JP6737568B2 - Electric storage device and method for producing carbon porous body - Google Patents

Electric storage device and method for producing carbon porous body Download PDF

Info

Publication number
JP6737568B2
JP6737568B2 JP2015043726A JP2015043726A JP6737568B2 JP 6737568 B2 JP6737568 B2 JP 6737568B2 JP 2015043726 A JP2015043726 A JP 2015043726A JP 2015043726 A JP2015043726 A JP 2015043726A JP 6737568 B2 JP6737568 B2 JP 6737568B2
Authority
JP
Japan
Prior art keywords
porous body
carbon porous
carbon
storage device
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015043726A
Other languages
Japanese (ja)
Other versions
JP2016163023A (en
Inventor
瀬戸山 徳彦
徳彦 瀬戸山
信宏 荻原
信宏 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015043726A priority Critical patent/JP6737568B2/en
Publication of JP2016163023A publication Critical patent/JP2016163023A/en
Application granted granted Critical
Publication of JP6737568B2 publication Critical patent/JP6737568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、蓄電デバイス及び炭素多孔体の製造方法に関する。 The present invention relates to a power storage device and a method for manufacturing a carbon porous body.

従来、蓄電デバイスとしては、電気二重層キャパシタやハイブリッドキャパシタ、疑似電気二重層キャパシタ、二次電池などが知られている。例えば、電気二重層キャパシタとしては、水系又は非水系の電解液に一対の活性炭電極を配置したものが知られている。こうした電気二重層キャパシタでは、充放電は単なる静電的効果であるため、より高速での充放電が可能である。また、通常の電気二重層キャパシタでは充放電時に両極の電位が上下対称的に変化するが、正極や負極の一方に二次電池等の正極や負極を適用すると、正負極の電位差が拡大する等によりエネルギ密度を増大させることができる。この系はハイブリッドキャパシタと呼ばれており、最近注目されている。 Conventionally, as electric storage devices, electric double layer capacitors, hybrid capacitors, pseudo electric double layer capacitors, secondary batteries, and the like are known. For example, as an electric double layer capacitor, one in which a pair of activated carbon electrodes are arranged in an aqueous or non-aqueous electrolytic solution is known. In such an electric double layer capacitor, since charging/discharging is merely an electrostatic effect, charging/discharging can be performed at higher speed. Also, in a normal electric double layer capacitor, the potentials of both electrodes change symmetrically in the vertical direction during charging/discharging, but if a positive electrode or negative electrode such as a secondary battery is applied to one of the positive electrode or negative electrode, the potential difference between the positive and negative electrodes expands, etc. Can increase the energy density. This system is called a hybrid capacitor and has recently been receiving attention.

ところで、蓄電デバイスの電極に用いる炭素材料(活性炭など)の製造にあたり、ガス賦活や薬品賦活などの賦活処理によって、材料に細孔を開け、単位重量当たりの有効面積を増大させることが行われている(非特許文献1)。また、炭素材料として、セルサイズが約0.1μmの低密度の炭素発泡体が知られている(特許文献1)。この炭素発泡体は、レゾルシノールとホルムアルデヒドとの重縮合によって得られるポリマークラスタを共有結合的に架橋してゲルを合成し、そのゲルを超臨界条件で処理してエアロゲルとし、そのエアロゲルを炭素化することによって合成されている。 By the way, in the production of carbon materials (such as activated carbon) used for electrodes of electricity storage devices, activation treatment such as gas activation or chemical activation is performed to open pores in the material and increase the effective area per unit weight. (Non-patent document 1). As a carbon material, a low-density carbon foam having a cell size of about 0.1 μm is known (Patent Document 1). This carbon foam covalently crosslinks polymer clusters obtained by polycondensation of resorcinol and formaldehyde to synthesize a gel, treats the gel under supercritical conditions into an aerogel, and carbonizes the aerogel. Have been synthesized by.

米国特許第4873218号明細書U.S. Pat. No. 4,873,218

炭素TANSO 2009[No.236]26−33Carbon TANSO 2009 [No. 236] 26-33

しかしながら、非特許文献1などに記載された賦活処理で得られた炭素材料を用いた蓄電デバイスでは、放電容量が低いことがあった。また、特許文献1の炭素発泡体は、製造コストが高く、蓄電デバイスの電極としての実用化は困難であった。このため、放電容量を高めることのできる、新規な蓄電デバイスが望まれていた。 However, the electric storage device using the carbon material obtained by the activation treatment described in Non-Patent Document 1 or the like may have a low discharge capacity. Further, the carbon foam of Patent Document 1 has a high manufacturing cost, and it has been difficult to put it into practical use as an electrode of an electricity storage device. Therefore, a new power storage device that can increase the discharge capacity has been desired.

本発明はこのような課題を解決するためになされたものであり、放電容量を高めることのできる、新規な蓄電デバイスを提供することを主目的とする。 The present invention has been made to solve such a problem, and a main object of the present invention is to provide a novel electricity storage device capable of increasing a discharge capacity.

上述した目的を達成するために、本発明者らは鋭意研究した。そして、ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550℃以上700℃以下で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、炭酸塩を溶解可能な洗浄液で複合体を洗浄して炭酸塩を除去すると、炭素多孔体が得られることを見いだした。さらに、この炭素多孔体を電極に用いると、放電容量を高めることのできる新規な蓄電デバイスを提供できることを見いだし、本発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors have conducted extensive research. Then, an alkaline earth metal salt of benzenedicarboxylic acid is heated in an inert atmosphere at a temperature of 550° C. or higher and 700° C. or lower to form a complex of carbon and an alkaline earth metal carbonate with a cleaning solution capable of dissolving the carbonate. It was found that when the complex was washed to remove the carbonate, a porous carbon body was obtained. Further, they have found that the use of this carbon porous body for an electrode can provide a novel electricity storage device capable of increasing the discharge capacity, and completed the present invention.

即ち、本発明の蓄電デバイスは、
正極と、負極と、前記正極と前記負極との間に介在するイオン伝導媒体と、を備え、
前記正極及び前記負極の少なくとも一方は、温度77Kでの窒素吸着等温線のαSプロット解析により求まるミクロ細孔容量が0.1mL/g以下でメソ細孔を有する炭素多孔体を含むものである。
That is, the electricity storage device of the present invention is
A positive electrode, a negative electrode, and an ion conductive medium interposed between the positive electrode and the negative electrode,
At least one of the positive electrode and the negative electrode contains a carbon porous body having mesopores with a micropore volume of 0.1 mL/g or less determined by α S plot analysis of a nitrogen adsorption isotherm at a temperature of 77K.

また、本発明の炭素多孔体の製造方法は、
ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550℃以上700℃以下で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去した後に、不活性雰囲気中800℃以上の温度で熱処理して炭素多孔体を得るものである。
Further, the method for producing a carbon porous body of the present invention,
The alkaline earth metal salt of benzenedicarboxylic acid is heated in an inert atmosphere at a temperature of 550° C. or higher and 700° C. or lower to form a complex of carbon and an alkaline earth metal carbonate, and the carbonate is dissolved in the cleaning solution. The composite is washed to remove the carbonate, and then heat-treated at a temperature of 800° C. or higher in an inert atmosphere to obtain a carbon porous body.

本発明の蓄電デバイスでは、放電容量を高めることのできる、新規な蓄電デバイスを提供することができる。こうした効果が得られる理由は以下のように推察される。例えば、電気化学キャパシタは、電解液中の電解質イオンが電極表面にて電気二重層を形成することを主な蓄電原理にしている。電気化学キャパシタの電極に一般的に用いられている活性炭類には、ミクロ細孔と呼ばれる細孔径が2nm以下の小さな細孔が多く存在している。電解質イオンが通過できない小さな細孔径のミクロ細孔が存在する場合、その細孔は蓄電に利用できないため、単位重量や単位表面積あたりの放電容量が減少する。一方、本発明では、細孔径が2nmより大きく50nm以下のメソ細孔を有しミクロ細孔が少ない炭素多孔体を電極に用いており、蓄電に利用できない細孔が少なく、電解質イオンの移動が円滑に行われるため、放電容量が増加すると考えられる。本発明の炭素多孔体の製造方法では、蓄電デバイスの電極に特に適した炭素多孔体を比較的容易に得ることができる。 With the electricity storage device of the present invention, it is possible to provide a novel electricity storage device capable of increasing the discharge capacity. The reason why such effects are obtained is presumed as follows. For example, in an electrochemical capacitor, the main storage principle is that electrolyte ions in an electrolytic solution form an electric double layer on the electrode surface. Activated carbons generally used for electrodes of electrochemical capacitors have many small pores called micropores having a pore diameter of 2 nm or less. When there are micropores having a small pore size that electrolyte ions cannot pass through, the pores cannot be used for electricity storage, so that the discharge capacity per unit weight or unit surface area decreases. On the other hand, in the present invention, a carbon porous body having mesopores with a pore size of more than 2 nm and 50 nm or less and few micropores is used for an electrode, there are few pores that cannot be used for electricity storage, and migration of electrolyte ions Since it is performed smoothly, it is considered that the discharge capacity increases. According to the method for producing a carbon porous body of the present invention, a carbon porous body particularly suitable for an electrode of an electricity storage device can be obtained relatively easily.

