JP6738010B2 - Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties - Google Patents

Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties Download PDF

Info

Publication number
JP6738010B2
JP6738010B2 JP2016019723A JP2016019723A JP6738010B2 JP 6738010 B2 JP6738010 B2 JP 6738010B2 JP 2016019723 A JP2016019723 A JP 2016019723A JP 2016019723 A JP2016019723 A JP 2016019723A JP 6738010 B2 JP6738010 B2 JP 6738010B2
Authority
JP
Japan
Prior art keywords
nickel
weight
based alloy
high temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016019723A
Other languages
Japanese (ja)
Other versions
JP2017137534A (en
Inventor
茂太 小澤
茂太 小澤
宜治 島田
宜治 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2016019723A priority Critical patent/JP6738010B2/en
Publication of JP2017137534A publication Critical patent/JP2017137534A/en
Application granted granted Critical
Publication of JP6738010B2 publication Critical patent/JP6738010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、自動車用エンジン部品、特に排気バルブ等の高温雰囲気下で用いられるニッケル基合金に関する。 The present invention relates to an automobile engine component, particularly a nickel-base alloy used in a high temperature atmosphere such as an exhaust valve.

近年、自動車の燃費向上の進展には目覚しいものがあり、例えば自動車エンジンを従来よりも一回り小型化かつ軽量化し、不足する出力はターボチャージャーを組み合わせることで、その不足分の出力を補う省燃費ターボが主流になりつつある。 In recent years, there has been remarkable progress in improving fuel efficiency of automobiles.For example, by reducing the size and weight of automobile engines by a smaller amount than before, and combining the insufficient output with a turbocharger, the fuel saving to compensate for the insufficient output is achieved. Turbo is becoming mainstream.

そのような自動車用エンジン部品に用いられる材料として、例えば特許文献1では重量%で0.01〜0.1%C、0〜0.5%Si、0〜0.5%Mn、23%を超えて25%以下のCr、0.5〜1.5%Nb、2.0〜3.0%Ti、1.0〜2.0%Al、45%を超えて50%以下のNi、0.1〜1.2%Cu、0.3〜2.0%W等から構成されるニッケル基合金が開示されている。当該ニッケル基合金は、900℃における高温引張強度に優れていること、および800℃での長時間時効処理後でも高硬度が得られることから弁用耐熱合金として有用であることが説明されている。 As a material used for such an automobile engine part, for example, in Patent Document 1, 0.01 to 0.1% C, 0 to 0.5% Si, 0 to 0.5% Mn, and 23% by weight are used. More than 25% Cr, 0.5-1.5% Nb, 2.0-3.0% Ti, 1.0-2.0% Al, more than 45% and 50% Ni, 0 A nickel-based alloy composed of 0.1 to 1.2% Cu, 0.3 to 2.0% W, etc. is disclosed. It is described that the nickel-based alloy is useful as a heat-resistant alloy for valves because it has excellent high-temperature tensile strength at 900° C. and high hardness even after long-term aging treatment at 800° C. ..

また、特許文献2には、重量%で40〜49%Ni、1.2〜1.8%Al、2.0〜3.0%Ti、0.9〜7.8%Nb、1%以下のMo等から構成されるニッケル基合金が開示されている。当該ニッケル基合金は、耐食性および耐摩耗性に優れていることから ディーゼルエンジン部品(特に排気バルブ部品)として有用であることが説明されている。 In addition, in Patent Document 2, 40 to 49% Ni, 1.2 to 1.8% Al, 2.0 to 3.0% Ti, 0.9 to 7.8% Nb, and 1% or less by weight%. A nickel-based alloy composed of Mo or the like is disclosed. It is described that the nickel-based alloy is useful as a diesel engine part (particularly, an exhaust valve part) because it has excellent corrosion resistance and wear resistance.

