JP6723416B2 - Method for manufacturing SiC epitaxial wafer - Google Patents

Method for manufacturing SiC epitaxial wafer Download PDF

Info

Publication number
JP6723416B2
JP6723416B2 JP2019121537A JP2019121537A JP6723416B2 JP 6723416 B2 JP6723416 B2 JP 6723416B2 JP 2019121537 A JP2019121537 A JP 2019121537A JP 2019121537 A JP2019121537 A JP 2019121537A JP 6723416 B2 JP6723416 B2 JP 6723416B2
Authority
JP
Japan
Prior art keywords
gas
supply pipe
satellite
sic
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019121537A
Other languages
Japanese (ja)
Other versions
JP2019169743A (en
Inventor
竜也 増田
竜也 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019121537A priority Critical patent/JP6723416B2/en
Publication of JP2019169743A publication Critical patent/JP2019169743A/en
Application granted granted Critical
Publication of JP6723416B2 publication Critical patent/JP6723416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、SiCエピタキシャルウェハの製造方法に関する。 The present invention relates to a method for manufacturing a SiC epitaxial wafer.

炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きく、熱伝導率が3倍程度高い等の特性を有する。炭化珪素はこれらの特性を有することから、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。このため、近年、上記のような半導体デバイスにSiCエピタキシャルウェハが用いられるようになっている。 Silicon carbide (SiC) has characteristics such as a dielectric breakdown electric field that is one digit larger than that of silicon (Si), a band gap that is three times larger, and a thermal conductivity that is about three times higher than that of silicon (Si). Since silicon carbide has these characteristics, it is expected to be applied to power devices, high frequency devices, high temperature operating devices and the like. Therefore, in recent years, SiC epitaxial wafers have come to be used for the above semiconductor devices.

SiCエピタキシャルウェハは、SiC基板上にSiC半導体デバイスの活性領域となるSiCエピタキシャル膜を成長させることによって製造される。SiC基板は、昇華法等で作製したSiCのバルク単結晶から加工して得られ、SiCエピタキシャル膜は、化学的気相成長法(Chemical Vapor Deposition:CVD)によって形成される。 A SiC epitaxial wafer is manufactured by growing a SiC epitaxial film which becomes an active region of a SiC semiconductor device on a SiC substrate. The SiC substrate is obtained by processing a bulk SiC single crystal produced by a sublimation method or the like, and the SiC epitaxial film is formed by a chemical vapor deposition method (Chemical Vapor Deposition: CVD).

SiCエピタキシャルウェハを製造するための装置としては、複数のウェハを水平に配置し、各ウェハを公転させるとともにウェハ中心を軸にしてウェハ自体を自転させる水平自公転型のエピタキシャル成長装置が知られている(例えば、特許文献1及び特許文献2)。 As an apparatus for manufacturing a SiC epitaxial wafer, a horizontal rotation/revolution type epitaxial growth apparatus is known in which a plurality of wafers are horizontally arranged, each wafer is revolved, and the wafer itself is rotated about the center of the wafer. (For example, patent document 1 and patent document 2).

このエピタキシャル成長装置では、回転可能な搭載プレート(サセプタ)上に、この搭載プレートの回転軸を囲むように複数のサテライトが設けられている。サテライトが回転駆動機構によって自転可能とされることにより、このサテライト上に載置されたSiC基板は、搭載プレートの回転軸を中心に公転するとともに自転することで、自公転可能に構成されている。 In this epitaxial growth apparatus, a plurality of satellites are provided on a rotatable mounting plate (susceptor) so as to surround the rotation axis of the mounting plate. Since the satellite is allowed to rotate by the rotation drive mechanism, the SiC substrate mounted on the satellite is configured to be able to rotate about its axis of rotation of the mounting plate and to rotate about its axis. ..

上述のようなエピタキシャル成長装置においては、原料ガスが搭載プレート上に載置されたSiC基板の外周端部の外側から通過することで、原料ガスがSiC基板上に供給される。この際、加熱手段によってSiC基板を高温に維持しながら、基板上にエピタキシャル材料を堆積させることでエピタキシャル膜を成膜する。 In the epitaxial growth apparatus as described above, the source gas is supplied onto the SiC substrate by passing the source gas from the outside of the outer peripheral end of the SiC substrate mounted on the mounting plate. At this time, an epitaxial film is formed by depositing an epitaxial material on the substrate while maintaining the SiC substrate at a high temperature by the heating means.

特許第2771585号公報Japanese Patent No. 2771585 特許第2835338号公報Japanese Patent No. 2835338

ここで、SiC基板上にSiCエピタキシャル膜を成長させた際に、得られるSiCエピタキシャル膜の外周部、即ちエッジ付近においてキャリア濃度が低くなるという問題がある。特に、大型のSiCエピタキシャルウェハを得るために、大型のSiC基板上にSiCエピタキシャル膜を成長させた際に、この傾向は顕著である。SiCエピタキシャルウェハの大型化に対する近年の市場から強い要望に伴い、SiCエピタキシャルウェハの面内方向におけるキャリア濃度を制御することが求められている。 Here, when the SiC epitaxial film is grown on the SiC substrate, there is a problem that the carrier concentration becomes low in the outer peripheral portion of the obtained SiC epitaxial film, that is, in the vicinity of the edge. This tendency is particularly noticeable when a SiC epitaxial film is grown on a large SiC substrate in order to obtain a large SiC epitaxial wafer. With the recent strong demand from the market for increasing the size of SiC epitaxial wafers, it is required to control the carrier concentration in the in-plane direction of the SiC epitaxial wafer.

本発明は上記問題に鑑みてなされたものであり、SiCエピタキシャルウェハの面内のキャリア濃度を制御できるSiCエピタキシャルウェハの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a SiC epitaxial wafer that can control the in-plane carrier concentration of the SiC epitaxial wafer.

本発明者らは、検討の結果、SiC基板に対して所定の位置からドーパントガスを含むキャリアガス(ドーパントキャリアガスと呼ぶ)を供給することで、SiCエピタキシャル膜のキャリア濃度を制御できることを見出した。その上で、既存の装置に大幅な変更を設けずかつ効率的に、所定の部分のキャリア濃度を制御ができるSiCエピタキシャルウェハの製造装置の構成を見出し、発明を完成させた。
すなわち、本発明は、上記課題を解決するため、以下の手順を提供する。
As a result of studies, the present inventors have found that the carrier concentration of the SiC epitaxial film can be controlled by supplying a carrier gas containing a dopant gas (referred to as a dopant carrier gas) from a predetermined position to the SiC substrate. .. Then, the inventors have found a structure of a manufacturing apparatus for a SiC epitaxial wafer capable of controlling the carrier concentration of a predetermined portion efficiently without making a great change in the existing apparatus, and completed the invention.
That is, the present invention provides the following procedures in order to solve the above problems.

(1)本発明の一態様に係るSiCエピタキシャルウェハの製造方法は、凹状収容部を有する搭載プレートと、前記凹状収容部内に配置され上面にSiC基板が載置されるサテライトと、を備えるSiCエピタキシャルウェハの製造方法であって、前記凹状収容部と前記サテライトの間から前記SiCエピタキシャルウェハの外周にドーパントガスを含むドーパントキャリアガスを供給する。 (1) A method for manufacturing an SiC epitaxial wafer according to one aspect of the present invention is a SiC epitaxial that includes a mounting plate having a recessed accommodating portion and a satellite that is disposed in the recessed accommodating portion and has a SiC substrate mounted on an upper surface thereof. In the method of manufacturing a wafer, a dopant carrier gas containing a dopant gas is supplied to the outer periphery of the SiC epitaxial wafer from between the concave accommodation portion and the satellite.

(2)上記(1)に記載のSiCエピタキシャルウェハの製造方法において、前記ドーパントキャリアガスが、前記凹状収容部の底部から供給され、前記ドーパントキャリアガスにより前記凹状収容部内で前記サテライトが回転してもよい。 (2) In the method of manufacturing an SiC epitaxial wafer according to (1) above, the dopant carrier gas is supplied from a bottom portion of the concave accommodation portion, and the satellite is rotated in the concave accommodation portion by the dopant carrier gas. Good.

(3)上記(1)または(2)のいずれかに記載のSiCエピタキシャルウェハの製造方法において、前記搭載プレートの上面に対して、前記SiC基板の上面の位置が同一又はそれより下方としてもよい。 (3) In the method of manufacturing an SiC epitaxial wafer according to any one of (1) and (2), the position of the upper surface of the SiC substrate may be the same as or lower than the upper surface of the mounting plate. ..

(4)上記(1)〜(3)のいずれか一つに記載のドーパントガスが窒素ガスであってもよい。 (4) The dopant gas described in any one of (1) to (3) above may be nitrogen gas.

