JP6738548B1 - Fe−Ni基超耐熱合金のリング圧延材の製造方法 - Google Patents

Fe−Ni基超耐熱合金のリング圧延材の製造方法 Download PDF

Info

Publication number
JP6738548B1
JP6738548B1 JP2020504259A JP2020504259A JP6738548B1 JP 6738548 B1 JP6738548 B1 JP 6738548B1 JP 2020504259 A JP2020504259 A JP 2020504259A JP 2020504259 A JP2020504259 A JP 2020504259A JP 6738548 B1 JP6738548 B1 JP 6738548B1
Authority
JP
Japan
Prior art keywords
ring
rolling
rolled
ring rolling
rolled material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020504259A
Other languages
English (en)
Other versions
JPWO2020059798A1 (ja
Inventor
宙也 青木
宙也 青木
福井 毅
毅 福井
大吾 大豊
大吾 大豊
藤田 悦夫
悦夫 藤田
尚幸 岩佐
尚幸 岩佐
拓 広澤
拓 広澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Application granted granted Critical
Publication of JP6738548B1 publication Critical patent/JP6738548B1/ja
Publication of JPWO2020059798A1 publication Critical patent/JPWO2020059798A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高い真円度を有し、且つAGGを抑制し、粒成長を抑制することが可能なFe−Ni基超耐熱合金のリング圧延材の製造方法を提供する。718合金の組成を有するFe−Ni基超耐熱合金のリング圧延材の製造方法において、前記組成を有するリング状のリング圧延素材を仕上げのリング圧延工程として、900〜980℃の温度範囲で加熱してリング圧延する仕上げリング圧延工程と、拡管コーンと拡管ダイスから構成されるリングエキスパンダを用いて、前記仕上げリング圧延工程で圧延されたリング圧延材を拡径しながら楕円を矯正する真円矯正工程とを備え、前記仕上げリング圧延工程で圧延されたリング圧延材に再加熱を行わないか960℃以下の加熱を行って、前記真円矯正が行われるFe−Ni基超耐熱合金のリング圧延材の製造方法。