窒素吸脱着等温線のIUPAC分類のIV型のグラフ。Graph of type IV of IUPAC classification of nitrogen adsorption/desorption isotherms. 蓄電デバイス20の構成の概略を表す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of the electricity storage device 20. 実験例3の充放電試験結果。The charge/discharge test result of Experimental example 3. 実験例3の充放電試験結果。The charge/discharge test result of Experimental example 3. 実験例3の充放電試験結果。The charge/discharge test result of Experimental example 3. 実験例1,4,6で用いた炭素多孔体の窒素吸脱着等温線。The nitrogen adsorption-desorption isotherm of the carbon porous body used in Experimental examples 1, 4, and 6. 参考例1〜3,7の炭素多孔体の窒素吸脱着等温線。The nitrogen adsorption/desorption isotherms of the carbon porous bodies of Reference Examples 1 to 3 and 7.

本発明の蓄電デバイスは、正極と、負極と、正極と負極との間に介在するイオン伝導媒体と、を備え、正極及び負極の少なくとも一方は、温度77Kでの窒素吸着等温線のαSプロット解析により求まるミクロ細孔容量が0.1mL/g以下でメソ細孔を有する炭素多孔体(本発明の炭素多孔体とも称する)を含むものである。ここで、ミクロ細孔とは、直径が2nm以下の細孔を示し、メソ細孔とは、直径が2nmより大きく50nm以下の細孔を示す。 The electricity storage device of the present invention includes a positive electrode, a negative electrode, and an ion conductive medium interposed between the positive electrode and the negative electrode, and at least one of the positive electrode and the negative electrode is an α S plot of a nitrogen adsorption isotherm at a temperature of 77K. It includes a carbon porous body (also referred to as the carbon porous body of the present invention) having mesopores with a micropore volume of 0.1 mL/g or less obtained by analysis. Here, the micropores are pores having a diameter of 2 nm or less, and the mesopores are pores having a diameter of more than 2 nm and 50 nm or less.

本発明の炭素多孔体は、温度77Kでの窒素吸着等温線のαSプロット解析により求まるミクロ細孔容量が0.1mL/g以下であり、さらにメソ細孔を有するものである。ミクロ細孔容量は、0.05mL/g以下であることが好ましく、0.01mL/g以下であることが更に好ましい。ミクロ細孔容量が小さいほど、蓄電に利用できない細孔が少なく、単位表面積あたりの放電容量を高めることができる。メソ細孔容量は、例えば、1.0mL/g以上であることが好ましく、1.5mL/g以上であることがより好ましく、1.8mL/g以上であることが更に好ましい。メソ細孔容量が大きいほど、蓄電に利用可能な細孔が多く、単位表面積あたりの放電容量を高めることができる。メソ細孔容量は、例えば、3.0mL/g以下であるものとしてもよい。 The carbon porous body of the present invention has a micropore volume of 0.1 mL/g or less determined by α S plot analysis of a nitrogen adsorption isotherm at a temperature of 77 K, and further has mesopores. The micropore volume is preferably 0.05 mL/g or less, more preferably 0.01 mL/g or less. The smaller the micropore capacity, the smaller the number of pores that cannot be used for electricity storage, and the higher the discharge capacity per unit surface area. The mesopore volume is, for example, preferably 1.0 mL/g or more, more preferably 1.5 mL/g or more, and further preferably 1.8 mL/g or more. The larger the mesopore volume, the more pores that can be used for electricity storage, and the higher the discharge capacity per unit surface area. The mesopore volume may be, for example, 3.0 mL/g or less.

本発明の炭素多孔体は、BET比表面積が800m2/g以上であることが好ましく、1000m2/g以上であることがより好ましい。BET比表面積が800m2/g以上では、放電容量をより高めることができる。BET比表面積の上限は特に限定されないが、例えば、2630m2/g以下としてもよいし、2000m2/g以下としてもよい。 The BET specific surface area of the porous carbon material of the present invention is preferably 800 m 2 /g or more, more preferably 1000 m 2 /g or more. When the BET specific surface area is 800 m 2 /g or more, the discharge capacity can be further increased. The upper limit of the BET specific surface area is not particularly limited, for example, may be as follows 2630 m 2 / g, it may be less 2000 m 2 / g.

本発明の炭素多孔体は、温度77Kでの窒素吸着等温線がIUPAC分類のIV型に属するものとしてもよい。こうしたものでは、窒素吸着等温線のIUPAC分類の型がメソ細孔を持つことを示すIV型(図1参照)であり、ミクロ細孔容量が0.1mL/g以下と小さいことから、ほぼメソ細孔から構成されているといえる。 The carbon porous body of the present invention may have a nitrogen adsorption isotherm at a temperature of 77 K that belongs to type IV of IUPAC classification. Among these, the type of IUPAC classification of nitrogen adsorption isotherm is type IV (see FIG. 1) showing that it has mesopores, and since the micropore volume is small at 0.1 mL/g or less, it is almost mesopore. It can be said that it is composed of pores.

本発明の炭素多孔体は、例えば、温度77Kでの窒素吸着等温線において相対圧力P/P0が0.5のときの窒素吸着量が0.8g/g以下で且つ相対圧力P/P0が0.9のときの窒素吸着量が1.5g/g以上であるものとしてもよい。こうしたものでは、メソ細孔の細孔分布がより好適であり、細孔内のイオン移動が円滑に進むため、放電容量をより高めることができる。 The carbon porous body of the present invention has, for example, a nitrogen adsorption amount of 0.8 g/g or less and a relative pressure P/P 0 when the relative pressure P/P 0 is 0.5 in the nitrogen adsorption isotherm at a temperature of 77K. When the ratio is 0.9, the nitrogen adsorption amount may be 1.5 g/g or more. In such a case, the pore distribution of the mesopores is more preferable, and the ion migration in the pores proceeds smoothly, so that the discharge capacity can be further increased.

本発明の炭素多孔体は、ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550℃以上700℃以下で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し(複合体形成工程)、炭酸塩を溶解可能な洗浄液で複合体を洗浄して炭酸塩を除去して(炭酸塩除去工程)得られたものとしてもよい。この製造方法では、所望の炭素多孔体を比較的容易に製造できる。ここで、アルカリ土類金属塩は、カルシウム塩であることが好ましい。また、ベンゼンジカルボン酸は、テレフタル酸であることが好ましい。また、炭素多孔体は、さらに、不活性雰囲気中800℃以上の温度で熱処理して(熱処理工程)得られたものとしてもよい。熱処理をしたものでは、充放電を繰り返した場合にも、高い放電容量をより維持できる。なお、複合体形成工程、炭酸塩除去工程、熱処理工程については、後述する炭素多孔体の製造方法で詳しく説明するため、ここでは詳細な説明を省略する。 The carbon porous body of the present invention forms a complex of carbon and an alkaline earth metal carbonate by heating an alkaline earth metal salt of benzenedicarboxylic acid at 550° C. or higher and 700° C. or lower in an inert atmosphere (complex In the formation step), the complex may be washed with a washing liquid capable of dissolving carbonate to remove the carbonate (carbonate removing step). With this manufacturing method, the desired carbon porous body can be manufactured relatively easily. Here, the alkaline earth metal salt is preferably a calcium salt. Further, the benzenedicarboxylic acid is preferably terephthalic acid. Moreover, the carbon porous body may be obtained by further heat-treating at a temperature of 800° C. or higher in an inert atmosphere (heat treatment step). With the heat treatment, a high discharge capacity can be maintained even when charging and discharging are repeated. Since the complex forming step, the carbonate removing step, and the heat treatment step will be described in detail in the method for producing a carbon porous body described later, detailed description thereof is omitted here.

本発明の蓄電デバイスは、少なくとも正極が、本発明の炭素多孔体を含むものであることが好ましい。例えば、正極が本発明の炭素多孔体を含み、負極がリチウムを吸蔵放出可能な負極活物質を含むハイブリッドキャパシタ(リチウムキャパシタ)としてもよいし、正極及び負極が本発明の炭素多孔体を含む電気二重層キャパシタとしてもよい。以下では、本発明の炭素多孔体を含む正極を用いた蓄電デバイスについて主に説明する。 In the electricity storage device of the present invention, at least the positive electrode preferably contains the carbon porous material of the present invention. For example, the positive electrode may include the carbon porous body of the present invention, and the negative electrode may be a hybrid capacitor (lithium capacitor) including a negative electrode active material capable of inserting and extracting lithium, or the positive electrode and the negative electrode may include the carbon porous body of the present invention. It may be a double layer capacitor. Below, the electrical storage device using the positive electrode containing the carbon porous material of the present invention will be mainly described.

本発明の蓄電デバイスにおいて、正極は、本発明の炭素多孔体を正極活物質として備えていてもよい。正極は、例えば、正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。導電材は、電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。 In the electricity storage device of the present invention, the positive electrode may include the carbon porous body of the present invention as a positive electrode active material. The positive electrode is prepared by, for example, mixing a positive electrode active material, a conductive material, and a binder, adding a suitable solvent to form a paste-like positive electrode material, coating and drying it on the surface of the current collector, and if necessary. It may be formed by compression to increase the electrode density. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance, and examples thereof include graphite such as natural graphite (scaly graphite and flake graphite) and artificial graphite, acetylene black, carbon black, and Ketjen. It is possible to use one or a mixture of two or more of black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.). Among these, carbon black and acetylene black are preferable as the conductive material from the viewpoint of electron conductivity and coatability. The binder plays a role of binding the active material particles and the conductive material particles together, and includes, for example, fluorine-containing resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and fluororubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more kinds. Further, it is also possible to use an aqueous dispersion of cellulose-based binder or styrene-butadiene rubber (SBR) which is an aqueous binder.