特開平4−191344号公報JP-A-4-191344 特表2004−512428号公報Japanese Patent Publication No. 2004-512428

しかし、特許文献1のニッケル基合金では800℃雰囲気下で300時間という長時間の時効処理後でも一定の高硬度(例えば、ロックウェルのCスケールでHRC38〜39)を保持していることは説明されているが、その高硬度が得られるまでに必要な時効処理の時間が比較的に長くなるという問題があった。 However, it is explained that the nickel-based alloy of Patent Document 1 maintains a certain high hardness (for example, HRC 38 to 39 on the Rockwell C scale) even after a long time aging treatment of 800 hours in an atmosphere of 800°C. However, there is a problem that the aging treatment time required until the high hardness is obtained is relatively long.

また、特許文献2のニッケル基合金も同様に800℃近傍の時効処理を行うことでも高硬度(例えば、ロックウェルのCスケールでHRC27〜28)が得られることが説明されているが、その高硬度が得られるまでに必要な時効処理の時間が比較的に長いという問題があった。 Further, it is described that the nickel-based alloy of Patent Document 2 can also obtain high hardness (for example, HRC27 to 28 on the Rockwell C scale) by similarly performing an aging treatment at around 800° C., which is high. There is a problem that the aging time required for obtaining hardness is relatively long.

さらに、上述したように自動車エンジンの小型化、軽量化に伴い、自動車用エンジンの排気ガス温度が900〜1000℃近傍に達する場合もあり、特許文献1および2に記載のニッケル基合金では高温強度や高温クリープ特性が不足するという問題があった。 Further, as described above, with the downsizing and weight reduction of the automobile engine, the exhaust gas temperature of the automobile engine may reach around 900 to 1000° C., and the nickel-based alloys described in Patent Documents 1 and 2 have high-temperature strength. There was a problem that the high temperature creep property was insufficient.

そこで、本発明においては従来のニッケル基合金に比べて、900℃以上の温度域における高温強度に優れたニッケル基合金を提供することを課題とする。 Therefore, it is an object of the present invention to provide a nickel-base alloy that is superior in high temperature strength in a temperature range of 900° C. or higher as compared with the conventional nickel-base alloy.

前述した課題を解決するために、本発明に係るニッケル基合金は、重量%で、0.01〜0.05%C、0.1〜0.5%Si、0.1〜0.5%Mn、0.001〜0.01%B、21%Cr、0.7〜1.3%Nb、2.0〜3.2%Ti、1.2〜2.2%Al、51%Ni、0.3〜1.0%Cu、2.5%Mo、1.0〜2.0%Wを含有し、残部がFeおよび不可避不純物からなるニッケル基合金とした。 In order to solve the above-described problems, the nickel-based alloy according to the present invention has a weight percentage of 0.01 to 0.05% C, 0.1 to 0.5% Si, and 0.1 to 0.5%. Mn, 0.001 to 0.01% B, 21% Cr , 0.7 to 1.3% Nb, 2.0 to 3.2% Ti, 1.2 to 2.2% Al, 51% Ni , A nickel-based alloy containing 0.3 to 1.0% Cu, 2.5% Mo , 1.0 to 2.0% W, and the balance being Fe and inevitable impurities was prepared.

また、本発明に係るニッケル基合金は、Tiの含有量とAlの含有量との総和重量%で4.0%以上とした。 In addition, in the nickel-based alloy according to the present invention , the total of the content of Ti and the content of Al is set to 4.0% or more by weight % .

本発明に係るニッケル基合金は、前述した従来のニッケル基合金に比べて、900℃以上の高温雰囲気における引張強度が向上するという効果を奏する。また、本発明に係るニッケル基合金においては、優れた高温クリープ特性を有することができる。したがって、本発明に係るニッケル基合金は900℃以上の高温雰囲気下に長時間晒される自動車用排気バルブ部品には好適である。 INDUSTRIAL APPLICABILITY The nickel-based alloy according to the present invention has an effect of improving the tensile strength in a high temperature atmosphere of 900° C. or higher as compared with the above-mentioned conventional nickel-based alloy. Further, the nickel-based alloy according to the present invention can have excellent high temperature creep properties. Therefore, the nickel-based alloy according to the present invention is suitable for automobile exhaust valve parts that are exposed to a high temperature atmosphere of 900° C. or higher for a long time.

