JP6738171B2 - Exterior material for power storage device and power storage device - Google Patents

Exterior material for power storage device and power storage device Download PDF

Info

Publication number
JP6738171B2
JP6738171B2 JP2016053402A JP2016053402A JP6738171B2 JP 6738171 B2 JP6738171 B2 JP 6738171B2 JP 2016053402 A JP2016053402 A JP 2016053402A JP 2016053402 A JP2016053402 A JP 2016053402A JP 6738171 B2 JP6738171 B2 JP 6738171B2
Authority
JP
Japan
Prior art keywords
storage device
exterior material
electricity storage
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016053402A
Other languages
Japanese (ja)
Other versions
JP2017168342A (en
Inventor
大介 中嶋
大介 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2016053402A priority Critical patent/JP6738171B2/en
Priority to KR1020170026067A priority patent/KR20170108823A/en
Priority to CN201710147482.7A priority patent/CN107204406B/en
Priority to TW106108207A priority patent/TWI716560B/en
Publication of JP2017168342A publication Critical patent/JP2017168342A/en
Application granted granted Critical
Publication of JP6738171B2 publication Critical patent/JP6738171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイス用の外装材および該外装材で外装された蓄電デバイスに関する。 INDUSTRIAL APPLICABILITY The present invention relates to a storage device such as a battery or a capacitor used for a mobile device such as a smartphone or a tablet, a hybrid vehicle, an electric vehicle, wind power generation, solar power generation, a battery or a capacitor used for storing electricity at night. The present invention relates to a packaging material and a power storage device packaged with the packaging material.

なお、本願の特許請求の範囲及び明細書において、「破壊エネルギー」の語は、JIS K7124−2−1999(プラスチックフィルム及びシート 自由落下のダート法による衝撃試験方法 第2部:計装貫通法)に準拠して、温度23℃の環境下で、質量6.5kg、直径20mm相当の半球状(半径10mmの半球状)のストライカーを30cmの高さから自然落下させる条件で測定して求められた破壊エネルギーWFを意味する。 In the claims and the specification of the present application, the term "breaking energy" refers to JIS K7124-2-1999 (Plastic film and sheet, free-fall impact test method by dart method Part 2: instrumentation penetration method) In a temperature of 23° C., a hemispherical striker with a mass of 6.5 kg and a diameter of 20 mm (a hemispherical shape with a radius of 10 mm) was measured under the condition of spontaneously dropping from a height of 30 cm. It means the breaking energy W F.

また、本願の特許請求の範囲及び本明細書では、「蓄電デバイス用外装材の破壊エネルギー」および「耐熱性樹脂フィルムの破壊エネルギー」のいずれも上記「WF」で表記(略記)されるべきものであるが、両者の混同を避けて明確に区別するために、便宜上、「蓄電デバイス用外装材の破壊エネルギー」を「WFT」と表記し、「耐熱性樹脂フィルムの破壊エネルギー」を「WFS」と表記するものとする。 Further, the scope and herein following claims, should be denoted (abbreviated) in the "breaking energy of the outer package for a power storage device" and both the "W F" in "fracture energy of the heat-resistant resin film" However, in order to avoid a confusion between the two and to make a clear distinction, for convenience, the “breaking energy of the exterior material for the electricity storage device” is expressed as “W FT ”and the “breaking energy of the heat-resistant resin film” is expressed as “ W FS ".

また、本明細書において、「アルミニウム」の語は、アルミニウム及びその合金を含む意味で用いる。 In this specification, the term "aluminum" is used to include aluminum and its alloys.

近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層/接着剤層/金属箔層/接着剤層/熱可塑性樹脂層からなる積層体(ラミネート外装材)が用いられている(特許文献1参照)。電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。 In recent years, as mobile electric devices such as smartphones and tablet terminals have become thinner and lighter, the storage devices such as lithium-ion secondary batteries, lithium-polymer secondary batteries, lithium-ion capacitors, and electric double-layer capacitors have been installed in these devices. As the exterior material, a laminate (laminate exterior material) composed of a heat resistant resin layer/adhesive layer/metal foil layer/adhesive layer/thermoplastic resin layer is used instead of the conventional metal can (patented patent). Reference 1). Power sources for electric vehicles, large-scale power sources for storage of electricity, capacitors, and the like are increasingly being packaged with the laminate (exterior material) having the above configuration.

上記構成のラミネート外装材は、金属缶と比べて、軽量で放熱性が良いという利点があるものの、外部から衝撃を受けた際の耐衝撃性に関しては、ラミネート外装材は、金属缶より劣っていた。 Although the laminated outer packaging material having the above-described configuration has the advantage that it is lighter in weight and has better heat dissipation than a metal can, the laminated outer packaging material is inferior to the metal can in terms of impact resistance when an impact is applied from the outside. It was

そこで、このような外部からの衝撃に対する耐衝撃性を向上させるために以下の構成の外装材が提案されている。即ち、集電体に電気的に結合した正極材と負極材が非流動性電解質を介して積層され、イオン性金属成分を含有する電池要素の外周に、剛性の保持材が当接され、その外面を可撓性合成樹脂フィルムで被覆され密封されてなる構成の二次電池が提案されている(特許文献2参照)。 Therefore, in order to improve the impact resistance against such an external impact, an exterior material having the following configuration has been proposed. That is, the positive electrode material and the negative electrode material electrically coupled to the current collector are laminated via the non-fluidic electrolyte, the outer periphery of the battery element containing the ionic metal component, the rigid holding material is contacted, A secondary battery has been proposed in which the outer surface is covered with a flexible synthetic resin film and hermetically sealed (see Patent Document 2).

また、正極と負極とをセパレータを介して積層した電極群がラミネートフィルムの外装体内に封入され、電極群の周囲に該電極群を保護する枠状の保護部材を備えたラミネートフィルム外装電池も提案されている(特許文献3参照)。 Also proposed is a laminated film exterior battery in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is enclosed in an exterior body of a laminate film, and a frame-shaped protection member for protecting the electrode group is provided around the electrode group. (See Patent Document 3).

特開2007−161310号公報JP, 2007-163310, A 特開2000−195475号公報JP, 2000-195475, A 特開2005−259621号公報JP, 2005-259621, A

しかしながら、上記従来技術では次のような問題があった。特許文献2に記載の二次電池では、電池要素と可撓性合成樹脂フィルム(外装材)との間に、追加の部材として剛性の保持材を配置することになるので、薄型化、軽量化の要請に十分に応えることができない。即ち、ラミネートフィルム外装材としたことによる軽量化の効果を損なう又は低減してしまうという問題があった。 However, the above-mentioned conventional technique has the following problems. In the secondary battery described in Patent Document 2, since a rigid holding material is arranged as an additional member between the battery element and the flexible synthetic resin film (exterior material), it is thin and lightweight. Can not fully respond to the request of. That is, there is a problem that the effect of weight reduction due to the use of the laminated film exterior material is impaired or reduced.

また、特許文献3に記載のラミネートフィルム外装電池でも同様に、電極群とラミネートフィルム外装体との間に、追加の部材として枠状の保護部材を配置することになるので、薄型化、軽量化の要請に十分に応えることができない。即ち、ラミネートフィルム外装材としたことによる軽量化の効果を損なう又は低減してしまうという問題があった。 Similarly, in the laminated film exterior battery described in Patent Document 3, since a frame-shaped protection member is arranged as an additional member between the electrode group and the laminated film exterior body, thinning and weight reduction are achieved. Can not fully respond to the request of. That is, there is a problem that the effect of weight reduction due to the use of the laminated film exterior material is impaired or reduced.

本発明は、かかる技術的背景に鑑みてなされたものであって、外装材を薄型に設計しても、外部から衝撃を受けた際に外装材の破断、破裂が生じ難い蓄電デバイス用外装材を提供することを第1の目的とする。 The present invention has been made in view of the above technical background, and even when the exterior material is designed to be thin, the exterior material is not easily broken or ruptured when an external impact is applied to the exterior material. The first purpose is to provide

また、外装材を薄型に設計しても、外部から衝撃を受けた際に、外装材の破断、破裂が生じ難い上に、選択的に熱封止部(ヒートシール部)から凝集破壊が生じることによって外装材の破裂をより一層防止し得る蓄電デバイス用外装材を提供することを第2の目的とする。 Even when the exterior material is designed to be thin, the exterior material is unlikely to break or burst when an external impact is applied, and cohesive failure occurs selectively from the heat sealing portion (heat sealing portion). It is a second object of the present invention to provide a packaging material for an electricity storage device that can further prevent the packaging material from bursting.