正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。 Examples of the solvent in which the positive electrode active material, the conductive material, and the binder are dispersed include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N,N-dimethylaminopropylamine. Organic solvents such as ethylene oxide and tetrahydrofuran can be used. Further, a dispersant, a thickener, etc. may be added to water, and the active material may be slurried with a latex such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more kinds. Examples of the application method include roller coating using an applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Examples of the current collector include aluminum, titanium, stainless steel, nickel, iron, baked carbon, conductive polymer, conductive glass, etc., and aluminum, copper, etc. for the purpose of improving adhesiveness, conductivity and oxidation resistance. The surface of which is treated with carbon, nickel, titanium, silver or the like can be used. With respect to these, it is possible to oxidize the surface. Examples of the shape of the current collector include a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded shape, a lath body, a porous body, a foamed body, and a fiber group formed body. The thickness of the current collector is, for example, 1 to 500 μm.

本発明の蓄電デバイスにおいて、負極は、リチウムを吸蔵放出可能な負極活物質を備えていてもよいし、本発明の炭素多孔体を負極活物質として備えていてもよい。リチウムを吸蔵放出可能な負極活物質としては、例えば金属リチウムやリチウム合金のほか、金属酸化物、金属硫化物、リチウムを吸蔵放出する炭素質物質などが挙げられる。リチウム合金としては、例えば、アルミニウムやシリコン、スズ、マグネシウム、インジウム、カルシウムなどとリチウムとの合金が挙げられる。金属酸化物としては、例えばスズ酸化物、ケイ素酸化物、チタン酸化物、リチウムチタン酸化物、リチウムマンガン酸化物、ニオブ酸化物、タングステン酸化物などが挙げられる。金属硫化物としては、例えばスズ硫化物やチタン硫化物などが挙げられる。リチウムを吸蔵放出する炭素質物質としては、例えば黒鉛、コークス、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素などが挙げられる。 In the electricity storage device of the present invention, the negative electrode may include a negative electrode active material capable of inserting and extracting lithium, or may include the carbon porous body of the present invention as a negative electrode active material. Examples of the negative electrode active material capable of inserting and extracting lithium include metal lithium and lithium alloys, as well as metal oxides, metal sulfides, and carbonaceous materials that absorb and release lithium. Examples of the lithium alloy include alloys of lithium with aluminum, silicon, tin, magnesium, indium, calcium and the like. Examples of the metal oxide include tin oxide, silicon oxide, titanium oxide, lithium titanium oxide, lithium manganese oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the carbonaceous substance capable of occluding and releasing lithium include graphite, coke, mesophase pitch carbon fiber, spherical carbon, resin-fired carbon, and the like.

負極は、例えば、負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。集電体としては、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。 The negative electrode is prepared by, for example, mixing a negative electrode active material, a conductive material, and a binder, adding a suitable solvent to form a paste-like negative electrode material, coating the surface of the current collector and drying, and if necessary. It may be formed by compression to increase the electrode density. As the conductive material, the binder, the solvent and the like used for the negative electrode, those exemplified for the positive electrode can be used. Examples of the current collector include copper, nickel, stainless steel, titanium, aluminum, baked carbon, conductive polymer, conductive glass, and Al-Cd alloy, as well as for the purpose of improving adhesiveness, conductivity, and reduction resistance. It is also possible to use, for example, a surface of copper or the like treated with carbon, nickel, titanium, silver or the like. With respect to these, it is possible to oxidize the surface. The shape of the current collector may be the same as that of the positive electrode.

本発明の蓄電デバイスにおいて、イオン伝導媒体としては、例えば、支持塩(支持電解質)を含む極性有機溶媒やイオン性液体などの非水系電解液を用いることができる。支持塩としては、例えば、(C254NBF4、(C253(CH3)NBF4、(C494NBF4、(C254NPF6、(C253(CH3)NPF6、(C494NPF6などの四級アンモニウム塩や、LiPF6, LiClO4,LiBF4,Li(CF3SO22Nなどの公知の支持塩を用いることができる。支持塩の濃度としては、0.1〜2.0Mであることが好ましく、0.8〜1.8Mであることがより好ましい。極性有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなど従来の二次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、イオン性液体としては、特に限定されないが、例えば、ジエチル−メチル−(2−メトキシエチル)アンモニウム−ビス(トリフルオロメタンスルホニル)イミド、ジエチル−メチル−(2−メトキシエチル)アンモニウム−テトラフルオロボレート、N−メチル−N−プロピルピペリジニウム−ビス(トリフルオロメタンスルホニル)イミド、トリメチル−プロピルアンモニウム−ビス(トリフルオロメタンスルホニル)イミド、メチル−プロピルピロリジウム−ビス(トリフルオロメタンスルホニル)イミド、ブチル−メチルピロリジウム−ビス(トリフルオロメタンスルホニル)イミド、ブチルピリジニウム−テトラフルオロボレート、ブチルピリジニウム−トリフルオロメタンスルホニル、1−エチルピリジニウムヘキサフルオロボレート、1−メチル−1−プロピルピペリジニウムヘキサフルオロホスフェートなどが挙げられる。また、これらのイオン性液体を有機溶媒に溶解混合して用いることもできる。イオン伝導媒体には、リン系、ハロゲン系などの難燃剤を添加してもよい。また、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子、アミノ酸誘導体、ソルビトール誘導体などの糖類などに、上記の非水系電解液を含ませてゲル状にして用いてもよい。 In the electricity storage device of the present invention, as the ion conductive medium, for example, a non-aqueous electrolyte solution such as a polar organic solvent containing a supporting salt (supporting electrolyte) or an ionic liquid can be used. Examples of the supporting salt include (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 )NBF 4 , (C 4 H 9 ) 4 NBF 4 , and (C 2 H 5 ) 4 NPF 6. , Quaternary ammonium salts such as (C 2 H 5 ) 3 (CH 3 )NPF 6 and (C 4 H 9 ) 4 NPF 6 and LiPF 6 , LiClO 4 , LiBF 4 , Li(CF 3 SO 2 ) 2 N A known supporting salt such as, for example, can be used. The concentration of the supporting salt is preferably 0.1 to 2.0M, more preferably 0.8 to 1.8M. Examples of the polar organic solvent include organic solvents used in conventional secondary batteries and capacitors such as ethylene carbonate, propylene carbonate, γ-butyrolactone, diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate. These may be used alone or in combination of two or more. The ionic liquid is not particularly limited, and examples thereof include diethyl-methyl-(2-methoxyethyl)ammonium-bis(trifluoromethanesulfonyl)imide and diethyl-methyl-(2-methoxyethyl)ammonium-tetrafluoroborate. , N-methyl-N-propylpiperidinium-bis(trifluoromethanesulfonyl)imide, trimethyl-propylammonium-bis(trifluoromethanesulfonyl)imide, methyl-propylpyrrolidinium-bis(trifluoromethanesulfonyl)imide, butyl-methyl Pyrrolidinium-bis(trifluoromethanesulfonyl)imide, butylpyridinium-tetrafluoroborate, butylpyridinium-trifluoromethanesulfonyl, 1-ethylpyridinium hexafluoroborate, 1-methyl-1-propylpiperidinium hexafluorophosphate and the like can be mentioned. .. Further, these ionic liquids can be dissolved and mixed in an organic solvent and used. A flame retardant such as phosphorus or halogen may be added to the ion conductive medium. Further, the non-aqueous electrolyte solution may be added to a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, a saccharide such as an amino acid derivative, or a sorbitol derivative to form a gel.

本発明の蓄電デバイスは、正極と負極との間にセパレータを備えていてもよい。セパレータとしては、蓄電デバイスの使用範囲に耐えうる組成であれば特に限定されるものではないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。 The electricity storage device of the present invention may include a separator between the positive electrode and the negative electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the electricity storage device, for example, a polymer non-woven fabric such as a polypropylene non-woven fabric or a polyphenylene sulfide non-woven fabric, or an olefin resin such as polyethylene or polypropylene. A microporous film can be used. These may be used alone or in combination.

本発明の蓄電デバイスの形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。この蓄電デバイスの一例を図2に示す。図2は、蓄電デバイス20の構成の概略を表す断面図である。この蓄電デバイス20は、カップ形状のケース21と、正極活物質を有しこのケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、ケース21の開口部に配設されガスケット25を介してケース21を密封する封口板26と、を備えている。この蓄電デバイス20において、正極22及び負極23の少なくとも一方は、温度77Kでの窒素吸着等温線のαSプロット解析により求まるミクロ細孔容量が0.1mL/g以下でメソ細孔を有する炭素多孔体を含んでいる。 The shape of the electricity storage device of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Further, it may be applied to a large-sized one used for an electric vehicle or the like. An example of this electricity storage device is shown in FIG. FIG. 2 is a cross-sectional view illustrating the outline of the configuration of the electricity storage device 20. The electricity storage device 20 has a cup-shaped case 21, a positive electrode 22 that has a positive electrode active material and is provided below the case 21, and a negative electrode active material that faces the positive electrode 22 via a separator 24. A negative electrode 23 provided at a position, a gasket 25 formed of an insulating material, and a sealing plate 26 disposed in an opening portion of the case 21 for sealing the case 21 via the gasket 25 are provided. In this electricity storage device 20, at least one of the positive electrode 22 and the negative electrode 23 has a mesopore with a micropore volume of 0.1 mL/g or less determined by α S plot analysis of a nitrogen adsorption isotherm at a temperature of 77K. Contains the body.

次に、本発明の炭素多孔体の製造方法について説明する。本発明の炭素多孔体の製造方法は、ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550℃以上700℃以下で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し(複合体形成工程)、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去し(炭酸塩除去工程)その後、不活性雰囲気中800℃以上の温度で熱処理し(熱処理工程)、炭素多孔体を得るものである。この製造方法は、上述した本発明の炭素多孔体を得るのに特に好適である。 Next, a method for producing the carbon porous body of the present invention will be described. The method for producing a porous carbon material of the present invention comprises heating an alkaline earth metal salt of benzenedicarboxylic acid at 550° C. or higher and 700° C. or lower in an inert atmosphere to form a complex of carbon and an alkaline earth metal carbonate. (Composite forming step), the complex is washed with a cleaning solution capable of dissolving the carbonate to remove the carbonate (carbonate removing step), and then heat treated at a temperature of 800°C or higher in an inert atmosphere ( Heat treatment step) to obtain a carbon porous body. This manufacturing method is particularly suitable for obtaining the carbon porous body of the present invention described above.