本発明の実施の形態の一例について説明する。本発明に係るニッケル基合金を構成する成分およびその成分範囲を限定した理由について、以下に詳しく説明する。 An example of the embodiment of the present invention will be described. The components constituting the nickel-based alloy according to the present invention and the reasons for limiting the component range will be described in detail below.

C(炭素)の含有量は、0.01〜0.05重量%とする。Cは、Ti、Nb及びCrと結合して炭化物を形成し、高温強度を改善する。このような効果を得るためには、少なくとも、0.01重量%以上の添加が必要である。しかし、過剰に添加すると、MC炭化物を多量に生成して、熱間加工性を低下させるため、上限を0.05重量%とした。 The content of C (carbon) is 0.01 to 0.05% by weight. C combines with Ti, Nb and Cr to form a carbide, which improves the high temperature strength. In order to obtain such effects, it is necessary to add at least 0.01% by weight. However, if added excessively, a large amount of MC carbides are generated and the hot workability is deteriorated, so the upper limit was made 0.05% by weight.

Si(ケイ素)の含有量は、0.1〜0.5重量%とする。Siは、脱酸元素として添加される。また、適量の添加は耐酸化性を改善する。しかし、過剰に添加すると延性の低下をきたすため、上限を0.5重量%とした。 The content of Si (silicon) is 0.1 to 0.5% by weight. Si is added as a deoxidizing element. Further, addition of a proper amount improves the oxidation resistance. However, if added excessively, ductility is deteriorated, so the upper limit was made 0.5% by weight.

Mn(マンガン)の含有量は、0.1〜0.5重量%とする。MnもSiと同様に脱酸元素として添加されるが、過剰に添加すると高温強度の低下をきたすため、上限を0.5重量%とした。 The content of Mn (manganese) is set to 0.1 to 0.5% by weight. Mn is also added as a deoxidizing element like Si, but if added excessively, the high temperature strength will be deteriorated, so the upper limit was made 0.5% by weight.

B(ホウ素)の含有量は、0.001〜0.01重量%とする。Bは、結晶粒界を強化してクリープ強度を高めるほか、熱間加工性を改善する効果を持つ。このため、0.001重量%以上の添加が必要である。しかし、過剰に添加すると結晶粒界に低融点化合物を生成して熱間加工性を害するため、上限を0.01重量%とした。 The content of B (boron) is 0.001 to 0.01% by weight. B has the effect of strengthening the grain boundaries to increase the creep strength and improving the hot workability. Therefore, it is necessary to add 0.001% by weight or more. However, if added excessively, a low melting point compound is generated at the crystal grain boundaries to impair the hot workability, so the upper limit was made 0.01% by weight.

Cr(クロム)の含有量は、20.0〜23.5重量%とする。Crは、耐酸化性および耐食性を向上するのに不可欠な元素である。また、ある程度添加した場合は、針状組織が成長して耐クリープ特性の向上が認められる。しかし、過剰添加した場合、針状組織が粗大化して性能劣化を招くため、20.0〜23.5重量%とした。 The content of Cr (chrome) is 20.0 to 23.5% by weight. Cr is an essential element for improving the oxidation resistance and the corrosion resistance. Further, when added to some extent, an acicular structure grows and improvement in creep resistance is recognized. However, when excessively added, the needle-like structure becomes coarse and performance is deteriorated, so the content was made 20.0 to 23.5% by weight.