Description

本発明は、Fe−Ni基超耐熱合金のリング圧延材の製造方法に関する。
718合金は、優れた機械的特性を具備しているため、従来から航空機エンジンのタービン部品に最も広く使用されている超耐熱合金である。この航空機エンジンに使用される718合金からなる回転部品には、高い疲労強度が要求されるため、その部品を構成する718合金には微細結晶粒組織が求められる。例えば、リング状の回転部品の場合、通常、インゴットからビレットを作製した後、デルタ相のピンニング効果を利用して、熱間での鍛造とリング圧延と型打ち鍛造とを経て微細結晶粒組織が造り込まれる。一方、製造コストの観点から、型打ち形状は製品に対する余肉を極力薄くした形状にすることが望ましく、そのために、型打ち鍛造に供するリング状の型打ち鍛造用素材には、特に高い真円度が求められる。
しかし、リング状の型打ち鍛造用素材を作製する際、高い真円度を得るために真円矯正を行うと、その後の型打ち鍛造温度への加熱中にデルタ相のピンニングを乗り越えて急速に結晶粒が粗大化する、いわゆる異常結晶粒成長(abnormal-grain-growth:以下AGGと記す場合がある)を引き起こしてしまうことがある。AGGの発生により、結晶粒径が10倍以上に粗大化する場合もあり、型打ち鍛造工程で結晶粒を微細化しきれない結果、製品に粗粒が残存し疲労特性が大きく損なわれる問題が生じる。AGGを回避する方法として、例えば、特許文献1では、熱間加工の条件として、以下の相当歪と相当歪速度の関係式(1)または(2)を満足する条件が有効としている。
[相当歪]≧0.139×[相当歪速度(/sec)]−0.30…(1)
[相当歪]≦0.017×[相当歪速度(/sec)]−0.34…(2)
特許第5994951号公報
特許文献1に記載の発明は、単一の熱間加工において、式(1)または(2)に示す条件でAGGを防止することができる点で優れる。しかし、式(1)を満足する相当歪を真円矯正の工程だけでリング状の型打ち鍛造用素材の全域に付与することは、加圧能力の点から現実的ではない。一方、式(2)を満足する相当歪をリング状の型打ち鍛造用素材に付与することは、リング圧延終了時のリング圧延材に残存する歪が一様ではないため、制御が難しい。このように、リング圧延の工程と真円矯正の工程との2つの工程で、それぞれAGGを防止することを独立に考えても、型打ち鍛造温度への加熱中にAGGが発生する問題を解決することは困難であった。
本発明の目的は、高い真円度を有し、且つAGGを抑制し、粒成長を抑制することが可能なFe−Ni基超耐熱合金リング圧延材の製造方法を提供することである。
本発明は上述した課題に鑑みてなされたものである。
即ち本発明は、リング圧延を用いた、質量%で、C:0.08%以下、Ni:50.0〜55.0%、Cr:17.0〜21.0%、Mo:2.8〜3.3%、Al:0.20〜0.80%、Ti:0.65〜1.15%、Nb+Ta:4.75〜5.50%、B:0.006%以下、残部がFe及び不可避的な不純物からなる組成を有するFe−Ni基超耐熱合金のリング圧延材の製造方法において、
前記リング圧延工程の仕上げとして、900〜980℃の温度範囲で加熱し、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する仕上げリング圧延工程と、
拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて、前記仕上げリング圧延工程で圧延されたリング圧延材を拡径しながら真円度を向上させる真円矯正工程と、を備え、
前記仕上げリング圧延工程で圧延されたリング圧延材に再加熱を行わないで前記真円矯正工程を行う、または前記仕上げリング圧延工程で圧延されたリング圧延材に対して、600〜760℃の温度範囲を除く960℃以下の温度範囲で前記真円矯正工程を行うことを特徴とするFe−Ni基超耐熱合金のリング圧延材の製造方法である。
また、本発明は、前記仕上げリング圧延工程の前工程として、前記リング圧延素材を980℃を超えて1010℃以下の温度に加熱したリング圧延素材を用いて、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する中間リング圧延工程を更に含むことが好ましい。
本発明によれば、高い真円度を有し、且つAGGを抑制し、粒成長を抑制したFe−Ni基超耐熱合金のリング圧延材を得ることができる。さらに、本発明においては、仕上げリング圧延工程終了後に、そのリング圧延材の保有熱をそのまま利用して、再加熱を行うことなく真円矯正工程を行うことが可能なため、経済的にも有利である。例えば、これを用いてなる航空機エンジンのタービン部品等の疲労特性の信頼性を向上させることができる。
本発明のリング圧延材の製造方法を適用したリング圧延材の金属組織写真である。 異常結晶粒成長が発生した比較例のリング圧延材の金属組織写真である。