(5)本発明の一態様に係るSiCエピタキシャルウェハの製造装置は、SiC基板の主面上に、化学的気相成長法によってSiCエピタキシャル膜を成長させるSiCエピタキシャルウェハの製造装置であって、凹状収容部を有する搭載プレートと、前記凹状収容部内に配置され、上面にSiC基板が載置されるサテライトと、前記サテライト上に載置されるSiC基板の主面上に、SiCエピタキシャル膜の原料ガスを供給する第1ガス供給管と、前記凹状収容部内に供給口を有する第2ガス供給管と、前記第2ガス供給管に接続され、前記第2ガス供給管にドーパントキャリアガスを含むガスを供給するガス供給部と、を有する。 (5) A manufacturing apparatus for a SiC epitaxial wafer according to an aspect of the present invention is a manufacturing apparatus for a SiC epitaxial wafer in which a SiC epitaxial film is grown on a main surface of a SiC substrate by a chemical vapor deposition method. A mounting plate having an accommodating portion, a satellite arranged in the concave accommodating portion and having a SiC substrate mounted on the upper surface thereof, and a raw material gas for the SiC epitaxial film on the main surface of the SiC substrate mounted on the satellite. A first gas supply pipe for supplying a gas, a second gas supply pipe having a supply port in the concave accommodating portion, a gas connected to the second gas supply pipe, and containing a dopant carrier gas in the second gas supply pipe. And a gas supply unit for supplying the gas.

本発明のSiCエピタキシャルウェハの製造方法及び製造装置によれば、SiC基板の面内方向におけるキャリア濃度を制御できる。 According to the method and apparatus for manufacturing a SiC epitaxial wafer of the present invention, the carrier concentration in the in-plane direction of the SiC substrate can be controlled.

本発明の一態様に係るSiCエピタキシャルウェハの製造装置の断面模式図である。It is a cross-sectional schematic diagram of the manufacturing apparatus of the SiC epitaxial wafer which concerns on one aspect of this invention. 本発明の一実施形態にかかるSiCエピタキシャルウェハの製造装置における搭載プレートを平面視した図である。It is the figure which planarly viewed the mounting plate in the manufacturing apparatus of the SiC epitaxial wafer concerning one embodiment of the present invention. 本発明の一実施形態にかかるSiCエピタキシャルウェハの製造装置における1つのサテライト周辺を拡大した断面模式図である。FIG. 3 is an enlarged schematic sectional view of the periphery of one satellite in the SiC epitaxial wafer manufacturing apparatus according to the embodiment of the present invention. 実施例1、実施例2及び比較例1において得られたSiCエピタキシャル膜の面内方向におけるキャリア濃度の位置依存性を示したグラフである。3 is a graph showing the position dependence of carrier concentration in the in-plane direction of the SiC epitaxial films obtained in Example 1, Example 2 and Comparative Example 1. 実施例1及び実施例2と比較例1とのキャリア濃度の差を示したグラフである。5 is a graph showing a difference in carrier concentration between Example 1 and Example 2 and Comparative Example 1.

以下、本発明を適用したSiCエピタキシャルウェハの製造方法およびその製造装置について、図を適宜参照しながら詳細に説明する。
なお、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, a method and an apparatus for manufacturing a SiC epitaxial wafer to which the present invention is applied will be described in detail with reference to the drawings.
It should be noted that, in the drawings used in the following description, in order to make the features of the present invention easy to understand, there are cases where features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are different from actual ones. Sometimes. Further, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without changing the gist thereof.

まず本明細書におけるガスの名称についての定義を説明する。SiCを構成する元素を供給するガスを「原料ガス」と言う。原料ガスには、シラン系ガスと炭化水素系ガスがある。シラン系ガスとしては、シラン(SiH)、ジクロロシラン(SiCl)、トリクロロシラン(SiCl)、四塩化ケイ素(SiCl)等を用いることができる。炭化水素系ガスとしては、プロパン(C)、エタン(C)等を用いることができる。またこれらの原料ガスに加えて、後述するキャリアガス等が同時に含まれたガスを広義の「原料ガス」として説明する場合がある。 First, the definition of the name of gas in this specification will be described. The gas that supplies the elements that make up SiC is called the "source gas." Raw material gases include silane-based gas and hydrocarbon-based gas. As the silane-based gas, silane (SiH 4 ), dichlorosilane (SiCl 2 H 2 ), trichlorosilane (SiCl 3 ), silicon tetrachloride (SiCl 4 ) or the like can be used. Examples of the hydrocarbon gas, propane (C 3 H 8), ethane (C 2 H 6) or the like can be used. Further, in addition to these source gases, a gas containing a carrier gas described later and the like at the same time may be described as a “source gas” in a broad sense.

これらの炭化珪素の構成元素である主要原料ガスの他に、ドーピングを行うためのガスを「ドーパントガス」という。このドーパントガスによりSiC基板内にドーパントされたものが、SiC基板内でキャリアとして機能する。炭化珪素のドーパントガスとしては、N型ドーピングの為の窒素、アンモニア、P型ドーピングの為のトリメチルアルミニウムなどがあげられる。 In addition to these main raw material gases, which are constituent elements of silicon carbide, a gas for doping is called a "dopant gas". The dopant in the SiC substrate by this dopant gas functions as a carrier in the SiC substrate. Examples of the dopant gas for silicon carbide include nitrogen for N-type doping, ammonia, and trimethylaluminum for P-type doping.

CVD結晶成長において原料ガスに比べて大量に流され、原料ガスやドーピングガスを運ぶ機能を有するガスを「キャリアガス」という。キャリアガスとしては、アルゴン(Ar)、水素(H)等が挙げられる。すなわち「キャリアガス」の「キャリア」は、SiC基板内の「キャリア密度(濃度)」の「キャリア」と同じ意味ではない。
また「ドーパントキャリアガス」は、ドーパントガスを含んでいるガスを意味し、ドーパントガスとキャリアガスが混ざったガスも含む。例えば、ドーパントキャリアガスが、窒素ガスのみからなってもよいし、窒素ガスと希ガス等のガスが混合したガスでもよい。
A gas that flows in a larger amount than the source gas in the CVD crystal growth and has a function of carrying the source gas and the doping gas is called a "carrier gas". Examples of the carrier gas include argon (Ar) and hydrogen (H 2 ). That is, “carrier” of “carrier gas” does not mean the same as “carrier” of “carrier density (concentration)” in the SiC substrate.
Further, the “dopant carrier gas” means a gas containing a dopant gas, and also includes a gas in which the dopant gas and the carrier gas are mixed. For example, the dopant carrier gas may be composed of only nitrogen gas, or may be a gas in which nitrogen gas and a gas such as a rare gas are mixed.

<SiCエピタキシャルウェハの製造装置>
構成を理解しやすい様に、SiCエピタキシャルウェハの製造装置から説明する。図1は、本発明の一実施形態にかかるSiCエピタキシャルウェハの製造装置の断面を模式的に説明する図である。
<SiC epitaxial wafer manufacturing equipment>
To facilitate understanding of the structure, a SiC epitaxial wafer manufacturing apparatus will be described. FIG. 1 is a diagram schematically illustrating a cross section of an apparatus for manufacturing a SiC epitaxial wafer according to an embodiment of the present invention.

本発明の一実施形態にかかるSiCエピタキシャルウェハの製造装置100は、搭載プレート10と、サテライト20と、第1ガス供給管30と、第2ガス供給管40と、図視略のガス供給部を有する。またSiCエピタキシャルウェハの製造装置100は、反応空間Kを形成するためのシーリング50及び側壁60と、反応空間Kを加熱するためのヒータ70を有する。SiCエピタキシャルウェハの製造装置100では、減圧排気可能なチャンバ(成膜室)内に、原料ガスGを供給し、加熱されたSiC基板Wの面上にSiCエピタキシャル膜を成長させる。チャンバ(成膜室)内に供給される原料ガスGは、広義の原料ガスでもよい。 A SiC epitaxial wafer manufacturing apparatus 100 according to an embodiment of the present invention includes a mounting plate 10, a satellite 20, a first gas supply pipe 30, a second gas supply pipe 40, and a gas supply unit (not shown). Have. Further, the SiC epitaxial wafer manufacturing apparatus 100 has a ceiling 50 and a side wall 60 for forming the reaction space K, and a heater 70 for heating the reaction space K. In the SiC epitaxial wafer manufacturing apparatus 100, a source gas G is supplied into a chamber (deposition chamber) capable of evacuating under reduced pressure to grow a SiC epitaxial film on the surface of a heated SiC substrate W. The source gas G supplied into the chamber (film forming chamber) may be a source gas in a broad sense.

図2は、本発明の一実施形態にかかるSiCエピタキシャルウェハの製造装置における搭載プレートを平面視した図である。
搭載プレート10は、平面視円形状の回転台13と回転台13の中央に接続された回転軸12とからなる。回転台13には、回転台13の周方向(回転方向)に等間隔に複数並んで凹状収容部11が設けられている。図2では、凹状収容部11が等間隔に6個並んで設けられている場合を例示している。簡単のため搭載プレート10の一つの凹状収容部11にのみサテライト20を収容したが、当該構成には限られない。
FIG. 2 is a plan view of the mounting plate in the SiC epitaxial wafer manufacturing apparatus according to the embodiment of the present invention.
The mounting plate 10 includes a rotary table 13 having a circular shape in plan view and a rotary shaft 12 connected to the center of the rotary table 13. The rotary table 13 is provided with a plurality of concave accommodating portions 11 arranged at equal intervals in the circumferential direction (rotational direction) of the rotary table 13. FIG. 2 exemplifies a case where six recessed accommodating portions 11 are provided side by side at equal intervals. For simplicity, the satellite 20 is housed in only one concave housing portion 11 of the mounting plate 10, but the configuration is not limited to this.