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]外側層としての耐熱性樹脂フィルム層と、内側層としての熱可塑性樹脂層と、これら両層間に配設された金属箔層とを含む蓄電デバイス用外装材であって、
前記蓄電デバイス用外装材の破壊エネルギーが1.5J以上であり、
前記耐熱性樹脂フィルムの破壊エネルギーが1.3J以上であることを特徴とする蓄電デバイス用外装材。
[1] A packaging material for an electricity storage device, which includes a heat-resistant resin film layer as an outer layer, a thermoplastic resin layer as an inner layer, and a metal foil layer disposed between these layers,
The breaking energy of the exterior material for the electricity storage device is 1.5 J or more,
An outer packaging material for an electricity storage device, wherein the heat-resistant resin film has a breaking energy of 1.3 J or more.

[2]前記内側層は、前記蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態のシール破壊エネルギーが0.50J以上である熱可塑性樹脂層からなる前項1に記載の蓄電デバイス用外装材。 [2] The electricity storage device according to the above item 1, wherein the inner layer is formed of a thermoplastic resin layer having a seal breaking energy of 0.50 J or more in a heat-sealed joint state between the thermoplastic resin layers of the exterior material for an electricity storage device. Exterior material.

[3]前記蓄電デバイス用外装材の破壊エネルギーを「WFT」とし、前記蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態のシール破壊エネルギーを「WP」としたとき、(WFT/WP)>2.0である前項1または2に記載の蓄電デバイス用外装材。 [3] When the destructive energy of the exterior material for an electricity storage device is “W FT ”, and the seal fracture energy of the heat-sealed joint state between the thermoplastic resin layers of the exterior material for an electricity storage device is “W P ”, ( W FT /W P )>2.0, The exterior material for an electricity storage device according to item 1 or 2 above.

[4]前記熱可塑性樹脂層は、エラストマー成分を含有したオレフィン系樹脂を含む中間層の両面に、オレフィン系樹脂を含む被覆層が積層された3層積層構造を少なくとも含み、
前記中間層は、前記エラストマー成分が島になっている海島構造を備えていることを特徴とする前項1〜3のいずれか1項に記載の蓄電デバイス用外装材。
[4] The thermoplastic resin layer includes at least a three-layer laminated structure in which a coating layer containing an olefin resin is laminated on both surfaces of an intermediate layer containing an olefin resin containing an elastomer component,
The outer layer material for an electricity storage device according to any one of the above items 1 to 3, wherein the intermediate layer has a sea-island structure in which the elastomer component is an island.

[5]蓄電デバイス本体部と、
前項1〜4のいずれか1項に記載の蓄電デバイス用外装材とを備え、
前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
[5] A power storage device body,
An outer storage material for an electricity storage device according to any one of the above items 1 to 4,
An electricity storage device, wherein the electricity storage device body is covered with the exterior material.

[1]の発明では、蓄電デバイス用外装材の破壊エネルギーが1.5J以上であり、かつ耐熱性樹脂フィルムの破壊エネルギーが1.3J以上である構成であるので、外装材を薄くして軽量に設計しても(例えば外装材の厚さを50μm〜70μmの薄型に設計しても)、外部から衝撃を受けた際に外装材の破断、破裂が生じ難い。従って、デバイス本体部が本発明の外装材で外装されてなる蓄電デバイスを備えた電子機器等が落下や衝突等により衝撃を受けたとしても、外装材の破断、破裂が生じ難いものとなり、蓄電デバイスの短絡の発生を抑制することができる。即ち、前記第1の目的が達成される。 In the invention of [1], since the breaking energy of the exterior material for the electricity storage device is 1.5 J or more and the destruction energy of the heat resistant resin film is 1.3 J or more, the exterior material is thin and lightweight. Even if it is designed to be (for example, even if the thickness of the exterior material is designed to be a thin thickness of 50 μm to 70 μm), the exterior material is unlikely to break or rupture when an external impact is applied. Therefore, even if an electronic device or the like equipped with an electricity storage device in which the device body is covered with the exterior material of the present invention is impacted by a drop or a collision, the exterior material is unlikely to break or rupture. It is possible to suppress the occurrence of a short circuit of the device. That is, the first object is achieved.

[2]の発明では、内側層は、蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態についてのシール破壊エネルギーが0.50J以上である熱可塑性樹脂層からなり、蓄電デバイスが外部から衝撃を受けた際に、熱可塑性樹脂層同士のヒートシール面が凝集剥離で剥離し易いことによって外装材の破断、破裂を防止し得て、これにより蓄電デバイスの短絡発生をさらに抑制することができる。即ち、前記第2の目的が達成される。 In the invention of [2], the inner layer is formed of a thermoplastic resin layer having a seal breaking energy of 0.50 J or more in a heat-sealed joining state of the thermoplastic resin layers of the exterior material for an electricity storage device, and the electricity storage device is external. When a shock is applied from the heat-sealing surfaces of the thermoplastic resin layers to each other due to cohesive peeling, it is possible to prevent breakage and rupture of the exterior material, thereby further suppressing the occurrence of a short circuit in the electricity storage device. You can That is, the second object is achieved.

[3]の発明では、(WFT/WP)>2.0の関係にある構成であるので、外部から大きな衝撃が蓄電デバイスに加わった場合でも、外装材の破断、破裂に至る前に、選択的にヒートシール部(熱封止部)からの剥離や凝集破壊が生じて、外装材の破断、破裂を効果的に防止できて、蓄電デバイスの電極同士の短絡の発生を効果的に防止できる。 In the invention [3], since the structure has a relationship of (W FT /W P )>2.0, even when a large shock is applied to the power storage device from the outside, before the exterior material is broken or ruptured. , Selectively peeling from the heat-sealing portion (heat-sealing portion) or cohesive failure can be effectively prevented from breaking or rupturing of the exterior material, and effectively short-circuiting between electrodes of the power storage device It can be prevented.

[4]の発明では、熱可塑性樹脂層は、エラストマー成分を含有したオレフィン系樹脂を含む中間層の両面に、オレフィン系樹脂を含む被覆層が積層された3層積層構造を少なくとも含み、中間層は、エラストマー成分が島になっている海島構造を備えた構成であるから、蓄電デバイスが外部から衝撃を受けた際にその衝撃のエネルギーを前記海島構造を備えた中間層で効果的に吸収することができ、これにより蓄電デバイスが外部から衝撃を受けた際に外装材の破断、破裂が一層生じ難いものとなる。 In the invention [4], the thermoplastic resin layer includes at least a three-layer laminated structure in which a coating layer containing an olefin resin is laminated on both surfaces of an intermediate layer containing an olefin resin containing an elastomer component. Has a sea-island structure in which the elastomer component is an island, and therefore, when the electricity storage device receives a shock from the outside, the energy of the shock is effectively absorbed by the intermediate layer having the sea-island structure. As a result, when the power storage device receives an impact from the outside, the exterior material is less likely to be broken or ruptured.

[5]の発明(蓄電デバイス)では、外装材を薄型に設計しても、外部から衝撃を受けた際に外装材の破断、破裂が生じ難くて短絡の発生を抑制できる蓄電デバイスが提供される。 According to the invention (5) (electric storage device), an electric storage device is provided which is capable of suppressing the occurrence of a short circuit even if the exterior material is designed to be thin, and the exterior material is unlikely to break or burst when an external impact is applied. It

本発明に係る蓄電デバイス用外装材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the exterior material for electrical storage devices which concerns on this invention. 本発明に係る蓄電デバイス用外装材を用いて構成された蓄電デバイスの一実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of an electricity storage device configured by using an electricity storage device exterior material according to the present invention.

本発明に係る蓄電デバイス用外装材1の一実施形態を図1に示す。この蓄電デバイス用外装材1は、リチウムイオン2次電池ケース用として用いられるものである。即ち、前記蓄電デバイス用外装材1は、例えば、深絞り成形、張り出し成形等の成形に供されて2次電池のケース等として用いられるものである。 FIG. 1 shows one embodiment of the exterior material 1 for an electricity storage device according to the present invention. The exterior material 1 for an electricity storage device is used for a lithium ion secondary battery case. That is, the exterior material 1 for an electricity storage device is used for forming such as deep drawing and overhang forming, and is used as a case of a secondary battery or the like.

前記蓄電デバイス用外装材1は、金属箔層4の一方の面に第1接着剤層5を介して耐熱性樹脂フィルム層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面に第2接着剤層6を介して熱可塑性樹脂層(内側層)3が積層一体化された構成からなる。 In the outer casing material 1 for an electricity storage device, a heat-resistant resin film layer (outer layer) 2 is laminated and integrated on one surface of a metal foil layer 4 via a first adhesive layer 5, and the metal foil layer 4 is also integrated. The thermoplastic resin layer (inner layer) 3 is laminated and integrated on the other surface of the via a second adhesive layer 6.

