the load current value stored by the storage unit 31 by a preset coefficient. When the load current value during grinding reaches the setting unit 32 set as the reference load current value when exposed to the surface to be ground and the reference load current value set in the setting unit 32, the plate-shaped workpiece is to be ground. A determination unit 33 for determining that the electrode is exposed is provided on the surface. In part 31, of the grinding load applied to the motor 111 when the plate-shaped work is ground by the grinding wheel 16, the grinding wheel 16 grinds the motor 111 when the grinding wheel 16 does not grind the electrodes inside the plate-shaped work. The load current value indicating the load is recorded. The coefficient used to set the reference load current value in the setting unit 32 is determined in advance as a constant by, for example, experimentally grinding using a plurality of types of plate-shaped workpieces and a plurality of types of grinding wheels. It is individually set in the setting unit 32 according to the grain size of the grinding wheel 16 provided in the grinding wheel 15 and the density of the electrodes provided in the plate-shaped work. The setting unit 32 sets a value obtained by multiplying the load current value by the above coefficient as a reference load current value that serves as a criterion for determining whether or not the electrode is exposed from the surface to be ground of the plate-shaped workpiece. Then, when the load current value during grinding of the plate-shaped work reaches the reference load current value, the determination unit 33 can determine that the electrode is exposed on the surface to be ground of the plate-shaped work. The determination result is sent to the control means 40.

保持テーブル2の近傍には、研削手段10により研削される板状ワークの厚みを測定する厚み測定手段60を備えている。厚み測定手段60は、保持テーブル2に保持された板状ワークの外側で保持面2aと同一面である基準面3aに第1の測定子61aを接触させて保持テーブル2の保持面2aの高さを測定する第1の測定器61と、保持面2aに保持された板状ワークの上面に第2の測定子62aを接触させて板状ワークの上面高さを測定する第2の測定器62と、第1の測定器61が測定した測定値と第2の測定器62が測定した測定値との差を板状ワークの厚みとして算出する算出部63とを備えている。 In the vicinity of the holding table 2, a thickness measuring means 60 for measuring the thickness of the plate-shaped work to be ground by the grinding means 10 is provided. The thickness measuring means 60 brings the first stylus 61a into contact with the reference surface 3a, which is the same surface as the holding surface 2a on the outside of the plate-shaped work held by the holding table 2, and raises the holding surface 2a of the holding table 2. A first measuring instrument 61 for measuring the force and a second measuring instrument for measuring the height of the upper surface of the plate-shaped work by bringing the second stylus 62a into contact with the upper surface of the plate-shaped work held on the holding surface 2a. The device 62 includes a calculation unit 63 that calculates the difference between the measured value measured by the first measuring device 61 and the measured value measured by the second measuring device 62 as the thickness of the plate-shaped workpiece.

研削装置1は、研削ホイールの種類と板状ワークの電極密度とに応じて係数を設定した相関関係データDを記億する記億手段を備えており、相関関係データDの中から実際に使用される研削ホイールの種類と実際に研削対象となる板状ワークの電極密度とに対応するデータを参照して、記億部31に記億される負荷電流値に掛けるべき最適な係数を選択する選択手段50を備えている。選択手段50は、判断手段30に接続されている。電極密度とは、板状ワークの全面積と板状ワークの内部に配設された複数の電極の面積との割合である。 The grinding device 1 is provided with a billionaire for recording the correlation data D in which the coefficient is set according to the type of the grinding wheel and the electrode density of the plate-shaped workpiece, and is actually used from the correlation data D. With reference to the data corresponding to the type of grinding wheel to be ground and the electrode density of the plate-shaped workpiece to be actually ground, the optimum coefficient to be multiplied by the load current value recorded in the 100 million part 31 is selected. The selection means 50 is provided. The selection means 50 is connected to the determination means 30. The electrode density is a ratio of the total area of the plate-shaped work to the area of a plurality of electrodes arranged inside the plate-shaped work.

図2(a)に示す相関関係データD1は、相関関係データDの第1例である。相関関係データD1を取得するために用いられた板状ワークは、例えばシリコンからなる板状ワークであり、研削砥石で電極が存在しない部分を研削しているときのモータの研削負荷を示す負荷電流値が6A(アンペア)であるものとする。実験で使用した研削ホイールは、砥粒の粒度が#2000,#3000,#4000,#8000の4種類であり、板状ワークの電極密度は、10%,30%,50%の各割合に設定している。例えば、電極密度が10%の板状ワークを砥粒の粒度が#2000の研削砥石によって研削する場合は、係数が1.1に設定されている。そのため、負荷電流値6Aに係数1.1を掛けることにより、板状ワークの被研削面に電極が露出した状態を示す負荷電流値が7Aであると導き出される。なお、相関関係データD1の基準負荷電流値は、実際に算出された数値を四捨五入して表記されたものである。 The correlation data D1 shown in FIG. 2A is a first example of the correlation data D. The plate-shaped work used to acquire the correlation data D1 is, for example, a plate-shaped work made of silicon, and a load current indicating the grinding load of the motor when grinding a portion where no electrode exists with a grinding wheel. It is assumed that the value is 6A (ampere). The grinding wheels used in the experiment have four types of abrasive grain particles of # 2000, # 3000, # 4000, and # 8000, and the electrode densities of the plate-shaped workpiece are 10%, 30%, and 50%, respectively. It is set. For example, when a plate-shaped workpiece having an electrode density of 10% is ground by a grinding wheel having a grain size of # 2000, the coefficient is set to 1.1. Therefore, by multiplying the load current value of 6A by a coefficient of 1.1, it is derived that the load current value indicating a state in which the electrodes are exposed on the surface to be ground of the plate-shaped work is 7A. The reference load current value of the correlation data D1 is expressed by rounding off the actually calculated numerical value.

