JP6676592B2 - 液体吐出ヘッドの製造方法 - Google Patents

液体吐出ヘッドの製造方法 Download PDF

Info

Publication number
JP6676592B2
JP6676592B2 JP2017159809A JP2017159809A JP6676592B2 JP 6676592 B2 JP6676592 B2 JP 6676592B2 JP 2017159809 A JP2017159809 A JP 2017159809A JP 2017159809 A JP2017159809 A JP 2017159809A JP 6676592 B2 JP6676592 B2 JP 6676592B2
Authority
JP
Japan
Prior art keywords
film
substrate
liquid
protective film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017159809A
Other languages
English (en)
Other versions
JP2019038126A (ja
Inventor
太地 米本
太地 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017159809A priority Critical patent/JP6676592B2/ja
Publication of JP2019038126A publication Critical patent/JP2019038126A/ja
Application granted granted Critical
Publication of JP6676592B2 publication Critical patent/JP6676592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

本発明は、インク等の液体を吐出する液体吐出ヘッドの製造方法に関するものである。
液体吐出ヘッドは、例えば、インクジェットプリントヘッドとして、インクジェットプリント装置においてインクを吐出するために用いられる。液体吐出ヘッドは、一般に、微細な吐出口と、吐出口に連通する流路と、流路の一部に設けられ流路内の液体を吐出するためのエネルギーを発生する吐出エネルギー発生素子とをそれぞれ複数備えている。流路は、シリコン基板等の基板を掘りこむことによって形成されており、基板を貫通する貫通孔として形成される場合もある。
シリコン基板等の基板は使用されるインク等の液体に浸食されやすく、液体へ溶出した基板材料によって吐出口の目詰まりや吐出される液体の曲がりが引き起され、吐出不良の原因となり得る。また、吐出エネルギー発生素子が電気熱変換素子である場合には、溶出した基板材料は焦げの一因となる場合がある。そのため、基板が液体に直接さらされないように、流路の内壁にて露出した基板を、耐液性を有する保護膜で保護することが行われている。例えば特許文献1においては、酸化シリコンおよび窒化シリコン等のシリコン化合物を含む保護膜で流路の壁面を覆っている。
特開2006−315191号公報
上記保護膜は、例えばCVD法やALD法といった気相での化学反応を利用した成膜手法により形成される。CVD法やALD法は、原料シリコン化合物を気相中で反応させて堆積することにより形成される。一方、保護膜の形成は、形成時にすでに基板上に形成されている素子等の種々の構造体へのダメージを与えないよう、比較的低温で行うことが好ましい。しかし、CVD法やALD法を用い低温で成膜を行うと、原料シリコン化合物の反応性が十分でなく、膜中に未反応の基が残留して不純物を含む膜となる場合がある。この場合、不純物の影響により所望の耐液性が得られない場合がある。
本発明の目的は上記課題を解決するものである。すなわち、低温であっても耐液性に優れた保護膜を形成することができる液体吐出ヘッドの製造方法を提供することである。
本発明の液体吐出ヘッドの製造方法は、液体の流路と、前記流路が設けられた基板とを有する液体吐出ヘッドの製造方法であって、前記流路の壁面にSiO、SiOC、およびSiNからなる群より選択されるシリコン化合物を含む膜をCVD法またはALD法により形成する膜形成工程と、前記膜形成工程において形成された膜を水蒸気プラズマで処理する水蒸気プラズマ処理工程と、前記膜形成工程において形成された膜上にマスクを形成するマスク形成工程と、前記マスクを用いて前記膜をパターニングするパターニング工程と、を有し、前記水蒸気プラズマ処理工程は前記パターニング工程の後に行われることを特徴とする。