本発明の炭素多孔体の製造方法(複合体形成工程)において、ベンゼンジカルボン酸としては、例えば、フタル酸(ベンゼン−1,2−ジカルボン酸)、イソフタル酸(ベンゼン−1,3−ジカルボン酸)、テレフタル酸(ベンゼン−1,4−ジカルボン酸)などが挙げられるが、このうちテレフタル酸が好ましい。また、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられるが、このうちカルシウムが好ましい。ベンゼンジカルボン酸のアルカリ土類金属塩は、市販品を購入してもよいし、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とを水中で混合することにより合成してもよい。その場合、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とのモル比は、中和反応式に基づく化学量論量だけ用いてもよいし、一方が他方に対して過剰になるように用いてもよい。例えば、モル比は、1.5:1〜1:1.5の範囲に設定すればよい。ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とを水中で混合する際には、50℃以上100℃以下に加熱してもよい。 In the method for producing a carbon porous body (complex forming step) of the present invention, examples of the benzenedicarboxylic acid include phthalic acid (benzene-1,2-dicarboxylic acid) and isophthalic acid (benzene-1,3-dicarboxylic acid). , Terephthalic acid (benzene-1,4-dicarboxylic acid), etc., among which terephthalic acid is preferred. Further, examples of the alkaline earth metal include magnesium, calcium, strontium, barium, etc. Of these, calcium is preferable. The alkaline earth metal salt of benzenedicarboxylic acid may be purchased as a commercially available product, or may be synthesized by mixing benzenedicarboxylic acid and a hydroxide of alkaline earth metal in water. In that case, the molar ratio of benzenedicarboxylic acid to the hydroxide of alkaline earth metal may be the stoichiometric amount based on the neutralization reaction formula, or one may be used in excess with respect to the other. May be. For example, the molar ratio may be set in the range of 1.5:1 to 1:1.5. When benzenedicarboxylic acid and an alkaline earth metal hydroxide are mixed in water, they may be heated to 50° C. or higher and 100° C. or lower.

本発明の炭素多孔体の製造方法(複合体形成工程)において、不活性雰囲気としては、窒素雰囲気やアルゴン雰囲気などが挙げられる。また、加熱温度は、550℃以上700℃以下に設定するのが好ましい。550℃未満では、77Kでの窒素吸着等温線の相対圧力P/P0が0.9のときの窒素吸着量が十分大きくならないため好ましくない。700℃を超えると、炭素多孔体が得られないため好ましくない。加熱後に得られる炭素とアルカリ土類金属炭酸塩との複合体は、層状炭化物の層間にアルカリ土類金属炭酸塩が入り込んだ構造をとっていると推察される。加熱温度での保持時間は、例えば50時間以下としてもよい。このうち、0.5時間以上20時間以下が好ましく、1時間10時間以下がより好ましい。0.5時間以上では、炭素とアルカリ土類金属炭酸塩との複合体の形成が十分に行われる。20時間以下では、BET比表面積の比較的大きな炭素多孔体が得られる。 In the method for producing a carbon porous body of the present invention (composite forming step), the inert atmosphere may, for example, be a nitrogen atmosphere or an argon atmosphere. The heating temperature is preferably set to 550°C or higher and 700°C or lower. If it is less than 550° C., the amount of nitrogen adsorption at the relative pressure P/P 0 of the nitrogen adsorption isotherm at 77K is not sufficiently large, which is not preferable. If it exceeds 700°C, a carbon porous body cannot be obtained, which is not preferable. It is assumed that the composite of carbon and alkaline earth metal carbonate obtained after heating has a structure in which the alkaline earth metal carbonate enters between the layers of the layered carbide. The holding time at the heating temperature may be, for example, 50 hours or less. Among these, 0.5 hours or more and 20 hours or less are preferable, and 1 hour and 10 hours or less are more preferable. At 0.5 hours or more, the formation of the complex of carbon and the alkaline earth metal carbonate is sufficiently performed. When it is 20 hours or less, a carbon porous body having a relatively large BET specific surface area can be obtained.

本発明の炭素多孔体の製造方法(炭酸塩除去工程)において、アルカリ土類金属炭酸塩を溶解可能な洗浄液としては、例えば、アルカリ土類金属炭酸塩が炭酸カルシウムの場合には水や酸性水溶液を用いることが好ましい。酸性水溶液としては、例えば、塩酸、硝酸、酢酸及びシュウ酸などの水溶液が挙げられる。こうした洗浄を行うことにより、複合体中のアルカリ土類金属炭酸塩が存在していた箇所は空洞になると推察される。 In the method for producing a carbon porous body of the present invention (carbonate removal step), as the cleaning solution capable of dissolving the alkaline earth metal carbonate, for example, when the alkaline earth metal carbonate is calcium carbonate, water or an acidic aqueous solution is used. Is preferably used. Examples of the acidic aqueous solution include aqueous solutions of hydrochloric acid, nitric acid, acetic acid, oxalic acid, and the like. It is presumed that such washing will make voids in the complex where the alkaline earth metal carbonate was present.

本発明の炭素多孔体の製造方法(熱処理工程)において、不活性雰囲気としては、窒素雰囲気やアルゴン雰囲気などが挙げられる。また、熱処理温度は800℃以上に設定するのが好ましい。800℃以上の熱処理温度で熱処理を行うことにより、炭酸塩除去工程を経て得られた多孔体の、表面の官能基(酸素)が除去されたり、骨格(壁)の結晶性が向上したりして、充放電を繰り返した場合にも、高い放電容量をより維持できると推察される。熱処理温度は、800℃以上2500℃以下としてもよいし、1000℃以上2000℃以下としてもよい。こうした温度であれば、熱処理工程を経ても、炭酸塩除去工程を経て得られた多孔体の細孔構造をほぼ維持することができる。熱処理温度での保持時間は、例えば、2時間以下としてもよい。保持時間は、1時間以上24時間以下が好ましく、2時間以上12時間以下がより好ましい。2時間以上では熱処理の効果をより高められる。12時間以下であれば細孔構造をより維持できる。 In the method for producing a carbon porous body of the present invention (heat treatment step), examples of the inert atmosphere include a nitrogen atmosphere and an argon atmosphere. The heat treatment temperature is preferably set to 800°C or higher. By performing the heat treatment at a heat treatment temperature of 800°C or higher, the functional groups (oxygen) on the surface of the porous body obtained through the carbonate removal step are removed, and the crystallinity of the skeleton (wall) is improved. Therefore, it is presumed that a high discharge capacity can be maintained even when charging and discharging are repeated. The heat treatment temperature may be 800° C. or higher and 2500° C. or lower, or 1000° C. or higher and 2000° C. or lower. With such a temperature, the pore structure of the porous body obtained through the carbonate removal step can be almost maintained even after the heat treatment step. The holding time at the heat treatment temperature may be, for example, 2 hours or less. The holding time is preferably 1 hour or more and 24 hours or less, more preferably 2 hours or more and 12 hours or less. If it is 2 hours or more, the effect of heat treatment can be further enhanced. If it is 12 hours or less, the pore structure can be more maintained.

本実施形態の蓄電デバイスでは、放電容量を高めることのできる、新規な蓄電デバイスを提供することができる。こうした効果が得られる理由は以下のように推察される。例えば、負極がリチウムを吸蔵放出可能な負極活物質を含むリチウムキャパシタでは、電解質イオンであるリチウムイオンが電解液溶媒と溶媒和しており、炭素多孔体電極中のミクロ細孔を電解質イオンが通過できないことがある。しかし、本発明の炭素多孔体はミクロ細孔が少なく、溶媒和したリチウムイオンなどの移動が円滑に行われるため、放電容量が増加すると考えられる。また、正極及び負極が炭素多孔体を含む電気二重層キャパシタでは、一般に、四級アンモニウム塩のような比較的サイズの大きな電解質が用いられるため、炭素多孔体電極中のミクロ細孔を電解質イオンが通過できないことがある。しかし、本発明の炭素多孔体は、ミクロ細孔が少なく、四級アンモニウム塩などの移動が円滑に行われるため、放電容量が増加すると考えられる。また、本実施形態の炭素多孔体の製造方法では、本実施形態の蓄電デバイスの電極に特に適した炭素多孔体を比較的容易に得ることができる。 With the electricity storage device of the present embodiment, it is possible to provide a novel electricity storage device that can increase the discharge capacity. The reason why such effects are obtained is presumed as follows. For example, in a lithium capacitor in which the negative electrode includes a negative electrode active material capable of inserting and extracting lithium, the lithium ions, which are electrolyte ions, are solvated with the electrolyte solvent, and the electrolyte ions pass through the micropores in the carbon porous body electrode. There are things you can't do. However, it is considered that the carbon porous material of the present invention has few micropores, and solvated lithium ions and the like move smoothly, so that the discharge capacity increases. In addition, in an electric double layer capacitor in which the positive electrode and the negative electrode include a carbon porous body, an electrolyte having a relatively large size such as a quaternary ammonium salt is generally used, so that the electrolyte pores in the micropores in the carbon porous body electrode are You may not be able to pass. However, it is considered that the carbon porous body of the present invention has few micropores, and the quaternary ammonium salt and the like move smoothly, so that the discharge capacity increases. Further, in the method for manufacturing a carbon porous body of the present embodiment, a carbon porous body particularly suitable for the electrode of the electricity storage device of the present embodiment can be obtained relatively easily.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Needless to say, the present invention is not limited to the above-described embodiments and can be implemented in various modes as long as they are within the technical scope of the present invention.