図2(b)に示す相関関係データD2は、相関関係データDの第2例である。相関関係データD2を取得するために用いられた板状ワークは、樹脂からなる板状ワークであり、電極が存在しない部分を研削しているときのモータの研削負荷を示す負荷電流値が10Aであるものとする。実験で使用した研削ホイール及び板状ワークの電極密度は、相関関係データD1と同様の設定となっている。例えば、電極密度が30%の板状ワークを砥粒の粒度が#2000の研削砥石で研削する場合は、係数が1.3に設定されている。そのため、負荷電流値10Aに係数1.3を掛けることにより、板状ワークの被研削面に電極が露出した状態を示す負荷電流値が13Aであると導き出される。なお、相関関係データD2の基準負荷電流値についても、実際に算出された数値を四捨五入して表記されている。 The correlation data D2 shown in FIG. 2B is a second example of the correlation data D. The plate-shaped work used to acquire the correlation data D2 is a plate-shaped work made of resin, and the load current value indicating the grinding load of the motor when grinding the portion where the electrode does not exist is 10 A. Suppose there is. The electrode densities of the grinding wheel and the plate-shaped workpiece used in the experiment are set in the same manner as the correlation data D1. For example, when a plate-shaped workpiece having an electrode density of 30% is ground with a grinding wheel having a grain size of # 2000, the coefficient is set to 1.3. Therefore, by multiplying the load current value of 10A by a coefficient of 1.3, it is derived that the load current value indicating a state in which the electrodes are exposed on the surface to be ground of the plate-shaped work is 13A. The reference load current value of the correlation data D2 is also rounded off from the actually calculated value.

ここで、砥粒の粒度の値が大きくなるほど、研削砥石が板状ワークの被研削面に接触する接触面積が大きくなる。つまり、研削砥石と電極との接触面積が大きくなるほど、モータにかかる研削負荷も大きくなるため、負荷電流値も大きくなる。相関関係データD1,D2を参照すると、砥粒の粒度の値が#2000…#4000…と大きくなるにつれて、板状ワークの被研削面に電極が露出する前の負荷電流値に掛けるべき係数も大きく設定されており、かかる係数を用いた計算によって基準負荷電流値も上昇している。また、電極密度が10%…30%…50%と高くなるほど、研削砥石と電極との接触面積が大きくなるため、係数も大きく設定されている。もっとも、砥粒の粒度の値が大きい研削砥石と電極密度が高い板状ワークとの組み合わせになるほど、モータ111にかかる研削負荷が増大するため、負荷電流値も上昇する。そのため、相関関係データD1,D2では、砥粒の粒度値が#8000で、電極密度が50%である場合の係数が最も高い2.5に設定されている。そして、図1に示した選択手段50では、研削対象となる板状ワークの種類や研削ホイール15の種類に応じて相関関係データD1,D2を参照して、最適な係数を選択し、設定部32で板状ワークの被研削面に電極が露出した状態を示す判断基準となる基準負荷電流値を設定することができる。 Here, the larger the value of the particle size of the abrasive grains, the larger the contact area where the grinding wheel comes into contact with the surface to be ground of the plate-shaped workpiece. That is, as the contact area between the grinding wheel and the electrode increases, the grinding load applied to the motor also increases, so that the load current value also increases. With reference to the correlation data D1 and D2, as the grain size value of the abrasive grains increases to # 2000 ... # 4000 ..., the coefficient to be multiplied by the load current value before the electrode is exposed on the surface to be ground of the plate-shaped workpiece also increases. It is set large, and the reference load current value also rises by calculation using such a coefficient. Further, as the electrode density increases to 10% ... 30% ... 50%, the contact area between the grinding wheel and the electrode increases, so that the coefficient is also set large. However, as the combination of the grinding wheel having a large grain size value and the plate-shaped work having a high electrode density increases, the grinding load applied to the motor 111 increases, so that the load current value also increases. Therefore, in the correlation data D1 and D2, the particle size value of the abrasive grains is set to # 8000, and the coefficient when the electrode density is 50% is set to 2.5, which is the highest. Then, in the selection means 50 shown in FIG. 1, the optimum coefficient is selected by referring to the correlation data D1 and D2 according to the type of the plate-shaped workpiece to be ground and the type of the grinding wheel 15, and the setting unit is used. At 32, it is possible to set a reference load current value that serves as a criterion for indicating a state in which the electrodes are exposed on the surface to be ground of the plate-shaped workpiece.

次に、研削装置1を用いて、図3に示す板状ワークWを研削する動作について説明する。板状ワークWは、被加工物の一例であって、例えばシリコン基板や樹脂基板を有しており、その内部に複数の電極Weが形成されている。電極Weは、導電性部材からなり、例えば銅(Cu)や銅合金などの金属を用いることができる。また、保持テーブル2に保持される板状ワークWの露出した上面が、研削手段10によって研削される被研削面Waとなっている。研削装置1には、電極Weの高さ(板状ワークWの厚さ方向の長さ)以上の値を板状ワークWの設定厚みとして事前に制御手段40に設定しておく。板状ワークWの設定厚みは、研削送りされる研削砥石16が電極Weに至る直前の板状ワークWの厚みである。 Next, an operation of grinding the plate-shaped work W shown in FIG. 3 by using the grinding device 1 will be described. The plate-shaped work W is an example of a workpiece, and has, for example, a silicon substrate or a resin substrate, and a plurality of electrodes We are formed therein. The electrode We is made of a conductive member, and a metal such as copper (Cu) or a copper alloy can be used. Further, the exposed upper surface of the plate-shaped work W held by the holding table 2 is the surface to be ground Wa to be ground by the grinding means 10. In the grinding device 1, a value equal to or higher than the height of the electrode We (the length in the thickness direction of the plate-shaped work W) or more is set in advance in the control means 40 as the set thickness of the plate-shaped work W. The set thickness of the plate-shaped work W is the thickness of the plate-shaped work W immediately before the grinding wheel 16 to be fed is reached the electrode We.