本発明によれば、低温であっても耐液性に優れた保護膜を形成することができる液体吐出ヘッドの製造方法が提供される。
液体吐出ヘッドの構成例を示す模式的斜視図である。 第1の実施形態にかかる液体吐出ヘッドの製造方法の工程を説明するための断面図である。 第2の実施形態にかかる液体吐出ヘッドの製造方法の工程を説明するための断面図である。 第3の実施形態にかかる液体吐出ヘッドの製造方法の工程を説明するための断面図である。 第4の実施形態にかかる液体吐出ヘッドの製造方法の工程を説明するための断面図である。 第5の実施形態にかかる液体吐出ヘッドの製造方法の工程を説明するための断面図である。 水蒸気プラズマ処理装置の例の模式図である。
本発明は、基板の流路の壁面にSiO、SiOC、およびSiNからなる群より選択されるシリコン化合物を含む膜(保護膜)をCVD法またはALD法により形成する膜形成工程と、膜形成工程において形成された膜を水蒸気プラズマで処理する水蒸気プラズマ処理工程と、を有することを特徴とする。本発明の製造方法によれば、CVD法またはALD法により比較的低温で上記シリコン化合物を含む膜を形成し、未反応の基が膜中に残留していた場合であっても、水蒸気プラズマで処理することにより耐液性の高い高品位な保護膜へと改質することができる。これは、膜中に残留した未反応の基が水蒸気プラズマ中のH、OH等のラジカルにより引き抜かれ、膜が酸化されるためと推測される。
以下に、本発明の実施形態を液体吐出ヘッドとしてインクジェット記録ヘッドを例に挙げ説明する。
(第1の実施形態)
以下、図面を参照して本発明の第1の実施形態について詳細に説明する。
図1は、第1の実施形態の液体吐出ヘッドの製造方法により得られる液体吐出ヘッドの構成例を示す摸式的断面図である。
図1に示す液体吐出ヘッドは、液体を吐出するために利用されるエネルギーを発生する複数の吐出エネルギー発生素子2が所定のピッチで形成された基板1を有している。基板1は、シリコン、炭化シリコン、窒化シリコン、ガラス(石英ガラス、ホウケイ酸ガラス、無アルカリガラス、ソーダガラス)、アルミナ、ガリウム砒素、窒化ガリウム、窒化アルミニウム、またはアルミニウム合金で構成されている。基板1としてはシリコン基板であることが好ましい。吐出エネルギー発生素子2としては、電気熱変換素子や圧電素子が挙げられる。基板1の表面上には、吐出エネルギー発生素子2を駆動するための配線膜(不図示)やキャビテーションによる吐出エネルギー発生素子2の劣化を防止するための耐キャビテーション膜(不図示)が形成されている。
基板1の表面上には、液体の流路を形成する流路形成部材5が形成されている。流路形成部材5は、吐出口4が開口する天板6と、吐出口4に連通し吐出エネルギー発生素子2から発生したエネルギーを液体に付与する圧力室8を形成する側壁7とから構成されている。なお、吐出口4および圧力室8は液体の流路の一種とみなすことができる。流路形成部材5は、無機化合物または樹脂で構成されている。微細な吐出口4および圧力室8を高精度に形成できることから、流路形成部材5は感光性樹脂材料を用いて形成されることが好ましい。感光性樹脂としては、機械的強度および耐液性を考慮するとエポキシ樹脂が好ましい。流路形成部材5の表面には必要に応じて不図示の撥水層が形成されていてもよい。
基板1と流路形成部材5との間には、両者の密着性を向上するための中間層9が設けられている。中間層9は、その硬化物の密着性を考慮するとエポキシ樹脂またはポリアミド樹脂を含むことが好ましい。中間層9は流路形成部材5と基板1との間の密着性を担保するための層であり、それ以外の機能を有さないことからなるべく薄く形成することが好ましい。具体的には中間層9の厚さは5.0μm以下、特には1.0μm以下であることが好ましい。
基板1には、液体の流路3が基板1の表面から裏面へ貫通する貫通孔として設けられている。流路3から、吐出エネルギー発生素子2を内部に備える圧力室8を通って供給される液体は、吐出エネルギー発生素子2によって発生する圧力が加えられ、吐出口4から液滴として吐出される。図1に示す液体吐出ヘッドでは、一つの圧力室8に2つの流路3aおよび3bが接続されており、この2つの流路を介して圧力室内の液体を圧力室8の外部との間で循環させることができる。具体的には、液体を、左側の流路3aを通って圧力室8へ流入させ右側の流路3bから流出させることができる。この液体の流れによって、例えば本実施形態にかかる液体吐出ヘッドをインクジェットプリントヘッドに適用した場合、吐出口4や圧力室8内のインクが増粘するのを抑制することができる。
