JP6762190B2 - ファンコントロールユニット - Google Patents

ファンコントロールユニット Download PDF

Info

Publication number
JP6762190B2
JP6762190B2 JP2016195675A JP2016195675A JP6762190B2 JP 6762190 B2 JP6762190 B2 JP 6762190B2 JP 2016195675 A JP2016195675 A JP 2016195675A JP 2016195675 A JP2016195675 A JP 2016195675A JP 6762190 B2 JP6762190 B2 JP 6762190B2
Authority
JP
Japan
Prior art keywords
engine
calculated
air volume
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016195675A
Other languages
English (en)
Other versions
JP2018059420A (ja
Inventor
金子 純一
純一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2016195675A priority Critical patent/JP6762190B2/ja
Priority to DE102017214690.7A priority patent/DE102017214690A1/de
Publication of JP2018059420A publication Critical patent/JP2018059420A/ja
Application granted granted Critical
Publication of JP6762190B2 publication Critical patent/JP6762190B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、冷却ファンの動作を制御するファンコントロールユニットに関する。
車両に搭載されたエンジンの効率を向上させるために、エンジン運転状態に応じてエンジンの冷却水の水温を制御することが行われている。エンジンの冷却水は、例えば、電動ファンによって冷却される。この際、目標温度と実水温との偏差に基づいてフィードバック制御とエンジン発熱モデルによる熱量に基づいたフィードフォワード制御とにより、電動ファンの回転数を制御する方法が提案されている(特許文献1参照)。
特開2014−218938号公報
エンジン温度が急激に上昇した場合、エンジン温度に対して冷却水温の上昇が遅れるので、従来の方法を採用してもエンジンの冷却が遅れる可能性がある。なお、エンジン発熱モデルによるフィードフォワード制御を併用する方法もあるが、商用車のように、エンジン出力の使用範囲が広い場合、適用が困難である。
本発明の目的は、エンジン温度が急激に上昇した場合にエンジンを迅速に冷却することにある。
前記課題を解決するために、本発明は、ラジエター(40)を冷却する冷却ファン(16)の動作を制御するコントロールユニット(14)において、前記ファンコントロールユニット(14)は、外気給気量(102)と、排気再循環率(104)とに基づいて、排気流量(S2)を算出し、前記算出した排気流量(S2)が閾値以上である場合、排気温度(112)に基づいてエンジン温度(S5)を算出し、前記算出したエンジン温度(S5)に基づいてエンジン冷却風量(S7)を算出し、前記算出した排気流量(S2)が閾値未満である場合、燃料噴射量(108)及びエンジン回転数(106)に基づいてエンジン温度(S4)を算出し、前記算出したエンジン温度(S4)に基づいてエンジン冷却風量(S7)を算出し、前記ラジエター(40)とエンジン(10)とを結ぶ冷却水配管(46)のうちエンジン下流側の冷却水配管内の冷却水のエンジン下流冷却水温度(114)とクーラント目標温度(116)との差を基にクーラント冷却比例制御での冷却風量(S9)とクーラント冷却積分制御での冷却風量(S10)を算出し、前記算出したクーラント冷却比例制御での冷却風量(S9)とクーラント冷却積分制御での冷却風量(S10)とからクーラント冷却風量(S11)を算出し、前記エンジン(10)の吸気系に配置されたインタークーラー(52)の上流側のインタークーラー上流温度(120)と前記インタークーラー下流側のインタークーラー下流温度(122)との差を基にインタークーラー冷却風量(S14)を算出し、コンデンサ(32)とエバポレータ(36)とを結ぶ冷媒配管(38)内の冷媒の圧力を基にエバポレータ冷却風量(S12)を算出し、前記算出したエンジン冷却風量(S7)とクーラント冷却風量(S11)とインタークーラー冷却風量(S14)及びエバポレータ冷却風量(S12)を含む風量の最大値(S15)を選択し、当該選択した最大値の冷却風量(S15)を基に前記冷却ファン(16)の動作を制御することを特徴とする。