例えば、上述した実施形態においては、少なくとも正極が本発明の炭素多孔体を備えたものについて主に説明したが、負極が本発明の炭素多孔体を備え、正極が本発明の炭素多孔体を備えていなくてもよい。 For example, in the above-described embodiment, at least the positive electrode is mainly described as having the carbon porous body of the present invention, but the negative electrode has the carbon porous body of the present invention, and the positive electrode has the carbon porous body of the present invention. You don't have to.

以下には、本発明の蓄電デバイスを具体的に作製した例について、実施例として説明する。なお、実験例1〜4が本発明の実施例に相当し、実験例5,6が比較例に相当する。本発明は、以下の実施例に限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 Hereinafter, an example in which the electricity storage device of the present invention is specifically manufactured will be described as an example. In addition, Experimental Examples 1 to 4 correspond to Examples of the present invention, and Experimental Examples 5 and 6 correspond to Comparative Examples. It is needless to say that the present invention is not limited to the following examples and can be implemented in various modes within the technical scope of the present invention.

[実験例1]
(炭素多孔体の合成)
1.テレフタル酸のカルシウム塩の合成
テレフタル酸(0.1mol)と水酸化カルシウム(0.1mol)とを水200mL中に加え、80℃の水浴で4時間加熱した。生成したテレフタル酸のカルシウム塩の結晶を濾過して分取し、室温で風乾した。
[Experimental Example 1]
(Synthesis of carbon porous material)
1. Synthesis of Calcium Salt of Terephthalic Acid Terephthalic acid (0.1 mol) and calcium hydroxide (0.1 mol) were added to 200 mL of water, and heated in a water bath at 80° C. for 4 hours. The formed crystals of calcium salt of terephthalic acid were collected by filtration and air-dried at room temperature.

2.テレフタル酸のカルシウム塩の炭素化
テレフタル酸のカルシウム塩(1g)を電気環状炉内に設置し、その環状炉内を不活性ガス(流速0.1L/分)でフロー置換した。不活性ガスとしては窒素ガスを用いたが、アルゴンガスを用いてもよい。ガスフローを維持したまま、環状炉温度を設定温度まで1時間かけて昇温した。ここでは、設定温度は550℃にした。昇温完了後、ガスフローを維持したまま、その設定温度で2時間保持し、その後室温まで冷却した。これにより、環状炉内には、炭素と炭酸カルシウムとの複合体が生成した。
2. Carbonization of Calcium Salt of Terephthalic Acid Calcium salt of terephthalic acid (1 g) was placed in an electric tube furnace, and the inside of the tube furnace was flow-substituted with an inert gas (flow rate 0.1 L/min). Although nitrogen gas was used as the inert gas, argon gas may be used. While maintaining the gas flow, the temperature of the annular furnace was raised to the set temperature over 1 hour. Here, the set temperature was 550°C. After the temperature rise was completed, the gas flow was maintained and the set temperature was maintained for 2 hours, and then cooled to room temperature. As a result, a complex of carbon and calcium carbonate was formed in the annular furnace.

3.複合体の酸処理
複合体を環状炉から取り出し、水500mLに分散させた。分散液に2mol/Lの塩酸を100mL(過剰量)添加し、撹拌した。そうしたところ、炭酸カルシウムの分解により発泡が見られた。分散液をろ過後、乾燥して炭素多孔体(以下ではメソ細孔炭素多孔体とも称する)を得た(収量約1g)。
3. Acid treatment of complex The complex was taken out of the ring furnace and dispersed in 500 mL of water. 100 mL (excess amount) of 2 mol/L hydrochloric acid was added to the dispersion liquid, and the mixture was stirred. As a result, foaming was observed due to the decomposition of calcium carbonate. The dispersion was filtered and dried to obtain a carbon porous body (hereinafter also referred to as mesopore carbon porous body) (yield about 1 g).

4.炭素多孔体の熱処理
得られた炭素多孔体を電気環状炉内に設置し、その環状炉内を不活性ガスでフロー置換した。不活性ガスとしては窒素ガスを用いたが、アルゴンガスを用いてもよい。ガスフローを維持したまま、環状炉温度を1000℃まで2時間かけて昇温した。昇温完了後、ガスフロー維持したまま、その温度で6時間保持し、その後室温まで冷却した。これにより、熱処理された炭素多孔体を得た。
4. Heat Treatment of Porous Carbon Body The obtained porous carbon body was placed in an electric annular furnace, and the inside of the annular furnace was flow-substituted with an inert gas. Although nitrogen gas was used as the inert gas, argon gas may be used. While maintaining the gas flow, the temperature of the annular furnace was raised to 1000° C. over 2 hours. After the temperature was raised, the temperature was maintained for 6 hours while maintaining the gas flow, and then cooled to room temperature. As a result, a heat-treated porous carbon body was obtained.

(炭素多孔体の細孔特性値測定)
得られた炭素多孔体について、液体窒素温度(77K)における窒素吸着測定を行い、窒素吸脱着等温線を求めた。この窒素吸脱着等温線から、細孔特性値を算出した。窒素吸着等温線は、カンタクローム社製Autosorb−1を用いて測定を行い、吸着量の解析を行った。また、αsプロット解析において、プロット外挿直線の切片の値により、ミクロ細孔容量(cm3(STP)/g)を求めた。ミクロ細孔容量(mL/g)は、標準ガス体積(cm3(STP)/g)を77Kの液体窒素密度(0.808g/mL)を用いて変換した。なお、αsプロット解析では、比較用の標準等温線として、“Characterization of porous carbons with high resolution alpha(s)-analysis and low temperature magnetic susceptibility”Kaneko, K; Ishii, C; Kanoh, H; Hanazawa, Y; Setoyama, N; Suzuki, T ADVANCES IN COLLOID AND INTERFACE SCIENCE vol.76, p295-320(1998)に記載された標準等温線を用いた。
(Measurement of pore characteristic value of carbon porous body)
With respect to the obtained carbon porous body, nitrogen adsorption measurement was carried out at a liquid nitrogen temperature (77 K) to obtain a nitrogen adsorption/desorption isotherm. The pore characteristic value was calculated from this nitrogen adsorption/desorption isotherm. The nitrogen adsorption isotherm was measured using Autosorb-1 manufactured by Cantachrome to analyze the adsorption amount. Further, in the αs plot analysis, the micropore volume (cm 3 (STP)/g) was determined by the value of the intercept of the plot extrapolation line. Micropore volume (mL/g) was converted using standard gas volume (cm 3 (STP)/g) with a liquid nitrogen density of 77K (0.808 g/mL). In the αs plot analysis, as a standard isotherm for comparison, “Characterization of porous carbons with high resolution alpha(s)-analysis and low temperature magnetic susceptibility”Kaneko, K; Ishii, C; Kanoh, H; Hanazawa, Y Setoyama, N; Suzuki, T ADVANCES IN COLLOID AND INTERFACE SCIENCE vol.76, p295-320 (1998).

(塗工電極の作成)
得られた炭素多孔体83質量%、粒子状炭素導電材としてカーボンブラック(東海カーボン、TB5500)を10.7質量%、水溶性ポリマーであるカルボキシメチルセルロース(CMC)(ダイセルファインケム、CMCダイセル1120)を4質量%、スチレンブタジエン共重合体(SBR)(日本ゼオン、BM−400B)を2.3質量%を混合し、分散剤として水を適量添加、分散してスラリー状合材とした。このスラリー状合材を15μm厚さのアルミ箔集電体に均一に塗布し、加熱乾燥させて塗布シートを作製した。その後、塗布シートを加圧プレス処理し、2.05cm2の面積に打ち抜いて円盤状の電極を準備した。その後、アルゴン不活性雰囲気下で300℃、12時間、焼成を行った。
(Creating coated electrodes)
83% by mass of the obtained carbon porous material, 10.7% by mass of carbon black (Tokai Carbon, TB5500) as the particulate carbon conductive material, and carboxymethyl cellulose (CMC) (Daicel Finechem, CMC Daicel 1120) which is a water-soluble polymer. 2.3 mass% of styrene-butadiene copolymer (SBR) (Nippon Zeon Co., Ltd., BM-400B) was mixed in an amount of 4 mass %, and an appropriate amount of water was added as a dispersant and dispersed to obtain a slurry-like mixture. This slurry-like mixture was uniformly applied to an aluminum foil current collector having a thickness of 15 μm and dried by heating to prepare a coated sheet. Then, the coated sheet was pressure-pressed and punched into an area of 2.05 cm 2 to prepare a disk-shaped electrode. Then, firing was carried out at 300° C. for 12 hours in an argon inert atmosphere.

(二極式評価セルの作製)
エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を、体積比で30:40:30の割合で混合した非水溶媒に支持電解質として六フッ化リン酸リチウムを1mol/Lとなるように添加して非水電解液を作製した。上述した塗工電極を作用極とし、リチウム金属箔(厚み300μm)を対極として、両電極の間に上記非水電解液を含浸させたセパレータ(東レ東燃製)を挟んで二極式評価セルを作製した。
(Fabrication of bipolar evaluation cell)
1 mol/L of lithium hexafluorophosphate as a supporting electrolyte in a non-aqueous solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 30:40:30. To obtain a non-aqueous electrolyte solution. The coated electrode described above was used as a working electrode, a lithium metal foil (thickness 300 μm) was used as a counter electrode, and a separator (manufactured by Toray Tonen) impregnated with the above non-aqueous electrolyte was sandwiched between both electrodes to form a bipolar evaluation cell. It was made.