なお、このような循環型の液体吐出ヘッドでは、後述する保護膜10が流れを有する液体と接触している時間が長いため、保護膜10にはより一層の耐液性が要求される。本実施形態にかかる製造方法はこのような循環型の液体吐出ヘッドに好適に使用することができる。
流路3の壁面には、壁面を液体の浸食から保護する保護膜10が形成されている。保護膜10は耐液性を有する膜であり、具体的には、SiO、SiOC、およびSiNからなる群より選ばれるシリコン化合物を含み、後述するようにCVD(Chemical Vapor deposition)法またはALD(Atomic Layer Deposition)法により形成される。保護膜10は、図1に示すように、基板1の表面上の、流路3の開口近傍の領域にわたって形成されていてもよい。
図2(A)〜(H)は本実施形態の液体吐出ヘッドの製造方法を工程毎に図1に示す液体吐出ヘッドの部分断面図により説明する図である。以下に図2(A)〜(H)を参照して本実施形態の液体吐出ヘッドの製造方法を説明する。
まず、図2(A)に示すように、基板上に中間層9を形成する。基板1にはあらかじめ吐出エネルギー発生素子2が設けられている。中間層9は、中間層9となる樹脂層を基板上に設けたのち、所望の形状にパターニングすることにより形成される。中間層9となる樹脂層は、スピン塗布法やスリット塗布法のような、所定の材料を含む溶液を基板上に塗布して乾燥させる塗布法、および、所定の材料をドライフィルム化したものを基板上に転写する転写法により基板上に設けることができる。中間層9を薄く形成する、例えば中間層9を1.0μm以下としたい場合には、転写法よりも塗布法の方が好ましい。その後、基板1を貫通する流路3をエッチングにより形成する。基板1の表面に流路3のような貫通孔があらかじめ形成されている基板に対し塗布法により中間層9となる層を形成することは困難であるため、本実施形態においては流路3の形成に先駆けて中間層9を形成しておく。
次に、図2(B)に示すように、基板上に保護膜10として、SiO、SiOC、およびSiNからなる群より選択されるシリコン化合物を含む膜をCVD法またはALD法により形成する(膜形成工程)。保護膜10は、流路3の壁面を含む、基板全域に形成される。
CVD法は、原料化合物を気相中で分解し対象となる基板の表面に堆積させることにより成膜する手法である。一方、ALD法は、原料化合物を対象となる基板の表面に吸着させた後反応させることにより、原子レベルで一層ずつ成膜していく手法である。まず、真空チャンバー内に膜の原料化合物を含むガスを送り込み、加熱した基板表面上に1原子層程度吸着させた後、未反応の原料化合物を排気する。基板表面が吸着した原料化合物で覆われると、それ以上原料化合物の吸着が生じなくなるため、原料化合物が一層程度吸着した状態を作ることができる。次に、水、酸素、オゾン、およびアンモニア等の反応性ガスを導入して、吸着している原料化合物に化学反応を生じさせ、所望の化合物に変換させた後、反応性ガスを排気する。ALD法はこのように、原料化合物を一原子層ずつ吸着させて反応させるサイクルを繰り返す手法である。ALD法は、CVD法と比較して膜欠陥が少ない高品位な膜を複雑な構造にも追従性よく形成することができる。また、ALD法では比較的低温での成膜も容易である。
保護膜10の形成に用いる原料化合物としては、低温での成膜が容易であることからハロゲノ基を有するシリコン化合物を用いることが好ましい。ハロゲノ基は、水蒸気プラズマ中のH、OH等のラジカルによってハロゲン化水素となって保護膜10から引き抜かれ基板から容易に脱離する。そのため、ハロゲノ基を有するシリコン化合物を用いると、未反応基が少なくより一層耐液性の高い保護膜10を形成することが可能である。ハロゲノ基としては、フルオロ基、クロロ基、ブロモ基およびヨード基が挙げられ、特に入手が容易であることからクロロ基が好ましい。原料シリコン化合物としては、テトラクロロシラン、ヘキサクロロジシラン、テトラクロロジアルキルジシラン[(CH(CHSiCl]、ジクロロテトラアルキルジシラン[(CH(CHSiCl]、およびビストリクロロシリルアルカン[Si(CHCl]が挙げられる。nは1〜4の整数である。これらの中でも密度の高い保護膜10を形成できることからヘキサクロロジシランが好ましい。
反応性ガスとしては、純水またはアンモニアが好ましい。また、それぞれのガスを堆積する際に触媒を同時に基板上へ堆積させてもよい。触媒として好適な材料としては、ピリジン、ピコリン、およびアニリンが挙げられる。
保護膜10の成膜温度は、すでに基板上に形成されている素子や中間層等の構造体へのダメージを抑制するため、250℃以下、特には100℃以下の低温であることが好ましい。また、原料シリコン化合物の反応性を考慮し、60℃以上、特には70℃以上であることが好ましい。
