JP6337514B2 - Precipitation hardening type Fe-Ni alloy and manufacturing method thereof - Google Patents

Precipitation hardening type Fe-Ni alloy and manufacturing method thereof Download PDF

Info

Publication number
JP6337514B2
JP6337514B2 JP2014039222A JP2014039222A JP6337514B2 JP 6337514 B2 JP6337514 B2 JP 6337514B2 JP 2014039222 A JP2014039222 A JP 2014039222A JP 2014039222 A JP2014039222 A JP 2014039222A JP 6337514 B2 JP6337514 B2 JP 6337514B2
Authority
JP
Japan
Prior art keywords
mass
alloy
precipitation hardening
hardening type
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014039222A
Other languages
Japanese (ja)
Other versions
JP2015004125A (en
Inventor
茉莉 ▲高▼橋
茉莉 ▲高▼橋
植田 茂紀
茂紀 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014039222A priority Critical patent/JP6337514B2/en
Priority to US14/278,179 priority patent/US20140345752A1/en
Priority to EP14169160.0A priority patent/EP2806047B1/en
Publication of JP2015004125A publication Critical patent/JP2015004125A/en
Application granted granted Critical
Publication of JP6337514B2 publication Critical patent/JP6337514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、析出硬化型Fe−Ni合金及びその製造方法に関し、さらに詳しくは、強度が高く、かつ耐食性に優れた析出硬化型Fe−Ni合金及びその製造方法に関する。 The present invention relates to precipitation hardening Fe-Ni alloy and a manufacturing method thereof, and more particularly, high strength, and relates to a high precipitation hardening Fe-Ni alloy and a manufacturing method thereof in corrosion resistance.

析出硬化型ステンレス鋼は、Cu、Al、Ti、Nb、Moなどの元素を添加して析出硬化させた鋼であり、高耐食性と高強度とを併せ持つ。特に、A286合金(SUH660)に代表されるオーステナイト系析出硬化型ステンレス鋼は、Fe基合金の中でも耐食性、強度とも優れた合金である。しかし、海洋環境で高強度を必要とする部材として使用するには、耐食性及び強度ともに不十分である。   Precipitation-hardening stainless steel is steel that is precipitation hardened by adding elements such as Cu, Al, Ti, Nb, and Mo, and has both high corrosion resistance and high strength. In particular, austenitic precipitation hardening stainless steel represented by A286 alloy (SUH660) is an alloy that is excellent in both corrosion resistance and strength among Fe-based alloys. However, both corrosion resistance and strength are insufficient for use as a member that requires high strength in the marine environment.

一方、Fe−Ni合金において、Ti、Al、Nbが添加された合金が従来より提案されている。
例えば、特許文献1(実施例1)には、重量%で、C:0.027%、Mn:0.08%、Si:0.10%、P:0.001%、S:0.005%、Cr:15.81%、Ni:39.89、Nb:2.83%、Ti:1.61%、Al:0.3%、B:0.0041%を含み、残部がFe及び不純物からなるニッケル−鉄基合金が開示されている。
On the other hand, in the Fe—Ni alloy, an alloy to which Ti, Al, and Nb are added has been proposed.
For example, in Patent Document 1 (Example 1), by weight, C: 0.027%, Mn: 0.08%, Si: 0.10%, P: 0.001%, S: 0.005 %, Cr: 15.81%, Ni: 39.89, Nb: 2.83%, Ti: 1.61%, Al: 0.3%, B: 0.0041%, the balance being Fe and impurities A nickel-iron base alloy is disclosed.

特許文献2(No.1)には、重量%で、C:0.017%、Si:0.15%、Mn:0.14%、P:0.010%、S:0.003%、Ni:40.32%、Cr:16.20%、Mo:1.02%、Al:0.25%、Ti:0.95%、Nb:2.71%を含み、残部がFe及び不純物からなるNi基合金が開示されている。
同文献には、このような組成にすることによって、常温から極低温まで高強度を有すると共に、HAZ割れを抑制できる点が記載されている。
Patent Document 2 (No. 1) includes, by weight, C: 0.017%, Si: 0.15%, Mn: 0.14%, P: 0.010%, S: 0.003%, Ni: 40.32%, Cr: 16.20%, Mo: 1.02%, Al: 0.25%, Ti: 0.95%, Nb: 2.71%, the balance from Fe and impurities A Ni-based alloy is disclosed.
This document describes that, by using such a composition, the HAZ crack can be suppressed while having high strength from room temperature to extremely low temperature.

さらに、特許文献3(合金#7)には、重量%で、Ni:44.2%、Cr:19.5%、Mo:3.4%、Cu:2.0%、C:0.006%、Al:0.3%、Nb:3.8%、Ti:1.6%、残部Feからなる高強度耐食性合金が開示されている。
同文献には、アニーリング及び時効処理により所定量のγ’相及びγ”相を析出させることによって、高強度が得られる点が記載されている。
Further, in Patent Document 3 (alloy # 7), by weight, Ni: 44.2%, Cr: 19.5%, Mo: 3.4%, Cu: 2.0%, C: 0.006 %, Al: 0.3%, Nb: 3.8%, Ti: 1.6% and the balance Fe are disclosed.
This document describes that high strength can be obtained by precipitating a predetermined amount of γ ′ phase and γ ″ phase by annealing and aging treatment.

特許文献1は、Mo、Cuが未添加であり、耐食性が不十分である。特許文献2は、Ni、Nb、Ti、Alのバランスにより、強度が不十分である。特許文献3は、Ni、Nbが高く、原料コスト及び製造コストが高い。   In Patent Document 1, Mo and Cu are not added, and the corrosion resistance is insufficient. Patent Document 2 has insufficient strength due to the balance of Ni, Nb, Ti, and Al. In Patent Document 3, Ni and Nb are high, and raw material costs and manufacturing costs are high.

特開昭47−042414号公報JP 47-042414 A 特開平03−097823号公報Japanese Patent Laid-Open No. 03-097823 特表2009−515053号公報Special table 2009-515053

本発明が解決しようとする課題は、高耐食性及び高硬度を兼備した析出硬化型Fe−Ni合金及びその製造方法を提供することにある。 An object of the present invention is to provide is to provide a high corrosion resistance and precipitation hardening Fe-Ni alloy and a manufacturing method thereof combine high hardness.