本発明に係る蓄電デバイス用外装材1は、該蓄電デバイス用外装材の破壊エネルギーWFTが1.5J以上であり、前記耐熱性樹脂フィルムの破壊エネルギーWFSが1.3J以上である構成である。本発明の蓄電デバイス用外装材1は、このような構成であるから、外装材を薄くして軽量に設計しても(例えば外装材の厚さを50μm〜70μmの薄型に設計しても)、外部から衝撃を受けた際に外装材の破断、破裂が生じ難い。従って、デバイス本体部が本発明の外装材で外装されてなる蓄電デバイスを備えた電子機器等が落下や衝突等により衝撃を受けたとしても、外装材の破断、破裂が生じ難いものとなり、蓄電デバイスの短絡の発生を抑制することができる。本発明では、前記蓄電デバイス用外装材の破壊エネルギーWFTが1.5J以上である必要があるが、前記蓄電デバイス用外装材の破壊エネルギーWFTは、通常、2.5J以下である。また、本発明では、前記耐熱性樹脂フィルムの破壊エネルギーWFSが1.3J以上である必要があるが、前記耐熱性樹脂フィルムの破壊エネルギーWFSは、通常、2.0J以下である。なお、前記「耐熱性樹脂フィルムの破壊エネルギー」は、該耐熱性樹脂フィルムが他の層と積層される前の状態で測定される破壊エネルギーである。 The exterior material 1 for an electricity storage device according to the present invention has a structure in which the exterior energy storage device has a fracture energy W FT of 1.5 J or more and the heat resistant resin film has a fracture energy W FS of 1.3 J or more. is there. Since the exterior material 1 for an electricity storage device of the present invention has such a configuration, even if the exterior material is designed to be thin and lightweight (for example, even if the thickness of the exterior material is designed to be as thin as 50 μm to 70 μm). It is difficult for the exterior material to break or burst when it receives an impact from the outside. Therefore, even if an electronic device or the like equipped with an electricity storage device in which the device body is covered with the exterior material of the present invention is impacted by a drop or a collision, the exterior material is unlikely to break or rupture. It is possible to suppress the occurrence of a short circuit of the device. In the present invention, wherein at breaking energy W FT of the outer package for a power storage device needs not less than 1.5 J, fracture energy W FT of the outer package for the electric storage device is usually less than 2.5 J. In the present invention, wherein at breaking energy W FS of the heat-resistant resin film is required to be not less than 1.3 J, fracture energy W FS of the heat-resistant resin film is usually less than 2.0 J. The “breaking energy of the heat resistant resin film” is the breaking energy measured before the heat resistant resin film is laminated with other layers.

前記内側層3は、前記蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態のシール破壊エネルギーWPが0.50J以上である熱可塑性樹脂層からなる構成であるのが好ましく、この場合には、蓄電デバイスが外部から衝撃を受けた際に、熱可塑性樹脂層同士のヒートシール面が凝集剥離で剥離し易いことによって外装材の破裂を防止し得て、これにより蓄電デバイスの短絡の発生をさらに抑制することができる。前記シール破壊エネルギーWPは0.50J以上1.3J以下であるのが好ましい。 It is preferable that the inner layer 3 is composed of a thermoplastic resin layer having a seal breaking energy W P of 0.50 J or more in a heat-sealed joined state between the thermoplastic resin layers of the exterior material for an electricity storage device. In this case, when the electricity storage device receives an impact from the outside, the heat-sealing surfaces of the thermoplastic resin layers can be easily separated by cohesive peeling to prevent the exterior material from rupturing, thereby short-circuiting the electricity storage device. Can be further suppressed. The seal breaking energy W P is preferably 0.50 J or more and 1.3 J or less.

更に、本発明に係る蓄電デバイス用外装材1は、(WFT/WP)>2.0である構成になっているのが好ましく、この場合には、外部から大きな衝撃が蓄電デバイスに加わった場合でも、外装材の破断、破裂に至る前に、選択的にヒートシール部(熱封止部)からの剥離や凝集破壊が生じて、外装材の破断、破裂を効果的に防止できて、蓄電デバイスの電極同士の短絡の発生を効果的に防止できる。中でも、本発明の蓄電デバイス用外装材1は、4.0>(WFT/WP)>2.0である構成になっているのが特に好ましい。 Furthermore, the electricity storage device exterior material 1 according to the present invention preferably has a configuration of (W FT /W P )>2.0. In this case, a large impact is applied to the electricity storage device from the outside. Even if the external packaging material is broken or ruptured, it is possible to effectively prevent the external packaging material from rupturing or rupturing by selectively causing peeling from the heat-sealed portion (heat-sealed portion) or cohesive failure. It is possible to effectively prevent the occurrence of a short circuit between the electrodes of the electricity storage device. Above all, it is particularly preferable that the exterior material 1 for an electricity storage device of the present invention has a configuration of 4.0>(W FT /W P )>2.0.

前記耐熱性樹脂フィルム層(外側層)2を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱可塑性樹脂層3を構成する熱可塑性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱可塑性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。 As the heat-resistant resin forming the heat-resistant resin film layer (outer layer) 2, a heat-resistant resin that does not melt at the heat-sealing temperature when heat-sealing the exterior material is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher than the melting point of the thermoplastic resin constituting the thermoplastic resin layer 3 by 10° C. or more, and a melting point higher than the melting point of the thermoplastic resin by 20° C. or more. It is particularly preferable to use a heat resistant resin.

前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム、ポリオレフィンフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム、二軸延伸ポリエチレンナフタレート(PEN)フィルム、二軸延伸ポリプロピレンフィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。なお、前記耐熱性樹脂層2は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。前記例示した複層構成において、ポリエステルフィルムがポリアミドフィルムよりも外側に配置されるのが好ましく、同様にPETフィルムがナイロンフィルムよりも外側に配置されるのが好ましい。 The heat resistant resin layer (outer layer) 2 is not particularly limited, but examples thereof include polyamide films such as nylon films, polyester films, polyolefin films and the like, and stretched films thereof are preferably used. Among them, as the heat resistant resin layer 2, biaxially stretched polyamide film such as biaxially stretched nylon film, biaxially stretched polybutylene terephthalate (PBT) film, biaxially stretched polyethylene terephthalate (PET) film, biaxially stretched polyethylene It is particularly preferable to use a phthalate (PEN) film or a biaxially oriented polypropylene film. The nylon film is not particularly limited, but examples thereof include 6 nylon film, 6,6 nylon film, MXD nylon film and the like. The heat-resistant resin layer 2 may be formed of a single layer, or may be formed of, for example, a multi-layer composed of a polyester film/a polyamide film (a multi-layer composed of a PET film/nylon film, etc.). Is also good. In the multilayer structure illustrated above, the polyester film is preferably arranged outside the polyamide film, and similarly, the PET film is preferably arranged outside the nylon film.

前記耐熱性樹脂層2の厚さは、8μm〜50μmであるのが好ましい。上記好適下限値以上に設定することで外装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記耐熱性樹脂層2の厚さは、12μm〜25μmであるのが特に好ましい。 The heat-resistant resin layer 2 preferably has a thickness of 8 μm to 50 μm. By setting the above preferable lower limit value or more, sufficient strength as an exterior material can be secured, and by setting the above preferable upper limit value or less, stress at the time of forming such as overhang forming and drawing forming can be reduced to improve formability. Can be made. Above all, the thickness of the heat resistant resin layer 2 is particularly preferably 12 μm to 25 μm.

前記熱可塑性樹脂層(熱融着性樹脂層)(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液などに対しても優れた耐薬品性を具備させると共に、外装材にヒートシール性を付与する役割を担うものである。 The thermoplastic resin layer (heat-fusible resin layer) (inner layer) 3 has excellent chemical resistance even to a highly corrosive electrolyte solution used in a lithium ion secondary battery or the like, It plays a role of imparting heat sealability to the exterior material.

前記熱可塑性樹脂層3としては、特に限定されるものではないが、熱可塑性樹脂無延伸フィルム層であるのが好ましい。前記熱可塑性樹脂無延伸フィルム層3は、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる無延伸フィルムにより構成されるのが好ましい。なお、前記熱可塑性樹脂層3は、単層であってもよいし、複層であってもよい。 The thermoplastic resin layer 3 is not particularly limited, but is preferably a thermoplastic resin unstretched film layer. The thermoplastic resin unstretched film layer 3 is not particularly limited, but is at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof and ionomers. It is preferably composed of an unstretched film made of a resin. The thermoplastic resin layer 3 may be a single layer or multiple layers.

中でも、前記熱可塑性樹脂層3としては、エラストマー成分を含有したオレフィン系樹脂を含む中間層の両面に、オレフィン系樹脂を含む被覆層が積層された3層積層構造を少なくとも含む構成であって、前記中間層が、前記エラストマー成分が島になっている海島構造を備えた構成であるのが好ましい。 Among them, the thermoplastic resin layer 3 has a structure including at least a three-layer laminated structure in which a coating layer containing an olefin resin is laminated on both surfaces of an intermediate layer containing an olefin resin containing an elastomer component, It is preferable that the intermediate layer has a sea-island structure in which the elastomer component is an island.