まず、図3に示すように、保持テーブル2に板状ワークWを載置して、被研削面Waを上向きに露出させる。保持テーブル2で板状ワークWを保持した後、保持テーブル2を研削手段10の下方に移動させる。続いて、保持テーブル2を例えば矢印A方向に回転させるとともに、モータ111によって回転軸110が回転し研削ホイール15を例えば矢印A方向に回転させながら、研削送り手段20によって研削ホイール15を保持テーブル2に接近する方向に下降させる。そして、回転しながら下降する研削砥石16を板状ワークWの被研削面Waに接触させ研削を行う。 First, as shown in FIG. 3, a plate-shaped work W is placed on the holding table 2 to expose the surface to be ground Wa upward. After holding the plate-shaped work W on the holding table 2, the holding table 2 is moved below the grinding means 10. Subsequently, the holding table 2 is rotated in the direction of arrow A, for example, and the rotating shaft 110 is rotated by the motor 111 to rotate the grinding wheel 15 in the direction of arrow A, for example, while the grinding wheel 15 is held by the grinding feed means 20. Lower in the direction approaching. Then, the grinding wheel 16 that descends while rotating is brought into contact with the surface Wa to be ground of the plate-shaped work W to perform grinding.

図4に示すように、板状ワークWの研削が進むにつれて、板状ワークWが薄化されると、被研削面Waが電極Weの上端に近づいていく。この時点では、研削砥石16が板状ワークWの内部の電極Weに接触していないため、負荷電流値検出手段112により、モータ111の研削負荷を示す負荷電流値を検出し、判断手段30の図1に示した記億部31に記億させる。そして、設定部32は、記億部31に記億された負荷電流値に判断手段30に予め設定された係数を掛けることにより、電極Weが板状ワークWの被研削面Waに露出したときを示す基準負荷電流値を設定する。 As shown in FIG. 4, as the grinding of the plate-shaped work W progresses, when the plate-shaped work W is thinned, the surface Wa to be ground approaches the upper end of the electrode We. At this point, since the grinding wheel 16 is not in contact with the electrode We inside the plate-shaped work W, the load current value detecting means 112 detects the load current value indicating the grinding load of the motor 111, and the determining means 30 determines. Let the 100 million part 31 shown in FIG. 1 make a billion. Then, when the electrode We is exposed to the surface to be ground Wa of the plate-shaped work W by multiplying the load current value recorded in the billion section 31 by a coefficient set in advance in the determination means 30. Set the reference load current value indicating.

例えば、研削対象となる板状ワークWがシリコン基板(電極密度が10%)で、かつ、砥粒の粒度が#4000の場合は、図1に示した選択手段50により、図2(a)に示した相関関係データD1を参照して最適な係数1.3を選択する。その後、設定部32は、記億部31に記億された負荷電流値6Aに選択手段50が選択した係数1.3を掛けて導き出された8Aを、板状ワークWの被研削面Waに電極Weが露出したときを示す基準負荷電流値として設定する。また、例えば、研削対象となる板状ワークWが樹脂基板(電極密度が30%)で、かつ、砥粒の粒度が#8000の場合は、選択手段50により、図2(b)に示した相関関係データD2を参照して最適な係数1.8を選択する。その後、設定部32は、記億部31に記億された負荷電流値10Aに選択手段50が選択した係数1.8を掛けて導き出された18Aを、板状ワークWの被研削面Waに電極Weが露出したときを示す基準負荷電流値として設定する。このように、選択手段50では、相関関係データD1,D2を参照して、最適な係数を選択することができるため、板状ワークWの種類や研削ホイールの種類に応じた的確な基準負荷電流値を設定することが可能となる。 For example, when the plate-shaped workpiece W to be ground is a silicon substrate (electrode density is 10%) and the grain size of the abrasive grains is # 4000, the selection means 50 shown in FIG. 1 is used to show FIG. 2 (a). The optimum coefficient 1.3 is selected with reference to the correlation data D1 shown in. After that, the setting unit 32 applies 8A, which is derived by multiplying the load current value 6A recorded in the 100 million unit 31 by the coefficient 1.3 selected by the selection means 50, on the surface Wa of the plate-shaped work W to be ground. It is set as a reference load current value indicating when the electrode We is exposed. Further, for example, when the plate-shaped work W to be ground is a resin substrate (electrode density is 30%) and the grain size of the abrasive grains is # 8000, it is shown in FIG. 2B by the selection means 50. The optimum coefficient 1.8 is selected with reference to the correlation data D2. After that, the setting unit 32 applies 18A, which is derived by multiplying the load current value 10A recorded in the 100 million unit 31 by the coefficient selected by the selection means 50, to the surface Wa of the plate-shaped work W to be ground. It is set as a reference load current value indicating when the electrode We is exposed. As described above, in the selection means 50, since the optimum coefficient can be selected with reference to the correlation data D1 and D2, an accurate reference load current according to the type of the plate-shaped work W and the type of the grinding wheel It is possible to set the value.