本発明の最大の特徴は、リング圧延工程とリング圧延材の真円矯正工程との条件を適正化することにより、AGGを防止することにある。AGGは、歪が残留していない初期状態に低歪を加えた後の熱処理中に発生する。本発明のAGG発生を抑制する技術思想は次の通りである。
リング圧延材に歪を十分に蓄積させた状態で真円矯正(低歪付与)を行えば、低歪の影響は無害化できることである。そして、本発明で得られたリング圧延材を980〜1010℃の熱間鍛造前の加熱により、金属組織を最適化するものである。
なお、本発明で規定する合金組成は、JIS−G4901に示されるNCF718合金(Fe−Ni基超耐熱合金)として知られているものであるため、組成に関する説明は割愛する。以後は単に「718合金」と記す。なお、718合金の組成は、本発明で規定した各元素以外にSi0.35%以下、Mn0.35%以下、P0.015%以下、S0.015%以下、Cu0.30%以下の範囲で含有することができる。
<リング圧延工程>
先ず、本発明で特徴的な「仕上げリング圧延工程」から説明する。なお、「仕上げリング圧延工程」とは最終のリング圧延工程である。
718合金の組成を有する仕上げリング圧延工程用のリング圧延素材を用意し、そのリング圧延素材を900〜980℃の温度範囲で加熱する。そして、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、加熱されたリング圧延素材を拡径するとともにリング圧延素材の軸方向に押圧加工する仕上げリング圧延を行う。
718合金のAGGの発生は、微細結晶粒組織を有する718合金に低歪が導入されると、その後の加熱処理中にピンニングを乗り越えて結晶粒が著しく成長する現象として確認されている。前記したとおり、リング圧延材の真円矯正の工程だけで、AGG発生を回避するための十分な歪を導入することは、加圧能力の点からも現実的には困難である。しかし、仕上げのリング圧延でリング圧延材に歪を十分蓄積させた状態で真円矯正すればAGG発生を防ぐことができる。そのため、仕上げリング圧延工程においては、リング圧延素材の加熱温度を900〜980℃の範囲とし、それをリング圧延することにより、リング圧延中の再結晶を抑制し、リング圧延終了時のリング圧延材を未再結晶または部分再結晶組織として、リング圧延材に歪を残存させる。加熱温度が980℃を超えるとリング圧延中の再結晶が促進され、リング圧延材に歪を十分に蓄積させることはできない。一方、加熱温度が900℃未満では再結晶はほぼ完全に抑制されるものの、圧延荷重が著しく高くなり、リング圧延が困難となる。したがって、リング圧延素材の加熱温度は900〜980℃とする。好ましい加熱温度の下限は910℃であり、更に好ましくは920℃である。また、好ましい加熱温度の上限は970℃であり、更に好ましくは965℃である。
なお、リング圧延工程は再加熱して繰り返し行っても良い。その場合、前述の仕上げリング圧延工程の前工程として「中間リング圧延工程」を適用しても良い。
中間リング圧延工程の加熱温度を980℃を超えて1010℃以下の範囲とするのは、十分な再結晶組織を得るためである。980℃以下の温度範囲では十分な再結晶を得にくくなり、1010℃を超えると結晶粒が粗大化しやすくなる。この中間のリング圧延工程の好ましい加熱温度の下限は985℃であり、前述した仕上げリング圧延工程よりも10℃以上高めの温度で行うのが好ましい。この中間リング圧延工程の加熱温度で加熱されたリング圧延素材に中間のリング圧延を施し再結晶促進による微細結晶粒組織の造り込みを行い、最終の(仕上げの)リング圧延時の加熱温度を900〜980℃の温度範囲とし、最終のリング圧延を行うこととしても良い。つまり、加熱とリング圧延を複数回行う場合は、最終の(仕上げの)リング圧延を行う際のリング圧延素材の加熱を900〜980℃の温度範囲で行えば良い。
<真円矯正工程>
拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて、上述したリング圧延工程で圧延されたリング圧延材の内径側に拡管ダイス押し当てながら拡径して楕円を矯正する真円矯正を行う。このとき、リング圧延工程で圧延されたリング圧延材に、再加熱を行わないで真円矯正を行うか、960℃以下の温度範囲で真円矯正を行う。