上記課題を解決するために本発明に係る析出硬化型Fe−Ni合金は、以下の構成を備えていることを要旨とする。
(1)前記析出硬化型Fe−Ni合金は、
0.04≦C≦0.08mass%、
0.02≦Si≦1.0mass%、
Mn≦1.0mass%、
36.0≦Ni≦41.0mass%、
14.0≦Cr<20.0mass%、
0.01≦Mo≦3.0mass%、
0.1≦Al≦1.0mass%、
1.0≦Ti≦2.5mass%、及び、
2.0≦Nb≦3.5mass%
を含有し、残部がFe及び不可避的不純物からなる。
(2)前記析出硬化型Fe−Ni合金は、次の(1)式及び(2)式を満たす。
Ni≧6×Nb+17 ・・・(1)
Nb/(Ti+Al)≧0.8 ・・・(2)
In order to solve the above problems, the precipitation hardening type Fe—Ni alloy according to the present invention is summarized as having the following configuration.
(1) The precipitation hardening type Fe—Ni alloy
0.04 ≦ C ≦ 0.08 mass%,
0.02 ≦ Si ≦ 1.0 mass%,
Mn ≦ 1.0 mass%,
36.0 ≦ Ni ≦ 41.0 mass%,
14.0 ≦ Cr <20.0 mass%,
0.01 ≦ Mo ≦ 3.0 mass%,
0.1 ≦ Al ≦ 1.0 mass%,
1.0 ≦ Ti ≦ 2.5 mass%, and
2.0 ≦ Nb ≦ 3.5 mass%
And the balance consists of Fe and inevitable impurities.
(2) The precipitation hardening type Fe—Ni alloy satisfies the following formulas (1) and (2).
Ni ≧ 6 × Nb + 17 (1)
Nb / (Ti + Al) ≧ 0.8 (2)

析出硬化型Fe−Ni合金は、次の(3)式をさらに満たすものが好ましい。
Cr+3Mo+5Cu≧19 ・・・(3)
本発明に係る析出効果型Fe−Ni合金の製造方法は、
本発明に係る析出効果型Fe−Ni基合金の組成となるように配合された原料を溶解し、鋳造する溶解鋳造工程と、
前記溶解鋳造工程で得られた鋳塊を熱間加工する熱間加工工程と、
前記熱間加工工程で得られた材料を所定の温度で加熱する固溶化熱処理工程と
を備え、
前記固溶化熱処理後の炭化物の面積率が0.4%以上である
ことを要旨とする。
The precipitation hardening type Fe—Ni alloy preferably satisfies the following formula (3).
Cr + 3Mo + 5Cu ≧ 19 (3)
The method for producing a precipitation effect type Fe—Ni alloy according to the present invention includes:
A melting and casting step of melting and casting the raw materials blended so as to be the composition of the precipitation effect type Fe-Ni based alloy according to the present invention;
A hot working step for hot working the ingot obtained in the melt casting step;
A solution heat treatment step of heating the material obtained in the hot working step at a predetermined temperature;
With
The area ratio of the carbide after the solution heat treatment is 0.4% or more.
This is the gist.

析出硬化型Fe−Ni合金に所定量のNb、Al及びTiを添加すると、固溶化熱処理及び時効処理により、Nbを構成元素として含むγ’相(Ni3(Al、Ti、Nb))及びγ”相(Ni3Nb)が析出する。
この時、(2)式を満たすようにNb含有量を最適化すると、γ”相の析出量が増加する。そのため、従来の合金に比べて、高強度を得ることができる。
When a predetermined amount of Nb, Al, and Ti is added to the precipitation hardening type Fe—Ni alloy, a γ ′ phase (Ni 3 (Al, Ti, Nb)) and γ containing Nb as a constituent element are formed by solution heat treatment and aging treatment. “Phase (Ni 3 Nb) precipitates.
At this time, if the Nb content is optimized so as to satisfy the formula (2), the precipitation amount of the γ ″ phase increases. Therefore, higher strength can be obtained as compared with the conventional alloy.

一方、Nb添加量が多くなるほど、固溶化熱処理後にLaves相(Fe2Nb)が残存しやすくなる。Laves相が多量に残存すると、析出硬化に必要なマトリックス中のNb量が減少する。その結果、時効処理を行っても必要な硬さが得られない。
これに対し、(1)式を満たすようにNi含有量を最適化すると、固溶化熱処理後におけるLaves相の残存を抑制することができる。
On the other hand, as the amount of Nb added increases, the Laves phase (Fe 2 Nb) tends to remain after the solution heat treatment. When a large amount of Laves phase remains, the amount of Nb in the matrix necessary for precipitation hardening decreases. As a result, even if aging treatment is performed, the required hardness cannot be obtained.
On the other hand, if the Ni content is optimized so as to satisfy the expression (1), the Laves phase remaining after the solution heat treatment can be suppressed.

さらに、析出硬化型Fe−Ni合金に対して、所定量のCr及びMo、あるいは、これらに加えてCuを添加すると、高強度を維持したまま、高い耐食性が得られる。特に、(3)式を満たすようにCr、Mo及びCuの含有量を最適化すると、高い耐食性が得られる。   Furthermore, when a predetermined amount of Cr and Mo, or in addition to these, Cu is added to the precipitation hardening type Fe—Ni alloy, high corrosion resistance can be obtained while maintaining high strength. In particular, when the contents of Cr, Mo and Cu are optimized so as to satisfy the expression (3), high corrosion resistance can be obtained.

実施例5及び比較例4で得られた固溶化熱処理後の材料の光学顕微鏡写真である。It is an optical microscope photograph of the material after the solution heat treatment obtained in Example 5 and Comparative Example 4.

以下に、本発明の一実施の形態について詳細に説明する。
[1. 析出硬化型Fe−Ni合金]
[1.1. 主構成元素]
本発明に係る析出硬化型Fe−Ni合金は、以下のような元素を含み、残部がFe及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Precipitation hardening type Fe-Ni alloy]
[1.1. Main constituent elements]
The precipitation hardening type Fe—Ni alloy according to the present invention contains the following elements, with the balance being Fe and inevitable impurities. The kind of additive element, its component range, and the reason for limitation are as follows.

(1)0.01≦C≦0.08mass%:
Cは、Nb及びTiと共に炭化物を形成し、強度を高めるために有効な元素である。また、炭化物形成により、固溶化熱処理時の結晶粒の粗大化を抑制する。このような効果を得るためには、C含有量は、0.01mass%以上である必要がある。C含有量は、さらに好ましくは、0.04mass%以上である。
一方、C含有量が過剰になると、靱延性が低下する。また、多量の炭化物が生成すると、耐食性が著しく低下する。靱延性及び耐食性の低下を抑制するためには、C含有量は、0.08mass%以下である必要がある。
(1) 0.01 ≦ C ≦ 0.08 mass%:
C is an element effective for forming a carbide together with Nb and Ti and increasing the strength. Further, the formation of carbides suppresses the coarsening of crystal grains during the solution heat treatment. In order to acquire such an effect, C content needs to be 0.01 mass% or more. The C content is more preferably 0.04 mass% or more.
On the other hand, when the C content is excessive, the toughness of the duct is lowered. Further, when a large amount of carbide is generated, the corrosion resistance is remarkably lowered. In order to suppress a decrease in toughness and corrosion resistance, the C content needs to be 0.08 mass% or less.