このようにして基準負荷電流値を設定した後、設定厚みに達するまで厚み測定手段60で板状ワークWの厚みを測定しつつ、板状ワークWの研削を継続していき、板状ワークWの研削中は常に負荷電流値検出手段112によってモータ111にかかる研削負荷の変化を監視する。負荷電流値検出手段112が検出したモータ111の負荷電流値が基準負荷電流値に達していなければ、判断部33により、板状ワークWの被研削面Waに電極Weが露出していないものと判断し、判断結果を制御手段40に送る。制御手段40が研削送り手段20を制御することにより、モータ111の負荷電流値が基準負荷電流値に達するまで板状ワークWの研削を続行する。一方、負荷電流値検出手段112が検出したモータ111の負荷電流値が基準負荷電流値に達したら、判断部33により、図5に示すように、板状ワークWの被研削面Waに電極Weが露出したものと判断し、判断結果を制御手段40に送る。そして、制御手段40が研削送り手段20を制御することで、研削手段10を上昇させ、板状ワークWの研削を終了する。 After setting the reference load current value in this way, the plate-shaped work W is continuously ground while measuring the thickness of the plate-shaped work W with the thickness measuring means 60 until the set thickness is reached. During grinding, the load current value detecting means 112 monitors the change in the grinding load applied to the motor 111. If the load current value of the motor 111 detected by the load current value detecting means 112 does not reach the reference load current value, the determination unit 33 determines that the electrode We is not exposed on the surface Wa of the plate-shaped work W to be ground. The judgment is made, and the judgment result is sent to the control means 40. By controlling the grinding feed means 20 by the control means 40, grinding of the plate-shaped work W is continued until the load current value of the motor 111 reaches the reference load current value. On the other hand, when the load current value of the motor 111 detected by the load current value detecting means 112 reaches the reference load current value, the determination unit 33 determines that the electrode We is on the surface Wa of the plate-shaped work W to be ground, as shown in FIG. Is determined to be exposed, and the determination result is sent to the control means 40. Then, the control means 40 controls the grinding feed means 20 to raise the grinding means 10 and finish grinding the plate-shaped work W.

このように、本発明にかかる研削装置1は、砥石回転手段11で研削ホイール15を回転させ保持テーブル2が保持する板状ワークWを研削する研削手段10と、研削手段10により研削される板状ワークWの被研削面Waに電極Weが露出したことを判断する判断手段30とを備え、砥石回転手段11は、回転軸110を回転させるモータ111と、モータ111の負荷電流値を検出する負荷電流値検出手段112とを備え、判断手段30は、研削砥石16で板状ワークWを研削中において電極Weを研削していないときに負荷電流値検出手段112が検出した負荷電流値を記憶する記憶部31と、記憶部31が記憶した負荷電流値に予め設定された係数を掛けて電極Weが被研削面Waに露出したときの基準負荷電流値として設定する設定部32と、設定部32に設定された基準負荷電流値に研削中の負荷電流値が達したときに被研削面Waに電極Weが露出したと判断する判断部33とを備えたため、研削される板状ワークWの種類が変更されたり、研削ホイール15の種類が変更されたとしても、変更後の板状ワークWや変更後の研削ホイール15に応じて、被研削面Waに電極Weが露出したときの判断基準となる基準負荷電流値を設定することができる。そのため、確実に電極Weが被研削面Waに露出するまで板状ワークWを研削することが可能となる。
また、研削装置1では、負荷電流値検出手段112及び判断手段30で負荷電流値の変化を監視するのに加えて、厚み測定手段60で板状ワークWの厚みの変化を常に監視できるため、より確実に電極Weが被研削面Waに露出するまで板状ワークWを研削することが可能となる。
As described above, in the grinding device 1 according to the present invention, the grinding wheel 15 is rotated by the grinding wheel rotating means 11 to grind the plate-shaped work W held by the holding table 2, and the plate to be ground by the grinding means 10. A determining means 30 for determining that the electrode We is exposed on the surface Wa of the workpiece W to be ground is provided, and the grinding wheel rotating means 11 detects the motor 111 for rotating the rotating shaft 110 and the load current value of the motor 111. The load current value detecting means 112 is provided, and the determining means 30 stores the load current value detected by the load current value detecting means 112 when the electrode We is not being ground while the plate-shaped work W is being ground by the grinding wheel 16. The storage unit 31 to be used, the setting unit 32 to be set as the reference load current value when the electrode We is exposed to the surface to be ground Wa by multiplying the load current value stored in the storage unit 31 by a preset coefficient, and the setting unit. Since the plate-shaped workpiece W to be ground is provided with a determination unit 33 that determines that the electrode We is exposed on the surface to be ground Wa when the load current value during grinding reaches the reference load current value set in 32. Even if the type is changed or the type of the grinding wheel 15 is changed, the judgment criteria when the electrode We is exposed on the surface to be ground Wa according to the changed plate-shaped work W and the changed grinding wheel 15. The reference load current value can be set. Therefore, the plate-shaped work W can be reliably ground until the electrode We is exposed on the surface to be ground Wa.
Further, in the grinding device 1, in addition to monitoring the change in the load current value by the load current value detecting means 112 and the determining means 30, the thickness measuring means 60 can constantly monitor the change in the thickness of the plate-shaped work W. The plate-shaped work W can be more reliably ground until the electrode We is exposed on the surface to be ground Wa.

本発明は、上記した研削装置1の構成に限定されず、例えば、図6に示す研削装置1Aにも適用することができる。研削装置1Aは、研削手段の変形例として、保持テーブル2Aに保持される板状ワークW1の中央に凹部を形成するとともに外周Wc側に凸部を形成する研削手段70を備えている。研削装置1Aは、研削手段70を備えた点以外は、上記の研削装置1と同様の構成となっている。 The present invention is not limited to the configuration of the grinding device 1 described above, and can be applied to, for example, the grinding device 1A shown in FIG. As a modification of the grinding means, the grinding device 1A includes a grinding means 70 that forms a concave portion in the center of the plate-shaped work W1 held by the holding table 2A and a convex portion on the outer peripheral Wc side. The grinding device 1A has the same configuration as the above-mentioned grinding device 1 except that the grinding device 70 is provided.