上述したリング圧延工程でリング圧延材に歪を残存させているので、真円矯正工程での低歪導入を無害化することができる。したがって、真円矯正は、リング圧延が終了した高温状態のリング圧延材に対して直ちに行っても良いし、リング圧延材が室温に冷却されてから行っても良い。つまり、リング圧延工程で圧延されたリング圧延材に、再加熱を行わないで真円矯正を行うことできる。また、リング圧延工程で圧延されたリング圧延材に、960℃以下の加熱を行って真円矯正を行うこともできる。再加熱して真円矯正を行う場合、再結晶発現を抑制すべきという点で加熱温度の選定には注意を要する。再結晶を発生させるとリング圧延で蓄積させた歪を低減させてしまうため、その後の真円矯正で導入される低歪に起因するAGG発生のリスクが高くなる。上記理由から、再加熱する場合は、加熱温度は時効温度域である600〜760℃を避けた960℃以下とする。好ましくは950℃以下、より好ましくは940℃以下である。また、真円矯正工程については、例えば、常温付近であっても構わないが、過度に低い温度での真円矯正は塑性変形に必要な圧延荷重が高くなりすぎてしまう。そのため、できるだけ高めの温度で真円矯正を行うのが良く、好ましくは上述したリング圧延工程終了に続いて真円矯正を行うのが良い。圧延荷重を過度に高めないようにするには、760℃を超える温度範囲が好ましく、より好ましくは800℃以上で真円矯正を行うのが良い。
この真円矯正工程により、リング圧延材の真円度を3mm以下とすることができる。なお、真円度は(DMAX−DMIN)/2[mm](ここでDMAXは真円矯正後のリング外径の最大値、DMINは真円矯正後のリング外径の最小値)で求めたものである。
上述した本発明のリング圧延材を熱間鍛造用素材として用いて、980〜1010℃の鍛造前加熱を適用すると、AGGの発生と粒成長とを抑制した金属組織とすることができる。鍛造前の加熱温度の好ましい下限温度は985℃であり、更に好ましくは990℃である。好ましい加熱温度の上限は1005℃であり、さらに好ましくは1000℃である。
また、高い真円度を有しているため、型打鍛造用の熱間鍛造用素材として好適である。
(実施例1)
表1に示すFe−Ni基超耐熱合金(718合金)に相当する化学組成のビレットを980〜1010℃の温度範囲で熱間鍛造を行った後、ピアシングで作製したリング状のリング圧延素材を得た。このリング圧延素材を加熱温度が980℃を超えて1000℃以下の範囲で加熱し、中間のリング圧延を行った。次いで加熱温度が920〜980℃の範囲で加熱した後、仕上げのリング圧延を行い、外径が約1300mm、内径が約1100mm、高さが約200mmのリング圧延材を得た。得られたリング圧延材はやや楕円となっていた。真円度はおおよそ3mmを超えていた。
仕上げのリング圧延の終了後、再加熱を行うことなく、リング圧延材を直ちに拡管コーンと拡管ダイスとから構成されるリングエキスパンダーに搬送し、リングエキスパンダーを用いて拡径量が5〜10mmの範囲となるように真円矯正を行った。この本発明工程を下記の表2中では「ダイレクト」として記す。なお、「ダイレクト」として示すものは、おおよそ800〜850℃温度での真円矯正となっていた。前述のリング圧延材の真円度は、真円矯正後で0.5mmであった。真円矯正後、1000℃で3時間の型打ち鍛造用の加熱を行い、本発明例(No.1〜4)を作製した。比較のため、仕上げのリング圧延を行うリング圧延素材の加熱温度を変え、真円矯正を行うリング圧延材を加熱する温度を変えた比較例(No.11〜13)を作製した。それらの加熱温度を表2に示す。
なお、上記のリング圧延材を製造するときに用いたリング圧延機は、主ロールとマンドレルロールとからなる一対の圧延ロールにより、リング圧延素材の内径及び外径の直径を拡張し、一対のアキシャルロールにより、リング圧延素材の高さ(厚み)方向を押圧する機能を有するものである。
Figure 0006738548
型打ち鍛造用の加熱を行った後、本発明例と比較例とのリング圧延材のリングラジアル方向に対する横断面全域の金属組織を光学顕微鏡で観察した。ASTM−E112で規定される方法で結晶粒度番号を測定した結果を表2に示す。
表2に示すように、本発明のNo.1〜4では型打ち鍛造を想定した1000℃で加熱後の結晶粒度番号は8以上の微細結晶粒組織が得られている。本発明のNo.4の結晶粒度番号は8.5〜9の大きさのものが主体だったのに対して、No.1〜3の結晶粒度番号は9〜9.5の大きさのものが主体となっていた。このような均一な微細結晶粒素材を用いることで、最終製品を成型する型鍛造後も良好な金属組織が得られる。一方、比較例のNo.11〜13では結晶粒度番号で6以下の粗大結晶粒が多数確認された。仕上げ圧延温度が高いために、圧延中に再結晶が起こって歪が解放されてしまい、その後の真円矯正で導入された低歪によってAGGが起きたと考えられる。No.14は、仕上げ圧延温度は本発明の温度範囲で実施しているが、真円矯正の加熱温度が965℃と高かったために再結晶が起こって歪量が低減し、その後の矯正で導入された歪によってAGGが発生したと考えられる。なお、図1に本発明例のNo.1の金属組織写真を、図2に比較例のNo.11の金属組織写真を示す。
Figure 0006738548
以上説明する通り、本発明の製造方法を適用すると、高い真円度を有し、且つAGGを抑制し、ASTM結晶粒度番号で8番以上の微細結晶粒組織を備えたFe−Ni基超耐熱合金リング圧延材を得られることがわかる。このことから、航空機エンジンのタービン部品等の疲労特性の信頼性を向上させることができる。