本発明によれば、エンジン温度が急激に上昇した場合にエンジンを迅速に冷却することができる。
本発明の一実施の形態を示すエンジン制御システムの構成図である。 ファンコントロールユニットの全体処理を説明するためのフローチャートである。 エンジン冷却要求風量とラジエター冷却要求風量およびコンデンサ冷却要求風量の特性図である。 ファン制御を説明するためのフローチャートである。 エンジン冷却風量の算出処理を説明するためのフローチャートである。 排気流速の算出処理を説明するためのフローチャートである。 クーラント冷却風量の算出処理を説明するためのフローチャートである。 エアコンエバポレータ冷却風量の算出処理を説明するためのフローチャートである。 インタークーラー冷却風量の算出処理を説明するためのフローチャートである。
以下、本発明の実施の形態を図面に基づいて説明する。
(実施の形態)
図1は、本発明の一実施の形態を示すエンジン制御システムの構成図である。図1において、エンジン制御システム1は、エンジン10を制御するためのエンジンコントロールユニット12と、エンジンコントロールユニット12と情報の送受信を行うと共に、各種センサの検出出力を基に、冷却ファン16に接続されたファンモータ18の回転数を制御するファンコントロールユニット14を備えている。
エンジンコントロールユニット12とファンコントロールユニット14は、例えば、CPU(Central Processing Unit)、メモリ、入出力インタフェース等の情報処理資源を備えたコンピュータ装置で構成される。この際、ファンコントロールユニット14には、各種センサとして、例えば、圧力センサ20、温度センサ22、24、26、28、30が接続されている。圧力センサ20は、コンデンサ32と、エンジン10によって駆動されるポンプ34と、エバポレータ36とを結ぶ配管(冷媒配管)38に配置され、コンデンサ32に入力される冷媒の圧力を検出する冷媒圧力センサとして構成される。
温度センサ22、24は、エンジン10によって駆動されるポンプ42と、サーモスタット44と、ラジエター40とを結ぶ冷却水配管46に配置される。温度センサ22は、エンジン10下流側の冷却水の温度を検出するエンジン下流冷却水温度センサとして構成される。温度センサ24は、エンジン10上流側の冷却水の温度を検出するエンジン上流冷却水温度センサ又はクーラント温度センサとして構成される。温度センサ26は、エンジン10と、吸気を圧縮するターボチャージャーのタービン48とを結ぶ排気系の排気管50に配置され、排気管50内の排気ガスの温度を検出する排気温度センサとして構成される。
温度センサ28は、吸気を冷却するインタークーラー52とエンジン10とを結ぶ吸気系の吸気管54に配置され、吸気管54内の吸気の温度を検出するインタークーラー下流温度センサとして構成される。温度センサ30は、ターボチャージャーのコンプレッサ56とインタークーラー52とを結ぶ吸気系の吸気管58に配置され、吸気管58内の吸気の温度を検出するインタークーラー上流温度センサとして構成される。なお、排気管50と吸気管54はEGR(Exhaust Gas Recirculation)バルブ60を介して接続される。また、インタークーラー52は、配管62を介してラジエター64に接続され、ラジエター64は、配管66を介してインタークーラー52に接続される。配管66の途中にはポンプ68が配置されている。
図2は、ファンコントロールユニットの全体処理を説明するためのフローチャートである。図2において、ファンコントロールユニット14は、エンジンコントロールユニット12から車速100を入力した場合、車速100から前面風量を算出する(S1)。また、ファンコントロールユニット14は、エンジンコントロールユニット12から外気吸気量102とEGR(排気再循環)率104を入力した場合、外気吸気量102とEGR率104を基に排気流量(又は排気流速)を算出する(S2)。そしてファンコントロールユニット14は、算出した排気流量が閾値よりも大きいか否かを判定し、算出した排気流量が閾値以上の場合、排気温度センサから算出したエンジン温度の方が精度が高いので、オンを選択し、算出した排気流量が閾値未満である場合、オフを選択するための処理を行う(S3)。
ファンコントロールユニット14は、エンジンコントロールユニット12からエンジン回転数106と燃料噴射量108を入力し、温度センサ(クーラント温度センサ)24からエンジン上流冷却水温110を入力した場合、燃焼の発熱とクーラントでの冷却からエンジン温度を算出し(S4)、温度センサ26から排気温度112を入力した場合、排気温度112からエンジン温度を算出し(S5)、排気流量が閾値以上の場合、ステップS5の算出結果を選択し、排気流量が閾値未満である場合、ステップS4の算出結果を選択し(S6)、エンジン温度からエンジン10を冷却するための風量(エンジン冷却風量)を算出する(S7)。