(2)0.02≦Si≦1.0mass%:
Siは、溶製時の脱酸元素として有効である。このような効果を得るためには、Si含有量は、0.02mass%以上である必要がある。
一方、Si含有量が過剰になると、靱性が低下する。従って、Si含有量は、1.0mass%以下である必要がある。
(2) 0.02 ≦ Si ≦ 1.0 mass%:
Si is effective as a deoxidizing element during melting. In order to acquire such an effect, Si content needs to be 0.02 mass% or more.
On the other hand, when the Si content is excessive, toughness is reduced. Therefore, the Si content needs to be 1.0 mass% or less.

(3)Mn≦1.0mass%:
Mnは、Siと同様に溶製時の脱酸元素として有効である。しかし、多量に添加すると、高温における耐酸化性を低下させる。また、過剰のMnは、耐食性も低下させる。従って、Mn含有量は、1.0mass%以下である必要がある。
(3) Mn ≦ 1.0 mass%:
Mn is effective as a deoxidizing element at the time of melting similarly to Si. However, if added in a large amount, the oxidation resistance at high temperatures is lowered. Excess Mn also reduces corrosion resistance. Therefore, the Mn content needs to be 1.0 mass% or less.

(4)36.0≦Ni≦41.0mass%:
Niは、オーステナイト生成元素として必須である。また、時効処理により、Ti、Al、Nbと共にγ’相(Ni3(Al、Ti、Nb))及びγ”相(Ni3Nb)を析出することで合金を時効硬化させる。このような効果を得るためには、Ni含有量は、36.0mass%以上である必要がある。Ni含有量は、さらに好ましくは、37.0mass%以上である。
一方、Ni含有量が過剰になると、原料コストが上昇する。従って、Ni含有量は、41.0mass%以下である必要がある。Ni含有量は、さらに好ましくは、40mass%以下、さらに好ましくは、39.0mass%以下である。
(4) 36.0 ≦ Ni ≦ 41.0 mass%:
Ni is essential as an austenite generating element. Further, the alloy is age-hardened by precipitating γ ′ phase (Ni 3 (Al, Ti, Nb)) and γ ″ phase (Ni 3 Nb) together with Ti, Al, and Nb by aging treatment. In order to obtain the Ni content, the Ni content needs to be 36.0 mass% or more, and the Ni content is more preferably 37.0 mass% or more.
On the other hand, when the Ni content is excessive, the raw material cost increases. Therefore, the Ni content needs to be 41.0 mass% or less. The Ni content is more preferably 40 mass% or less, and still more preferably 39.0 mass%.

(5)14.0≦Cr<20.0mass%:
Crは、析出硬化型Fe−Ni合金の耐食性を向上させるのに不可欠な成分である。このような効果を得るためには、Cr含有量は、14.0mass%以上である必要がある。
しかし、Crは、フェライト形成元素であり、Cr含有量が過剰になると組織安定性が低下する。また、過剰のCrは、熱間加工性を低下させる。従って、Cr含有量は、20.0mass%未満である必要がある。Cr含有量は、さらに好ましくは、18mass%以下、さらに好ましくは、17.0mass%以下である。
(5) 14.0 ≦ Cr <20.0 mass%:
Cr is an essential component for improving the corrosion resistance of the precipitation hardening type Fe—Ni alloy. In order to acquire such an effect, Cr content needs to be 14.0 mass% or more.
However, Cr is a ferrite forming element, and when the Cr content is excessive, the structural stability is lowered. Excessive Cr also decreases hot workability. Therefore, the Cr content needs to be less than 20.0 mass%. The Cr content is more preferably 18 mass% or less, and further preferably 17.0 mass% or less.

(6)0.01≦Mo≦3.0mass%:
Moは、母相中に固溶することにより、耐食性(特に、耐孔食性)を向上させる。このような効果を得るためには、Mo含有量は、0.01mass%以上である必要がある。
一方、Mo含有量が過剰になると、時効処理時にLaves相(Fe2(Mo、Nb))が析出し、γ’相及びγ”相の析出量が減少する。その結果、合金の強度が低下する。従って、Mo含有量は、3.0mass%以下である必要がある。
(6) 0.01 ≦ Mo ≦ 3.0 mass%:
Mo improves the corrosion resistance (particularly pitting corrosion resistance) by dissolving in the matrix. In order to acquire such an effect, Mo content needs to be 0.01 mass% or more.
On the other hand, if the Mo content is excessive, the Laves phase (Fe 2 (Mo, Nb)) precipitates during the aging treatment, and the precipitation amount of the γ ′ phase and the γ ″ phase decreases. As a result, the strength of the alloy decreases. Therefore, the Mo content needs to be 3.0 mass% or less.

(7)0.1≦Al≦1.0mass%:
Alは、Ni、Ti、Nbと共にγ’相(Ni3(Al、Ti、Nb))を析出することで合金を時効硬化させる。このような効果を得るためには、Al含有量は、0.1mass%以上である必要がある。
一方、Al含有量が過剰になると、熱間加工性が低下する。従って、Al含有量は、1.0mass%以下である必要がある。
(7) 0.1 ≦ Al ≦ 1.0 mass%:
Al age-hardens the alloy by precipitating a γ ′ phase (Ni 3 (Al, Ti, Nb)) together with Ni, Ti, and Nb. In order to acquire such an effect, Al content needs to be 0.1 mass% or more.
On the other hand, when the Al content is excessive, hot workability is reduced. Therefore, the Al content needs to be 1.0 mass% or less.

(8)1.0≦Ti≦2.5mass%:
Tiは、Ni、Al、Nbと共にγ’相(Ni3(Al、Ti、Nb))を析出することで合金を時効硬化させる。このような効果を得るためには、Ti含有量は、1.0mass%以上である必要がある。Ti含有量は、好ましくは、1.5mass%以上、さらに好ましくは、1.8mass%以上である。
一方、Ti含有量が過剰になると、熱間加工性が低下する。従って、Ti含有量は、2.5mass%以下である必要がある。
(8) 1.0 ≦ Ti ≦ 2.5 mass%:
Ti age-hardens the alloy by precipitating a γ ′ phase (Ni 3 (Al, Ti, Nb)) together with Ni, Al, and Nb. In order to acquire such an effect, Ti content needs to be 1.0 mass% or more. The Ti content is preferably 1.5 mass% or more, more preferably 1.8 mass% or more.
On the other hand, when the Ti content is excessive, hot workability is reduced. Therefore, the Ti content needs to be 2.5 mass% or less.