前記エラストマー成分を含有したオレフィン系樹脂としては、オレフィン系樹脂にエラストマーが添加された(配合された)構成であってもよいし、オレフィン系樹脂骨格にエラストマー成分が化学的に結合されてなるエラストマー変性オレフィン系樹脂であってもよい。なお、前記「エラストマー」の語は、ゴム成分をも含む意味で用いている。 The olefin resin containing the elastomer component may have a configuration in which an elastomer is added to (blended with) an olefin resin, or an elastomer in which an elastomer component is chemically bonded to an olefin resin skeleton. It may be a modified olefin resin. The term "elastomer" is used to include a rubber component.

前記熱可塑性樹脂層3の厚さは、10μm〜80μmに設定されるのが好ましい。10μm以上とすることでピンホールの発生を十分に防止できると共に、80μm以下に設定することで樹脂使用量を低減できてコスト低減を図り得る。中でも、前記熱可塑性樹脂層3の厚さは25μm〜50μmに設定されるのが特に好ましい。 The thickness of the thermoplastic resin layer 3 is preferably set to 10 μm to 80 μm. When the thickness is 10 μm or more, generation of pinholes can be sufficiently prevented, and when the thickness is 80 μm or less, the amount of resin used can be reduced and the cost can be reduced. Above all, the thickness of the thermoplastic resin layer 3 is particularly preferably set to 25 μm to 50 μm.

前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、SUS箔(ステンレス箔)、銅箔等が挙げられ、アルミニウム箔が一般的に用いられる。前記金属箔層4の厚さは、20μm〜100μmであるのが好ましい。20μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、100μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記金属箔層4の厚さは、20μm〜50μmであるのが特に好ましい。 The metal foil layer 4 plays a role of imparting a gas barrier property to the exterior material 1 to prevent oxygen and moisture from entering. The metal foil layer 4 is not particularly limited, but examples thereof include aluminum foil, SUS foil (stainless steel foil), copper foil, and the like, and aluminum foil is generally used. The metal foil layer 4 preferably has a thickness of 20 μm to 100 μm. When it is 20 μm or more, pinholes can be prevented from being generated during rolling when producing a metal foil, and when it is 100 μm or less, stress at the time of forming such as overhang forming and draw forming can be reduced to improve formability. be able to. Above all, the thickness of the metal foil layer 4 is particularly preferably 20 μm to 50 μm.

前記金属箔層4は、少なくとも内側の面(第2接着剤層6側の面)に化成処理が施されているのが好ましい。このような化成処理が施されていることによって内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。
It is preferable that at least the inner surface (the surface on the second adhesive layer 6 side) of the metal foil layer 4 is subjected to a chemical conversion treatment. By performing such a chemical conversion treatment, it is possible to sufficiently prevent the corrosion of the surface of the metal foil due to the contents (such as the electrolytic solution of the battery). For example, the metal foil is subjected to chemical conversion treatment by the following treatment. That is, for example, on the surface of the degreased metal foil,
1) phosphoric acid,
Chromic acid,
An aqueous solution of a mixture containing at least one compound selected from the group consisting of metal salts of fluorides and non-metal salts of fluorides 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture containing at least one compound selected from the group consisting of chromic acid and chromium (III) salts, 3) phosphoric acid, and
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and chromium (III) salts;
Aqueous solution of mixture containing at least one compound selected from the group consisting of metal salts of fluorides and non-metal salts of fluorides, and applied with an aqueous solution of any one of the above 1) to 3), and then dried. By doing so, chemical conversion treatment is performed.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2〜50mg/m2が好ましく、特に2mg/m2〜20mg/m2が好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記第1接着剤層5としては、特に限定されるものではないが、例えば、ポリウレタン接着剤層、ポリエステルポリウレタン接着剤層、ポリエーテルポリウレタン接着剤層等が挙げられる。前記第1接着剤層5の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記第1接着剤層5の厚さは、1μm〜3μmに設定されるのが特に好ましい。 The first adhesive layer 5 is not particularly limited, but examples thereof include a polyurethane adhesive layer, a polyester polyurethane adhesive layer, and a polyether polyurethane adhesive layer. The thickness of the first adhesive layer 5 is preferably set to 1 μm to 5 μm. Above all, it is particularly preferable that the thickness of the first adhesive layer 5 is set to 1 μm to 3 μm from the viewpoint of reducing the thickness and weight of the exterior material.

前記第2接着剤層6としては、特に限定されるものではないが、例えば、上記第1接着剤層5として例示したものも使用できるが、電解液による膨潤の少ないポリオレフィン系接着剤を使用するのが好ましい。前記第2接着剤層6の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記第2接着剤層6の厚さは、1μm〜3μmに設定されるのが特に好ましい。 The second adhesive layer 6 is not particularly limited, and for example, those exemplified as the first adhesive layer 5 can be used, but a polyolefin-based adhesive that is less swelled by an electrolytic solution is used. Is preferred. The thickness of the second adhesive layer 6 is preferably set to 1 μm to 5 μm. Above all, it is particularly preferable that the thickness of the second adhesive layer 6 is set to 1 μm to 3 μm from the viewpoint of reducing the thickness and weight of the exterior material.

本発明の外装材1を成形(深絞り成形、張り出し成形等)することにより、成形ケース(電池ケース等)を得ることができる。なお、本発明の外装材1は、成形に供されずにそのまま使用することもできる。 A molding case (battery case or the like) can be obtained by molding (deep-drawing, overhang molding, or the like) the exterior material 1 of the present invention. The exterior material 1 of the present invention can be used as it is without being subjected to molding.

本発明の外装材1を用いて構成された蓄電デバイス20の一実施形態を図2に示す。この蓄電デバイス20は、リチウムイオン2次電池である。 FIG. 2 shows an embodiment of an electricity storage device 20 configured by using the exterior material 1 of the present invention. The electricity storage device 20 is a lithium-ion secondary battery.

前記電池20は、電解質21と、タブリード22と、成形に供されていない平面状の前記外装材1と、前記外装材1が成形されて得られた収容凹部11bを有する成形ケース11とを備える(図2参照)。前記電解質21および前記タブリード22により蓄電デバイス本体部19が構成されている。 The battery 20 includes an electrolyte 21, a tab lead 22, the planar exterior material 1 that has not been subjected to molding, and a molding case 11 having a housing recess 11 b obtained by molding the exterior material 1. (See Figure 2). The electrolyte 21 and the tab lead 22 form a power storage device body 19.

前記成形ケース11の収容凹部11b内に前記電解質21と前記タブリード22の一部が収容され、該成形ケース11の上に前記平面状の外装材1が配置され、該外装材1の周縁部(の内側層3)と前記成形ケース11の封止用周縁部11a(の内側層3)とがヒートシールにより接合されて熱封止部(ヒートシール部)が形成されることによって、前記電池20が構成されている。なお、前記タブリード22の先端部は、外部に導出されている(図2参照)。 The electrolyte 21 and a part of the tab lead 22 are accommodated in the accommodating recess 11b of the molding case 11, the planar exterior material 1 is disposed on the molding case 11, and the peripheral edge of the exterior material 1 ( The inner layer 3) and the sealing peripheral portion 11a (the inner layer 3) of the molding case 11 are joined by heat sealing to form a heat sealing portion (heat sealing portion), and thus the battery 20 Is configured. The tip end of the tab lead 22 is led to the outside (see FIG. 2).

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
厚さ30μmのアルミニウム箔(JIS H4160に規定されるA8021の焼鈍したアルミニウム箔)4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
<Example 1>
A chemical conversion consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water and alcohol on both sides of a 30 μm thick aluminum foil (A8021 annealed aluminum foil specified in JIS H4160) 4. After applying the treatment liquid, it was dried at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion coating was 10 mg/m 2 per side.

次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して、厚さ12μmの二軸延伸6ナイロンフィルム(外側層)2をドライラミネートした(貼り合わせた)。 Next, a biaxially stretched 6-nylon film (outer layer) 2 having a thickness of 12 μm was dry-laminated on one surface of the chemical conversion treated aluminum foil 4 via a two-component curing type urethane adhesive 5. Pasted together).