即ち、排気流量が閾値以上の場合、エンジン温度(エンジンシリンダ温度)が温度センサ26の検出温度に略等しいと見做すことができるので、温度センサ26の検出による排気温度112からエンジン温度を算出し(S)、算出したエンジン温度からエンジン冷却風量を算出し、排気流量が閾値未満である場合、エンジン温度が温度センサ26の検出温度よりも高いと見做すことができる。よってエンジン回転数106と、燃料噴射量108と、温度センサ(クーラント温度センサ)24の検出によるエンジン上流冷却水温110とからエンジン温度を算出し、算出したエンジン温度からエンジン冷却風量を算出している(S)。
また、ファンコントロールユニット14は、温度センサ(クーラント温度センサ)22からエンジン下流冷却水温114を入力した場合、エンジン下流冷却水温114と目標冷却水温116との差を算出し(S8)、算出した差から比例制御で冷却風量を算出(S9)すると共に、積分制御で冷却風量を算出し(S10)、ステップS9の算出値とステップS10の算出値の和をクーラント冷却風量として算出する(S11)。
また、ファンコントロールユニット14は、圧力センサ(ACクーラント圧力センサ)20からAC冷媒圧力118を入力した場合、AC冷媒圧力118から冷却風量(エアコンエバポレータ冷却風量)を算出する(S12)。
さらに、ファンコントロールユニット14は、温度センサ30からCAC(Compress Air Cooler:以下、インタークーラーと称する。)上流温度120を入力し、温度センサ28からインタークーラー下流温度122を入力した場合、インタークーラー上流温度120とインタークーラー下流温度122との差を算出し(S13)、算出した差の温度(インタークーラー温度差)から冷却風量(インタークーラー冷却風量)を算出する(S14)。
次に、ファンコントロールユニット14は、ステップS7の算出値と、ステップS11の算出値と、ステップS12の算出値と、ステップS14の算出値を基に各算出値の和の最大値を算出し(S15)、算出した最大値と、ステップS1の算出値との差を算出し(S16)、この算出により得られた風量を、ファン駆動変換するために、例えば、モータ回転数に変換し(S17)、変換されたモータ回転数を基にファンモータ18の回転数を制御する(S18)。
この際、車速100は、エンジンコントロールユニット12に属する車速センサから得られ、外気吸気量102は、エンジンコントロールユニット12に属する外気吸気センサから得られ、エンジン回転数106は、エンジンコントロールユニット12に属するエンジン回転数センサから得られる。また、EGR率104と燃料噴射量108は、エンジンコントロールユニット12に属するCPUによって算出される。
この場合、ファンコントロールユニット14は、EGRバルブ60における還流量の割合を示すEGR率を算出するEGR率算出手段(排気再循環率算出手段)と、エンジン10の各気筒における燃料噴射量を算出する燃料噴射量算出手段を構成することになる。また、燃料噴射量108から燃焼の発熱(エンジン発熱量)を算出するに際しては、例えば、燃料噴射量108をトルクに変換し、変換されたトルクとエンジン回転数からエンジン出力を計算し、計算されたエンジン出力をエンジン発熱量に変換することができる。
また、冷却水流量を算出するに際しては、エンジン回転数を流量に変換し、変換された流量を冷却水流量とすることができる。また、ステップS16の算出結果を、ファン要求風量とし、ステップS17で、ファン要求風量を回転数に変換し、変換された回転数をファン回転数とし、ステップS18でファン回転数を駆動信号に変換し、変換された駆動信号をファン駆動信号としてファンモータ18に出力し、ファン駆動信号に従ってファンモータ18の回転数を制御することができる。
図3は、エンジン冷却要求風量とラジエター冷却要求風量およびコンデンサ冷却要求風量の特性図である。図3は、縦軸がファン回転数(冷却ファン16の回転数であって、ファンモータ18の回転数に相当する)である。また横軸はA/C冷媒圧力と、エンジン出口冷却水温及びエンジン出力である特性図である。
図3において、エンジン冷却要求風量200と、ラジエター冷却要求風量210およびコンデンサ冷却要求風量220は、A/C冷媒圧力118(圧力センサ20の検出圧力)と、エンジン出口冷却水温119(温度センサ22の検出温度)及びエンジン出力(エンジンコントロールユニット12の算出値)の増加に応じて増加する特性を示す。この際、図2のステップS15では、エンジン冷却要求風量200と、ラジエター冷却要求風量210と、コンデンサ冷却要求風量220と、ステップS14で算出した、インタークーラー冷却風量に対して、それぞれの最大値が選択される。