(9)2.0≦Nb≦3.5mass%:
Nbは、Niと共にγ’相(Ni3(Al,Ti,Nb))及びγ”相(Ni3Nb)を析出することで合金を時効硬化させる。このような効果を得るためには、Nb含有量は、2.0mass%以上である必要がある。
一方、Nb含有量が過剰になると、固溶化熱処理後に粗大なLaves相が残存し、γ’相及びγ”相の析出量が減少する。その結果、求める強度、硬さが得られない。従って、Nb含有量は、3.5mass%以下である必要がある。Nb含有量は、さらに好ましくは、3.0mass%以下である。
(9) 2.0 ≦ Nb ≦ 3.5 mass%:
Nb precipitates a γ ′ phase (Ni 3 (Al, Ti, Nb)) and a γ ″ phase (Ni 3 Nb) together with Ni to age-harden the alloy. In order to obtain such an effect, Nb Content needs to be 2.0 mass% or more.
On the other hand, when the Nb content is excessive, a coarse Laves phase remains after the solution heat treatment, and the amount of precipitation of the γ ′ phase and the γ ″ phase decreases. As a result, the required strength and hardness cannot be obtained. The Nb content needs to be 3.5 mass% or less, and the Nb content is more preferably 3.0 mass% or less.

[1.2. 副構成元素]
本発明に係る析出硬化型Fe−Ni合金は、上述した主構成元素に加えて、以下の1種又は2種以上の副構成元素をさらに含んでいてもよい。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
[1.2. Sub-constituent elements]
The precipitation hardening type Fe—Ni alloy according to the present invention may further contain the following one or more sub-constituent elements in addition to the main constituent elements described above. The kind of additive element, its component range, and the reason for limitation are as follows.

(10)0.0005≦B≦0.01mass%:
Bは、少量添加することにより熱間加工性を向上させる効果がある。また、Bが粒界に存在することで、粒界におけるη相の析出を抑制することができる。このような効果を得るためには、B含有量は、0.0005mass%以上が好ましい。
一方、B含有量が過剰になると、熱間加工性が低下する。従って、B含有量は、0.01mass%以下が好ましい。
(10) 0.0005 ≦ B ≦ 0.01 mass%:
B has the effect of improving hot workability by adding a small amount. Further, the presence of B at the grain boundary can suppress the precipitation of the η phase at the grain boundary. In order to obtain such an effect, the B content is preferably 0.0005 mass% or more.
On the other hand, when the B content is excessive, hot workability is reduced. Therefore, the B content is preferably 0.01 mass% or less.

(11)0.05≦Cu≦1.0mass%:
Cuは、非酸化性腐食環境における耐食性を向上させる効果がある。このような効果を得るためには、Cu含有量は、0.05mass%以上が好ましい。
一方、Cu含有量が過剰になると、熱間加工性が低下する。従って、Cu含有量は、1.0mass%以下が好ましい。
(11) 0.05 ≦ Cu ≦ 1.0 mass%:
Cu has the effect of improving the corrosion resistance in a non-oxidizing corrosive environment. In order to obtain such an effect, the Cu content is preferably 0.05 mass% or more.
On the other hand, when Cu content becomes excessive, hot workability will fall. Therefore, the Cu content is preferably 1.0 mass% or less.

(12)0.05≦V≦1.0mass%:
Vは、Nb、Tiと同様に炭化物を形成し、強度を高める。また、炭化物中のNbの割合を減らすことで、より強度に影響を与えるγ’相及びγ”相の析出量を増加させる。このような効果を得るためには、V含有量は、0.05mass%以上が好ましい。
一方、V含有量が過剰になると、靱性や加工性が低下する。従って、V含有量は、1.0mass%以下が好ましい。
(12) 0.05 ≦ V ≦ 1.0 mass%:
V, like Nb and Ti, forms carbides and increases strength. In addition, by reducing the proportion of Nb in the carbide, the amount of precipitation of the γ ′ phase and the γ ″ phase, which affects the strength, is increased. 05 mass% or more is preferable.
On the other hand, when V content becomes excessive, toughness and workability will fall. Therefore, the V content is preferably 1.0 mass% or less.

(13)0.001≦(Zr、Ta、W、Hf、Mg、REM)≦0.50mass%:
Zr、Ta、W、Hf、Mg及びREMは、いずれも、炭化物の微細化や結晶粒の微細化に効果がある。このような効果を得るためには、これらの元素の総含有量は、0.001mass%以上が好ましい。
一方、これらの元素の含有量が過剰になると、靱性が低下する。従って、これらの元素の総含有量は、0.50mass%以下が好ましい。
なお、これらの元素は、いずれか1種を添加しても良く、あるいは、2種以上を組み合わせて用いても良い。
(13) 0.001 ≦ (Zr, Ta, W, Hf, Mg, REM) ≦ 0.50 mass%:
Zr, Ta, W, Hf, Mg, and REM are all effective in reducing carbides and crystal grains. In order to obtain such an effect, the total content of these elements is preferably 0.001 mass% or more.
On the other hand, when the content of these elements becomes excessive, the toughness decreases. Therefore, the total content of these elements is preferably 0.50 mass% or less.
Any one of these elements may be added, or two or more of these elements may be used in combination.

(14)0.0005≦Ca≦0.01mass%:
Caは、被削性を改善する。このような効果を得るためには、Ca含有量は、0.0005mass%以上が好ましい。
一方、Ca含有量が過剰になると、熱間加工性が低下する。従って、Ca含有量は、0.01mass%以下が好ましい。
(14) 0.0005 ≦ Ca ≦ 0.01 mass%:
Ca improves machinability. In order to obtain such an effect, the Ca content is preferably 0.0005 mass% or more.
On the other hand, when Ca content becomes excessive, hot workability will fall. Therefore, the Ca content is preferably 0.01 mass% or less.

[1.3. 成分バランス]
本発明に係る析出硬化型ステンレス鋼は、成分元素が上述の範囲にあることに加えて、さらに次の(1)式及び(2)式を満たしている必要がある。
また、高い耐食性を得るためには、析出硬化型ステンレス鋼は、さらに次の(3)式を満たしているのが好ましい。
Ni≧6×Nb+17 ・・・(1)
Nb/(Ti+Al)≧0.8 ・・・(2)
Cr+3Mo+5Cu≧19 ・・・(3)
[1.3. Ingredient balance]
The precipitation hardening stainless steel according to the present invention needs to satisfy the following formulas (1) and (2) in addition to the component elements being in the above-mentioned range.
In order to obtain high corrosion resistance, the precipitation hardening stainless steel preferably further satisfies the following formula (3).
Ni ≧ 6 × Nb + 17 (1)
Nb / (Ti + Al) ≧ 0.8 (2)
Cr + 3Mo + 5Cu ≧ 19 (3)

[1.3.1. (1)式]
(1)式は、固溶化熱処理後のLaves相の量と関係がある。(1)式を満たすようにNi量及びNb量を最適化すると、固溶化熱処理後にLaves相(Fe2Nb)を完全に固溶させることができる。その結果、時効処理時のγ’相及びγ”相の析出量が増加し、これによって合金の強度が向上する。
(1)式は、さらに好ましくは、Ni≧6×Nb+18.0、さらに好ましくは、Ni≧6×Nb+20.0である。
[1.3.1. (1) Formula]
Equation (1) is related to the amount of Laves phase after solution heat treatment. When the amount of Ni and the amount of Nb are optimized so as to satisfy the formula (1), the Laves phase (Fe 2 Nb) can be completely dissolved after the solution heat treatment. As a result, the amount of precipitation of the γ ′ phase and the γ ″ phase during the aging treatment is increased, thereby improving the strength of the alloy.
The formula (1) is more preferably Ni ≧ 6 × Nb + 18.0, and more preferably Ni ≧ 6 × Nb + 20.0.