Nb(ニオブ)の含有量は、0.7〜1.3重量%とする。Nbは、Ni(Al,Ti,Nb)などの金属間化合物相を析出し、高温強度を向上する。また、Cと結合して炭化物NbCを生成し、高温硬さおよび強度の向上に寄与する。ただし、過剰添加すると材料を脆化させるので、0.7〜1.3重量%とした。 The content of Nb (niobium) is 0.7 to 1.3% by weight. Nb precipitates an intermetallic compound phase such as Ni 3 (Al, Ti, Nb) and improves high temperature strength. Further, it combines with C to form a carbide NbC, which contributes to improvement in high temperature hardness and strength. However, if added excessively, the material becomes brittle, so it was set to 0.7 to 1.3% by weight.

Ti(チタン)の含有量は、2.0〜3.2重量%とする。Tiは、Niと結合して金属間化合物γ’相を形成し、オーステナイト相を強化する。Tiを増量すれば強化相であるγ’相の量は増加し、高温強度は向上する。しかし、過剰に添加すると、脆化相の析出をまねいてしまい、素材の熱間成形性を阻害するので、その添加範囲を2.0〜3.2重量%に限定した。 The content of Ti (titanium) is 2.0 to 3.2% by weight. Ti combines with Ni to form an intermetallic compound γ'phase and strengthens the austenite phase. If the amount of Ti is increased, the amount of the γ'phase, which is the strengthening phase, is increased, and the high temperature strength is improved. However, if added excessively, the embrittlement phase is precipitated and the hot formability of the raw material is impaired. Therefore, the addition range is limited to 2.0 to 3.2% by weight.

Al(アルミニウム)の含有量は、1.2〜2.2重量%とする。Alは、Niと結合して金属間化合物γ’相を形成し、オーステナイト相を強化する重要な元素である。Alを増量すれば強化相であるγ’相の量は増加し、高温強度は向上する。しかし、過剰に添加すると、強化相が不安定となり脆化相の析出をまねく。このため、素材の熱間成形性を阻害するので、その添加範囲を1.2〜2.2重量%に限定した。 The content of Al (aluminum) is 1.2 to 2.2% by weight. Al is an important element that combines with Ni to form an intermetallic compound γ'phase and strengthen the austenite phase. If the amount of Al is increased, the amount of the γ'phase which is the strengthening phase is increased and the high temperature strength is improved. However, if added excessively, the strengthening phase becomes unstable and the embrittlement phase is precipitated. Therefore, the hot formability of the raw material is impaired, so the addition range is limited to 1.2 to 2.2% by weight.

Ni(ニッケル)の含有量は、50〜53重量%とする。Niは、マトリックスであるオーステナイト基地を形成するため不可欠である。また、析出強化相であるγ’相を形成し、高温強度を向上させる。強化元素を固溶させるため、ある程度の量が必要であり、添加量の下限は50重量%以上とした。ただし、過剰添加した場合、合金のコスト上昇を招き、また耐硫化腐食性が悪化するので、上限を53重量%とした。 The content of Ni (nickel) is 50 to 53% by weight. Ni is essential for forming an austenite matrix that is a matrix. Further, it forms a γ'phase which is a precipitation strengthening phase and improves high temperature strength. A certain amount is required to form a solid solution with the strengthening element, and the lower limit of the amount added is 50% by weight or more. However, if added excessively, the cost of the alloy increases and the sulfidation corrosion resistance deteriorates, so the upper limit was made 53 wt %.

Cu(銅)の含有量は、0.3〜1.0重量%とする。Cuは、硫化物系腐食の改善を目的として添加する。過剰添加した場合は熱間脆化を生じるため、その含有量を0.3〜1.0重量%に限定した。 The content of Cu (copper) is 0.3 to 1.0% by weight. Cu is added for the purpose of improving sulfide-based corrosion. When added excessively, hot embrittlement occurs, so the content was limited to 0.3 to 1.0% by weight.