図4は、ファン制御を説明するためのフローチャートである。図4において、ファンコントロールユニット14は、冷却ファン16を制御するに際して、エンジン冷却風量(FAN_ENG)を算出し(S21)、クーラント冷却風量(FAN_Clnt)を算出する(S22)。次いでファンコントロールユニット14は、エアコンエバポレータ冷却風量(FAN_AC)を算出し(S23)、インタークーラー冷却風量(FAN_CAC)を算出する(S24)。
次いでファンコントロールユニット14は、各算出結果を基に各風量の中から要求風量の最大値を選択(FAN_REQ[kg/h]=MAX(FAN_ENG、FAN_Clnt、FAN_AC、FAN_CAC)し(S25)、車速から前面風量を算出(FAN_V[kg/h]=車速[km/h]×係数k01)する(S26)。次に、ファンコントロールユニット14は、ステップS25で選択した風量(最大値)と、ステップS26で算出した前面風量からファン(FAN)駆動デューティ(psFAN)変換処理を実行(psFAN[%]=FAN_REQ-FAN_V)×係数k02)する(S27)。次に、ファンコントロールユニット14は、ファンモータ18を、算出されたファン駆動デューティ=psFANで駆動し、ファンモータ18の回転数を制御する。
図5は、エンジン冷却風量の算出処理を説明するためのフローチャートである。この処理は、図4のステップS21の具体的内容である。図5において、ファンコントロールユニット14は、排気流速(vExh)を算出し(S31)、算出した排気流速(vExh)が閾値よりも大きいか否かを判定し(S32)、算出した排気流速(vExh)が閾値よりも大きい場合(Yes)、排気温度(tExh)からエンジン温度(tEng)を算出(tEng[degC]=係数k15×tExh[degC])する(S33)。即ち、排気流速が閾値よりも大きい場合、エンジンから排気温度への熱伝道が高いので、排気温度からエンジン温度を推定できる。
ステップS32で算出した排気流速(vExh)が閾値よりも小さいと判定した場合(No)、ファンコントロールユニット14は、燃料噴射量108(minj)からエンジントルク(trqEng)を算出(trqEng[Nm]=係数k11×minj[mg/str])し(S34)、算出したエンジントルク(trqEng[Nm])とエンジン回転数106([rpm]/60)からエンジン出力(wEng)を算出(wEng[Watt]=2π×trqEng[Nm]×エンジン回転数[rpm]/60)する(S35)。
次いでファンコントロールユニット14は、エンジン上流冷却水温110(tClntEngUs)からエンジン冷却温度(tClntEng)を算出(tClntEng[degC]=係数k12×tClntEngUs[degC])し(S36)、算出したエンジン出力(wEng)と算出したエンジン冷却温度(tClntEng)からエンジン温度(tEng)を算出(tEng[degC]=係数k13×wEng[Watt]-tClntEng[degC])する(S37)。
次に、ファンコントロールユニット14は、ステップS33又はステップS37で算出したエンジン温度(tEng)からエンジン冷却風量(FAN_ENG)を算出(FAN_ENG[kg/h]=係数k14×tEng[degC])し(S38)、その後、ステップS31からステップS38の処理を繰り返す。
図6は、排気流速の算出処理を説明するためのフローチャートである。この処理は、図5のステップS31の具体的内容である。図6において、ファンコントロールユニット14は、吸気系に配置されたセンサなどから外気吸気量102(吸気質量流量)の読込み(mAir=吸気質量流量[kg/s])を行い(S41)、次に、エンジンコントロールユニット12に搭載されたエンジン制御装置より、目標EGR率104の読込み(rEGR=目標EGR率[%]=EGR質量流量÷エンジン吸入質量流量)を行う(S42)。
次いでファンコントロールユニット14は、読込んだ外気吸気量102(吸気質量流量)とEGR率から求めたEGRの質量流量からエンジン吸入質量流量([kg/s])を算出(mEng=(100%-rEGR)×mAir+rEGR×mAir)する(S43)。次に、ファンコントロールユニット14は、エンジン制御装置より、燃料噴射量108の読込み(minj=燃料噴射量[kg/s])を行い(S44)、質量保存の法則を基に、エンジン吸入質量と燃料噴射量からエンジン排気質量流量を算出(mExh[kg/s]=mEng+minj)する(S45)。
そしてファンコントロールユニット14は、排気温度112(tExh)からエンジン排気密度を算出(pExh[kg/m3]=マップ111(tExh[degC]))する(S46)。この際、気体では、温度と密度は相関関係があるので、実験等で求めたマップ111で密度を求める。