研削手段70は、研削砥石76を環状に配設した研削ホイール75と、研削ホイール75を回転させる砥石回転手段とを備えている。砥石回転手段は、回転軸71と、回転軸71を回転させるモータ72と、モータ72の負荷電流値を検出する負荷電流値検出手段73とを備えている。研削ホイール75は、回転軸71の下端にマウント74を介して装着されており、モータ72が回転軸71を中心として所定の回転速度で回転することにより、研削ホイール75を所定の回転速度で回転させることができる。負荷電流値検出手段73は、板状ワークの研削時におけるモータ72の研削負荷の変化を負荷電流値として検出することができる。研削ホイール75としては、研削砥石76の回転軌跡の最外周の直径が、板状ワークW1に形成される図7に示す凹部80の半径以上、かつ、凹部80の直径以下の大きさを有し、研削砥石76が常に板状ワークWの中心を通過するように構成されていればよい。なお、研削ホイール75のサイズは、研削対象となる板状ワークW1のサイズに合わせて適宜変更可能となっている。 The grinding means 70 includes a grinding wheel 75 in which the grinding wheel 76 is arranged in an annular shape, and a grindstone rotating means for rotating the grinding wheel 75. The grindstone rotating means includes a rotating shaft 71, a motor 72 for rotating the rotating shaft 71, and a load current value detecting means 73 for detecting the load current value of the motor 72. The grinding wheel 75 is mounted on the lower end of the rotating shaft 71 via a mount 74, and the motor 72 rotates at a predetermined rotational speed around the rotating shaft 71 to rotate the grinding wheel 75 at a predetermined rotational speed. Can be made to. The load current value detecting means 73 can detect a change in the grinding load of the motor 72 as a load current value when grinding a plate-shaped workpiece. The grinding wheel 75 has a size such that the diameter of the outermost circumference of the rotation locus of the grinding wheel 76 is equal to or greater than the radius of the recess 80 formed in the plate-shaped workpiece W1 and equal to or less than the diameter of the recess 80. , The grinding wheel 76 may be configured so as to always pass through the center of the plate-shaped work W. The size of the grinding wheel 75 can be appropriately changed according to the size of the plate-shaped work W1 to be ground.

次に、研削装置1Aを用いて、板状ワークW1を研削する動作について説明する。なお、上記した研削装置1と同様に、電極Weの高さ以上の値を板状ワークW1の設定厚みとして事前に制御手段40Aに設定しておく。 Next, an operation of grinding the plate-shaped work W1 using the grinding device 1A will be described. Similar to the above-mentioned grinding device 1, a value equal to or higher than the height of the electrode We is set in advance in the control means 40A as the set thickness of the plate-shaped work W1.

まず、図6に示すように、保持テーブル2Aに板状ワークW1を載置して、被研削面Waを上向きに露出させる。保持テーブル2Aで板状ワークW1を保持した後、保持テーブル2Aを研削手段70の下方に移動させる。続いて、保持テーブル2Aを例えば矢印A方向に回転させるとともに、モータ72によって回転軸71が回転し研削ホイール75を例えば矢印A方向に回転させながら、研削送り手段20Aによって研削ホイール75を保持テーブル2Aに接近する方向に下降させる。図7に示すように、回転しながら下降する研削砥石76を板状ワークW1の中央部分における被研削面Waに接触させ研削を行う。すなわち、研削砥石76の最外周が常に板状ワークW1の中心を通過するように所定の時間研削することにより、板状ワークW1の中央部分に凹部80を形成するとともに外周Wc側にリング状の凸部81を形成する。 First, as shown in FIG. 6, the plate-shaped work W1 is placed on the holding table 2A to expose the surface to be ground Wa upward. After holding the plate-shaped work W1 on the holding table 2A, the holding table 2A is moved below the grinding means 70. Subsequently, the holding table 2A is rotated in the direction of arrow A, for example, and the rotating shaft 71 is rotated by the motor 72 to rotate the grinding wheel 75 in the direction of arrow A, for example, while the grinding wheel 75 is held by the grinding feed means 20A. Lower in the direction approaching. As shown in FIG. 7, the grinding wheel 76 that descends while rotating is brought into contact with the surface to be ground Wa in the central portion of the plate-shaped work W1 to perform grinding. That is, by grinding for a predetermined time so that the outermost circumference of the grinding wheel 76 always passes through the center of the plate-shaped work W1, a recess 80 is formed in the central portion of the plate-shaped work W1 and a ring shape is formed on the outer circumference Wc side. The convex portion 81 is formed.

板状ワークW1の研削が進むにつれて、板状ワークW1の凹部80が薄化されると、被研削面Waが電極Weの上端に近づいていく。この時点では、研削砥石76が板状ワークW1の内部の電極Weに接触していないため、負荷電流値検出手段73により、モータ72の研削負荷を示す負荷電流値を検出し、判断手段30Aに備える記億部に記億させる。そして、判断手段30Aに備える設定部で記億部に記億された負荷電流値に予めに設定された係数を掛けることにより、電極Weが板状ワークW1の被研削面Waに露出したときを示す基準負荷電流値を設定する。また、図示していないが、研削装置1Aについても研削装置1と同様に、選択手段が研削対象となる板状ワークW1の種類や研削ホイール75の種類に応じて相関関係データを参照して、最適な係数を選択し、板状ワークW1の被研削面Waに電極Weが露出した状態を示す判断基準となる基準負荷電流値を設定してもよい。 As the grinding of the plate-shaped work W1 progresses, when the recess 80 of the plate-shaped work W1 is thinned, the surface Wa to be ground approaches the upper end of the electrode We. At this point, since the grinding wheel 76 is not in contact with the electrode We inside the plate-shaped work W1, the load current value detecting means 73 detects the load current value indicating the grinding load of the motor 72, and the determination means 30A determines. Have the 100 million copies prepared. Then, when the electrode We is exposed to the surface to be ground Wa of the plate-shaped work W1 by multiplying the load current value recorded in the 100 million part by the setting unit provided in the determination means 30A by a preset coefficient. Set the indicated reference load current value. Further, although not shown, as for the grinding device 1A, as in the case of the grinding device 1, the selection means refers to the correlation data according to the type of the plate-shaped workpiece W1 to be ground and the type of the grinding wheel 75. An optimum coefficient may be selected, and a reference load current value may be set as a criterion for determining a state in which the electrode We is exposed on the surface Wa of the plate-shaped work W1 to be ground.