搭載プレート10の中央下部には回転軸12が取り付けられている。回転軸12が図示を省略する駆動モータにより回転することで、回転台13がその中心軸周りに回転駆動できる。以下、回転軸12を中心軸とした回転を「公転」と言うことがある。
搭載プレート10は、耐熱性を有していればよく、公知の材料を用いることができる。例えば、黒鉛、TaCコートした黒鉛、SiCコートした黒鉛等を用いることができる。
A rotary shaft 12 is attached to the lower center of the mounting plate 10. When the rotary shaft 12 is rotated by a drive motor (not shown), the rotary base 13 can be driven to rotate around its central axis. Hereinafter, the rotation about the rotary shaft 12 as a central axis may be referred to as “revolution”.
The mounting plate 10 only needs to have heat resistance, and a known material can be used. For example, graphite, TaC-coated graphite, SiC-coated graphite, or the like can be used.

図3は、本発明の一実施形態にかかるSiCエピタキシャルウェハの製造装置における1つのサテライト周辺を拡大した断面模式図である。
サテライト20は、搭載プレート10の凹状収容部11に収容されている。サテライト20は、凹状収容部11内部で回転駆動手段によって自転することができる。すなわち、サテライト20は回転軸12に対して自公転できる。サテライト20は、搭載プレート10と同様の材質を用いることができる。
FIG. 3 is an enlarged schematic cross-sectional view of the periphery of one satellite in the SiC epitaxial wafer manufacturing apparatus according to the embodiment of the present invention.
The satellite 20 is housed in the concave housing portion 11 of the mounting plate 10. The satellite 20 can rotate within the recessed accommodating portion 11 by rotation driving means. That is, the satellite 20 can revolve around the rotating shaft 12. The satellite 20 can be made of the same material as the mounting plate 10.

サテライト20の外径と凹状収容部11の内径は、ほぼ同一のサイズとし、わずかに凹状収容部11が大きいことが好ましい。凹状収容部11の大きさがサテライト20より大きすぎると、サテライト20が自転した際に、凹状収容部11内で横滑りしやすくなる。そのため、均一なSiCエピタキシャル膜を得ることが難しくなる。一方、サテライト20と凹状収容部11が同一であると、後述する第2ガス供給管40から供給されたガスの流路を十分に確保できなくなる。 It is preferable that the outer diameter of the satellite 20 and the inner diameter of the concave accommodating portion 11 have substantially the same size, and the concave accommodating portion 11 is slightly larger. If the size of the recessed accommodating portion 11 is larger than that of the satellite 20, the satellite 20 is likely to slide sideways in the recessed accommodating portion 11 when the satellite 20 rotates. Therefore, it becomes difficult to obtain a uniform SiC epitaxial film. On the other hand, if the satellite 20 and the concave accommodation portion 11 are the same, it becomes impossible to sufficiently secure the flow path of the gas supplied from the second gas supply pipe 40 described later.

サテライト20上には、SiC基板Wが載置される。SiC基板Wは、図3に示すように、サテライト20の上面20aに形成された凹部21に載置されることが好ましい。凹部21にSiC基板Wが載置されることにより、回転等によりSiC基板Wが横滑りすることを抑制することができる。 The SiC substrate W is placed on the satellite 20. As shown in FIG. 3, SiC substrate W is preferably placed in recess 21 formed in upper surface 20 a of satellite 20. Placing SiC substrate W in recess 21 can prevent SiC substrate W from sliding sideways due to rotation or the like.

サテライト20のSiC基板の載置面は、円形であることが望ましい。SiC基板Wにオリエーテンションフラット(OF)がついている場合は、載置面は、SiC基板Wと相似形でOFに対応する直線部があってもよい。サテライト20の載置面上に、SiC基板Wに覆われていない部分があると、その部分にも結晶が堆積する。この堆積物によりSiC基板Wが、載置面に対し浮く場合がある。そこで、載置面に直線部を設けることにより、OFの外側の載置面に不要な結晶が堆積することを防止できる。 The mounting surface of the SiC substrate of the satellite 20 is preferably circular. When the SiC substrate W is provided with an orientation flat (OF), the mounting surface may have a linear portion similar to the SiC substrate W and corresponding to OF. If there is a portion that is not covered with the SiC substrate W on the mounting surface of the satellite 20, crystals will also be deposited on that portion. This deposit may cause the SiC substrate W to float on the mounting surface. Therefore, by providing a linear portion on the mounting surface, it is possible to prevent unnecessary crystals from being deposited on the mounting surface outside the OF.

SiC基板Wを載置後のSiC基板W上面は、回転台上面13aと同一面か、それよりも下側にあることが好ましい。SiC基板Wが回転台上面13aより高い場合、SiC基板W端部で原料ガスの流れの乱れ(層流の乱れ)が生じやすくなる。原料ガスの流れの乱れが生じると、SiC基板W端部の成膜された膜の特性が内側と差が生じてしまう場合がある。 The upper surface of the SiC substrate W on which the SiC substrate W is mounted is preferably flush with or lower than the upper surface 13a of the turntable. When the SiC substrate W is higher than the upper surface 13a of the turntable, the disturbance of the flow of the source gas (turbulence of the laminar flow) is likely to occur at the end of the SiC substrate W. When the flow of the source gas is disturbed, the characteristics of the film formed at the end of the SiC substrate W may be different from those of the inside.

第1ガス供給管30は、その第1の端部が図示略のガス供給配管に接続され、第2の端部がシーリング50、側壁60及び搭載プレート10で囲まれる反応空間Kに接続されている。第1ガス供給管30によって反応空間Kに原料ガスGを供給することができる。原料ガスGとしては、SiCエピタキシャル膜の原料として一般に用いられる炭化水素系ガス及びシラン系ガスを含有するものを用いることができる。炭化水素系ガス及びシラン系ガスとしては、上述のものを用いることができる。第1ガス供給管30からは、原料ガスと同時にキャリアガス、ドーパントガスを供給してもよい。 The first gas supply pipe 30 has a first end connected to a gas supply pipe (not shown) and a second end connected to a reaction space K surrounded by the ceiling 50, the side wall 60 and the mounting plate 10. There is. The source gas G can be supplied to the reaction space K by the first gas supply pipe 30. As the raw material gas G, one containing a hydrocarbon-based gas and a silane-based gas generally used as a raw material for the SiC epitaxial film can be used. As the hydrocarbon-based gas and the silane-based gas, those mentioned above can be used. The carrier gas and the dopant gas may be supplied from the first gas supply pipe 30 at the same time as the raw material gas.

図1に示すように、第1ガス供給管30の第2の端部(反応空間側の供給口)は、搭載プレート10の中央に向かって設けられていることが好ましい。第1ガス供給管30の供給口が搭載プレート10の中央に向かって設けられていることで、第1ガス供給管30から供給された原料ガスの流れを搭載プレート10の中央から外周に向かう方向に制御することができる。すなわち、搭載プレート10上に載置されたサテライト20に対して均一に原料ガスを供給することができる。 As shown in FIG. 1, it is preferable that the second end (the reaction space side supply port) of the first gas supply pipe 30 is provided toward the center of the mounting plate 10. Since the supply port of the first gas supply pipe 30 is provided toward the center of the mounting plate 10, the flow of the raw material gas supplied from the first gas supply pipe 30 is directed from the center of the mounting plate 10 to the outer periphery. Can be controlled. That is, the source gas can be uniformly supplied to the satellites 20 mounted on the mounting plate 10.

第2ガス供給管40は、その第1の端部が図示略の外部タンク等に接続され、第2の端部が凹状収容部11に接続されている。ここで、この外部タンク等は、特許請求の範囲における「ガス供給部」に対応する。ガス供給部は、ドーパントキャリアガスをいれたタンクを用いてもよい。あるいは、ガス供給部として、水素などのキャリアガスとドーピングガスを制御された流量で混合するガス混合装置を用いることができる。ガス混合装置はキャリアガスとドーパントガスを一定の比率で混合し、その混合ガスの一部または全部を所定の流量や圧力で第2ガス供給管に供給するものであり、マスフローコントローラーや圧力コントローラー等によって構成することができる。図1では、第2ガス供給管40は、搭載プレート10の回転軸12及び回転台13内を貫通して形成され、凹状収容部11の上面11aに供給口41を有する。 The second gas supply pipe 40 has a first end connected to an external tank (not shown) or the like, and a second end connected to the recessed housing 11. Here, this external tank etc. respond|correspond to the "gas supply part" in a claim. The gas supply unit may use a tank containing a dopant carrier gas. Alternatively, a gas mixing device that mixes a carrier gas such as hydrogen and a doping gas at a controlled flow rate can be used as the gas supply unit. The gas mixing device mixes a carrier gas and a dopant gas at a fixed ratio and supplies a part or all of the mixed gas to the second gas supply pipe at a predetermined flow rate and pressure, such as a mass flow controller or a pressure controller. Can be configured by. In FIG. 1, the second gas supply pipe 40 is formed so as to penetrate through the rotary shaft 12 and the rotary base 13 of the mounting plate 10, and has a supply port 41 on the upper surface 11 a of the concave accommodation portion 11.