次に、エチレン−プロピレンランダム共重合体からなる厚さ4.5μmの第1樹脂層、エチレン−プロピレンブロック共重合体からなる厚さ21μmの第2樹脂層、エチレン−プロピレンランダム共重合体からなる厚さ4.5μmの第1樹脂層がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ30μmのシーラントフィルム(第1樹脂層/第2樹脂層/第1樹脂層)3を得た後、該シーラントフィルム(内側層)3の一方の第1樹脂層面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤(硬化剤が多官能イソシアネート)6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、しかる後、40℃で5日間エージングする(加熱する)ことによって、図1に示す構成の厚さ79μmの蓄電デバイス用外装材1を得た。 Next, a first resin layer made of an ethylene-propylene random copolymer and having a thickness of 4.5 μm, a second resin layer made of an ethylene-propylene block copolymer and having a thickness of 21 μm, and an ethylene-propylene random copolymer. A sealant film (first resin) having a thickness of 30 μm formed by laminating these three layers by co-extrusion using a T die so that three first layers having a thickness of 4.5 μm are laminated in this order. Layer/second resin layer/first resin layer) 3 and then one side of the first resin layer of the sealant film (inner layer) 3 is coated with a two-component curable maleic acid-modified polypropylene adhesive (curing agent is Polyfunctional isocyanate) 6 is put on the other surface of the aluminum foil 4 after the dry lamination, and it is sandwiched between a rubber nip roll and a laminating roll heated to 100° C. and pressure-bonded to dry laminate. Then, after that, by aging (heating) at 40° C. for 5 days, a packaging material 1 for an electricity storage device having a structure shown in FIG. 1 and having a thickness of 79 μm was obtained.

なお、前記第2樹脂層(エチレン−プロピレンブロック共重合体)の詳細について説明すると、前記第2樹脂層は、融点が163℃、結晶融解エネルギーが58J/gである第1エラストマー変性オレフィン系樹脂99質量%、融点が144℃、結晶融解エネルギーが19J/gである第2エラストマー変性オレフィン系樹脂1質量%の組成からなる樹脂組成物により形成されている。前記第1エラストマー変性オレフィン系樹脂および前記第2エラストマー変性オレフィン系樹脂は、いずれも、エラストマー変性ホモポリプロピレンまたは/およびエラストマー変性ランダム共重合体からなる。前記エラストマー変性ランダム共重合体は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体のエラストマー変性体である。なお、第2樹脂層のみをSEM観察(走査電子顕微鏡で観察)したところ、第2樹脂層がエラストマー成分が島になっている海島構造を備えていることを確認することができた。 The details of the second resin layer (ethylene-propylene block copolymer) will be described. The second resin layer has a melting point of 163° C. and a crystal melting energy of 58 J/g. It is formed of a resin composition having a composition of 99% by mass, a melting point of 144° C., and a crystal melting energy of 19 J/g, which is 1% by mass of a second elastomer-modified olefin resin. Each of the first elastomer-modified olefin resin and the second elastomer-modified olefin resin is composed of an elastomer-modified homopolypropylene or/and an elastomer-modified random copolymer. The elastomer-modified random copolymer is an elastomer-modified random copolymer containing propylene and other copolymer components other than propylene as a copolymer component. When only the second resin layer was observed by SEM (observation with a scanning electron microscope), it was confirmed that the second resin layer had a sea-island structure in which the elastomer component was an island.

上記「融点」の語は、JIS K7121−1987に準拠して、示差走査熱量測定(DSC)によって測定された融解ピーク温度を意味し、「結晶融解エネルギー」の語は、JIS K7122−1987に準拠して、示差走査熱量測定(DSC)によって測定された融解熱(結晶融解エネルギー)を意味する。 The term "melting point" means a melting peak temperature measured by differential scanning calorimetry (DSC) according to JIS K7121-1987, and the term "crystal melting energy" complies with JIS K7122-1987. And the heat of fusion (crystal fusion energy) measured by differential scanning calorimetry (DSC).

また、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布し、加熱乾燥させた後、前記シーラントフィルム3の一方の第1樹脂層面に重ね合わせた。 Further, as the two-component curing type maleic acid-modified polypropylene adhesive, 100 parts by mass of maleic acid-modified polypropylene (melting point 80° C., acid value 10 mgKOH/g) as a main agent, hexamethylene diisocyanate isocyanurate as a curing agent (NCO content: 20% by mass) 8 parts by mass, and using an adhesive solution further mixed with a solvent, the adhesive solution is mixed with the aluminum foil 4 so that the solid content coating amount becomes 2 g/m 2 . After coating on the other surface and heating and drying, it was laminated on one of the first resin layer surfaces of the sealant film 3.

<実施例2>
厚さ30μmのアルミニウム箔に代えて、厚さ25μmのアルミニウム箔(JIS H4160に規定されるA8021の焼鈍したアルミニウム箔)を用いた以外は、実施例1と同様にして、図1に示す構成の厚さ74μmの蓄電デバイス用外装材1を得た。
<Example 2>
In place of the aluminum foil having a thickness of 30 μm, an aluminum foil having a thickness of 25 μm (A8021 annealed aluminum foil specified in JIS H4160) was used in the same manner as in Example 1 and having the configuration shown in FIG. An outer packaging material 1 for an electricity storage device having a thickness of 74 μm was obtained.

<実施例3>
厚さ12μmの二軸延伸6ナイロンフィルムのさらに外側に厚さ9μmのポリエチレンテレフタレートフィルムを2液硬化型のウレタン系接着剤を介して積層した構成とした以外は、実施例1と同様にして、図1に示す構成の厚さ92μmの蓄電デバイス用外装材1を得た。
<Example 3>
In the same manner as in Example 1 except that a 9 μm-thick polyethylene terephthalate film was laminated on the outer side of a 12 μm-thick biaxially stretched 6 nylon film via a two-component curing type urethane adhesive, An electric storage device exterior material 1 having a thickness of 92 μm having the configuration shown in FIG. 1 was obtained.

<実施例4>
厚さ12μmの二軸延伸6ナイロンフィルムに代えて、厚さ15μmの二軸延伸6ナイロンフィルムを用いた以外は、実施例1と同様にして、厚さ82μmの蓄電デバイス用外装材を得た。
<Example 4>
An outer casing material for an electricity storage device having a thickness of 82 μm was obtained in the same manner as in Example 1 except that a biaxially stretched 6 nylon film having a thickness of 15 μm was used instead of the biaxially stretched 6 nylon film having a thickness of 12 μm. ..

<実施例5>
厚さ30μmのシーラントフィルム(第1樹脂層/第2樹脂層/第1樹脂層=4.5μm/21μm/4.5μm)に代えて、厚さ40μmのシーラントフィルム(第1樹脂層/第2樹脂層/第1樹脂層=6μm/28μm/6μm)を用いた以外は、実施例2と同様にして、厚さ89μmの蓄電デバイス用外装材を得た。なお、第1樹脂層および第2樹脂層を構成する樹脂としては、それぞれ実施例2(実施例1)と同一の樹脂を用いた。
<Example 5>
Instead of the sealant film having a thickness of 30 μm (first resin layer/second resin layer/first resin layer=4.5 μm/21 μm/4.5 μm), a sealant film having a thickness of 40 μm (first resin layer/second resin layer/second resin layer) A resin material/first resin layer=6 μm/28 μm/6 μm) was used, and an outer packaging material for an electricity storage device having a thickness of 89 μm was obtained in the same manner as in Example 2. The same resin as in Example 2 (Example 1) was used as the resin forming the first resin layer and the second resin layer.

<比較例1>
厚さ30μmのアルミニウム箔に代えて、厚さ20μmのアルミニウム箔(JIS H4160に規定されるA8021の焼鈍したアルミニウム箔)を用いた以外は、実施例1と同様にして、厚さ69μmの蓄電デバイス用外装材を得た。
<Comparative Example 1>
An electricity storage device having a thickness of 69 μm was obtained in the same manner as in Example 1 except that an aluminum foil having a thickness of 20 μm (A8021 annealed aluminum foil specified in JIS H4160) was used instead of the aluminum foil having a thickness of 30 μm. An exterior material for use was obtained.

<比較例2>
実施例1で用いた二軸延伸6ナイロンフィルムよりも熱収縮率が3%小さい厚さ12μmの二軸延伸6ナイロンフィルムを用いた以外は、実施例1と同様にして、厚さ79μmの蓄電デバイス用外装材を得た。
<Comparative example 2>
Electric storage having a thickness of 79 μm was carried out in the same manner as in Example 1 except that a biaxially stretched 6 nylon film having a thickness of 12 μm, which had a heat shrinkage ratio of 3% smaller than that of the biaxially stretched 6 nylon film used in Example 1, was used. A device exterior material was obtained.

<比較例3>
3層が積層されてなる厚さ30μmのシーラントフィルム(第1樹脂層/第2樹脂層/第1樹脂層)に代えて、厚さ30μmのエチレン−プロピレンランダム共重合体からなるシーラントフィルムを用いた以外は、実施例4と同様にして、厚さ79μmの蓄電デバイス用外装材を得た。
<Comparative example 3>
Instead of the 30 μm thick sealant film (first resin layer/second resin layer/first resin layer) formed by stacking three layers, a sealant film made of an ethylene-propylene random copolymer having a thickness of 30 μm is used. Except for the above, a 79 μm-thick packaging material for an electricity storage device was obtained in the same manner as in Example 4.