このようにして基準負荷電流値を設定した後、設定厚みに達するまで図示しない厚み測定手段で板状ワークW1の厚みを測定しつつ、板状ワークW1の研削を継続していき、板状ワークW1の研削中は常に負荷電流値検出手段73によってモータ72にかかる研削負荷の変化を監視する。負荷電流値検出手段73が検出したモータ72の負荷電流値が基準負荷電流値に達していなければ、判断手段30Aに備える判断部により、板状ワークW1の被研削面Waに電極Weが露出していないものと判断し、判断結果を制御手段40Aに送る。制御手段40Aが研削送り手段20Aを制御することにより、モータ72の負荷電流値が基準負荷電流値に達するまで板状ワークW1の研削を続行する。一方、負荷電流値検出手段73が検出したモータ72の負荷電流値が基準負荷電流値に達したら、判断手段30Aに備える判断部により、図8に示すように、凹部80における被研削面Waに電極Weが露出したものと判断し、判断結果を制御手段40Aに送る。そして、制御手段40Aが研削送り手段20Aを制御することで、研削手段70を上昇させ、板状ワークW1の研削を終了する。 After setting the reference load current value in this way, the plate-shaped work W1 is continuously ground while measuring the thickness of the plate-shaped work W1 by a thickness measuring means (not shown) until the set thickness is reached. During the grinding of W1, the load current value detecting means 73 monitors the change in the grinding load applied to the motor 72. If the load current value of the motor 72 detected by the load current value detecting means 73 does not reach the reference load current value, the electrode We is exposed on the surface to be ground Wa of the plate-shaped work W1 by the judging unit provided in the judging means 30A. It is determined that the result has not been obtained, and the determination result is sent to the control means 40A. By controlling the grinding feed means 20A by the control means 40A, grinding of the plate-shaped work W1 is continued until the load current value of the motor 72 reaches the reference load current value. On the other hand, when the load current value of the motor 72 detected by the load current value detecting means 73 reaches the reference load current value, the determination unit provided in the determination means 30A presses the surface Wa in the recess 80 as shown in FIG. It is determined that the electrode We is exposed, and the determination result is sent to the control means 40A. Then, the control means 40A controls the grinding feed means 20A to raise the grinding means 70 and finish the grinding of the plate-shaped work W1.

1,1A:研削装置 100:装置ベース 101:コラム
2,2A:保持テーブル 2a:保持面 3:枠体 3a:基準面
4:保持テーブル回転手段 5:カバー
10:研削手段 11:砥石回転手段 110:回転軸 111:モータ
112:負荷電流値検出手段 12:ホルダ 13:ハウジング 14:マウント
15:研削ホイール 16:研削砥石
20,20A:研削送り手段 21:ボールネジ 22:モータ 23:ガイドレール
24:昇降板
30,30A:判断手段 31:記億部 32:設定部 33:判断部
40,40A:制御手段 50:選択手段
60:厚み測定手段 61:第1の測定器 61a:第1の測定子
62:第2の測定器 62a:第2の測定子 63:算出部
70:研削手段 71:回転軸 72:モータ 73:負荷電流値検出手段
74:マウント 75:研削ホイール 76:研削砥石
80:凹部 81:凸部
1,1A: Grinding device 100: Grinding device 101: Column 2, 2A: Holding table 2a: Holding surface 3: Frame body 3a: Reference surface 4: Holding table Rotating means 5: Cover 10: Grinding means 11: Grinding means Rotating means 110 : Rotating shaft 111: Motor 112: Load current value detecting means 12: Holder 13: Housing 14: Mount 15: Grinding wheel 16: Grinding grindstone 20, 20A: Grinding feeding means 21: Ball screw 22: Motor 23: Guide rail 24: Elevating Plates 30, 30A: Judgment means 31: 100 million parts 32: Setting part 33: Judgment part 40, 40A: Control means 50: Selection means 60: Thickness measuring means 61: First measuring instrument 61a: First stylus 62 : Second measuring instrument 62a: Second stylus 63: Calculation unit 70: Grinding means 71: Rotating shaft 72: Motor 73: Load current value detecting means 74: Mount 75: Grinding wheel 76: Grinding grinding stone 80: Recess 81 : Convex part

Claims (3)