[1.3.2. (2)式]
(2)式は、時効処理時のγ”相の量と関係がある。(2)式を満たすように、Nb、Ti及びAlの量を最適化すると、γ”相の析出量が増加し、これによって合金の強度がさらに向上する。
[1.3.2. (2) Formula]
Equation (2) is related to the amount of γ ″ phase during aging treatment. Optimizing the amounts of Nb, Ti and Al to satisfy Equation (2) increases the amount of precipitation of γ ″ phase. This further improves the strength of the alloy.

[1.3.3. (3)式]
(3)式は、析出硬化型Fe−Ni合金の耐食性と関係がある。Cr、Mo及びCuは、いずれも析出硬化型Fe−Ni合金の耐食性を向上させる効果がある。特に、(3)式を満たすようにこれらの元素の含有量を最適化すると、高い強度を維持しながら、高い耐食性を示す。
[1.3.3. (3) Formula]
Equation (3) is related to the corrosion resistance of the precipitation hardening type Fe—Ni alloy. All of Cr, Mo, and Cu have an effect of improving the corrosion resistance of the precipitation hardening type Fe—Ni alloy. In particular, when the contents of these elements are optimized so as to satisfy the expression (3), high corrosion resistance is exhibited while maintaining high strength.

[1.4. 0.2%耐力]
上述したように各成分を最適化し、かつ、適切な固溶化熱処理を施すと、Laves相がマトリックス中にほぼ完全に固溶する。このような材料に対して適切な時効処理を施すと、多量のγ’相及びγ”相が析出する。その結果、常温での0.2%耐力は、850MPa以上となる。成分及び熱処理条件をさらに最適化すると、常温での0.2%耐力は、900MPa以上、あるいは、950MPa以上となる。
[1.4. 0.2% yield strength]
As described above, when each component is optimized and an appropriate solution heat treatment is performed, the Laves phase is almost completely dissolved in the matrix. When an appropriate aging treatment is applied to such a material, a large amount of γ ′ phase and γ ″ phase are precipitated. As a result, the 0.2% proof stress at room temperature is 850 MPa or more. Is further optimized, the 0.2% yield strength at room temperature is 900 MPa or more, or 950 MPa or more.

[1.5. 炭化物の面積率]
本発明に係る析出硬化型Fe−Ni合金は、固溶化熱処理後の炭化物の面積率が0.4%以上であるものが好ましい。固溶加熱処理時において、マトリックス中に所定量の炭化物が分散していると、結晶粒の粗大化を抑制することができる。
ここで、「炭化物の面積率」とは、断面ミクロ組織(0.034mm2×30視野)の総面積に対する炭化物の面積の割合をいう。
[1.5. Carbide area ratio]
The precipitation hardening type Fe—Ni alloy according to the present invention preferably has a carbide area ratio of 0.4% or more after solution heat treatment. When a predetermined amount of carbide is dispersed in the matrix at the time of the solid solution heat treatment, the coarsening of the crystal grains can be suppressed.
Here, the “area ratio of carbide” refers to the ratio of the area of carbide to the total area of the cross-sectional microstructure (0.034 mm 2 × 30 field of view).

[2. 析出硬化型Fe−Ni合金の製造方法]
本発明に係る析出硬化型Fe−Ni合金の製造方法は、溶解鋳造工程と、熱間加工工程と、固溶化熱処理工程と、時効処理工程とを備えている。
[2. Method for producing precipitation hardening type Fe—Ni alloy]
The manufacturing method of the precipitation hardening type Fe-Ni alloy which concerns on this invention is equipped with the melt casting process, the hot working process, the solution heat treatment process, and the aging treatment process.

[2.1. 溶解鋳造工程]
溶解鋳造工程は、所定の成分に配合された原料を溶解し、鋳造する工程である。溶解方法及び鋳造方法は、特に限定されるものではなく、目的に応じて種々の方法を用いることができる。
[2.1. Melting and casting process]
The melt casting step is a step of melting and casting a raw material blended with predetermined components. The melting method and the casting method are not particularly limited, and various methods can be used depending on the purpose.

[2.2. 熱間加工工程]
熱間加工工程は、溶解鋳造工程で得られた鋳塊を熱間加工する工程である。熱間加工は、鋳造組織や鋳造欠陥を破壊するために行われる。熱間加工条件は、特に限定されるものではなく、目的に応じて最適な条件を選択することができる。
[2.2. Hot working process]
The hot working process is a process of hot working the ingot obtained in the melt casting process. Hot working is performed to destroy the cast structure and casting defects. The hot working conditions are not particularly limited, and optimum conditions can be selected according to the purpose.

[2.3. 固溶化熱処理工程]
固溶化熱処理工程は、熱間加工された材料を所定の温度で加熱する工程である。
固溶化熱処理は、主として鋼中に分散している析出物を固溶させるために行われる。熱処理温度が低すぎると、析出物の固溶が不十分となる。熱処理温度は、900℃以上が好ましい。
一方、熱処理温度が高すぎると、結晶粒が粗大化する。熱処理温度は、1200℃以下が好ましい。
熱処理時間は、析出物が固溶する時間であれば良い。最適な熱処理時間は、熱処理温度によって異なるが、通常、30分〜2時間程度である。熱処理後、材料を急冷する。
[2.3. Solution heat treatment process]
The solution heat treatment step is a step of heating the hot-processed material at a predetermined temperature.
The solution heat treatment is mainly performed to dissolve the precipitates dispersed in the steel. When the heat treatment temperature is too low, the solid solution of the precipitate becomes insufficient. The heat treatment temperature is preferably 900 ° C. or higher.
On the other hand, if the heat treatment temperature is too high, the crystal grains become coarse. The heat treatment temperature is preferably 1200 ° C. or lower.
The heat treatment time may be a time during which the precipitate is dissolved. The optimum heat treatment time varies depending on the heat treatment temperature, but is usually about 30 minutes to 2 hours. After the heat treatment, the material is rapidly cooled.