Figure 0006738171
Figure 0006738171

上記各実施例、各比較例で得られた蓄電デバイス用外装材の破壊エネルギーWFT、上記各実施例、各比較例で使用した外側層用の耐熱性樹脂フィルム(二軸延伸6ナイロンフィルム)の破壊エネルギーWFS、上記各実施例、各比較例の蓄電デバイス用外装材のシール破壊エネルギーWP、および(WFT/WP)をそれぞれ表1に示す。 Fracture energy W FT of the exterior material for the electricity storage device obtained in each of the above Examples and Comparative Examples, and the heat-resistant resin film for outer layer used in each of the above Examples and Comparative Examples (biaxially stretched 6 nylon film) Table 1 shows the breaking energy W FS of the above, the seal breaking energy W P of the outer casing material for the electricity storage device of each of the above Examples and Comparative Examples, and (W FT /W P ).

なお、上記各実施例、各比較例の蓄電デバイス用外装材の破壊エネルギーWFTは以下のようにして測定し、上記各実施例、各比較例で使用した外側層用の耐熱性樹脂フィルム(二軸延伸6ナイロンフィルム)の破壊エネルギーWFSは以下のようにして測定し、上記各実施例、各比較例の蓄電デバイス用外装材のシール破壊エネルギーWPは以下のようにして測定した。 The fracture energy W FT of the exterior material for an electricity storage device of each of the above Examples and Comparative Examples was measured as follows, and the heat resistant resin film for the outer layer used in each of the above Examples and Comparative Examples ( The breaking energy W FS of the biaxially stretched 6 nylon film) was measured as follows, and the seal breaking energy W P of the exterior materials for electricity storage devices of each of the above Examples and Comparative Examples was measured as follows.

<外装材の破壊エネルギー測定法>
JIS K7124−2−1999(プラスチックフィルム及びシート 自由落下のダート法による衝撃試験方法 第2部:計装貫通法)に準拠して、温度23℃の環境下で、内径が40mmのクランプで試験片を押さえ、質量6.5kg、直径20mm相当の半球状(半径10mmの半球状)のストライカーを30cmの高さから自然落下させる条件で外装材の破壊エネルギーを測定した。なお、東洋精機社製落錘グラフィックインパクトテスタを使用して測定した。
<Fracture energy measurement method for exterior materials>
In accordance with JIS K7124-2-1999 (Plastic film and sheet, free fall impact test method by the Dart method, Part 2: Instrumentation penetration method), the test piece is clamped with an inner diameter of 40 mm under an environment of a temperature of 23°C. And the breaking energy of the exterior material was measured under the condition that a hemispherical striker having a mass of 6.5 kg and a diameter of 20 mm (hemispherical shape with a radius of 10 mm) was allowed to fall naturally from a height of 30 cm. The measurement was performed using a falling weight graphic impact tester manufactured by Toyo Seiki.

<耐熱性樹脂フィルムの破壊エネルギー測定法>
JIS K7124−2−1999(プラスチックフィルム及びシート 自由落下のダート法による衝撃試験方法 第2部:計装貫通法)に準拠して、温度23℃の環境下で、内径が40mmのクランプで試験片を押さえ、質量6.5kg、直径20mm相当の半球状(半径10mmの半球状)のストライカーを30cmの高さから自然落下させる条件で耐熱性樹脂フィルム(二軸延伸6ナイロンフィルム)の破壊エネルギーを測定した。なお、東洋精機社製落錘グラフィックインパクトテスタを使用して測定した。
<Fracture energy measuring method for heat resistant resin film>
In accordance with JIS K7124-2-1999 (Plastic film and sheet, free fall impact test method by the Dart method, Part 2: Instrumentation penetration method), the test piece was clamped with an inner diameter of 40 mm under an environment of a temperature of 23°C. The mass of 6.5 kg, and a hemispherical striker with a diameter of 20 mm (hemispherical shape with a radius of 10 mm) is allowed to fall naturally from a height of 30 cm to reduce the breaking energy of the heat-resistant resin film (biaxially stretched 6 nylon film). It was measured. The measurement was performed using a falling weight graphic impact tester manufactured by Toyo Seiki.

なお、実施例3では、外側層が、厚さ9μmのポリエチレンテレフタレートフィルム/厚さ3μmのウレタン系接着剤層/厚さ12μmの二軸延伸6ナイロンフィルムからなる積層フィルムで形成されているので、実施例3での耐熱性樹脂フィルムの破壊エネルギー測定は、前記厚さ9μmのポリエチレンテレフタレートフィルム/厚さ3μmのウレタン系接着剤層/厚さ12μmの二軸延伸6ナイロンフィルムからなる積層フィルム(厚さ24μm)について行ったものである。 In Example 3, since the outer layer was formed of a laminated film composed of a polyethylene terephthalate film having a thickness of 9 μm/a urethane adhesive layer having a thickness of 3 μm/a biaxially stretched 6 nylon film having a thickness of 12 μm, The fracture energy of the heat-resistant resin film in Example 3 was measured by a laminated film (thickness: 9 μm polyethylene terephthalate film/thickness 3 μm urethane adhesive layer/thickness 12 μm biaxially stretched 6 nylon film). 24 μm).

<外装材のシール破壊エネルギー測定法>
外装材を幅15mm×長さ100mmの短冊状に切り出して試験片を得る。前記試験片を2枚準備し、これら2枚の試験片を互いの内側層が内側になるようにして重ね合わせた後、幅15mmにわたって全面のヒートシールを行って熱封止部(ヒートシール部)を形成した。前記ヒートシールは、テスター産業株式会社製のヒートシール装置(TP−701−A)を用いて、ヒートシール温度200℃、シール圧0.2MPa(ゲージ表示圧)で2秒間の片面加熱により行った。
<Method for measuring seal breaking energy of exterior materials>
A test piece is obtained by cutting the exterior material into a strip shape having a width of 15 mm and a length of 100 mm. Two test pieces were prepared, and these two test pieces were superposed on each other with their inner layers facing inward, and then heat-sealed on the entire surface over a width of 15 mm to form a heat-sealed portion (heat-sealed portion). ) Was formed. The heat-sealing was performed by using a heat-sealing device (TP-701-A) manufactured by Tester Sangyo Co., Ltd., with one side of the heat-sealing temperature of 200° C. and a sealing pressure of 0.2 MPa (gauge display pressure) for 2 seconds. ..

次に、JIS Z0238−1998に準拠して、前記ヒートシールされた2枚の試験片についてその剥離強度を測定した。前記ヒートシールされた2枚の試験片の長さ方向の一端を内側層同士の界面で剥離せしめ、この剥離端部をチャックして引張速度(グリップ移動速度)100mm/分で180度剥離することによって剥離強度を測定し、これをシール強度(N/15mm幅)とした。この剥離強度の測定時には、「剥離強度(縦軸)」対「グリップ変位(横軸)」チャートデータを記録する。前記剥離強度(N)対グリップ変位(mm)チャート(曲線図)における曲線(剥離開始から剥離完了に至るまでの曲線)の下側の面積を計算してシール破壊エネルギー(J)を求める。 Next, according to JIS Z0238-1998, the peel strength of the two heat-sealed test pieces was measured. One end in the length direction of the two heat-sealed test pieces is peeled off at the interface between the inner layers, and the peeled end is chucked and peeled 180 degrees at a pulling speed (grip moving speed) of 100 mm/min. The peel strength was measured by and the result was taken as the seal strength (N/15 mm width). At the time of measuring the peel strength, the "peeling strength (vertical axis)" vs. "grip displacement (horizontal axis)" chart data is recorded. The area under the curve (curve from the start of peeling to the completion of peeling) in the peel strength (N) vs. grip displacement (mm) chart (curve diagram) is calculated to obtain the seal breaking energy (J).

なお、前記「剥離完了」とは、前記ヒートシールされた2枚の試験片の長さ方向の一端から剥離を開始した後(剥離開始後)、熱融着した内側層(シーラント層)同士が完全に剥離した状態に達した状態を意味するものである。この剥離完了時には前記剥離強度が0になる。 The term “completion of peeling” means that after the peeling is started from one end in the length direction of the two heat-sealed test pieces (after the peeling is started), the heat-sealed inner layers (sealant layers) are separated from each other. It means a state in which a completely peeled state is reached. Upon completion of this peeling, the peel strength becomes zero.

上記のようにして得られた各蓄電デバイス用外装材に対して下記評価法に基づいて性能評価を行った。その結果を表1に示す。 The performance evaluation was performed on each of the exterior materials for an electricity storage device obtained as described above based on the following evaluation method. The results are shown in Table 1.