次にファンコントロールユニット14は、算出したエンジン排気質量流量(mExh)と算出したエンジン排気密度(pExh)からエンジン排気体積流量(qExh)を算出(qExh[m3/s]=mExh/pExh)し(S47)、予め設定された排気管断面積の読込み(sExh[m2]=排気管断面積)を行い(S48)、エンジン排気体積流量(qExh)を排気管断面積(sExh)で除算して排気速度(排気流速)を算出(vExh[m/s]=qExh/sExh)する(S49)。その後、ステップS41からステップS49の処理を繰り返す。
図7は、クーラント冷却風量の算出処理を説明するためのフローチャートである。この処理は、図4のステップS22の具体的内容である。図7において、ファンコントロールユニット14は、センサからエンジン下流冷却水温114の読込み(tClntEngDs=エンジン下流冷却水温[degC])を行い(S51)、クーラント目標温度の設定(tClntTrgt=クーラント目標温度[degC])を行う(S52)。
そしてファンコントロールユニット14は、読込んだエンジン下流冷却水温114と設定したクーラント目標温度と差の温度として、クーラント温度偏差(tClntDiff)を算出(tClntDiff[degC]=tClntEngDs-tClntTrgt)し(S53)、算出したクーラント温度偏差(tClntDiff)を基にクーラント冷却比例制御を算出(FAN_Clnt_P[kg/h]=比例係数k21×tClntDiff[degC])し(S54)、クーラント冷却積分制御を算出(FAN_Clnt_I[kg/h]=FAN_Clnt_I+積分係数k21×tClntDiff[degC])する(S55)。
そしてファンコントロールユニット14は、ステップS54の算出結果とステップS55の算出結果からクーラント冷却風量を算出(FAN_Clnt[kg/h]=FAN_Clnt_P+FAN_Clnt_I)し(S56)、その後、ステップS51からステップS56の処理を繰り返す。
図8は、エアコンエバポレータ冷却風量の算出処理を説明するためのフローチャートである。この処理は、図4のステップS23の具体的内容である。図8において、ファンコントロールユニット14は、冷媒圧力118の読込み(pAC=エアコン冷媒圧力[hPA])を行い(S61)、読込んだ冷媒圧力(pAC)から冷媒温度(tAC)を算出(tAC=マップ31(pAC[hPA]))し(S62)、算出した冷媒温度(tAC)からエバポレータ冷却風量を算出(FAN_AC[kg/h]=係数k32×tAC)し(S63)、その後、ステップS61からステップS63の処理を繰り返す。
図9は、インタークーラー冷却風量の算出処理を説明するためのフローチャートである。この処理は、図4のステップS24の具体的内容である。図9において、ファンコントロールユニット14は、温度センサ30からインタークーラー(CAC)上流温度120の読込み(tCACUs=CAC上流温度[degC])を行い(S71)、温度センサ28からインタークーラー(CAC)下流温度122の読込み(tCACDs=CAC下流温度[degC])を行い(S72)、各読込んだ上流温度と下流温度の差からインタークーラー温度差(tCACDiff)を算出(tCACDiff[degC]=tCACUs-tCACDs)し(S73)、算出したインタークーラー(CAC)温度差からインタークーラー冷却風量を算出(FAN_CAC[kg/h]=係数k41×tCACDiff)し(S74)、その後、ステップS71からステップS74の処理を繰り返す。
本実施の形態によれば、エンジン温度が急激に上昇した場合に、エンジン温度に応じた風量で冷却水が冷却されるので、エンジンを迅速に冷却することができ、結果としてエンジンのオーバーヒートを防止することができる。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、排気流速が閾値未満である場合、図5におけるステップS36の処理を省き、燃焼噴射量とエンジン回転数からエンジン温度を算出し、算出したエンジン温度からエンジン冷却風量を算出し、少なくとも算出したエンジン冷却風量を基にファンモータ18の回転数を制御することもできる。但し、ステップS36の処理を実行することで、より正確なエンジン温度を算出することができる。また、実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
10 エンジン、12 エンジンコントロールユニット、14 ファンコントロールユニット、16 冷却ファン、18 ファンモータ、20 圧力センサ、22、24、26、28、30 温度センサ、32 コンデンサ、36 エバポレータ、40 ラジエター、52 インタークーラー、60 EGRバルブ