Claims (2)

  1. リング圧延を用いた、質量%で、C:0.08%以下、Ni:50.0〜55.0%、Cr:17.0〜21.0%、Mo:2.8〜3.3%、Al:0.20〜0.80%、Ti:0.65〜1.15%、Nb+Ta:4.75〜5.50%、B:0.006%以下、残部がFeおよび不可避的な不純物からなる組成を有するFe−Ni基超耐熱合金のリング圧延材の製造方法において、
    前記リング圧延工程の仕上げとして、900〜980℃の温度範囲で加熱し、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する仕上げリング圧延工程と、
    拡管コーンと拡管ダイスとから構成されるリングエキスパンダーを用いて、前記仕上げリング圧延工程で圧延されたリング圧延材を拡径しながら真円度を向上させる真円矯正工程と、を備え、
    前記仕上げリング圧延工程で圧延されたリング圧延材に再加熱を行わないで前記真円矯正工程を行う、または前記仕上げリング圧延工程で圧延されたリング圧延材に対して、600〜760℃の温度範囲を除く960℃以下の温度範囲で前記真円矯正工程を行うことを特徴とするFe−Ni基超耐熱合金のリング圧延材の製造方法。
  2. 前記仕上げリング圧延工程の前工程として、前記リング圧延素材を980℃を超えて1010℃以下の温度に加熱したリング圧延素材を用いて、主ロールとマンドレルロールとからなる一対の圧延ロールと一対のアキシャルロールとを有するリング圧延機を用いて、前記リング圧延素材を拡径するとともに前記リング圧延素材の軸方向に押圧加工する中間リング圧延工程を更に含む請求項1に記載のFe−Ni基超耐熱合金のリング圧延材の製造方法。
JP2020504259A 2018-09-19 2019-09-19 Fe−Ni基超耐熱合金のリング圧延材の製造方法 Active JP6738548B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018174961 2018-09-19
JP2018174961 2018-09-19
PCT/JP2019/036757 WO2020059798A1 (ja) 2018-09-19 2019-09-19 Fe-Ni基超耐熱合金のリング圧延材の製造方法

Publications (2)

Publication Number Publication Date
JP6738548B1 true JP6738548B1 (ja) 2020-08-12
JPWO2020059798A1 JPWO2020059798A1 (ja) 2021-01-07

Family

ID=69888444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020504259A Active JP6738548B1 (ja) 2018-09-19 2019-09-19 Fe−Ni基超耐熱合金のリング圧延材の製造方法

Country Status (5)