第2ガス供給管40は凹状収容部11の上面11aに供給口41を有する。そのため、凹状収容部11にサテライト20が収納された場合、サテライト20の下面20bと凹状収容部11の間にガスが供給される。サテライト20は、供給口41から供給されたガスにより凹状収容部11の上面からわずかに浮上する。したがって、凹状収容部11とサテライト20の間に加わる摩擦力が低減され、サテライト20はその中心を軸として回転自在となる。サテライト20を中心軸周りに回転駆動することで、サテライト20に載置されたSiC基板Wに対して均等に成膜を行うことができる。 The second gas supply pipe 40 has a supply port 41 on the upper surface 11 a of the concave accommodation portion 11. Therefore, when the satellite 20 is stored in the recessed housing portion 11, gas is supplied between the lower surface 20b of the satellite 20 and the recessed housing portion 11. The satellite 20 slightly floats above the upper surface of the concave accommodation portion 11 by the gas supplied from the supply port 41. Therefore, the frictional force applied between the recessed accommodating portion 11 and the satellite 20 is reduced, and the satellite 20 is rotatable about its center. By rotationally driving the satellite 20 around the central axis, it is possible to uniformly form a film on the SiC substrate W mounted on the satellite 20.

サテライト20の回転は、供給口41から排出されたガスによって制御される構成でもよい。供給口41から排出されたガスは、サテライト20を浮揚させる機能と回転させる機能を持たせることができる。サテライト20を回転させるためには、例えば凹状収容部11の底面にらせん状の溝を形成し、その溝にそってガスを流すことにより、その粘性でサテライト20にトルクを与え、その結果回転させるという方法がある。あるいは、サテライト20の裏面側にらせん状の溝を形成し、その溝にそってガス流を流しても、同様の機能を持たせることができる。つまり、サテライト20を回転させるために、外部電源等を有する駆動手段を別途準備する必要が無く、SiCエピタキシャル製造装置の構成を簡便なものとしている。 The rotation of the satellite 20 may be controlled by the gas discharged from the supply port 41. The gas discharged from the supply port 41 can have a function of levitating the satellite 20 and a function of rotating the satellite 20. In order to rotate the satellite 20, for example, a spiral groove is formed on the bottom surface of the concave accommodating portion 11, and a gas is caused to flow along the groove to give a torque to the satellite 20 due to its viscosity so that the satellite 20 is rotated. There is a method. Alternatively, the same function can be provided by forming a spiral groove on the back surface side of the satellite 20 and flowing a gas flow along the groove. That is, it is not necessary to separately prepare a driving unit having an external power source or the like to rotate the satellite 20, and the structure of the SiC epitaxial manufacturing apparatus is simplified.

このように供給口41から供給されるガスは、サテライトを浮揚させる機能と、回転させる機能を持つ。これらの機能を、一種類の供給口により持たせてもよいし、浮揚させる機能と回転させる機能を別の供給口からのガスで持たせてもよい。別の供給口を用いる場合は、回転させる機能とサテライトを浮揚させる機能のどちらか一方の供給口からドーパントキャリアガスを流して凹部収容部とサテライトの間からSiCエピタキシャルウェハの外周にドーパントキャリアガスを供給することでもよい。 In this way, the gas supplied from the supply port 41 has a function of floating the satellite and a function of rotating the satellite. These functions may be provided by one kind of supply port, or the functions of levitating and rotating may be provided by gas from another supply port. When another supply port is used, the dopant carrier gas is caused to flow from either one of the function of rotating and the function of floating the satellite, and the dopant carrier gas is supplied to the outer periphery of the SiC epitaxial wafer from between the recess accommodation part and the satellite. It may be supplied.

第2ガス供給管40は、図視略の外部タンクから反応空間Kにドーパントガスを含むドーパントキャリアガスを供給する。第2ガス供給管40から供給されたドーパントキャリアガスは、図3に示すように、凹状収容部11とサテライト20の間を介して反応空間Kに供給される。すなわち、サテライト20に載置されたSiC基板Wを基準として考えると、その外周から中央に向かってドーパントキャリアガスが供給される。そのため、SiC基板Wの外周のキャリア濃度を中央のキャリア濃度に対して高めることができる。 The second gas supply pipe 40 supplies a dopant carrier gas containing a dopant gas to the reaction space K from an external tank (not shown). As shown in FIG. 3, the dopant carrier gas supplied from the second gas supply pipe 40 is supplied to the reaction space K via the space between the recessed container 11 and the satellite 20. That is, when the SiC substrate W mounted on the satellite 20 is considered as a reference, the dopant carrier gas is supplied from the outer periphery toward the center. Therefore, the carrier concentration at the outer periphery of SiC substrate W can be increased with respect to the carrier concentration at the center.

第2ガス供給管40から供給されるガスがドーパントガスを含まないと、SiC基板Wの外周のキャリア濃度が低くなる。この場合、第1ガス供給管30から供給する原料ガスにドーパントガスを加えることでSiCエピタキシャル膜に対してドーパント元素を供給することができる。すなわち、第2ガス供給管40から供給されるガスにドーパントガスを含めることで、SiCエピタキシャル膜の外周のキャリア濃度を高めることができる。この結果、第2ガス供給管40から供給されるガスにドーパントガスを含めることで、均一なSiCエピタキシャル膜を成長させることができる。 If the gas supplied from the second gas supply pipe 40 does not contain the dopant gas, the carrier concentration on the outer periphery of the SiC substrate W becomes low. In this case, the dopant element can be supplied to the SiC epitaxial film by adding the dopant gas to the source gas supplied from the first gas supply pipe 30. That is, by including the dopant gas in the gas supplied from the second gas supply pipe 40, the carrier concentration on the outer periphery of the SiC epitaxial film can be increased. As a result, by including the dopant gas in the gas supplied from the second gas supply pipe 40, it is possible to grow a uniform SiC epitaxial film.

シーリング50は、搭載プレート10及びサテライト20を上方から覆うように配置される。
シーリング50も、搭載プレート10およびサテライト20と同様に、黒鉛を材料とする基材の表面をコーティングされてなる円盤状部材である。シーリング50の表面をコーティングする被覆膜も、従来公知のTaCやSiC等を用いて形成することが可能である。
The ceiling 50 is arranged so as to cover the mounting plate 10 and the satellite 20 from above.
Similarly to the mounting plate 10 and the satellite 20, the ceiling 50 is also a disk-shaped member formed by coating the surface of a base material made of graphite. The coating film that coats the surface of the sealing 50 can also be formed using conventionally known TaC, SiC, or the like.

側壁60は、公知のものを用いることができる。例えば、図1に示すように支持部61を有するものを用いることができる。支持部61は、周壁60の内周面に全周に亘って設けられたシーリング支持部であり、このシーリング支持部上にシーリング50の外周部が載置される。チャンバ内で不要になったガスは、側壁60と搭載プレート10の間に設けられた排気口からチャンバの外へと排出することができる。 A well-known thing can be used for the side wall 60. For example, as shown in FIG. 1, one having a supporting portion 61 can be used. The support portion 61 is a sealing support portion provided on the inner peripheral surface of the peripheral wall 60 over the entire circumference, and the outer peripheral portion of the sealing 50 is placed on the sealing support portion. The gas that is no longer needed in the chamber can be discharged to the outside of the chamber from the exhaust port provided between the side wall 60 and the mounting plate 10.

ヒータ70は、反応空間Kを加熱する。例えば、誘導コイル等を用いることができる。図示を省略する高周波電源から誘導コイルに高周波電流が供給されると、搭載プレート10およびシーリング50が高周波誘導加熱により加熱される。これら搭載プレート10およびシーリング50からの輻射や、サテライト20からの熱伝導等により、サテライト20に載置されたSiC基板Wを加熱することができる。なお、加熱手段は、搭載プレート10(回転台13)の下面側およびシーリング50の上面側に配置された構成に限らず、これらのいずれか一方側のみに配置された構成とすることも可能である。また高周波誘導加熱に限らず、抵抗加熱によるもの等を用いてもよい。 The heater 70 heats the reaction space K. For example, an induction coil or the like can be used. When a high frequency current is supplied to the induction coil from a high frequency power source (not shown), the mounting plate 10 and the ceiling 50 are heated by the high frequency induction heating. The SiC substrate W placed on the satellite 20 can be heated by radiation from the mounting plate 10 and the ceiling 50, heat conduction from the satellite 20, and the like. The heating means is not limited to the configuration arranged on the lower surface side of the mounting plate 10 (turntable 13) and the upper surface side of the ceiling 50, but may be arranged on only one of these sides. is there. Further, not only high frequency induction heating but also resistance heating may be used.