Claims (2)

  1. ラジエター(40)を冷却する冷却ファン(16)の動作を制御するコントロールユニット(14)において、
    前記ファンコントロールユニット(14)は、
    外気給気量(102)と、排気再循環率(104)とに基づいて、排気流量(S2)を算出し、
    前記算出した排気流量(S2)が閾値以上である場合、排気温度(112)に基づいてエンジン温度(S5)を算出し、前記算出したエンジン温度(S5)に基づいてエンジン冷却風量(S7)を算出し、
    前記算出した排気流量(S2)が閾値未満である場合、燃料噴射量(108)及びエンジン回転数(106)に基づいてエンジン温度(S4)を算出し、前記算出したエンジン温度(S4)に基づいてエンジン冷却風量(S7)を算出し、
    前記ラジエター(40)とエンジン(10)とを結ぶ冷却水配管(46)のうちエンジン下流側の冷却水配管内の冷却水のエンジン下流冷却水温度(114)とクーラント目標温度(116)との差を基にクーラント冷却比例制御での冷却風量(S9)とクーラント冷却積分制御での冷却風量(S10)を算出し、
    前記算出したクーラント冷却比例制御での冷却風量(S9)とクーラント冷却積分制御での冷却風量(S10)とからクーラント冷却風量(S11)を算出し、
    前記エンジン(10)の吸気系に配置されたインタークーラー(52)の上流側のインタークーラー上流温度(120)と前記インタークーラー下流側のインタークーラー下流温度(122)との差を基にインタークーラー冷却風量(S14)を算出し、
    コンデンサ(32)とエバポレータ(36)とを結ぶ冷媒配管(38)内の冷媒の圧力を基にエバポレータ冷却風量(S12)を算出し、
    前記算出したエンジン冷却風量(S7)とクーラント冷却風量(S11)とインタークーラー冷却風量(S14)及びエバポレータ冷却風量(S12)を含む風量の最大値(S15)を選択し、当該選択した最大値の冷却風量(S15)を基に前記冷却ファン(16)の動作を制御することを特徴とするファンコントロールユニット。
  2. 前記ファンコントロールユニット(14)は、
    前記算出した排気流量(S2)が閾値未満である場合、前記冷却水配管(46)のうちエンジン上流側の冷却水配管内のエンジン上流冷却水の温度(110)を基に前記算出したエンジン温度(S4)を補正することを特徴とする請求項1に記載のファンコントロールユニット。
JP2016195675A 2016-10-03 2016-10-03 ファンコントロールユニット Active JP6762190B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016195675A JP6762190B2 (ja) 2016-10-03 2016-10-03 ファンコントロールユニット
DE102017214690.7A DE102017214690A1 (de) 2016-10-03 2017-08-23 Lüftersteuereinheit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016195675A JP6762190B2 (ja) 2016-10-03 2016-10-03 ファンコントロールユニット