[2.4. 時効処理工程]
時効処理工程は、固溶化熱処理後の材料を所定の温度で時効処理する工程である。
時効処理温度が高すぎる場合及び低すぎる場合のいずれも、目的の析出物が析出せず、時効硬化させることができない。時効処理温度は、600℃以上750℃以下が好ましい。
時効処理温度は、十分な量の析出物が析出する時間であれば良い。最適な時効処理時間は、時効処理温度により異なるが、通常、8〜24時間程度である。
[2.4. Aging treatment process]
The aging treatment step is a step of aging treatment of the material after the solution heat treatment at a predetermined temperature.
In both cases where the aging treatment temperature is too high and too low, the target precipitate does not precipitate, and age hardening cannot be achieved. The aging treatment temperature is preferably 600 ° C. or higher and 750 ° C. or lower.
The aging treatment temperature may be a time for depositing a sufficient amount of precipitates. The optimum aging treatment time varies depending on the aging treatment temperature, but is usually about 8 to 24 hours.

[3. 作用]
析出硬化型Fe−Ni合金に所定量のNbを添加すると、固溶化熱処理及び時効処理により、Nbを構成元素として含むγ’相(Ni3(Al、Ti、Nb))及びγ”相(Ni3Nb)が析出する。
この時、(2)式を満たすようにNb含有量を最適化すると、γ”相の析出量が増加する。そのため、従来の合金に比べて、高強度を得ることができる。
[3. Action]
When a predetermined amount of Nb is added to the precipitation hardening type Fe—Ni alloy, a γ ′ phase (Ni 3 (Al, Ti, Nb)) and a γ ″ phase (Ni) containing Nb as a constituent element are obtained by a solution heat treatment and an aging treatment. 3 Nb) is precipitated.
At this time, if the Nb content is optimized so as to satisfy the formula (2), the precipitation amount of the γ ″ phase increases. Therefore, higher strength can be obtained as compared with the conventional alloy.

一方、Nb添加量が多くなるほど、固溶化熱処理後にLaves相(Fe2Nb)が残存しやすくなる。Laves相が多量に残存すると、析出硬化に必要なマトリックス中のNb量が減少する。その結果、時効処理を行っても必要な硬さが得られない。
これに対し、(1)式を満たすようにNi含有量を最適化すると、固溶化熱処理後におけるLaves相の残存を抑制することができる。
On the other hand, as the amount of Nb added increases, the Laves phase (Fe 2 Nb) tends to remain after the solution heat treatment. When a large amount of Laves phase remains, the amount of Nb in the matrix necessary for precipitation hardening decreases. As a result, even if aging treatment is performed, the required hardness cannot be obtained.
On the other hand, if the Ni content is optimized so as to satisfy the expression (1), the Laves phase remaining after the solution heat treatment can be suppressed.

さらに、析出硬化型Fe−Ni合金に対して、所定量のCr及びMo、あるいは、これらに加えてCuを添加すると、高強度を維持したまま、高い耐食性が得られる。特に、(3)式を満たすようにCr、Mo及びCuの含有量を最適化すると、高い耐食性が得られる。   Furthermore, when a predetermined amount of Cr and Mo, or in addition to these, Cu is added to the precipitation hardening type Fe—Ni alloy, high corrosion resistance can be obtained while maintaining high strength. In particular, when the contents of Cr, Mo and Cu are optimized so as to satisfy the expression (3), high corrosion resistance can be obtained.

(実施例1〜37、比較例1〜4、参考例5)
[1. 試料の作製]
表1及び表2に示す種々の成分を有する鋼を溶製した後、冷却して鋳塊を作製した。鋳塊は、熱間加工した後、固溶化処理及び時効処理により調質した。
固溶化熱処理温度は、900〜1200℃とした。また、時効処理温度は、600〜750℃とした。
(Examples 1-37, Comparative Examples 1-4, Reference Example 5)
[1. Preparation of sample]
Steels having various components shown in Tables 1 and 2 were melted and then cooled to produce ingots. The ingot was tempered by solution treatment and aging treatment after hot working.
The solution heat treatment temperature was set to 900 to 1200 ° C. The aging treatment temperature was 600 to 750 ° C.

Figure 0006337514
Figure 0006337514

Figure 0006337514
Figure 0006337514

[2. 試験方法]
[2.1. 引張試験]
時効処理後の材料からJIS4号試験片を切り出した。室温で引張試験を行い、引張強度及び0.2%耐力を評価した。
[2.2. 耐食性試験]
耐食性は、10%、80℃塩酸、6h浸漬における腐食度にて評価した。腐食度が100g/m2/h以下の場合を「◎」、100g/m2/h超〜200g/m2/h以下の場合を「○」、200g/m2/h超の場合を「×」とした。
[2.3. 炭化物面積率]
炭化物の定量化は、画像解析ソフトを用いて、400倍ミクロ組織写真(1視野:0.034mm2)を30視野にて面積率を測定した。
[2. Test method]
[2.1. Tensile test]
A JIS No. 4 test piece was cut out from the material after aging treatment. Tensile tests were performed at room temperature to evaluate tensile strength and 0.2% yield strength.
[2.2. Corrosion resistance test]
Corrosion resistance was evaluated by the degree of corrosion when immersed in 10%, 80 ° C. hydrochloric acid for 6 hours. The case the degree of corrosion is less than or equal to 100g / m 2 / h "◎", the case in the following cases: 100g / m 2 / h ultra-~200g / m 2 / h "○", of 200g / m 2 / h more than " × ”.
[2.3. Carbide area ratio]
For the quantification of the carbide, the area ratio was measured in 30 fields of 400 times microstructure photograph (1 field of view: 0.034 mm 2 ) using image analysis software.