Mo(モリブデン)の含有量は、1.5〜3.0重量%とする。Moは、熱間強度を達成する析出強化相が固溶する温度範囲において、固溶強化により高温強度および高温クリープ特性を向上させる元素である。1.5重量%未満の含有量では高温強度および高温クリープ特性を向上させる効果が発現せず、3.0重量%を超える含有量では熱間加工性に有害となるために含有量を限定した。 The content of Mo (molybdenum) is 1.5 to 3.0% by weight. Mo is an element that improves the high temperature strength and the high temperature creep properties by solid solution strengthening in the temperature range in which the precipitation strengthening phase that achieves hot strength is in solid solution. When the content is less than 1.5% by weight, the effect of improving the high temperature strength and the high temperature creep property is not exhibited, and when the content exceeds 3.0% by weight, it is harmful to the hot workability, so the content is limited. ..

W(タングステン)の含有量は、1.0〜2.0重量%とする。Wは、熱間強度を達成する析出強化相が固溶する温度範囲において、固溶強化により高温強度および高温クリープ特性を向上させる元素である。1.0重量%未満の含有量では高温強度および高温クリープ特性を向上させる効果が発現せず、2.0重量%を超える含有量では熱間加工性に有害となるために含有量の上限を限定した。 The content of W (tungsten) is 1.0 to 2.0% by weight. W is an element that improves the high temperature strength and the high temperature creep property by solid solution strengthening in the temperature range in which the precipitation strengthening phase that achieves hot strength is in solid solution. If the content is less than 1.0% by weight, the effect of improving the high temperature strength and the high temperature creep property is not exhibited, and if the content exceeds 2.0% by weight, it becomes harmful to the hot workability, so the upper limit of the content is set. Limited

本発明に係るニッケル基合金(以下、本発明材という)および従来のニッケル基合金(以下、従来材という)を用いて、高温における引張試験を行ったので、その試験結果について説明する。本試験において、本発明材および従来材共に真空溶解炉で原材料を溶解させて鋼塊を作製し、1050℃で1時間の溶体化処理した後、水冷したものを用いた。試験片については、その鋼塊から直径16mm、高さ15mmの円柱状の試験片を作製して、時効処理を行った。 A tensile test at high temperature was performed using the nickel-based alloy according to the present invention (hereinafter referred to as the present invention material) and the conventional nickel-based alloy (hereinafter referred to as the conventional material). The test results will be described. In this test, raw materials were melted in a vacuum melting furnace for both the material of the present invention and a conventional material to prepare a steel ingot, which was solution-treated at 1050° C. for 1 hour and then water-cooled. As for the test piece, a cylindrical test piece having a diameter of 16 mm and a height of 15 mm was prepared from the steel ingot and subjected to an aging treatment.

時効処理の条件については、時効温度は750℃、時効時間については4時間として行った。本実施例の本発明材および従来材の化学組成を表1に示す。 The aging temperature was 750° C. and the aging time was 4 hours. Table 1 shows the chemical compositions of the material of the present invention and the conventional material of this example.

Figure 0006738010
Figure 0006738010

使用した試験片は、平行部が直径6mm、長さ25mmとなるように、前述の鋼塊から作製した直径16mmの圧延材より切削加工して製作した。試験条件は、室温、800℃および900℃の計3水準の雰囲気に試験片を20分間均熱保持した後、引張速度2mm/minで引張試験を行い、試験片が破断する際の強度(引張強度:単位MPa)、0.2%耐力(単位:MPa)、伸び(単位:%)および絞り(単位:%)をそれぞれ測定した。本発明材および従来材の室温、800℃および900℃における引張強度などの諸特性を表2〜4に示す。 The test piece used was manufactured by cutting from a rolled material having a diameter of 16 mm prepared from the above steel ingot so that the parallel part had a diameter of 6 mm and a length of 25 mm. The test conditions were as follows: the test piece was soaked and held in a total of three levels of atmosphere at room temperature, 800° C. and 900° C. for 20 minutes, and then a tensile test was performed at a pulling speed of 2 mm/min to determine the strength (tensile strength) at which the test piece broke. Strength: unit MPa), 0.2% proof stress (unit: MPa), elongation (unit: %) and drawing (unit: %) were measured. Tables 2 to 4 show various properties of the material of the present invention and the conventional material such as tensile strength at room temperature, 800°C and 900°C.