(充放電試験1)
上記二極式評価セルを用い、20℃の温度環境下、0.15mAで4.0Vまで充電した後、0.15mAで3.0Vまで放電させた。この充放電操作を5回行った。充電電圧を4.2V、4.3V、4.5V、4.8Vと変えて、同様の充放電操作を行った。なお、充放電操作5回における放電容量の平均値を、各充電電圧での放電容量とした。
(Charge/discharge test 1)
Using the bipolar evaluation cell described above, under a temperature environment of 20° C., the battery was charged to 4.0 V at 0.15 mA and then discharged to 3.0 V at 0.15 mA. This charging/discharging operation was performed 5 times. The same charging/discharging operation was performed by changing the charging voltage to 4.2V, 4.3V, 4.5V, 4.8V. In addition, the average value of the discharge capacities after five charging/discharging operations was used as the discharge capacities at each charging voltage.

(充放電試験2)
上記二極式評価セルを用い、20℃の温度環境下、アニオンの吸脱着容量の測定として、0.15mAで4.5Vまで充電し、0.15mAで3.0Vまで放電させ、この充放電操作を5回行った。また、カチオンの吸脱着量の測定として、0.15mAで1.5Vまで放電し、0.15mAで3.0Vまで充電させ、この充放電操作を5回行った。さらに、アニオンおよびカチオンの吸脱着容量の測定として、0.15mAで4.5Vまで充電し、0.15mAで1.5Vまで放電させ、この充放電操作を5回行った。なお、充放電操作5回における放電容量の平均値を、各充放電操作における放電容量とした。この充放電試験2では、リチウム金属対極に対して充放電電圧を区切ることで、アニオンの吸脱着とカチオンの吸脱着容量を見積もることが可能である(例えば、J. Electrochem. Soc., 149 A855-A861(2002)参照)。
(Charge/discharge test 2)
Using the above-mentioned bipolar evaluation cell, under the temperature environment of 20° C., as a measurement of the adsorption and desorption capacity of anions, it was charged to 0.15 mA to 4.5 V and discharged to 0.15 mA to 3.0 V. The operation was performed 5 times. Further, as the measurement of the adsorption/desorption amount of cations, the battery was discharged to 0.1 V at 1.5 V and charged to 0.1 V at 3.0 V, and this charging/discharging operation was performed 5 times. Furthermore, as a measurement of the adsorption and desorption capacities of anions and cations, the battery was charged at 0.15 mA to 4.5 V and discharged at 0.15 mA to 1.5 V, and this charging/discharging operation was performed 5 times. The average value of the discharge capacities after 5 charging/discharging operations was used as the discharging capacity in each charging/discharging operation. In this charge/discharge test 2, it is possible to estimate the adsorption/desorption capacity of anions and the adsorption/desorption capacity of cations by dividing the charging/discharging voltage with respect to the lithium metal counter electrode (for example, J. Electrochem. Soc., 149 A855. -A861 (2002)).

[実験例2]
非水電解液の支持電解質を六フッ化リン酸リチウムから四フッ化ホウ酸リチウムに変更した以外は、実験例1と同じである。
[Experimental Example 2]
The procedure is the same as in Experimental Example 1 except that the supporting electrolyte of the non-aqueous electrolytic solution is changed from lithium hexafluorophosphate to lithium tetrafluoroborate.

[実験例3]
(二極式評価セルの作製)
プロピレンカーボネート溶媒に、テトラエチルメチルアンモニウム四フッ化ホウ素を1mol/Lとなるように添加して非水電解液を作製した。実験例1の塗工電極を両極に用い、両極の間に上記非水電解液を含浸させたセパレータ(東レ東燃製)を挟んで二極式評価セルを作製した。
[Experimental Example 3]
(Fabrication of bipolar evaluation cell)
Tetraethylmethylammonium boron tetrafluoride was added to a propylene carbonate solvent so as to be 1 mol/L to prepare a non-aqueous electrolytic solution. A bipolar evaluation cell was prepared by using the coated electrode of Experimental Example 1 for both electrodes and sandwiching a separator (manufactured by Toray Tonen) impregnated with the non-aqueous electrolyte solution between both electrodes.

(充放電試験3)
上記二極式評価セルを用い、20℃の温度環境下、0.1mAで2.5Vまで充電した後、0.1mAで0.0Vまで放電させた。この充放電操作を10回行った。引き続き、0.1mAで2.7Vまで充電した後、0.1mAで0.0Vまで放電させた。この充放電操作を3回行った。その後、再び0.1mAで2.5Vまで充電下の値、0.1mAで0.0Vまで放電させる充放電操作を5回行った。
(Charge/discharge test 3)
Using the bipolar evaluation cell, under a temperature environment of 20° C., the battery was charged at 0.1 mA to 2.5 V and then discharged at 0.1 mA to 0.0 V. This charging/discharging operation was performed 10 times. Subsequently, the battery was charged to 0.1 V at 2.7 V and then discharged to 0.1 V at 0.0 V. This charging/discharging operation was performed 3 times. After that, a charging/discharging operation of discharging again to a value under charging to 2.5 V at 0.1 mA and discharging to 0.0 V at 0.1 mA was performed 5 times.

[実験例4]
炭素多孔体の合成において、1000℃での熱処理を行わなかった以外は、実験例3と同じである。
[Experimental Example 4]
In the synthesis of the carbon porous body, the same as in Experimental Example 3 except that the heat treatment at 1000° C. was not performed.

[実験例5]
炭素多孔体として、メソ細孔炭素多孔体に代えて、ヤシ殻活性炭(クラレケミカル株式会社製、YP−50F)を用いた以外は、実験例1と同じである。
[Experimental Example 5]
The procedure of Experimental Example 1 was the same as Example 1 except that coconut shell activated carbon (YP-50F manufactured by Kuraray Chemical Co., Ltd.) was used as the carbon porous body instead of the mesopore carbon porous body.

[実験例6]
炭素多孔体として、メソ細孔炭素多孔体に代えて、ヤシ殻活性炭(クラレケミカル株式会社製、YP−50F)を用いた以外は、実験例2と同じである。
[Experimental Example 6]
As the carbon porous body, the same as in Experimental Example 2 except that coconut shell activated carbon (YP-50F manufactured by Kuraray Chemical Co., Ltd.) was used instead of the mesopore carbon porous body.

[実験結果]
実験結果を表1に示す。表1に示すように、実験例1〜4のメソ細孔炭素多孔体では、ミクロ細孔がほとんど存在せず、細孔のほぼ全てがメソ細孔からなるのに対して、実験例5,6のヤシ殻活性炭ではミクロ細孔が0.63mL/g存在することがわかった。
[Experimental result]
The experimental results are shown in Table 1. As shown in Table 1, in the mesopore carbon porous bodies of Experimental Examples 1 to 4, micropores were scarcely present, and almost all of the pores were mesopores. It was found that the coconut shell activated carbon of No. 6 had micropores of 0.63 mL/g.

充放電試験1において、表1に示すように、実験例1では、単位表面積あたりの蓄電量が、メソ細孔炭素多孔体をヤシ殻活性炭に代えた実験例5に比べ大きな値を示した。これは、実験例5では、一部のミクロ細孔に電気二重層が形成されず、蓄電容量が平均として低くなったためと推察された。一方、実験例1の場合には、そのようなミクロ細孔がほとんど存在しないため、細孔表面全てを電気二重層の形成に利用でき、単位表面積あたりの蓄電量が大きくなったと推察された。 In Charge/Discharge Test 1, as shown in Table 1, in Experimental Example 1, the stored amount of electricity per unit surface area was larger than that in Experimental Example 5 in which the mesoporous carbon material was replaced with coconut shell activated carbon. This is presumed to be because in Experimental Example 5, the electric double layer was not formed in some of the micropores, and the storage capacity became low on average. On the other hand, in the case of Experimental Example 1, since such micropores were scarcely present, it was speculated that the entire surface of the pores could be used for forming the electric double layer, and the amount of electricity stored per unit surface area was increased.

充放電試験2において、表1に示すように、支持電解質として六フッ化リン酸リチウムを用いた場合、アニオン単独の吸脱着による容量(3.0V−4.5V)、カチオン単独の吸脱着による容量(1.5V−3.0V)、アニオン及びカチオンの吸脱着による容量(1.5V−4.5V)の全てにおいて、メソ細孔炭素多孔体を用いた実験例1ではヤシ殻活性炭を用いた実験例5に比べて単位面積当たりの放電容量が高かった。このことから、メソ細孔炭素多孔体を用いることで、アニオンの吸脱着による容量及びカチオンの吸脱着による容量の両方を高めることができることがわかった。また、支持電解質として4フッ化ホウ酸リチウムを用いた場合でも、同様に、メソ細孔炭素多孔体を用いた実験例2ではヤシ殻活性炭を用いた実験例6に比べて単位面積当たりの放電容量が高かった。なお、支持電解質として四フッ化ホウ酸リチウムを用いた場合には、六フッ化リン酸リチウムを用いた場合よりも、放電容量が大きく、メソ細孔炭素多孔体を用いた場合とヤシ殻活性炭を用いた場合の放電容量の差も大きかった。これは、四フッ化ホウ酸リチウムの方がアニオンのサイズが小さく、細孔内でのアニオンの移動が円滑に行われたためと推察された。 In the charge/discharge test 2, as shown in Table 1, when lithium hexafluorophosphate was used as the supporting electrolyte, the capacity due to adsorption/desorption of anion alone (3.0V-4.5V) and the adsorption/desorption of cation alone were used. In all of the capacity (1.5V-3.0V) and the capacity due to adsorption and desorption of anions and cations (1.5V-4.5V), coconut shell activated carbon was used in Experimental Example 1 using the mesoporous carbon material. The discharge capacity per unit area was higher than that of Experimental Example 5. From this, it was found that both the capacity due to adsorption/desorption of anions and the capacity due to adsorption/desorption of cations can be increased by using the mesoporous carbon material. Even when lithium tetrafluoroborate is used as the supporting electrolyte, the discharge per unit area is similarly increased in Experimental Example 2 using the mesopore carbon porous material as compared with Experimental Example 6 using coconut shell activated carbon. The capacity was high. When lithium tetrafluoroborate was used as the supporting electrolyte, the discharge capacity was larger than when lithium hexafluorophosphate was used, and when the mesopore carbon porous material was used and when coconut shell activated carbon was used. The difference in the discharge capacities when using was also large. It is speculated that this is because lithium tetrafluoroborate has a smaller anion size and the anions move smoothly in the pores.