[3. 結果]
表3に結果を示す。表3より、以下のことがわかる。
(1)比較例1(A286合金相当)は、引張強度、0.2%耐力が低い。これは、Nbが添加されておらず、γ”相が析出しないためである。また、比較例1は、耐食性が低い。これは、Ni量が少ないためである。
(2)比較例2は、0.2%耐力がやや低い。これは、Ni含有量が少ないために、十分な量のγ”相が得られないためである。また、比較例2は、耐食性が低い。これは、Ni量が少ないためである。
(3)比較例3は、0.2%耐力がやや低い。これは、Nb/(Ti+Al)−0.8が低いために、十分な量のγ”相が得られないためである。
(4)比較例4は、0.2%耐力がやや低い。これは、Ni−(6×Nb+17)が低いために、固溶化熱処理後に粗大なLaves相が残存する。その結果、マトリックス中のNb量が減少し、時効処理時のγ’相及びγ”相の析出量が減少するためである。
(5)参考例5は、0.2%耐力がやや低い。これは、炭化物面積率が小さい、つまり、固溶化熱処理時に結晶粒粗大化を抑制する炭化物が少ないことにより、結晶粒が粗大化したためである。
[3. result]
Table 3 shows the results. Table 3 shows the following.
(1) Comparative Example 1 (equivalent to A286 alloy) has low tensile strength and 0.2% proof stress. This is because Nb is not added and the γ ″ phase does not precipitate. Comparative Example 1 has low corrosion resistance. This is because the amount of Ni is small.
(2) Comparative Example 2 has a slightly low 0.2% yield strength. This is because a sufficient amount of γ ″ phase cannot be obtained because the Ni content is low. In addition, Comparative Example 2 has low corrosion resistance. This is because the Ni content is low.
(3) Comparative Example 3 has a slightly low 0.2% yield strength. This is because a sufficient amount of γ ″ phase cannot be obtained because Nb / (Ti + Al) −0.8 is low.
(4) Comparative Example 4 has a slightly low 0.2% yield strength. This is because Ni- (6 × Nb + 17) is low, and a coarse Laves phase remains after the solution heat treatment. As a result, the amount of Nb in the matrix decreases, and the amount of precipitation of the γ ′ phase and the γ ″ phase during the aging treatment decreases.
(5) Reference Example 5 has a slightly low 0.2% yield strength. This is because the crystal grains are coarsened because the carbide area ratio is small, that is, there are few carbides that suppress the grain coarsening during the solution heat treatment.

(6)実施例1〜37は、いずれも0.2%耐力が850MPaを超えており、かつ、良好な耐食性を示した。
(7)実施例の中でも、(3)式を満たす材料は、特に耐食性が高い。
(6) In Examples 1 to 37, the 0.2% proof stress exceeded 850 MPa, and good corrosion resistance was exhibited.
(7) Among the examples, materials satisfying the formula (3) have particularly high corrosion resistance.

Figure 0006337514
Figure 0006337514

図1に、実施例5及び比較例4で得られた固溶化熱処理後の材料の光学顕微鏡写真を示す。図1より、比較例4は、炭化物の他にLaves相が認められるのに対し、実施例5は、Laves相が認められないことがわかる。   In FIG. 1, the optical microscope photograph of the material after the solution heat treatment obtained in Example 5 and Comparative Example 4 is shown. From FIG. 1, it can be seen that Comparative Example 4 shows a Laves phase in addition to carbide, whereas Example 5 shows no Laves phase.

以上、本発明の実施の形態について詳細に説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   The embodiment of the present invention has been described in detail above, but the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明に係る析出硬化型Fe−Ni合金は、掘削用部材、自動車エンジン部品、火力発電プラント部材などに用いることができる。   The precipitation hardening type Fe—Ni alloy according to the present invention can be used for excavation members, automobile engine parts, thermal power plant members, and the like.

Claims (9)

以下の構成を備えた析出硬化型Fe−Ni合金。
(1)前記析出硬化型Fe−Ni合金は、
0.04≦C≦0.08mass%、
0.02≦Si≦1.0mass%、
Mn≦1.0mass%、
36.0≦Ni≦41.0mass%、
14.0≦Cr<20.0mass%、
0.01≦Mo≦3.0mass%、
0.1≦Al≦1.0mass%、
1.0≦Ti≦2.5mass%、及び、
2.0≦Nb≦3.5mass%
を含有し、残部がFe及び不可避的不純物からなる。
(2)前記析出硬化型Fe−Ni合金は、次の(1)式及び(2)式を満たす。
Ni≧6×Nb+17 ・・・(1)
Nb/(Ti+Al)≧0.8 ・・・(2)
Precipitation hardening type Fe-Ni alloy provided with the following composition.
(1) The precipitation hardening type Fe—Ni alloy
0.04 ≦ C ≦ 0.08 mass%,
0.02 ≦ Si ≦ 1.0 mass%,
Mn ≦ 1.0 mass%,
36.0 ≦ Ni ≦ 41.0 mass%,
14.0 ≦ Cr <20.0 mass%,
0.01 ≦ Mo ≦ 3.0 mass%,
0.1 ≦ Al ≦ 1.0 mass%,
1.0 ≦ Ti ≦ 2.5 mass%, and
2.0 ≦ Nb ≦ 3.5 mass%
And the balance consists of Fe and inevitable impurities.
(2) The precipitation hardening type Fe—Ni alloy satisfies the following formulas (1) and (2).
Ni ≧ 6 × Nb + 17 (1)
Nb / (Ti + Al) ≧ 0.8 (2)
0.0005≦B≦0.01mass%
をさらに含む請求項1に記載の析出硬化型Fe−Ni合金。
0.0005 ≦ B ≦ 0.01 mass%
The precipitation hardening type Fe-Ni alloy of Claim 1 which further contains these.
0.05≦Cu≦1.0mass%
をさらに含む請求項1又は2に記載の析出硬化型Fe−Ni合金。
0.05 ≦ Cu ≦ 1.0 mass%
The precipitation hardening type Fe-Ni alloy according to claim 1 or 2, further comprising :
0.05≦V≦1.0mass%
をさらに含む請求項1から3までのいずれか1項に記載の析出硬化型Fe−Ni合金。
0.05 ≦ V ≦ 1.0 mass%
The precipitation hardening type Fe-Ni alloy according to any one of claims 1 to 3 , further comprising :
0.001≦(Zr、Ta、W、Hf、Mg、REM)≦0.50mass%
をさらに含む請求項1から4までのいずれか1項に記載の析出硬化型Fe−Ni合金。
但し、上式の中央部は、かっこ内の元素の総量を表す。
0.001 ≦ (Zr, Ta, W, Hf, Mg, REM) ≦ 0.50 mass%
The precipitation hardening type Fe-Ni alloy according to any one of claims 1 to 4 , further comprising :
However, the central part of the above formula represents the total amount of elements in parentheses.
0.0005≦Ca≦0.01mass%
をさらに含む請求項1から5までのいずれか1項に記載の析出硬化型Fe−Ni合金。
0.0005 ≦ Ca ≦ 0.01 mass%
The precipitation hardening type Fe-Ni alloy according to any one of claims 1 to 5 , further comprising :
次の(3)式をさらに満たす請求項1から6までのいずれか1項に記載の析出硬化型Fe−Ni合金。
Cr+3Mo+5Cu≧19 ・・・(3)
The precipitation hardening type Fe-Ni alloy according to any one of claims 1 to 6 , further satisfying the following expression (3).
Cr + 3Mo + 5Cu ≧ 19 (3)
請求項1から7までのいずれか1項に記載の組成となるように配合された原料を溶解し、鋳造する溶解鋳造工程と、  A melting and casting step of melting and casting the raw material blended so as to have the composition according to any one of claims 1 to 7;
前記溶解鋳造工程で得られた鋳塊を熱間加工する熱間加工工程と、  A hot working step for hot working the ingot obtained in the melt casting step;
前記熱間加工工程で得られた材料を所定の温度で加熱する固溶化熱処理工程と  A solution heat treatment step of heating the material obtained in the hot working step at a predetermined temperature;
を備え、With
前記固溶化熱処理後の炭化物の面積率が0.4%以上である  The area ratio of the carbide after the solution heat treatment is 0.4% or more.
析出硬化型Fe−Ni合金の製造方法。A method for producing a precipitation hardening type Fe—Ni alloy.
前記固溶化熱処理工程で得られた材料を所定の温度で時効処理する時効処理工程をさらに備え、  An aging treatment step of aging treatment of the material obtained in the solution heat treatment step at a predetermined temperature;
常温での0.2%耐力が900MPa以上である請求項8に記載の析出硬化型Fe−Ni合金の製造方法。  The method for producing a precipitation hardening type Fe-Ni alloy according to claim 8, wherein the 0.2% yield strength at normal temperature is 900 MPa or more.
JP2014039222A 2013-05-21 2014-02-28 Precipitation hardening type Fe-Ni alloy and manufacturing method thereof Active JP6337514B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014039222A JP6337514B2 (en) 2013-05-21 2014-02-28 Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
US14/278,179 US20140345752A1 (en) 2013-05-21 2014-05-15 Precipitation hardened fe-ni alloy
EP14169160.0A EP2806047B1 (en) 2013-05-21 2014-05-20 Precipitation hardened fe-ni alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013106957 2013-05-21
JP2013106957 2013-05-21
JP2014039222A JP6337514B2 (en) 2013-05-21 2014-02-28 Precipitation hardening type Fe-Ni alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015004125A JP2015004125A (en) 2015-01-08
JP6337514B2 true JP6337514B2 (en) 2018-06-06