Country Link
US (1) US20220032359A1 (ja)
EP (1) EP3854902A4 (ja)
JP (1) JP6738548B1 (ja)
CN (1) CN112739844B (ja)
WO (1) WO2020059798A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2969316T3 (es) * 2018-09-19 2024-05-17 Proterial Ltd Método de producción de material laminado de anillo de superaleación a base de Fe-Ni
CN117226439B (zh) * 2023-11-10 2024-01-30 陕西长羽航空装备股份有限公司 一种航空发动机材料ta12a碾环成型方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584947A (en) * 1994-08-18 1996-12-17 General Electric Company Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US6409853B1 (en) * 1999-10-25 2002-06-25 General Electric Company Large forging manufacturing process
JP5263580B2 (ja) * 2008-05-08 2013-08-14 三菱マテリアル株式会社 ガスタービン用リング状ディスク
JP5680292B2 (ja) * 2009-10-09 2015-03-04 日立金属Mmcスーパーアロイ株式会社 環状成形体の製造方法
KR101330641B1 (ko) * 2010-08-20 2013-11-18 주식회사 태웅 균일조직을 가지는 니켈기지 초내열합금 형상링의 제조방법
CN102312118B (zh) * 2011-09-21 2013-04-03 北京科技大学 一种gh864镍基高温合金组织精确控制的热加工方法
CN105073295A (zh) * 2013-03-21 2015-11-18 日立金属株式会社 环轧用材料
JP6179796B2 (ja) * 2013-03-22 2017-08-16 日立金属株式会社 熱間鍛造用金型及び熱間鍛造方法
JP6292761B2 (ja) * 2013-03-28 2018-03-14 日立金属Mmcスーパーアロイ株式会社 環状成形体の製造方法
CN103866163B (zh) * 2014-03-14 2016-03-30 钢铁研究总院 一种镍铬钴钼耐热合金及其管材制造工艺
WO2015151318A1 (ja) 2014-03-31 2015-10-08 日立金属株式会社 Fe-Ni基超耐熱合金の製造方法
JP6395040B2 (ja) * 2014-03-31 2018-09-26 日立金属株式会社 圧延ロール及びリング圧延方法
CN106660106B (zh) * 2014-09-29 2019-05-07 日立金属株式会社 Ni基超耐热合金的制造方法
KR101665802B1 (ko) * 2014-12-23 2016-10-13 주식회사 포스코 열 복원성이 우수한 Fe-Ni계 합금 금속박 및 그 제조방법
US10221474B2 (en) * 2015-03-25 2019-03-05 Hitachi Metals, Ltd. Method of producing Ni-based superalloy
CN106282626B (zh) * 2016-08-29 2018-06-26 河源富马硬质合金股份有限公司 一种超细硬质合金的制备方法
CN106637012A (zh) * 2016-12-01 2017-05-10 贵州安大航空锻造有限责任公司 低应力gh4169高温合金环件制造方法
CN108213844A (zh) * 2016-12-14 2018-06-29 贵州航宇科技发展股份有限公司 一种718plus异形机匣锻件制造方法

Also Published As

Publication number Publication date
WO2020059798A1 (ja) 2020-03-26
JPWO2020059798A1 (ja) 2021-01-07
CN112739844A (zh) 2021-04-30
EP3854902A1 (en) 2021-07-28
EP3854902A4 (en) 2022-06-22
CN112739844B (zh) 2022-02-08
US20220032359A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US20200010930A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
JP6150192B2 (ja) Ni基超耐熱合金の製造方法
JP6171762B2 (ja) Ni基耐熱合金の鍛造加工方法
CN113454255B (zh) Ni基超耐热合金以及Ni基超耐热合金的制造方法
JP6889418B2 (ja) Ni基超耐熱合金の製造方法およびNi基超耐熱合金
JP6738548B1 (ja) Fe−Ni基超耐熱合金のリング圧延材の製造方法
WO2015151318A1 (ja) Fe-Ni基超耐熱合金の製造方法
JP5234226B2 (ja) エアバッグ用鋼管の製造方法
WO2020031579A1 (ja) Ni基超耐熱合金の製造方法およびNi基超耐熱合金
WO2015005119A1 (ja) 高Cr鋼管の製造方法
JP6663575B2 (ja) Ni基超耐熱合金の製造方法
JP2019183263A (ja) 冷間加工用Ni基超耐熱合金素材
JP6738549B1 (ja) Fe−Ni基超耐熱合金のリング圧延材の製造方法
JP6299344B2 (ja) ディスク形状品の鍛造加工方法
RU2349410C2 (ru) Способ изготовления цельнокатаных колец из жаропрочных никелевых сплавов
TWI568862B (zh) 沃斯田鐵系合金鋼材之製造方法
WO2023176333A1 (ja) テーパーリング素材の製造方法
JP2024085717A (ja) Ni基合金の製造方法
JPH05171379A (ja) 環状体の加工方法
JPH04191353A (ja) Ni基耐熱合金素材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6738548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350