<剥離界面の凝集度の評価法>
上記シール破壊エネルギーを測定した後(剥離完了後)の外装材の内側層の剥離部(破壊部)の両面を目視で観察し、剥離部(破壊部)の両面の白化の有無や程度(白化が強いほど凝集度が大きいと判断できる)を下記判定基準に基づいて評価した。
(判定基準)
白化が顕著に生じていて凝集度の大きいものを「○」、白化がある程度生じていて凝集度が中程度のものを「△」、白化が認められないか又は白化が殆どなくて凝集度の低いものを「×」とした。
<Evaluation method of degree of aggregation of peeling interface>
After measuring the seal breaking energy (after completion of peeling), visually inspect both surfaces of the peeling portion (breaking portion) of the inner layer of the exterior material, and determine whether or not whitening occurs on both sides of the peeling portion (breaking portion) (whitening). It can be judged that the stronger the value is, the larger the cohesion degree is) based on the following criteria.
(Criteria)
If the whitening is significant and the degree of coagulation is large, it is "○". If the whitening is occurring to some extent and the degree of coagulation is moderate, it is "△". The low one was marked with "x".

<衝突試験法>
各実施例、比較例ごとにそれぞれ矩形状の外装材を2枚作成し、一方の外装材に対して深絞り成形を行うことによって、縦55mm、横30mm、深さ5.5mmの立体形状(上面開放の略直方体形状)に成形された収容ケースと、該収容ケースの上面開放口の周縁から略水平方向の外方に向けて延ばされた幅5mmの封止用周縁部とを有する立体成形体を得た。前記立体成形体の凹部内に電池本体部(ポリプロピレン製の模擬品)を入れた後、さらに電解液5mLを中に注入し、次いで前記立体成形体の封止用周縁部の内側層に、他方の(もう1枚の)平面状の外装材(成形がなされていないもの)の内側層の周縁部を重ね合わせて、200℃に加熱した金属製熱板にて2秒間ヒートシールして熱封止部(ヒートシール部)を形成することによって、模擬電池を得た。なお、電解液としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)が等量体積比で配合された混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)が濃度1モル/Lで溶解された電解質を用いた。各実施例、比較例ごとに10個の模擬電池を作成した。
<Crash test method>
Two rectangular exterior materials were prepared for each of the examples and comparative examples, and one exterior material was subjected to deep drawing to obtain a three-dimensional shape (length 55 mm, width 30 mm, depth 5.5 mm ( A solid body having a housing case formed in a substantially rectangular parallelepiped shape with an open upper surface, and a sealing peripheral portion having a width of 5 mm extending outward from the peripheral edge of the upper surface opening of the housing case in a substantially horizontal direction. A molded body was obtained. After the battery body (simulated product made of polypropylene) was placed in the recess of the three-dimensional molded body, 5 mL of the electrolytic solution was further injected therein, and then the inner layer of the sealing peripheral edge of the three-dimensional molded body, the other (Another sheet) of the flat exterior material (which has not been molded) is overlapped with the peripheral edge of the inner layer, and heat-sealed for 2 seconds with a metal hot plate heated to 200° C. A simulated battery was obtained by forming a stop portion (heat seal portion). In addition, as the electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) had a concentration of 1 in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed in an equal volume ratio. An electrolyte dissolved at mol/L was used. Ten simulated batteries were created for each example and comparative example.

次に、模擬電池の上面(平面部)の上に直径15mmの丸棒を安定状態に載置した後、9kgの球形の金属製錘を丸棒の上に落下させて、下記判定基準に基づいて外装材の破断防止性を評価した。
(判定基準)
「○」…10個の模擬電池のうち錘の落下により外装材が中央部(最大平面部)で破断したものが0個又は1個である
「△」…10個の模擬電池のうち錘の落下により外装材が中央部(最大平面部)で破断したものが2個である
「×」…10個の模擬電池のうち錘の落下により外装材が中央部(最大平面部)で破断したものが3個〜10個である。
Next, after mounting a round bar having a diameter of 15 mm in a stable state on the upper surface (flat surface portion) of the simulated battery, a 9 kg spherical metal weight was dropped on the round bar, and based on the following criteria. The breakage prevention property of the exterior material was evaluated.
(Criteria)
“O”: 0 or 1 of the 10 simulated batteries was broken at the center (maximum flat surface) of the outer casing due to the weight falling. “Δ”: Of the 10 simulated batteries, Two pieces of the exterior material broke at the central portion (maximum plane portion) due to falling "x"... Out of the 10 simulated batteries, the exterior material ruptured at the center portion (maximum plane portion). Is 3 to 10.

<総合判定>
上記剥離界面の凝集度の評価および衝突試験評価のいずれの評価結果も「○」であるものを「◎」(特に優れている)とし、2つの評価結果のうちいずれか1つが「○」で、他方が「△」であるものを「○」(優れている)とし、2つの評価結果の両方が「△」であるものを「△」(ほぼ良好である)とし、2つの評価結果のうち少なくとも1つが「×」であるものを「×」(良好でない)とした。
<Comprehensive judgment>
The evaluation result of both the cohesion degree of the peeling interface and the collision test evaluation is "○" (excellently excellent), and one of the two evaluation results is "○". If the other is “△”, it is “○” (excellent), and if both of the two evaluation results are “△”, it is “△” (almost good). The one in which at least one of them was "x" was defined as "x" (not good).

表1から明らかなように、本発明の実施例1〜5の蓄電デバイス用外装材は、外部から衝撃を受けても外装材の中央部(最大平面部)で破断、破裂が生じ難くて、外部から衝撃を受けても短絡を生じ難い。また、本発明の実施例1〜5の蓄電デバイス用外装材は、ヒートシール部(熱封止部)の剥離界面の白化の程度が大きいことからヒートシール部の剥離界面の凝集度が高く、従って蓄電デバイスが外部から衝撃を受けた際には、外装材の熱可塑性樹脂層同士のヒートシール面が凝集剥離で剥離し易いことによって(選択的にヒートシール部での剥離や凝集破壊が生じやすいことによって)外装材の破断、破裂をより十分に抑制できることがわかる。 As is clear from Table 1, the power storage device exterior materials of Examples 1 to 5 of the present invention are less likely to be broken or ruptured at the central portion (maximum flat surface portion) of the exterior material even when an external impact is applied, It is hard to cause a short circuit even if it receives an impact from the outside. In addition, since the exterior materials for power storage devices of Examples 1 to 5 of the present invention have a large degree of whitening at the peeling interface of the heat seal part (heat sealing part), the degree of aggregation at the peel interface of the heat seal part is high, Therefore, when the electricity storage device receives an impact from the outside, the heat-sealing surfaces of the thermoplastic resin layers of the exterior material are easily separated by cohesive peeling (selective peeling or cohesive failure at the heat-sealed portion occurs. It can be seen that breakage and rupture of the exterior material can be more sufficiently suppressed (because it is easy).

これに対し、蓄電デバイス用外装材の破壊エネルギーが本発明の規定範囲より小さい比較例1では、衝突試験結果が良好ではなかった。また、耐熱性樹脂フィルムの破壊エネルギーが本発明の規定範囲より小さい比較例2では、衝突試験結果が良好ではなかった。また、蓄電デバイス用外装材の破壊エネルギーが本発明の規定範囲より小さく、かつシール破壊エネルギーが0.50J未満である比較例3では、剥離界面の凝集度が低いし、衝突試験結果も良好ではなかった。 On the other hand, in Comparative Example 1 in which the fracture energy of the exterior material for an electricity storage device was smaller than the specified range of the present invention, the result of the collision test was not good. Further, in Comparative Example 2 in which the fracture energy of the heat resistant resin film was smaller than the specified range of the present invention, the result of the collision test was not good. Further, in Comparative Example 3 in which the breaking energy of the exterior material for an electricity storage device is smaller than the specified range of the present invention and the seal breaking energy is less than 0.50 J, the degree of cohesion at the peeling interface is low and the collision test result is not good. There wasn't.

本発明に係る蓄電デバイス用外装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)などの蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材として用いられる。また、本発明に係る蓄電デバイスは、上記例示した蓄電デバイスの他、全固体電池も含む。
Specific examples of the exterior material for an electricity storage device according to the present invention include:
-Used as an outer packaging material for various power storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.), lithium ion capacitors, electric double layer capacitors, etc. Further, the electricity storage device according to the present invention includes an all-solid-state battery in addition to the electricity storage device exemplified above.