Figure 0006738010
Figure 0006738010
Figure 0006738010
Figure 0006738010
Figure 0006738010
Figure 0006738010

室温での引張強度は、表2に示すように本発明材は従来材に比べて引張強度および0.2%耐力ともにやや低い値となった。しかし、伸びおよび絞りについては本発明材の方が従来材に比べて、約4〜8倍の値を示す結果となった。 As shown in Table 2, the tensile strength at room temperature of the material of the present invention was slightly lower than that of the conventional material in both tensile strength and 0.2% proof stress. However, with respect to elongation and drawing, the material of the present invention has a result of showing about 4 to 8 times the value of the conventional material.

次に、800℃における引張強度は、表3に示すように従来材が669MPaであるのに対して、本発明材は689MPaであり、本発明材は従来材と同等以上の引張強度であった。 Next, as shown in Table 3, the tensile strength at 800° C. of the conventional material was 669 MPa, whereas the inventive material was 689 MPa, and the inventive material had a tensile strength equal to or higher than that of the conventional material. ..

また、0.2%耐力については、本発明材が645MPaであるのに対して、従来材は590MPaであった。このことから、800℃における本発明材の引張強度および0.2%耐力はともに従来材と同等以上の特性を有することがわかった。 Regarding the 0.2% proof stress, the material of the present invention was 645 MPa, whereas the conventional material was 590 MPa. From this, it was found that both the tensile strength and the 0.2% proof stress of the material of the present invention at 800° C. have characteristics equal to or higher than those of the conventional material.

また、900℃における引張強度も表4に示すように従来材は336MPaであったのに対して、本発明材は394MPaであった。さらに、0.2%耐力については、本発明材が394MPaであるのに対して、従来材は261MPaであった。したがって、本発明材は、従来材に比べて800〜900℃までの高温雰囲気において優れた引張強度および0.2%耐力を示すことがわかった。 Further, as shown in Table 4, the tensile strength at 900° C. was 336 MPa for the conventional material and 394 MPa for the material of the present invention. Further, regarding the 0.2% proof stress, the material of the present invention was 394 MPa, whereas the conventional material was 261 MPa. Therefore, it was found that the material of the present invention exhibits superior tensile strength and 0.2% proof stress in a high temperature atmosphere of 800 to 900° C. as compared with the conventional material.

次に、表1に示す本発明材および従来材を用いて高温におけるクリープ試験を行い、試験片が破断するまでの時間を測定したので、その結果について説明する。使用した試験片は、前述の鋼塊を1050℃で溶体化処理して、引き続き750℃で4時間の条件で時効処理を施して、冷却後に試験片を作製した。 Next, the creep test at high temperature was performed using the present invention material and the conventional material shown in Table 1, and the time until the test piece was broken was measured. The results will be described. The used test piece was obtained by subjecting the steel ingot to solution treatment at 1050° C., followed by aging treatment at 750° C. for 4 hours, and producing a test piece after cooling.

試験片は、平行部の直径が6.4mmになるように製作した。クリープ試験は、900℃の高温雰囲気にて試験片に70MPaを負荷した状態で行い、試験片が破断するまでの時間を測定した。本発明材および従来材を用いて作製した試験片がクリープ破断するまでの時間(破断時間)、試験片の伸び(単位:%)および絞り(単位:%)を表5に示す。 The test piece was manufactured so that the diameter of the parallel portion was 6.4 mm. The creep test was performed in a high temperature atmosphere of 900° C. with a load of 70 MPa applied to the test piece, and the time until the test piece broke was measured. Table 5 shows the time (breaking time) until creep rupture, the elongation (unit: %), and the drawing (unit: %) of the test piece manufactured using the material of the present invention and the conventional material.