Family

ID=50932959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039222A Active JP6337514B2 (en) 2013-05-21 2014-02-28 Precipitation hardening type Fe-Ni alloy and manufacturing method thereof

Country Status (3)

Country Link
US (1) US20140345752A1 (en)
EP (1) EP2806047B1 (en)
JP (1) JP6337514B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733211B2 (en) 2016-02-18 2020-07-29 大同特殊鋼株式会社 Ni-based superalloy for hot forging
RU2650353C1 (en) * 2017-09-18 2018-04-11 Юлия Алексеевна Щепочкина Steel

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB999439A (en) * 1962-05-10 1965-07-28 Allegheny Ludlum Steel Improvements in or relating to an austenitic alloy
AT310460B (en) * 1970-02-09 1973-10-10 Henry Wiggin And Company Ltd Heat-treatable nickel-chromium-iron alloy
US3705827A (en) * 1971-05-12 1972-12-12 Carpenter Technology Corp Nickel-iron base alloys and heat treatment therefor
JPS57114640A (en) * 1980-12-29 1982-07-16 Seiko Epson Corp Corrosion resistant alloy for die casting
US4400211A (en) * 1981-06-10 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS5834129A (en) * 1981-08-21 1983-02-28 Daido Steel Co Ltd Heat-resistant metallic material
JPS6013020A (en) * 1983-07-05 1985-01-23 Daido Steel Co Ltd Heat treating method of heat resistant alloy
JPS61238942A (en) * 1985-04-16 1986-10-24 Daido Steel Co Ltd Heat resisting alloy
US4750950A (en) * 1986-11-19 1988-06-14 Inco Alloys International, Inc. Heat treated alloy
US5059257A (en) * 1989-06-09 1991-10-22 Carpenter Technology Corporation Heat treatment of precipitation hardenable nickel and nickel-iron alloys
JPH0397823A (en) * 1989-09-08 1991-04-23 Kobe Steel Ltd Ni-base alloy for cryogenic use
JPH0711376A (en) * 1993-06-28 1995-01-13 Aichi Steel Works Ltd Fe-ni base alloy excellent in heat resistance and workability
JP3058794B2 (en) * 1993-08-19 2000-07-04 日立金属株式会社 Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JP3308090B2 (en) * 1993-12-07 2002-07-29 日立金属株式会社 Fe-based super heat-resistant alloy
DE69739342D1 (en) * 1996-09-23 2009-05-14 Best Vascular Inc
JPH11117019A (en) * 1997-10-09 1999-04-27 Daido Steel Co Ltd Production of heat resistant parts
US7416618B2 (en) 2005-11-07 2008-08-26 Huntington Alloys Corporation High strength corrosion resistant alloy for oil patch applications
EP2055797A4 (en) * 2006-08-23 2014-12-17 Japan Science & Tech Agency Iron-based alloy and process for producing the same
US20090081073A1 (en) * 2007-06-07 2009-03-26 Celso Antonio Barbosa Alloys with high corrosion resistance for engine valve applications
WO2009060900A1 (en) * 2007-11-07 2009-05-14 Sumitomo Metal Industries, Ltd. Stainless steel product for polymer electrolyte fuel cell separators and polymer electrolyte fuel cells
FR2956890B1 (en) * 2010-03-01 2012-03-09 Ksb Sas ELASTOMER / CERAMIC SEAL RING FAUCET

Also Published As

Publication number Publication date
EP2806047A1 (en) 2014-11-26
EP2806047B1 (en) 2016-02-03
JP2015004125A (en) 2015-01-08
US20140345752A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP4431905B2 (en) Austenitic heat-resistant alloy, heat-resistant pressure-resistant member made of this alloy, and manufacturing method thereof
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP5217576B2 (en) Austenitic stainless steel for heat-resistant parts and heat-resistant parts using the same
JP2006274443A (en) Nonmagnetc high-hardness alloy
JP6733210B2 (en) Ni-based superalloy for hot forging
JP6477252B2 (en) Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
JP2011219864A (en) Heat resistant steel for exhaust valve
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6293682B2 (en) High strength Ni-base superalloy
JP6733211B2 (en) Ni-based superalloy for hot forging
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
US20160215373A1 (en) Wear resistant alloy
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
US9863019B2 (en) High-strength Ni-base alloy
JP6747207B2 (en) Ni-based heat-resistant alloy member
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP6736964B2 (en) Austenitic heat resistant alloy material
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JP7131225B2 (en) Precipitation Hardening Martensitic Stainless Steel
TWI585212B (en) Nickel-based alloy and method of producing thereof
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP7298382B2 (en) Precipitation Hardening Martensitic Stainless Steel and Drill Parts for Underground Drilling
JP2018127672A (en) Austenitic heat resistant alloy member
JP2019026911A (en) Austenitic heat resistant alloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6337514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150