1…蓄電デバイス用外装材
2…耐熱性樹脂フィルム層(外側層)
3…熱可塑性樹脂層(内側層)
4…金属箔層
5…第1接着剤層
6…第2接着剤層
11…成形ケース
19…蓄電デバイス本体部
20…蓄電デバイス
1... Exterior material for electricity storage device 2... Heat-resistant resin film layer (outer layer)
3... Thermoplastic resin layer (inner layer)
4... Metal foil layer 5... 1st adhesive layer 6... 2nd adhesive layer 11... Molding case 19... Electric storage device main part 20... Electric storage device

Claims (5)

外側層としての耐熱性樹脂フィルム層と、内側層としての熱可塑性樹脂層と、これら両層間に配設された金属箔層とを含む蓄電デバイス用外装材であって、
前記蓄電デバイス用外装材の破壊エネルギーが1.5J以上であり、
前記耐熱性樹脂フィルムの破壊エネルギーが1.3J以上であり、
前記内側層は、前記蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態のシール破壊エネルギーが0.48J以上である熱可塑性樹脂層からなり、
前記蓄電デバイス用外装材の総膜厚が74μm〜92μmであることを特徴とする蓄電デバイス用外装材。
A heat-resistant resin film layer as an outer layer, a thermoplastic resin layer as an inner layer, and a packaging material for an electricity storage device including a metal foil layer disposed between these layers,
The breaking energy of the exterior material for the electricity storage device is 1.5 J or more,
The breaking energy of the heat-resistant resin film is Ri der least 1.3 J,
The inner layer is made of a thermoplastic resin layer having a seal breaking energy of 0.48 J or more in a heat-sealed joined state between the thermoplastic resin layers of the exterior material for an electricity storage device,
The outer casing material for an electricity storage device has a total film thickness of 74 μm to 92 μm.
前記内側層は、前記蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態のシール破壊エネルギーが0.50J以上である熱可塑性樹脂層からなる請求項1に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1, wherein the inner layer is formed of a thermoplastic resin layer having a seal breaking energy of 0.50 J or more in a heat-sealed state between the thermoplastic resin layers of the exterior material for the electricity storage device. .. 前記蓄電デバイス用外装材の破壊エネルギーを「WFT」とし、前記蓄電デバイス用外装材の熱可塑性樹脂層同士のヒートシール接合状態のシール破壊エネルギーを「WP」としたとき、(WFT/WP)>2.0である請求項1または2に記載の蓄電デバイス用外装材。 When the destructive energy of the exterior material for an electricity storage device is “W FT ”, and the seal fracture energy of the heat-sealed joint state between the thermoplastic resin layers of the exterior material for an electricity storage device is “W P ”, (W FT / The exterior material for an electricity storage device according to claim 1 or 2, wherein W P )>2.0. 前記熱可塑性樹脂層は、エラストマー成分を含有したオレフィン系樹脂を含む中間層の両面に、オレフィン系樹脂を含む被覆層が積層された3層積層構造を少なくとも含み、
前記中間層は、前記エラストマー成分が島になっている海島構造を備えていることを特徴とする請求項1〜3のいずれか1項に記載の蓄電デバイス用外装材。
The thermoplastic resin layer includes at least a three-layer laminated structure in which a coating layer containing an olefin resin is laminated on both surfaces of an intermediate layer containing an olefin resin containing an elastomer component,
The exterior material for an electricity storage device according to claim 1, wherein the intermediate layer has a sea-island structure in which the elastomer component is an island.
蓄電デバイス本体部と、
請求項1〜4のいずれか1項に記載の蓄電デバイス用外装材とを備え、
前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
An electricity storage device body,
An exterior material for an electricity storage device according to any one of claims 1 to 4,
An electricity storage device, wherein the electricity storage device body is covered with the exterior material.
JP2016053402A 2016-03-17 2016-03-17 Exterior material for power storage device and power storage device Active JP6738171B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016053402A JP6738171B2 (en) 2016-03-17 2016-03-17 Exterior material for power storage device and power storage device
KR1020170026067A KR20170108823A (en) 2016-03-17 2017-02-28 Exterior material for electricity storage device and electricity storage device
CN201710147482.7A CN107204406B (en) 2016-03-17 2017-03-13 Outer packaging material for electricity storage device and electricity storage device
TW106108207A TWI716560B (en) 2016-03-17 2017-03-13 Exterior materials for power storage devices and power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053402A JP6738171B2 (en) 2016-03-17 2016-03-17 Exterior material for power storage device and power storage device

Publications (2)

Publication Number Publication Date
JP2017168342A JP2017168342A (en) 2017-09-21
JP6738171B2 true JP6738171B2 (en) 2020-08-12

Family

ID=59904893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053402A Active JP6738171B2 (en) 2016-03-17 2016-03-17 Exterior material for power storage device and power storage device

Country Status (4)

Country Link
JP (1) JP6738171B2 (en)
KR (1) KR20170108823A (en)
CN (1) CN107204406B (en)
TW (1) TWI716560B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936093B2 (en) * 2017-09-28 2021-09-15 昭和電工パッケージング株式会社 Exterior material for power storage device, exterior case for power storage device and power storage device
JP6979847B2 (en) * 2017-10-16 2021-12-15 昭和電工パッケージング株式会社 Exterior materials for power storage devices and power storage devices
KR102555751B1 (en) 2017-10-17 2023-07-14 주식회사 엘지에너지솔루션 Gas Dischargeable Pouch-Type Case for Secondary Battery
JP7324611B2 (en) * 2018-05-25 2023-08-10 株式会社レゾナック・パッケージング Laminate for molded container, molded container and package

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195475A (en) * 1998-12-25 2000-07-14 Mitsubishi Chemicals Corp Secondary battery
JP4922544B2 (en) * 2003-07-04 2012-04-25 昭和電工パッケージング株式会社 Method for producing battery case packaging material
JP2005116322A (en) * 2003-10-07 2005-04-28 Sumitomo Electric Ind Ltd Packaging material for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2005259621A (en) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd Laminated film sheathed battery
JP4732884B2 (en) * 2005-12-15 2011-07-27 昭和電工パッケージング株式会社 Electronic parts case packaging and electronic parts case
JP5114260B2 (en) * 2007-03-30 2013-01-09 大日本印刷株式会社 Packaging material for flat electrochemical cells
TWI511351B (en) * 2010-10-14 2015-12-01 Toppan Printing Co Ltd Lithium-ion battery exterior materials
JP5840923B2 (en) * 2011-11-07 2016-01-06 昭和電工パッケージング株式会社 Battery exterior body, method for producing battery exterior body, and lithium secondary battery
JP5891806B2 (en) * 2012-01-23 2016-03-23 デクセリアルズ株式会社 Battery case packaging material and secondary battery
KR102269306B1 (en) * 2013-09-24 2021-06-25 도판 인사츠 가부시키가이샤 Outer package for power storage device
WO2016010044A1 (en) * 2014-07-16 2016-01-21 凸版印刷株式会社 Casing material for electricity storage device and electricity storage device including same
JP6135711B2 (en) * 2015-06-04 2017-05-31 凸版印刷株式会社 Exterior materials for lithium-ion batteries

Also Published As

Publication number Publication date
CN107204406B (en) 2022-08-12
JP2017168342A (en) 2017-09-21
TWI716560B (en) 2021-01-21
KR20170108823A (en) 2017-09-27
TW201735419A (en) 2017-10-01
CN107204406A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
US10109826B2 (en) Secondary battery
CN104916791B (en) Packaging material, battery outer case, and battery
JP7381528B2 (en) Exterior material for power storage devices and power storage devices
JP5347411B2 (en) Packaging materials for electrochemical cells
JP5169112B2 (en) Flat type electrochemical cell metal terminal sealing adhesive sheet
JP2014146613A (en) Pouch type lithium secondary battery
JP6738171B2 (en) Exterior material for power storage device and power storage device
JP6121710B2 (en) Battery exterior material and lithium secondary battery
JP2024026062A (en) Outer packaging material for all-solid-state batteries
JP6738164B2 (en) Exterior material for power storage device and power storage device
JP6738189B2 (en) Exterior material for power storage device and power storage device
JP6174947B2 (en) Electrochemical device with safety device and safety device for electrochemical device
JP2017068955A (en) Sealant film for exterior package material of power storage device, exterior package material for power storage device, and power storage device
JP2021177488A (en) Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same
JP5899880B2 (en) Electrochemical cell packaging material and electrochemical cell using the same
JP2016207592A (en) Power storage device
JP2011138793A (en) Packaging material for polymer battery
JP6171294B2 (en) Exterior material for lithium ion battery and lithium ion battery using the same
JP6574366B2 (en) Sealant film for exterior material of electricity storage device, exterior material for electricity storage device, and electricity storage device
JP2019140059A (en) Power storage device exterior material and power storage device
JP2023054053A (en) Exterior material for power storage device and power storage device
KR20140062294A (en) Pouch for polymer cell and a method of making the same
JP2020064868A (en) Sealant film for exterior package material of power storage device, exterior package material for power storage device, power storage device, and method for manufacturing resin composition for sealant film of power storage device exterior package material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200717

R150 Certificate of patent or registration of utility model

Ref document number: 6738171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250