内部に複数の電極を備える板状ワークを保持する保持面を有する保持テーブルと、該保持テーブルの中心を軸に該保持テーブルを回転させる保持テーブル回転手段と、研削砥石を環状に配設した研削ホイールを回転軸に装着し該回転軸を中心に該研削ホイールを回転させる砥石回転手段を備え該砥石回転手段で該研削ホイールを回転させ該保持テーブルが保持する板状ワークを研削する研削手段と、該研削手段を該保持テーブルに対して接近及び離間する方向に研削送りする研削送り手段と、該研削手段により研削される板状ワークの被研削面に該電極が露出したことを判断する判断手段と、を備える研削装置であって、
該砥石回転手段は、該回転軸を回転させるモータと、
該モータの負荷電流値を検出する負荷電流値検出手段と、を備え、
該研削手段により研削される板状ワークの厚みを測定する厚み測定手段を備え、
該厚み測定手段は、該保持テーブルに保持される板状ワークの外側で該保持面と同一面に第1の測定子を接触させ該保持面の高さを測定する第1の測定器と、
該保持テーブルに保持された板状ワークの上面に第2の測定子を接触させ該板状ワークの上面の高さを測定する第2の測定器と、
該第1の測定器の値と該第2の測定器の値との差を板状ワークの厚みとして算出する算出部と、を備え、
該判断手段は、該研削砥石で板状ワークの内部の該電極を研削していないときに該負荷電流値検出手段が検出した負荷電流値を記憶する記憶部と、
該記憶部が記憶した該負荷電流値に予め設定された係数を掛けた値を該電極が板状ワークの被研削面に露出したときの基準負荷電流値として設定する設定部と、
該設定部に設定された該基準負荷電流値に研削中の該負荷電流値が達したときに被研削面に該電極が露出したと判断する判断部と、を備え
該記憶部は、該電極の高さ以上の値を設定厚みとして事前に設定し、該設定厚みに達するまで該厚み測定手段で板状ワークの厚みを測定しながら該研削手段により板状ワークを研削し、研削中に該負荷電流値検出手段が検出した該負荷電流値を該記憶部に記憶させる研削装置。
A holding table having a holding surface for holding a plate-shaped work having a plurality of electrodes inside, a holding table rotating means for rotating the holding table around the center of the holding table, and grinding in which grinding grinds are arranged in an annular shape. A grinding means for mounting a wheel on a rotating shaft and rotating the grinding wheel around the rotating shaft is provided, and the grinding wheel is rotated by the grinding wheel rotating means to grind a plate-shaped workpiece held by the holding table. , Judgment that the grinding feed means for grinding and feeding the grinding means in the directions approaching and separating from the holding table and the electrode exposed on the surface to be ground of the plate-shaped work to be ground by the grinding means. A grinding device equipped with means and
The grindstone rotating means includes a motor that rotates the rotating shaft and
A load current value detecting means for detecting the load current value of the motor is provided.
A thickness measuring means for measuring the thickness of a plate-shaped workpiece to be ground by the grinding means is provided.
The thickness measuring means includes a first measuring instrument that measures the height of the holding surface by bringing the first stylus into contact with the same surface as the holding surface on the outside of the plate-shaped work held on the holding table.
A second measuring instrument that measures the height of the upper surface of the plate-shaped work by bringing the second stylus into contact with the upper surface of the plate-shaped work held on the holding table.
It is provided with a calculation unit that calculates the difference between the value of the first measuring instrument and the value of the second measuring instrument as the thickness of the plate-shaped workpiece.
The determination means includes a storage unit that stores the load current value detected by the load current value detecting means when the electrode inside the plate-shaped work is not ground by the grinding wheel.
A setting unit that sets a value obtained by multiplying the load current value stored by the storage unit by a preset coefficient as a reference load current value when the electrode is exposed on the surface to be ground of the plate-shaped workpiece.
A determination unit for determining that the electrode is exposed on the surface to be ground when the load current value during grinding reaches the reference load current value set in the setting unit is provided .
In the storage unit, a value equal to or higher than the height of the electrode is set in advance as a set thickness, and the plate-shaped work is subjected to the grinding means while measuring the thickness of the plate-shaped work with the thickness measuring means until the set thickness is reached. A grinding device that grinds and stores the load current value detected by the load current value detecting means in the storage unit during grinding.
内部に複数の電極を備える板状ワークを保持する保持面を有する保持テーブルと、該保持テーブルの中心を軸に該保持テーブルを回転させる保持テーブル回転手段と、研削砥石を環状に配設した研削ホイールを回転軸に装着し該回転軸を中心に該研削ホイールを回転させる砥石回転手段を備え該砥石回転手段で該研削ホイールを回転させ該保持テーブルが保持する板状ワークを研削する研削手段と、該研削手段を該保持テーブルに対して接近及び離間する方向に研削送りする研削送り手段と、該研削手段により研削される板状ワークの被研削面に該電極が露出したことを判断する判断手段と、を備える研削装置であって、A holding table having a holding surface for holding a plate-shaped work having a plurality of electrodes inside, a holding table rotating means for rotating the holding table around the center of the holding table, and grinding in which grinding grinds are arranged in an annular shape. A grinding means for mounting a wheel on a rotating shaft and rotating the grinding wheel around the rotating shaft is provided, and the grinding wheel is rotated by the grinding wheel rotating means to grind a plate-shaped workpiece held by the holding table. , Judgment that the grinding feed means for grinding and feeding the grinding means in the directions approaching and separating from the holding table and the electrode exposed on the surface to be ground of the plate-shaped work to be ground by the grinding means. A grinding device equipped with means and
該砥石回転手段は、該回転軸を回転させるモータと、 The grindstone rotating means includes a motor that rotates the rotating shaft and
該モータの負荷電流値を検出する負荷電流値検出手段と、を備え、 A load current value detecting means for detecting the load current value of the motor is provided.
該研削ホイールの種類と板状ワークに備える複数の電極の密度との相関関係により係数を設定した相関関係データを備え、 It is provided with correlation data in which a coefficient is set according to the correlation between the type of the grinding wheel and the densities of a plurality of electrodes provided in the plate-shaped work.
該回転軸に装着した該研削ホイールの種類と板状ワークの電極の密度とに応じて該相関関係データを参照して該係数を選択する選択手段を備え、 A selection means for selecting the coefficient by referring to the correlation data according to the type of the grinding wheel mounted on the rotating shaft and the density of the electrodes of the plate-shaped workpiece is provided.
該判断手段は、該研削砥石で板状ワークの内部の該電極を研削していないときに該負荷電流値検出手段が検出した負荷電流値を記憶する記憶部と、 The determination means includes a storage unit that stores the load current value detected by the load current value detecting means when the electrode inside the plate-shaped work is not ground by the grinding wheel.
該記憶部が記憶した該負荷電流値に該選択手段で選択された該係数を掛けた値を該電極が板状ワークの被研削面に露出したときの基準負荷電流値として設定する設定部と、 A setting unit that sets a value obtained by multiplying the load current value stored by the storage unit by the coefficient selected by the selection means as a reference load current value when the electrode is exposed on the surface to be ground of the plate-shaped workpiece. ,
該設定部に設定された該基準負荷電流値に研削中の該負荷電流値が達したときに被研削面に該電極が露出したと判断する判断部と、を備えた研削装置。 A grinding device including a determination unit for determining that the electrode is exposed on the surface to be ground when the load current value during grinding reaches the reference load current value set in the setting unit.
前記研削ホイールの種類と板状ワークに備える複数の電極の密度との相関関係により係数を設定した相関関係データを備え、
前記回転軸に装着した該研削ホイールの種類と板状ワークの電極の密度とに応じて該相関関係データを参照して該係数を選択する選択手段を備える請求項1記載の研削装置。
It is provided with correlation data in which a coefficient is set by the correlation between the type of the grinding wheel and the densities of a plurality of electrodes provided in the plate-shaped work.
The grinding apparatus according to claim 1, further comprising a selection means for selecting the coefficient by referring to the correlation data according to the type of the grinding wheel mounted on the rotating shaft and the density of the electrodes of the plate-shaped workpiece.
JP2016144143A 2016-07-22 2016-07-22 Grinding device Active JP6774244B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016144143A JP6774244B2 (en) 2016-07-22 2016-07-22 Grinding device
CN201710590252.8A CN107639541B (en) 2016-07-22 2017-07-19 Grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144143A JP6774244B2 (en) 2016-07-22 2016-07-22 Grinding device