Publications (2)

Publication Number Publication Date
JP2018059420A JP2018059420A (ja) 2018-04-12
JP6762190B2 true JP6762190B2 (ja) 2020-09-30

Family

ID=61623387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016195675A Active JP6762190B2 (ja) 2016-10-03 2016-10-03 ファンコントロールユニット

Country Status (2)

Country Link
JP (1) JP6762190B2 (ja)
DE (1) DE102017214690A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115587A (ja) * 2017-01-17 2018-07-26 いすゞ自動車株式会社 ファン制御装置及びファン制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108960A (ja) * 1996-06-27 1998-01-13 Mitsubishi Motors Corp 車両用冷却ファン装置
WO2006112091A1 (ja) * 2005-04-07 2006-10-26 Hitachi Construction Machinery Co., Ltd. 建設機械の冷却装置
JP2014218938A (ja) 2013-05-08 2014-11-20 株式会社デンソー 冷却制御装置

Also Published As

Publication number Publication date
DE102017214690A1 (de) 2018-04-05
JP2018059420A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
JP4821247B2 (ja) 内燃機関の冷却水制御装置
JP2018062857A (ja) 過給機付き内燃機関の制御装置及び制御方法
JP6287961B2 (ja) 内燃機関の冷却装置
JP5271961B2 (ja) 内燃機関の過給装置
KR101723313B1 (ko) 내연 기관의 제어 장치
JP6265197B2 (ja) 内燃機関の制御装置
US20160326943A1 (en) Cooling control apparatus for internal combustion engine and internal combustion engine
JP6762190B2 (ja) ファンコントロールユニット
KR20160050924A (ko) 수랭식 인터쿨러를 구비한 차량의 워터 펌프 제어 시스템 및 방법
JP2012052504A (ja) 内燃機関の冷却装置
KR101807045B1 (ko) 수냉식 인터쿨러의 냉각수 제어시스템
JP4853471B2 (ja) 過給機付き内燃機関の制御装置
JP5168379B2 (ja) 内燃機関の冷却水制御装置
CN105134391A (zh) 用于基于模型的升压控制的涡轮膨胀比估计
JP5579679B2 (ja) エンジンの制御装置
JP6303906B2 (ja) 過給エンジンの制御装置
JP2009168007A (ja) 過給機付き内燃機関の制御装置
JP6390511B2 (ja) ウォーターポンプの制御装置
WO2011152827A1 (en) Engine with coolant throttle and method for controlling the same
JP4959753B2 (ja) 電動過給機の制御装置
JP6225887B2 (ja) 内燃機関の制御装置
JP2016109081A (ja) インタークーラの温度制御装置
JP6409757B2 (ja) 内燃機関の制御装置
JP2007321578A (ja) 過給機駆動式発電機の発電制御装置
JP2017120068A (ja) 廃熱回収装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R151 Written notification of patent or utility model registration

Ref document number: 6762190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250