充放電試験3では、表1に示すように、初期の充放電において、1000℃での熱処理を行ったメソ細孔炭素多孔体を用いた実験例3と熱処理を省略したメソ細孔炭素多孔体を用いた実験例4とで、同等の放電容量が得られることがわかった。また、図3〜5に示すように、1000℃での熱処理を行ったメソ細孔炭素多孔体を用いた実験例3では、各充放電電圧において安定して充放電することがわかった。このことから、本発明の炭素多孔体を用いた蓄電デバイスでは、支持電解質としてリチウム塩を用いた場合に高容量を発現し、更に、支持電解質として四級アンモニウム塩を用いた場合に安定したサイクル性を有することがわかった。 In the charge/discharge test 3, as shown in Table 1, Experimental Example 3 using a mesopore carbon porous body subjected to heat treatment at 1000° C. in the initial charge/discharge and mesopore carbon porous body in which the heat treatment was omitted It was found that the same discharge capacity was obtained in Experimental Example 4 using Further, as shown in FIGS. 3 to 5, it was found that in Experimental Example 3 using the mesoporous carbon body heat-treated at 1000° C., stable charge/discharge was performed at each charge/discharge voltage. From this, in the electricity storage device using the carbon porous body of the present invention, a high capacity is exhibited when a lithium salt is used as a supporting electrolyte, and a stable cycle is obtained when a quaternary ammonium salt is used as a supporting electrolyte. It was found to have sex.

図6に、実験例1,4,6で用いた炭素多孔体の窒素吸脱着等温線を示す。図6より、熱処理有りのメソ細孔炭素多孔体と、熱処理無しのメソ細孔炭素多孔体とでは、窒素吸脱着等温線の形状が類似しており、熱処理による細孔構造の変化は少ないことがわかった。一方、これらのメソ細孔炭素多孔体とヤシ殻活性炭とは、窒素吸脱着等温線の形状が大きく異なっていることがわかった。 FIG. 6 shows nitrogen adsorption/desorption isotherms of the carbon porous bodies used in Experimental Examples 1, 4, and 6. From FIG. 6, the shapes of the nitrogen adsorption and desorption isotherms are similar between the mesoporous carbon body with heat treatment and the mesoporous carbon body without heat treatment, and the change in pore structure due to heat treatment is small. I understood. On the other hand, it was found that the shapes of the nitrogen adsorption and desorption isotherms of these mesoporous carbon bodies and coconut shell activated carbon differ greatly.

[参考例1〜8]
(炭素多孔体の合成)
メソ細孔炭素多孔体(熱処理なし)の製造条件を、以下のように検討した。1000℃での熱処理を行わなかった以外は、実験例1と同様にして参考例1の炭素多孔体を得た。テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を600℃にした以外は、参考例1と同様にして参考例2の炭素多孔体を得た。テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を700℃にした以外は、参考例1と同様にして参考例3の炭素多孔体を得た。水酸化カルシウム0.1molに対して、テレフタル酸を0.15mol使用した以外は、参考例1と同様にして参考例4の炭素多孔体を得た。テレフタル酸0.1molに対して、水酸化カルシウムを0.15mol使用した以外は、参考例1と同様にして参考例5の炭素多孔体を得た。テレフタル酸カルシウム塩の炭素化における設定温度(600℃)での保持時間を20時間とした以外は、参考例2と同様にして参考例6の炭素多孔体を得た。テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を500℃にした以外は、参考例1と同様にして参考例7の炭素多孔体を得た。テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を800℃にした以外は、参考例1と同様にして参考例8の炭素多孔体を得ようとしたが、炭素多孔体は得られなかった。
[Reference Examples 1 to 8]
(Synthesis of carbon porous material)
The manufacturing conditions of the mesoporous carbon material (without heat treatment) were examined as follows. A carbon porous body of Reference Example 1 was obtained in the same manner as in Experimental Example 1 except that the heat treatment was not performed at 1000°C. A porous carbon body of Reference Example 2 was obtained in the same manner as in Reference Example 1 except that the tubular furnace temperature in the carbonization of the calcium salt of terephthalic acid was set to 600°C. A carbon porous body of Reference Example 3 was obtained in the same manner as in Reference Example 1 except that the set temperature of the tubular furnace temperature for carbonizing the calcium salt of terephthalic acid was 700°C. A carbon porous body of Reference Example 4 was obtained in the same manner as in Reference Example 1 except that 0.15 mol of terephthalic acid was used with respect to 0.1 mol of calcium hydroxide. A carbon porous body of Reference Example 5 was obtained in the same manner as in Reference Example 1 except that 0.15 mol of calcium hydroxide was used with respect to 0.1 mol of terephthalic acid. A carbon porous body of Reference Example 6 was obtained in the same manner as in Reference Example 2 except that the holding time at the set temperature (600°C) in the carbonization of calcium terephthalate was 20 hours. A carbon porous body of Reference Example 7 was obtained in the same manner as in Reference Example 1 except that the tubular furnace temperature in the carbonization of the calcium salt of terephthalic acid was set to 500°C. An attempt was made to obtain a carbon porous body of Reference Example 8 in the same manner as in Reference Example 1 except that the tubular furnace temperature in the carbonization of the calcium salt of terephthalic acid was set to 800° C., but a carbon porous body was obtained. There wasn't.

(特性値測定)
参考例1〜8の各炭素多孔体について、液体窒素温度(77K)における窒素吸着測定から表2に示す特性値を求めた。図7は、参考例1〜3,7の77Kでの窒素吸着等温線である。なお、参考例4〜6の窒素吸着等温線のグラフは参考例1と概ね同じであったため、図示を省略した。表2中、BET比表面積は、BET解析から算出した。直径2nmの細孔容量は、DFT解析(Density Functional Theory)から算出した。細孔形状は、スリット型の細孔構造であると仮定した。相対圧力P/P0が0.5及び0.9のときの窒素吸着量A1,A2の値は窒素吸着等温線のグラフから読み取り、両者の差を窒素吸着量差△A(=A2−A1)とした。
(Characteristic value measurement)
For each carbon porous body of Reference Examples 1 to 8, the characteristic values shown in Table 2 were determined from the nitrogen adsorption measurement at the liquid nitrogen temperature (77K). FIG. 7 is a nitrogen adsorption isotherm at 77 K of Reference Examples 1 to 3. Note that the graphs of the nitrogen adsorption isotherms of Reference Examples 4 to 6 were substantially the same as those of Reference Example 1, so illustration thereof was omitted. In Table 2, the BET specific surface area was calculated from BET analysis. The pore volume with a diameter of 2 nm was calculated from DFT analysis (Density Functional Theory). The pore shape was assumed to be a slit-type pore structure. The values of the nitrogen adsorption amounts A1 and A2 at relative pressures P/P 0 of 0.5 and 0.9 are read from the graph of the nitrogen adsorption isotherm, and the difference between the two is determined by the nitrogen adsorption amount difference ΔA (=A2-A1). ).

表2から明らかなように、参考例1〜6の炭素多孔体は、BET比表面積が1000m2/g以上と大きく、DFT解析による直径2nm以下の細孔容量が0.12mL/g以下と小さかった。また、図7に示す参考例1〜3の炭素多孔体の窒素吸着等温線は、IUPAC分類のIV型(メソ細孔を持つことを示す型、図1参照)に属するものであった。図示を省略した参考例4〜6の炭素多孔体の窒素吸着等温線もこれと同様であった。こうしたことから、参考例1〜6の炭素多孔体は、ほぼメソ細孔から構成されているといえる。また、参考例1〜6の炭素多孔体は、窒素吸着等温線において相対圧力P/P0が0.9のときの窒素吸着量A2が1.5g/g以上、相対圧力P/P0が0.5のときの窒素吸着量A1が0.8g/g以下であり、窒素吸着量差△Aの値が0.7g/g以上であった。こうした参考例1〜6の炭素多孔体では、実験例1〜4で用いた炭素多孔体と窒素吸着等温線の形状が類似しており、実験例1〜4の炭素多孔体と同様に、本発明の蓄電デバイスの電極として好適であると推察された。参考例7の炭素多孔体は、BET比表面積が1200m2/g未満と小さく、相対圧力P/P0が0.9のときの窒素吸着量A2が1.02g/gと小さく、窒素吸着量差△Aの値も0.34g/gと小さかった。 As is clear from Table 2, the carbon porous bodies of Reference Examples 1 to 6 have large BET specific surface areas of 1000 m 2 /g or more and small pore volumes of 2 nm or less in diameter by DFT analysis of 0.12 mL/g or less. It was Further, the nitrogen adsorption isotherms of the carbon porous bodies of Reference Examples 1 to 3 shown in FIG. 7 belonged to IUPAC classification IV type (type showing mesopores, see FIG. 1). The nitrogen adsorption isotherms of the carbon porous bodies of Reference Examples 4 to 6 (not shown) were also the same. Therefore, it can be said that the carbon porous bodies of Reference Examples 1 to 6 are almost composed of mesopores. Further, in the carbon porous bodies of Reference Examples 1 to 6, when the relative pressure P/P 0 is 0.9 on the nitrogen adsorption isotherm, the nitrogen adsorption amount A2 is 1.5 g/g or more, and the relative pressure P/P 0 is The nitrogen adsorption amount A1 at 0.5 was 0.8 g/g or less, and the nitrogen adsorption amount difference ΔA was 0.7 g/g or more. In the carbon porous bodies of Reference Examples 1 to 6 described above, the shapes of the nitrogen adsorption isotherms are similar to those of the carbon porous bodies used in Experimental Examples 1 to 4, and similar to the carbon porous bodies of Experimental Examples 1 to 4, It was speculated that it is suitable as an electrode of the electricity storage device of the invention. The carbon porous body of Reference Example 7 has a small BET specific surface area of less than 1200 m 2 /g, a small nitrogen adsorption amount A2 of 1.02 g/g when the relative pressure P/P 0 is 0.9, and a small nitrogen adsorption amount. The value of the difference ΔA was as small as 0.34 g/g.