Publications (2)

Publication Number Publication Date
JP2018012179A JP2018012179A (en) 2018-01-25
JP6774244B2 true JP6774244B2 (en) 2020-10-21

Family

ID=61019800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144143A Active JP6774244B2 (en) 2016-07-22 2016-07-22 Grinding device

Country Status (2)

Country Link
JP (1) JP6774244B2 (en)
CN (1) CN107639541B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089136B2 (en) * 2018-03-22 2022-06-22 株式会社デンソー Wafer grinding method
JP7121573B2 (en) * 2018-07-24 2022-08-18 株式会社ディスコ Creep feed grinding method
JP2020089930A (en) * 2018-12-04 2020-06-11 株式会社ディスコ Creep-feed grinding method
JP2020131368A (en) * 2019-02-20 2020-08-31 株式会社ディスコ Grinding device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837983B2 (en) * 2002-01-22 2005-01-04 Applied Materials, Inc. Endpoint detection for electro chemical mechanical polishing and electropolishing processes
JP2009021462A (en) * 2007-07-13 2009-01-29 Disco Abrasive Syst Ltd Method for processing wafer
JP5357477B2 (en) * 2008-09-17 2013-12-04 株式会社ディスコ Grinding method and grinding apparatus
JP5268599B2 (en) * 2008-12-03 2013-08-21 株式会社ディスコ Grinding apparatus and grinding method
JP2011040511A (en) * 2009-08-10 2011-02-24 Disco Abrasive Syst Ltd Method of grinding wafer
JP2011189411A (en) * 2010-03-11 2011-09-29 Renesas Electronics Corp Wafer grinding device, wafer grinding method, wafer grinding program and wafer grinding control device
US9960088B2 (en) * 2011-11-07 2018-05-01 Taiwan Semiconductor Manufacturing Company, Ltd. End point detection in grinding
JP2014053354A (en) * 2012-09-05 2014-03-20 Disco Abrasive Syst Ltd Wafer processing method

Also Published As

Publication number Publication date
CN107639541A (en) 2018-01-30
CN107639541B (en) 2021-05-25
JP2018012179A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6774244B2 (en) Grinding device
US10668594B2 (en) Frame fixing jig
JP6803187B2 (en) Grinding wheel dressing method
JP6336772B2 (en) Grinding and polishing equipment
JP7424755B2 (en) Holding surface forming method
JP5886680B2 (en) Grinding method and grinding apparatus
US20180015587A1 (en) Method and device for simultaneous centreless cylindrical grinding of multiple workpieces
JP7312077B2 (en) Grinding method for plate-shaped work
JP6121284B2 (en) Polishing equipment
JP5943766B2 (en) Grinding equipment
JP5815422B2 (en) Grinding equipment
JP7128070B2 (en) Grinding equipment
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP7393977B2 (en) Fine adjustment screws and processing equipment
JP7413103B2 (en) Wafer grinding method
JP7474082B2 (en) Wafer grinding method
JP7177730B2 (en) Grinding equipment
WO2006061910A1 (en) Initial position setting method of whetstone in vertical duplex surface grinding machine
JP2022162634A (en) Processing device
JP2021079483A (en) Processing device
JP6487790B2 (en) Processing equipment
US20240017368A1 (en) Method of and apparatus for grinding wafer
JP2013104721A (en) Grinding device
JP7295670B2 (en) Grinding equipment
JP2015006709A (en) Grinding method and grinding device of wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250