本発明の一態様に係るSiCエピタキシャルウェハの製造装置100を用いると、キャリア濃度の面内均一性の高いSiCエピタキシャルウェハを製造することができる。また既存の装置に大幅な変更を設けず、かつ効率的に所定の部分のキャリア密度を高めることができる。そのため、安価かつ容易にキャリア濃度の面内均一性の高いSiCエピタキシャルウェハを製造することができる。 By using the SiC epitaxial wafer manufacturing apparatus 100 according to one aspect of the present invention, it is possible to manufacture a SiC epitaxial wafer with high in-plane carrier concentration uniformity. Further, it is possible to efficiently increase the carrier density of a predetermined portion without making a great change in the existing device. Therefore, it is possible to inexpensively and easily manufacture the SiC epitaxial wafer with high in-plane uniformity of carrier concentration.

<SiCエピタキシャルウェハの製造方法>
本発明のSiCエピタキシャルウェハの製造方法は、凹状収容部を有する搭載プレートと、凹状収容部内に配置され上面にSiC基板が載置されるサテライトと、を備えるSiCエピタキシャルウェハの製造方法であって、凹状収容部とサテライトの間からSiCエピタキシャルウェハの外周にドーパントガスを含んでいるドーパントキャリアガスを供給する。
図1のSiCエピタキシャルウェハの製造装置100を用いた例を基に、SiCエピタキシャルウェハの製造方法について説明する。
<Manufacturing method of SiC epitaxial wafer>
A method for manufacturing a SiC epitaxial wafer according to the present invention is a method for manufacturing a SiC epitaxial wafer, comprising: a mounting plate having a concave accommodating portion; and a satellite in which the SiC substrate is mounted on the upper surface and which is arranged in the concave accommodating portion. A dopant carrier gas containing a dopant gas is supplied to the outer periphery of the SiC epitaxial wafer from between the concave accommodation portion and the satellite.
A method for manufacturing a SiC epitaxial wafer will be described based on an example using the apparatus 100 for manufacturing a SiC epitaxial wafer in FIG.

まず、サテライト20に載置するSiC基板Wを準備する。SiC基板Wは、ワイヤーソー等により、SiC単結晶のインゴットを円板状にスライス加工することで得ることができる。またその外周部を面取りしてもよい。この際、SiCバルク単結晶の成長方法や、インゴットの研削加工方法、スライス加工方法等については、特に限定されることなく、従来公知の方法を採用できる。 First, the SiC substrate W to be mounted on the satellite 20 is prepared. The SiC substrate W can be obtained by slicing an ingot of a SiC single crystal into a disc shape with a wire saw or the like. Further, the outer peripheral portion may be chamfered. At this time, a conventionally known method can be adopted without particular limitation as to the method for growing the SiC bulk single crystal, the method for grinding the ingot, the method for slicing, and the like.

次いで得られたSiC基板Wを研磨する。研磨の方法は、従来公知の方法を採用できる。研磨は、粗研磨と鏡面研磨のそれぞれを行うことが好ましい。粗研磨は、例えば、ラップ研磨等の機械式研磨法等を用いて行うことができる。粗研磨により、SiC基板Wにおける大きなうねりや加工歪等の凹凸を除去することができる。鏡面研磨は、例えばCMP法等により行うことができる。鏡面研磨では、粗研磨で凹凸及び平行度が整えられたSiC基板の平坦度をより高めることができる。 Then, the obtained SiC substrate W is polished. As a polishing method, a conventionally known method can be adopted. It is preferable to perform rough polishing and mirror polishing, respectively. The rough polishing can be performed, for example, by using a mechanical polishing method such as lapping. By the rough polishing, it is possible to remove irregularities such as large waviness and processing strain in the SiC substrate W. The mirror polishing can be performed by, for example, the CMP method. In mirror polishing, it is possible to further improve the flatness of the SiC substrate whose roughness and parallelism are adjusted by rough polishing.

次いで、得られたSiC基板W上にSiCエピタキシャル膜を成長させる。
まず、上述のSiCエピタキシャルウェハの製造装置100のサテライト20上にSiC基板Wを載置する。
Then, a SiC epitaxial film is grown on the obtained SiC substrate W.
First, the SiC substrate W is placed on the satellite 20 of the above-described SiC epitaxial wafer manufacturing apparatus 100.

SiC基板Wを載置後に、図視略の真空ポンプにより反応空間Kを真空排気したのち、第1ガス供給管30から水素やアルゴンなどのガスを流して一定の減圧状態にする。またヒータ70により反応空間Kを加熱する。さらに、回転軸12を図示略の駆動モータにより回転駆動させると共に、サテライト20を回転させる。サテライト20の回転は、第2ガス供給管40から供給されるガスによって行うことが好ましい。第2ガス供給管40から供給されるガスを利用することで、装置が複雑化することを避けることができる。サテライト20は、回転軸12に対して自公転する。 After the SiC substrate W is placed, the reaction space K is evacuated by a vacuum pump (not shown), and then a gas such as hydrogen or argon is flown from the first gas supply pipe 30 to bring it into a constant depressurized state. Further, the reaction space K is heated by the heater 70. Further, the rotary shaft 12 is rotationally driven by a drive motor (not shown), and the satellite 20 is rotated. The rotation of the satellite 20 is preferably performed by the gas supplied from the second gas supply pipe 40. By using the gas supplied from the second gas supply pipe 40, complication of the device can be avoided. The satellite 20 revolves around the rotating shaft 12.

この状態で、さらに原料ガスGを第1ガス供給管30から供給する。反応空間Kに供給された原料ガスGは、搭載プレート10の中央から外周に向かって広がり、搭載プレート10と側壁60の間を通って外部に排出される。この際、サテライト20上に載置されたSiC基板Wでは、原料ガス中のシラン系ガスと炭化水素系ガスが反応し、SiCエピタキシャル膜が成長する。また原料ガスにドーパントガスを混ぜることで、半導体のドーパントとして寄与するドーパント元素を含んだSiCエピタキシャル膜を成長させることができる。 In this state, the source gas G is further supplied from the first gas supply pipe 30. The raw material gas G supplied to the reaction space K spreads from the center of the mounting plate 10 toward the outer periphery and is discharged to the outside through the space between the mounting plate 10 and the side wall 60. At this time, in the SiC substrate W placed on the satellite 20, the silane-based gas and the hydrocarbon-based gas in the source gas react with each other to grow a SiC epitaxial film. Further, by mixing the dopant gas with the source gas, it is possible to grow a SiC epitaxial film containing a dopant element that contributes as a dopant of the semiconductor.

第2ガス供給管40から供給されたガスは、凹状収容部11とサテライト20の間を介して反応空間Kに供給される。そのため、第2ガス供給管40から供給されるガスは、SiC基板Wを基準に考えると、その外周から中央に向かって供給される。そのため、第2ガス供給管40から供給されるガスにドーパントガスを含めることで、エピタキシャル成長するSiCエピタキシャル膜の中央部に対する外周部のキャリア濃度を高くすることができる。 The gas supplied from the second gas supply pipe 40 is supplied to the reaction space K through the space between the concave housing portion 11 and the satellite 20. Therefore, considering the SiC substrate W as a reference, the gas supplied from the second gas supply pipe 40 is supplied from the outer circumference toward the center. Therefore, by including the dopant gas in the gas supplied from the second gas supply pipe 40, it is possible to increase the carrier concentration in the outer peripheral portion with respect to the central portion of the SiC epitaxial film that is epitaxially grown.

SiCのドーパントとして機能するドーパント元素を、第1ガス供給管30から供給する原料ガスGに加えただけでは、SiC基板Wの外周のキャリア濃度が低くなる場合がある。このような時は、キャリアガスの流量や圧力などを調整してSiCエピタキシャル面内のキャリア濃度分布を調整するが、SiC基板が大口径になると限界がある。さらにキャリアガスの流量や圧力などの基本条件は、キャリア濃度分布以外の特性、例えば成長膜厚分布などの特性にも影響を与えるため、任意に変更できるものではない。これに対し、第2ガス供給管40からドーパント元素をドーパントガスとして供給する方法は、原料ガスのキャリアガスの流量や圧力などの基本条件に影響を与えずにSiC基板Wの外周のキャリア濃度を高めることができる。したがって、他の特性も兼ね備えかつキャリア濃度の均一なSiCエピタキシャルウェハを得ることができる。また、第2ガス供給管40から供給されるドーパント元素は、キャリア濃度の面内分布に関しては、SiCエピタキシャルウェハの外周のキャリア濃度のみを相対的に高め、中央付近では均一にドーピングされるため、中央付近のキャリア濃度分布の形にはほとんど影響を与えない。 The carrier concentration on the outer periphery of the SiC substrate W may be lowered only by adding the dopant element functioning as the SiC dopant to the source gas G supplied from the first gas supply pipe 30. In such a case, the carrier gas flow rate and pressure are adjusted to adjust the carrier concentration distribution in the SiC epitaxial surface, but there is a limit when the SiC substrate has a large diameter. Further, the basic conditions such as the flow rate and pressure of the carrier gas affect characteristics other than the carrier concentration distribution, for example, characteristics such as the grown film thickness distribution, and therefore cannot be arbitrarily changed. On the other hand, in the method of supplying the dopant element as the dopant gas from the second gas supply pipe 40, the carrier concentration on the outer periphery of the SiC substrate W is adjusted without affecting the basic conditions such as the flow rate and pressure of the carrier gas of the source gas. Can be increased. Therefore, it is possible to obtain a SiC epitaxial wafer having other characteristics and a uniform carrier concentration. Regarding the in-plane distribution of the carrier concentration, the dopant element supplied from the second gas supply pipe 40 relatively increases only the carrier concentration on the outer periphery of the SiC epitaxial wafer and is uniformly doped near the center. It has almost no effect on the shape of the carrier concentration distribution near the center.