Figure 0006738010
Figure 0006738010

本発明材および従来材のクリープ破断時間は、表5に示すように従来材が160時間で破断したことに対して、本発明材の破断時間は206時間であり、従来材よりも約1.3倍のクリープ特性が得られた。また、試験片の伸びや絞りも同様に、従来材の伸びが28%であるのに対して、本発明材の伸びは36%であった。絞りは従来材が59%であるのに対して、本発明材は32%であった。以上の結果から、本発明材は、従来材よりも高温雰囲気で優れたクリープ特性を有していることがわかった。 Regarding the creep rupture time of the present invention material and the conventional material, as shown in Table 5, the conventional material ruptured in 160 hours, whereas the rupture time of the present invention material was 206 hours, which was about 1. A creep property of 3 times was obtained. Similarly, with respect to the elongation and drawing of the test piece, the elongation of the conventional material was 28%, whereas the elongation of the material of the present invention was 36%. The diaphragm was 32% for the material of the present invention, whereas the conventional material was 59%. From the above results, it was found that the material of the present invention has better creep characteristics in the high temperature atmosphere than the conventional material.

Claims (1)

重量%で、0.01〜0.05%C、0.1〜0.5%Si、0.1〜0.5%Mn、0.001〜0.01%B、21%Cr、0.7〜1.3%Nb、TiとAlの総和が4.0%以上であって、51%Ni、0.3〜1.0%Cu、2.5%Mo、1.0〜2.0%Wを含有し、残部がFeおよび不可避不純物からなることを特徴とする高温強度特性および高温クリープ特性に優れたニッケル基合金。 % By weight, 0.01-0.05% C, 0.1-0.5% Si, 0.1-0.5% Mn, 0.001-0.01% B, 21% Cr , 0. 7 to 1.3% Nb, the total sum of Ti and Al is 4.0% or more, 51% Ni , 0.3 to 1.0% Cu, 2.5% Mo , 1.0 to 2.0 % Nickel, the balance being Fe and unavoidable impurities, and a nickel-base alloy excellent in high-temperature strength properties and high-temperature creep properties .
JP2016019723A 2016-02-04 2016-02-04 Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties Active JP6738010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019723A JP6738010B2 (en) 2016-02-04 2016-02-04 Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019723A JP6738010B2 (en) 2016-02-04 2016-02-04 Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties

Publications (2)

Publication Number Publication Date
JP2017137534A JP2017137534A (en) 2017-08-10
JP6738010B2 true JP6738010B2 (en) 2020-08-12

Family

ID=59566451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019723A Active JP6738010B2 (en) 2016-02-04 2016-02-04 Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties

Country Status (1)

Country Link
JP (1) JP6738010B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136472B (en) * 2018-10-10 2020-10-23 四川六合特种金属材料股份有限公司 High-temperature turbine blade and production method thereof
JP7205277B2 (en) * 2019-02-14 2023-01-17 日本製鉄株式会社 Heat-resistant alloy and its manufacturing method

Also Published As

Publication number Publication date
JP2017137534A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
US20130206287A1 (en) Co-based alloy
EP2826877A2 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
JP6733210B2 (en) Ni-based superalloy for hot forging
JP2011219864A (en) Heat resistant steel for exhaust valve
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP6293682B2 (en) High strength Ni-base superalloy
US9994938B2 (en) Fe-Ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance characteristics, and method for producing the same
JP6733211B2 (en) Ni-based superalloy for hot forging
US9745649B2 (en) Heat-resisting steel for exhaust valves
US20160215373A1 (en) Wear resistant alloy
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP2007113057A (en) Heat-resistant alloy having superior strength properties at high temperature for exhaust valve
JP6741876B2 (en) Alloy plate and gasket
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP7112317B2 (en) Austenitic steel sintered materials and turbine components
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP2015108177A (en) Nickel-based alloy
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP2004190060A (en) Heat-resistant alloy for engine valve
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JP2015120956A (en) Austenitic heat resistant casting alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6738010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150