本発明は、主に電気化学産業に利用可能である。 The present invention is mainly applicable to the electrochemical industry.

20 蓄電デバイス、21 ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板。 20 electricity storage device, 21 case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate.

Claims (9)

正極と、負極と、前記正極と前記負極との間に介在するイオン伝導媒体と、を備え、
前記正極及び前記負極の少なくとも一方は、温度77Kでの窒素吸着等温線のαSプロット解析により求まるミクロ細孔容量が0.01mL/g以下でメソ細孔容量が1.8mL/g以上でBET比表面積が1000m2/g以上の炭素多孔体を含む、蓄電デバイス。
A positive electrode, a negative electrode, and an ion conductive medium interposed between the positive electrode and the negative electrode,
At least one of the positive electrode and the negative electrode has a BET with a micropore volume of 0.01 mL/g or less and a mesopore volume of 1.8 mL/g or more determined by α S plot analysis of a nitrogen adsorption isotherm at a temperature of 77K. An electricity storage device comprising a carbon porous body having a specific surface area of 1000 m 2 /g or more.
前記正極が前記炭素多孔体を含み、前記負極がリチウムを吸蔵放出可能な負極活物質を含む、請求項1に記載の蓄電デバイス。 The electricity storage device according to claim 1, wherein the positive electrode includes the carbon porous body, and the negative electrode includes a negative electrode active material capable of inserting and extracting lithium. 前記正極及び前記負極が前記炭素多孔体を含む、請求項1に記載の蓄電デバイス。 The electricity storage device according to claim 1, wherein the positive electrode and the negative electrode include the carbon porous body. 前記炭素多孔体は、以下の(a)及び(b)のうちの1以上を満たす、請求項1〜3のいずれか1項に記載の蓄電デバイス
(a)温度77Kでの窒素吸着等温線がIUPAC分類のIV型に属する。
)温度77Kでの窒素吸着等温線において相対圧力P/P0が0.5のときの窒素吸着量が0.8g/g以下で且つ相対圧力P/P0が0.9のときの窒素吸着量が1.5g/g以上である。
The electricity storage device according to any one of claims 1 to 3, wherein the carbon porous body satisfies one or more of the following (a) and (b) .
(A ) The nitrogen adsorption isotherm at a temperature of 77K belongs to type IV of IUPAC classification.
( B ) In the nitrogen adsorption isotherm at a temperature of 77K, when the nitrogen adsorption amount is 0.8 g/g or less when the relative pressure P/P 0 is 0.5 and the relative pressure P/P 0 is 0.9. The nitrogen adsorption amount is 1.5 g/g or more.
ベンゼンジカルボン酸のカルシウム塩を不活性雰囲気中550〜700℃で加熱して炭素とカルシウム炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な酸性水溶液で前記複合体を洗浄して前記炭酸塩を除去した後に、不活性雰囲気中800℃以上の温度で熱処理して炭素多孔体を得る、
炭素多孔体の製造方法。
The calcium salt of benzenedicarboxylic acid is heated at 550 to 700° C. in an inert atmosphere to form a complex of carbon and calcium carbonate, and the complex is washed with an acidic aqueous solution capable of dissolving the carbonate, and After removing the carbonate, heat treatment is performed at a temperature of 800° C. or higher in an inert atmosphere to obtain a carbon porous body,
A method for producing a carbon porous body.
前記酸性水溶液は塩酸の水溶液である、請求項5に記載の炭素多孔体の製造方法。 The method for producing a carbon porous body according to claim 5, wherein the acidic aqueous solution is an aqueous solution of hydrochloric acid. 請求項5又は6に記載の炭素多孔体の製造方法であって、
ベンゼンジカルボン酸と水酸化カルシウムとを水中で混合することで、前記ベンゼンジカルボン酸のカルシウム塩を合成する工程、
を含む、炭素多孔体の製造方法。
A method for producing a carbon porous body according to claim 5 or 6, wherein
A step of synthesizing the calcium salt of benzenedicarboxylic acid by mixing benzenedicarboxylic acid and calcium hydroxide in water,
A method for producing a carbon porous body, comprising:
前記ベンゼンジカルボン酸と前記水酸化カルシウムとを水中で混合する際には、50℃以上100℃以下に加熱する、請求項7に記載の炭素多孔体の製造方法。 The method for producing a carbon porous body according to claim 7, wherein when the benzenedicarboxylic acid and the calcium hydroxide are mixed in water, heating is performed at 50° C. or higher and 100° C. or lower. 前記ベンゼンジカルボン酸はテレフタル酸である、請求項5〜8のいずれか1項に記載の炭素多孔体の製造方法。 The method for producing a carbon porous body according to claim 5, wherein the benzenedicarboxylic acid is terephthalic acid.
JP2015043726A 2015-03-05 2015-03-05 Electric storage device and method for producing carbon porous body Active JP6737568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043726A JP6737568B2 (en) 2015-03-05 2015-03-05 Electric storage device and method for producing carbon porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043726A JP6737568B2 (en) 2015-03-05 2015-03-05 Electric storage device and method for producing carbon porous body

Publications (2)

Publication Number Publication Date
JP2016163023A JP2016163023A (en) 2016-09-05
JP6737568B2 true JP6737568B2 (en) 2020-08-12

Family

ID=56847350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043726A Active JP6737568B2 (en) 2015-03-05 2015-03-05 Electric storage device and method for producing carbon porous body

Country Status (1)

Country Link
JP (1) JP6737568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144378B2 (en) * 2019-08-15 2022-09-29 トヨタ自動車株式会社 Graphitized carbon porous material for fuel cell catalyst carrier, fuel cell catalyst, and method for producing fuel cell catalyst layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040047798A1 (en) * 2000-05-24 2004-03-11 Oh Seung Mo Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them
JP2002128514A (en) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc Carbonaceous material, polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2006016271A (en) * 2004-07-02 2006-01-19 National Institute Of Advanced Industrial & Technology Porous carbon and its production method
JP4989157B2 (en) * 2006-08-31 2012-08-01 セイコーインスツル株式会社 Electric double layer capacitor
JP5860600B2 (en) * 2011-03-09 2016-02-16 東洋炭素株式会社 Porous carbon

Also Published As

Publication number Publication date
JP2016163023A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
Niu et al. Towards three-dimensional hierarchical ZnO nanofiber@ Ni (OH) 2 nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors
Zhu et al. Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors
Puthusseri et al. 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation
JP5322435B2 (en) Negative electrode active material for electricity storage devices
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
Qian et al. A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor
JP5617457B2 (en) Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
JP2012074467A (en) Anode material, method of manufacturing the same, and electricity-storage device
JP2014530502A (en) High voltage electrochemical double layer capacitor
Jiang et al. Nitrogen-doped hierarchical carbon spheres derived from MnO2-templated spherical polypyrrole as excellent high rate anode of Li-ion batteries
KR20200018372A (en) Carbon material and manufacturing method thereof, electrode material for power storage device, and power storage device
KR101790234B1 (en) Ultra-thin hollow carbon nanospheres for sodium ion storing and manufacturing method thereof
Liu et al. Synthesis of Co–Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life
Zhang et al. Nitrogen-doped porous carbon nanoparticle derived from nitrogen containing conjugated microporous polymer as high performance lithium battery anode
An et al. 3D Binder-free conjugated microporous polymer carbon Aerogels@ MnO2 cathode for High-Performance aqueous zinc ion batteries
CN109961967B (en) Lithium ion capacitor and preparation method thereof
Ni et al. Hierarchical design of nitrogen-doped porous carbon nanorods for use in high efficiency capacitive energy storage
WO2018012504A1 (en) Electricity storage device and carbon material used for same
Liao et al. Preparation of activated carbon for electric double layer capacitors
Kim et al. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes
US11887782B2 (en) Energy storage device and supercapacitor
JP6737568B2 (en) Electric storage device and method for producing carbon porous body
Meng et al. Nickel/porous carbon composite derived from bimetallic MOFs for electrical double-layer supercapacitor application
TW201631613A (en) Cathode for a lithium ion capacitor
Zheng et al. Nitrogen self-doped porous carbon based on sunflower seed hulls as excellent double anodes for potassium/sodium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190607

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6737568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150