第1ガス供給管30から供給されるガスの総量に対する第2ガス供給管40から供給されるガスの総量は、1/300〜1/50であることが好ましい。第2ガス供給管40から供給されるガスの総量を、第1ガス供給管から供給されるガスの総量と比較して少なくしておくことで、チャンバ内のガスの流れを搭載プレート10の中央から外周に向かう方向が主となるように制御することができ、乱流等の発生を抑制することができる。 The total amount of gas supplied from the second gas supply pipe 40 to the total amount of gas supplied from the first gas supply pipe 30 is preferably 1/300 to 1/50. By making the total amount of gas supplied from the second gas supply pipe 40 smaller than the total amount of gas supplied from the first gas supply pipe, the flow of gas in the chamber is made central in the mounting plate 10. The control can be performed so that the direction from the to the outer circumference is the main direction, and the occurrence of turbulent flow can be suppressed.

第1ガス供給管30から供給されるガスに含まれるドーパントガスの流量に対する、第2ガス供給管40から供給されるドーパントキャリアガスに含まれるドーパントガスの流量の比は100:1〜0:1が好ましく、50:1〜10:1がより好ましく、40:1〜30:1がより好ましい。すなわち、ドーパントガスをすべて第2ガス供給管から供給することもできる。この範囲内であれば、第1ガス供給管30から供給されるドーパントキャリアガスによって低くなったSiC基板Wの外周のキャリア濃度を、第2ガス供給管40から供給されるドーパントキャリアガスによって好適に補償することができる。すなわち、SiCエピタキシャルウェハのキャリア濃度の均一性をより高めることができる。 The ratio of the flow rate of the dopant gas contained in the dopant carrier gas supplied from the second gas supply pipe 40 to the flow rate of the dopant gas contained in the gas supplied from the first gas supply pipe 30 is 100:1 to 0:1. Is preferred, 50:1 to 10:1 is more preferred, and 40:1 to 30:1 is more preferred. That is, the dopant gas may be entirely supplied from the second gas supply pipe. Within this range, the carrier concentration on the outer periphery of the SiC substrate W lowered by the dopant carrier gas supplied from the first gas supply pipe 30 is preferably adjusted by the dopant carrier gas supplied from the second gas supply pipe 40. Can be compensated. That is, it is possible to further improve the uniformity of carrier concentration of the SiC epitaxial wafer.

また、第2ガス供給管40から供給されるドーパントキャリアガスに含まれるドーパントガスは、第1ガス供給管30から供給されるドーパントガスよりも効率的にエピタキシャルウェハに取り込まれるので、同じキャリア濃度を得るために反応空間に導入するドーパントの絶対量を少なくすることができる。この特徴は、ドーパントガスによるメモリー効果を低減することができる。そのため、たとえば高キャリア濃度のエピタキシャル層と低キャリア濃度を連続して積層する場合に、従来方法にくらべ有効である。
また、第2のガス供給管から供給されるドーパントキャリアガスは、ウェハに対し、ウェハの周辺部近傍から、全方向均一に供給される。これにより、ウェハの外周部に対して周方向に均一に確実にドーパントガスを供給することができる。
Further, the dopant gas contained in the dopant carrier gas supplied from the second gas supply pipe 40 is taken into the epitaxial wafer more efficiently than the dopant gas supplied from the first gas supply pipe 30, so that the same carrier concentration is obtained. The absolute amount of dopant introduced into the reaction space to obtain it can be reduced. This feature can reduce the memory effect due to the dopant gas. Therefore, it is more effective than the conventional method when, for example, an epitaxial layer having a high carrier concentration and a low carrier concentration are successively laminated.
The dopant carrier gas supplied from the second gas supply pipe is uniformly supplied to the wafer in all directions from the vicinity of the peripheral portion of the wafer. As a result, the dopant gas can be reliably and uniformly supplied to the outer peripheral portion of the wafer in the circumferential direction.

第2ガス供給管40から供給されるガス中にドーパントガスを混在させるのは、第1ガス供給管30から原料ガスGを供給するのと、同時またはそれ以降に行うことが好ましい。第1ガス供給管30から原料ガスGを供給する段階では、サテライト20は自転していることが好ましい。これに対し、原料ガスGがSiC基板W上に供給される前に、ドーパントガスがSiC基板W上に供給されないことが好ましい。これは、SiC基板W自体もSiCの単結晶からなるため、ドーパントガスと反応するためである。 The mixing of the dopant gas in the gas supplied from the second gas supply pipe 40 is preferably performed at the same time as or after the supply of the raw material gas G from the first gas supply pipe 30. At the stage of supplying the raw material gas G from the first gas supply pipe 30, the satellite 20 is preferably rotating on its axis. On the other hand, it is preferable that the dopant gas is not supplied onto the SiC substrate W before the source gas G is supplied onto the SiC substrate W. This is because the SiC substrate W itself is made of a single crystal of SiC and reacts with the dopant gas.

そこで、原料ガスGがSiC基板W上に供給されるまでは、第2ガス供給管40から供給するガスは反応に寄与しないキャリアガス(例えば、希ガス等)を供給し、原料ガスGがSiC基板W上に供給されると同時またはそれ以降に、第2ガス供給管40から供給するガスにドーパントガスを含めドーパントキャリアガスとすることが好ましい。このように 第2ガス供給管40から供給するガス中にドーパントガスを混在させるタイミングを、第1ガス供給管30から原料ガスGを供給するのと同時またはそれ以降にすることで、よりキャリア濃度の制御性を高めることができる。
さらに複数のエピタキシャル層を積むような場合、それぞれのエピタキシャル層毎に、第2ガス供給管40から供給されるガスを、ドーパントガスを含まないキャリアガスをとする成長段階と、ドーパントガスを含むドーパントキャリアガスとする成長段階が交互に混在するエピタキシャル成長としてもよい。
以上は、自公転のエピタキシャル成長装置で説明したが、凹状収容部とサテライトの間から前記SiCエピタキシャルウェハの外周にドーパントガスを含むドーパントキャリアガスを供給する構成を含めば、自公転のエピタキシャル成長装置に限定されるものではない。例えばウェハが自転のみする装置であってもよいし、公転のみする装置でサテライトが浮揚しているだけの装置でもよい。
Therefore, until the source gas G is supplied onto the SiC substrate W, the gas supplied from the second gas supply pipe 40 supplies a carrier gas (for example, a rare gas or the like) that does not contribute to the reaction, and the source gas G becomes SiC. Simultaneously with or after being supplied onto the substrate W, it is preferable that the gas supplied from the second gas supply pipe 40 contains a dopant gas to serve as a dopant carrier gas. In this way, by setting the timing of mixing the dopant gas in the gas supplied from the second gas supply pipe 40 at the same time as or after the supply of the source gas G from the first gas supply pipe 30, a more carrier concentration can be obtained. The controllability of can be improved.
When a plurality of epitaxial layers are further stacked, a growth stage in which the gas supplied from the second gas supply pipe 40 is a carrier gas containing no dopant gas and a dopant containing the dopant gas are provided for each epitaxial layer. Epitaxial growth in which growth stages using carrier gas are alternately mixed may be used.
The above description has been made on the rotation-revolution epitaxial growth apparatus, but it is limited to the rotation-revolution epitaxial growth apparatus, including the configuration in which the dopant carrier gas containing the dopant gas is supplied to the outer periphery of the SiC epitaxial wafer from between the concave accommodation portion and the satellite. It is not something that will be done. For example, it may be a device in which the wafer rotates only, or a device in which the wafer only revolves and the satellite is only levitated.

本発明の一態様に係るSiCエピタキシャルウェハの製造方法によれば、SiC基板上に成長するSiCエピタキシャル膜の面内方向のキャリア濃度の制御性を高めることができる。 According to the method for manufacturing the SiC epitaxial wafer according to the aspect of the present invention, the controllability of the carrier concentration in the in-plane direction of the SiC epitaxial film grown on the SiC substrate can be enhanced.

以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Can be modified and changed.

以下、本発明の効果を、実施例を用いて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the effects of the present invention will be specifically described using examples. The present invention is not limited to these examples.

[実施例1]
実施例1においては、まず、SiC基板(6インチ、4H−SiC−4°off基板)を準備した。またSiCエピタキシャル膜の製造装置として、6個の凹状収容部を有する搭載プレートに、6つのサテライトを設置した。そしてサテライト上に載置されたSiCウェハを自公転させながらSiCエピタキシャル膜を8〜10.5μm成長させた。第1ガス供給管からは、原料ガスとしてシラン、プロパン、キャリアガスとして水素を供給した。また第2ガス供給管からは、ドーパントガスとして窒素を含み、主として水素を含むドーパントキャリアガスを供給した。第1ガス供給管から供給したガスの総流量Aと第2ガス供給管から供給したガスの総流量Bの比(B/A)は0.0076倍であった。
またドーパントガスは、第1のガス供給管から供給される窒素ガスの量Cとし、第2のガス供給管から供給される窒素ガスの量Dの比(D/C)、すなわち、それぞれのガス供給管から供給されるガス、第1ガス供給管から流したドーパントガスの流量に対する第2ガス供給管から供給した窒素の流量の比は、0.056であった。また成膜温度は1600℃とした。
[Example 1]
In Example 1, first, a SiC substrate (6 inch, 4H-SiC-4° off substrate) was prepared. Further, as a SiC epitaxial film manufacturing apparatus, six satellites were installed on a mounting plate having six recessed accommodating portions. Then, an SiC epitaxial film was grown to 8 to 10.5 μm while revolving the SiC wafer placed on the satellite. From the first gas supply pipe, silane and propane were supplied as raw material gases and hydrogen was supplied as a carrier gas. Further, a dopant carrier gas containing nitrogen as a dopant gas and mainly containing hydrogen was supplied from the second gas supply pipe. The ratio (B/A) of the total flow rate A of the gas supplied from the first gas supply pipe to the total flow rate B of the gas supplied from the second gas supply pipe was 0.0076 times.
The dopant gas is the amount C of nitrogen gas supplied from the first gas supply pipe, and the ratio (D/C) of the amount D of nitrogen gas supplied from the second gas supply pipe, that is, each gas. The ratio of the flow rate of nitrogen supplied from the second gas supply pipe to the flow rate of gas supplied from the supply pipe and the dopant gas flowed from the first gas supply pipe was 0.056. The film forming temperature was 1600°C.

[実施例2]
実施例2は、第2ガス供給管から供給したガスの総流量を変更した点のみが実施例1と異なる。第1ガス供給管から流したドーパントガスの流量に対する第2ガス供給管から供給した窒素の流量は、0.028倍であった。
[Example 2]
The second embodiment differs from the first embodiment only in that the total flow rate of the gas supplied from the second gas supply pipe is changed. The flow rate of nitrogen supplied from the second gas supply pipe to the flow rate of the dopant gas supplied from the first gas supply pipe was 0.028 times.

[比較例1]
比較例1は、ドーパントガスを第1のガス供給管からのみ流し、第2ガス供給管にはドーパントガスを含めなかった点が実施例1と異なる。その他の条件は、実施例1と同一とした。
[Comparative Example 1]
Comparative Example 1 is different from Example 1 in that the dopant gas was allowed to flow only from the first gas supply pipe and the second gas supply pipe did not contain the dopant gas. Other conditions were the same as in Example 1.

図4は、実施例1及び比較例1において得られたSiCエピタキシャル膜の面内方向に対するキャリア濃度変化を示したグラフである。図の横軸は、面内のキャリア濃度の測定値を直径方向の1方向を横軸として示したものである。面内のキャリア濃度ばらつきの測定は、この位置及びそれと直交する同位置の合計21点を測定した。キャリア濃度の面内ばらつきを、測定点の平均値(max−min/21点)で示す。実施例1のキャリア濃度の面内ばらつきは22%であった。実施例2の面内ばらつきは13%であった。比較例の面内ばらつきは32%であった。実施例1及び2のいずれも、比較例1に比べキャリア濃度の面内ばらつきが改善されている。 FIG. 4 is a graph showing changes in carrier concentration in the in-plane direction of the SiC epitaxial films obtained in Example 1 and Comparative Example 1. The horizontal axis of the figure shows the measured value of the in-plane carrier concentration with one horizontal direction as the horizontal axis. For the measurement of the carrier concentration variation in the plane, a total of 21 points were measured at this position and the same position orthogonal thereto. The in-plane variation of carrier concentration is shown by the average value of measurement points (max-min/21 points). The in-plane variation in carrier concentration of Example 1 was 22%. The in-plane variation of Example 2 was 13%. The in-plane variation of the comparative example was 32%. In each of Examples 1 and 2, the in-plane variation in carrier concentration is improved as compared with Comparative Example 1.

図4に示すように、実施例1及び2のSiCエピタキシャル膜の外周部分のキャリア濃度は、比較例1のSiCエピタキシャル膜の外周のキャリア濃度に対して高いことがわかる。すなわち、第2ガス供給管から供給されたドーパントキャリアガスによって、SiCウェハの外周部分のキャリア濃度が高くなっていることが分かる。またその結果、SiCウェハの面内方向におけるキャリア濃度が均質化していることがわかる。 As shown in FIG. 4, it can be seen that the carrier concentration in the outer peripheral portion of the SiC epitaxial films of Examples 1 and 2 is higher than the carrier concentration in the outer peripheral portion of the SiC epitaxial film of Comparative Example 1. That is, it can be seen that the carrier concentration in the outer peripheral portion of the SiC wafer is increased by the dopant carrier gas supplied from the second gas supply pipe. Further, as a result, it can be seen that the carrier concentration in the in-plane direction of the SiC wafer is homogenized.

図5に、実施例1及び実施例2と比較例1のキャリア濃度の差を、図4から計算したものを示している。図5に示すように、凹状収容部とサテライトの間からSiCエピタキシャルウェハの外周にドーパントガスを含むドーパントキャリアガスを供給してドーピングを行う方法では、周辺部分のキャリア濃度を集中的に高めることができる。これは、6インチ以上の大口径ウェハへエピタキシャル成長を行う場合、ウェハ周辺部でキャリア濃度が低くなりやすいという課題を、有効に解決することができる。 FIG. 5 shows the difference in carrier concentration between Example 1 and Example 2 and Comparative Example 1 calculated from FIG. As shown in FIG. 5, in the method of performing doping by supplying the dopant carrier gas containing the dopant gas to the outer periphery of the SiC epitaxial wafer from between the recessed accommodating portion and the satellite, it is possible to concentrate the carrier concentration in the peripheral portion. it can. This can effectively solve the problem that the carrier concentration tends to be low in the peripheral portion of the wafer when performing epitaxial growth on a large-diameter wafer of 6 inches or more.

また、図5では、半径50mm以内のキャリア濃度は非常に均一になっている。この場合、半径75mm(直径6インチ)のウェハを用いているので、この方法を用いると、周辺25mmを除いた部分で非常に均一なドーピングが可能であることを示している。このことから、ウェハに対して、その直径よりも大きなサテライトを用いた場合、ドーピングガスを凹状収容部とサテライトの間からのみから供給すること、または凹状収容部とサテライトの間からのドーピングガスの供給が主となる様に供給することにより、面内分布が均一なドーピングを、効率的に行うことができる。その際、ウェハの外周のサセプタ表面は、SiCの単結晶又は多結晶又は焼結体などを配置することにより、大きなウェハを置いた時と同じ成長状況を達成できるため好ましい。 Further, in FIG. 5, the carrier concentration within a radius of 50 mm is extremely uniform. In this case, since a wafer having a radius of 75 mm (diameter of 6 inches) is used, it is shown that very uniform doping can be performed by using this method except for the periphery of 25 mm. From this, when a satellite having a diameter larger than that of the wafer is used, the doping gas is supplied only from between the concave accommodation portion and the satellite, or the doping gas is not supplied from between the concave accommodation portion and the satellite. By supplying so that the supply is the main, doping with a uniform in-plane distribution can be performed efficiently. At that time, by disposing a single crystal or polycrystal of SiC or a sintered body on the susceptor surface on the outer periphery of the wafer, the same growth situation as when a large wafer is placed can be achieved, which is preferable.

本発明のSiCエピタキシャルウェハの製造装置は、電気特性に優れたSiCエピタキシャルウェハを、簡便な装置で生産性良く製造できることから、例えば、パワーデバイス、高周波デバイス、高温動作デバイス等に用いられるSiCエピタキシャルウェハを製造することができる。 Since the SiC epitaxial wafer manufacturing apparatus of the present invention can manufacture a SiC epitaxial wafer having excellent electric characteristics with a simple apparatus with high productivity, for example, a SiC epitaxial wafer used for a power device, a high frequency device, a high temperature operation device, or the like. Can be manufactured.

10…搭載プレート、11…凹状収容部、11a…上面、12…回転軸、13…回転台、13a…回転台上面、14…溝、20…サテライト、20a…上面、20b…下面、21…凹部、30…第1ガス供給管、40…第2ガス供給管、41…供給口、50…シーリング、60…側壁、61…支持部、70…ヒータ、100…SiCエピタキシャルウェハの製造装置、G…原料ガス、K…反応空間、W…SiCウェハ DESCRIPTION OF SYMBOLS 10... Mounting plate, 11... Recessed accommodating part, 11a... Upper surface, 12... Rotating shaft, 13... Rotating table, 13a... Rotating table upper surface, 14... Groove, 20... Satellite, 20a... Upper surface, 20b... Lower surface, 21... Recessed portion , 30... First gas supply pipe, 40... Second gas supply pipe, 41... Supply port, 50... Ceiling, 60... Side wall, 61... Support part, 70... Heater, 100... SiC epitaxial wafer manufacturing apparatus, G... Raw material gas, K... Reaction space, W... SiC wafer

Claims (2)

凹状収容部を有する搭載プレートと、前記凹状収容部内に配置され上面にSiC基板が載置されるサテライトと、前記サテライト上に載置されるSiC基板の主面上に、SiCエピタキシャル膜の原料ガスを供給する第1ガス供給管と、前記凹状収容部内に供給口を有し、ドーパントガスを含むドーパントキャリアガスを供給する第2ガス供給管と、を備えるSiCエピタキシャルウェハの製造装置を用いたSiCエピタキシャルウェハの製造方法であって、
前記サテライトに対し、前記搭載プレートの中央から外周に向かう方向に前記第1ガス供給管から原料ガスを供給し、
前記第2ガス供給管を用いて、前記凹状収容部と前記サテライトの間から前記SiCエピタキシャルウェハの外周にドーパントガスを含むドーパントキャリアガスを供給し、
前記第1ガス供給管から供給されるガスの総量に対する前記第2ガス供給管から供給されるガスの総量は、1/300〜1/50であるSiCエピタキシャルウェハの製造方法。
A mounting plate having a concave accommodating portion, a satellite arranged in the concave accommodating portion and having a SiC substrate mounted on the upper surface thereof, and a raw material gas for a SiC epitaxial film formed on a main surface of the SiC substrate mounted on the satellite. A SiC epitaxial wafer manufacturing apparatus including a first gas supply pipe for supplying a first gas supply pipe and a second gas supply pipe for supplying a dopant carrier gas containing a dopant gas, the second gas supply pipe having a supply port in the concave accommodating portion. A method of manufacturing an epitaxial wafer, comprising:
A raw material gas is supplied to the satellite from the first gas supply pipe in a direction from the center of the mounting plate toward the outer periphery,
Using the second gas supply pipe, a dopant carrier gas containing a dopant gas is supplied to the outer periphery of the SiC epitaxial wafer from between the concave accommodation portion and the satellite,
The method for manufacturing an SiC epitaxial wafer, wherein the total amount of gas supplied from the second gas supply pipe to the total amount of gas supplied from the first gas supply pipe is 1/300 to 1/50.
凹状収容部を有する搭載プレートと、前記凹状収容部内に配置され上面にSiC基板が載置されるサテライトと、前記サテライト上に載置されるSiC基板の主面上に、SiCエピタキシャル膜の原料ガスを供給する第1ガス供給管と、前記凹状収容部内に供給口を有し、ドーパントガスを含むドーパントキャリアガスを供給する第2ガス供給管と、を備えるSiCエピタキシャルウェハの製造装置を用いたSiCエピタキシャルウェハの製造方法であって、
前記サテライトに対し、前記搭載プレートの中央から外周に向かう方向に前記第1ガス供給管から原料ガスを供給し、
前記サテライトにSiC基板を載置すると共に、前記搭載プレートの表面の、前記SiC基板の外周にSiCの単結晶又は多結晶又は焼結体のいずれかを載置し、
前記第2ガス供給管を用いて、前記凹状収容部と前記サテライトの間から前記SiCエピタキシャルウェハの外周にドーパントガスを含むドーパントキャリアガスを供給するSiCエピタキシャルウェハの製造方法。
A mounting plate having a concave accommodating portion, a satellite arranged in the concave accommodating portion and having a SiC substrate mounted on the upper surface thereof, and a raw material gas for a SiC epitaxial film formed on a main surface of the SiC substrate mounted on the satellite. A SiC epitaxial wafer manufacturing apparatus including a first gas supply pipe for supplying a first gas supply pipe and a second gas supply pipe for supplying a dopant carrier gas containing a dopant gas, the second gas supply pipe having a supply port in the concave accommodating portion. A method of manufacturing an epitaxial wafer, comprising:
A raw material gas is supplied to the satellite from the first gas supply pipe in a direction from the center of the mounting plate toward the outer periphery,
A SiC substrate is placed on the satellite, and a single crystal, a polycrystal, or a sintered body of SiC is placed on the outer surface of the SiC substrate on the surface of the mounting plate.
A method of manufacturing a SiC epitaxial wafer, which uses the second gas supply pipe to supply a dopant carrier gas containing a dopant gas to the outer periphery of the SiC epitaxial wafer from between the concave accommodation portion and the satellite.
JP2019121537A 2019-06-28 2019-06-28 Method for manufacturing SiC epitaxial wafer Active JP6723416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019121537A JP6723416B2 (en) 2019-06-28 2019-06-28 Method for manufacturing SiC epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121537A JP6723416B2 (en) 2019-06-28 2019-06-28 Method for manufacturing SiC epitaxial wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015180099A Division JP2017055086A (en) 2015-09-11 2015-09-11 MANUFACTURING METHOD OF SiC EPITAXIAL WAFER AND MANUFACTURING APPARATUS OF SiC EPITAXIAL WAFER

Publications (2)

Publication Number Publication Date
JP2019169743A JP2019169743A (en) 2019-10-03
JP6723416B2 true JP6723416B2 (en) 2020-07-15

Family

ID=68108542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121537A Active JP6723416B2 (en) 2019-06-28 2019-06-28 Method for manufacturing SiC epitaxial wafer

Country Status (1)

Country Link
JP (1) JP6723416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311009B2 (en) 2021-08-04 2023-07-19 株式会社レゾナック SiC device and method for manufacturing SiC device
CN114561632B (en) * 2022-03-02 2022-12-27 南京大学 MPCVD equipment capable of realizing effective doping

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650727B2 (en) * 2000-08-10 2005-05-25 Hoya株式会社 Silicon carbide manufacturing method
FR2844095B1 (en) * 2002-09-03 2005-01-28 Commissariat Energie Atomique METHOD FOR MANUFACTURING SICOI-TYPE COMPOSITE SUBSTRATE COMPRISING AN EPITAXY STEP
US8052794B2 (en) * 2005-09-12 2011-11-08 The United States Of America As Represented By The Secretary Of The Navy Directed reagents to improve material uniformity
JP2014216605A (en) * 2013-04-30 2014-11-17 住友電気工業株式会社 Manufacturing method and manufacturing apparatus of semiconductor substrate
JP6101591B2 (en) * 2013-07-31 2017-03-22 昭和電工株式会社 Epitaxial wafer manufacturing apparatus and manufacturing method
JP6097681B2 (en) * 2013-12-24 2017-03-15 昭和電工株式会社 SiC epitaxial wafer manufacturing apparatus and SiC epitaxial wafer manufacturing method

Also Published As

Publication number Publication date
JP2019169743A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US10930492B2 (en) Method for producing SiC epitaxial wafer and apparatus for producing SiC epitaxial wafer
US10494737B2 (en) Apparatus for producing SiC epitaxial wafer and method for producing SiC epitaxial wafer
JP5514915B2 (en) Susceptor device
JP6101591B2 (en) Epitaxial wafer manufacturing apparatus and manufacturing method
CN107004583B (en) Wafer support table, chemical vapor deposition apparatus, epitaxial wafer and method for manufacturing the same
US20120231615A1 (en) Semiconductor thin-film manufacturing method, semiconductor thin-film manufacturing apparatus, susceptor, and susceptor holder
EP2741316B1 (en) Epitaxial wafer manufacturing device and manufacturing method
JP6018909B2 (en) Wafer holder and epitaxial wafer manufacturing equipment
JP6723416B2 (en) Method for manufacturing SiC epitaxial wafer
WO2019044440A1 (en) Vapor-phase growth device and vapor-phase growth method
JP6601956B2 (en) Wafer support, SiC epitaxial wafer manufacturing apparatus and method including the same
JP6850590B2 (en) Mounting plate, wafer support, and chemical vapor deposition
JP6562546B2 (en) Wafer support, wafer support, chemical vapor deposition equipment
JP7392417B2 (en) Manufacturing method of SiC epitaxial wafer
JP6748549B2 (en) SiC epitaxial wafer manufacturing method and SiC epitaxial wafer manufacturing apparatus
JP6986872B2 (en) Wafer support, chemical vapor deposition equipment, and method for manufacturing SiC epitaxial wafers
JP6335683B2 (en) SiC epitaxial wafer manufacturing equipment
JP2017017084A (en) Method for manufacturing silicon carbide epitaxial substrate and epitaxial growth apparatus
JP2013235947A (en) Rotary blade vapor deposition equipment
JP6078428B2 (en) Wafer support and chemical vapor deposition apparatus using the wafer support
WO2023234159A1 (en) Holder and vapor phase growth apparatus
JP6671161B2 (en) Substrate holder for silicon carbide epitaxial growth and method of manufacturing epitaxial silicon carbide single crystal wafer
JP2022006998A (en) Film depositing support substrate, rod, film deposition device, substrate fixing method, film deposition method and method for manufacturing substrate
JP2022067843A (en) Silicon carbide single crystal substrate, and production method thereof
JP2022096895A (en) Silicon carbide single crystal substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R150 Certificate of patent or registration of utility model

Ref document number: 6723416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350