次に、図2(C)に示すように、基板1の表面上にレジスト11を設ける。レジスト11は、保護膜10をエッチングする際のマスクパターンとなるものである。保護膜10は、流路3の壁面に形成されていればよく、その他の基板上の不要な部分、例えば、配線膜や中間層9上の保護膜10をエッチングにより除去する。レジスト11は感光性樹脂を含むフィルム状のレジストであり、テンティング法により基板1の表面上に形成される。感光性樹脂としては、ポジ型感光性樹脂またはネガ型感光性樹脂を用いることができる。感光性樹脂としては、特には、アライメント精度の観点からステッパーを用いてパターニングできる材料であることが好ましく、最も汎用的なi線(365nm)でパターニングできる材料であることがより好ましい。具体的には、ノボラック樹脂とナフトキノンジアジド誘導体からなるポジ型フォトレジストが好ましい。このようなポジ型フォトレジストとしては、東京応化工業(株)の「OFPR800」(商品名)および「THMR ip5700」(商品名)が挙げられる。
次に、図2(D)に示すように、レジスト11を露光装置により露光し現像することによりマスクパターン11aを形成する(マスク形成工程)。露光光としてはi線が好ましい。
次に、図2(E)に示すように、保護膜10に対してマスクパターン11aをマスクとしてウェットエッチングにより、保護膜10を所望の形状にパターニングする(パターニング工程)。ウェットエッチングは、スピンエッチャー装置を用い、バッファードフッ酸等、保護膜に対して高いエッチングレートを有する酸性の液で行うことが好ましい。パターニングは、CFガスを用いた反応性イオンエッチング等のドライエッチングにより行ってもよい。
次に、図2(F)に示すように、マスクパターン11aを剥離し除去する。マスクパターン11aを除去する工程は、下地層である配線膜や中間層9へのダメージを考慮すると、リフトオフ方式、ウェットエッチングにより衝撃剥離する方式、または溶解させ除去する方式で行うことが好ましい。特には、マスクパターン11aを一般的なレジスト除去液により溶解させ除去することが好ましい。このようなレジスト除去液としては、ローム・アンド・ハース電子材料(株)製の「リムバー1112A」(商品名)が挙げられる。その後、必要に応じ、基板1の流路3内の水分を取り除くため、ポストベーク等により基板1を乾燥させてもよい。
次に、図2(G)に示すように、保護膜10を水蒸気プラズマで処理する(水蒸気プラズマ処理工程)。具体的には、後述する水蒸気プラズマ処理装置内に基板1を設置し、基板全体を水蒸気プラズマに晒すことにより保護膜10の表面を水蒸気プラズマで処理する。水蒸気プラズマ中のH、OH等のラジカルは、保護膜10中に残留している未反応の官能基を引き抜く。その結果、未反応の官能基の少ない高品位な保護膜10を形成することができる。また、水蒸気プラズマ中にわずかに存在するOラジカルは、中間層9の表面への衝撃により中間層9の表面を清浄化する作用もある。
水蒸気プラズマの発生条件や処理条件は適宜調整することができる。水蒸気プラズマの発生条件の好ましい例を以下に挙げる。
Oガス圧力:80Pa〜130Pa
Oガス流量:100sccm〜300sccm
マイクロ波出力:1000W〜3000W
マイクロ波周波数:2.45GHz
また、水蒸気プラズマによる処理時間は2min以上60min以下であることが好ましい。水蒸気プラズマによる処理温度は60℃以上250℃以下であることが好ましい。水蒸気プラズマによる処理温度をこの範囲とすることで、すでに基板上に形成されている素子や中間層等の構造体へのダメージを抑制することができる。処理温度を低く保つため、冷却工程と処理工程とを断続的に行ってもよい。
本実施形態に用いられる水蒸気プラズマ処理装置の例を図7に示す。水蒸気プラズマ処理装置21は、石英22の表面に沿ってマイクロ波を伝播させることにより発生する表面波プラズマ(SWP;Surface Wave Plasma)を使用し、石英22とアルミプレート23の間に流すガスを励起させる。そして、そのガスのダウンフローにより基板1内の保護膜10を処理する。基板1は、貫通孔である流路3内の保護膜10を水蒸気プラズマに晒すため、基板1の裏面側からもHOガスが入り込めるように、支持台25からピン24で浮上させてある。石英22と基板1との間には、複数の小さな孔があいたアルミプレート23が設けられている。アルミプレート23は接地されておりチャンバー内に生じたイオンをトラップするため、中性であるラジカルのみを基板1に入射させることができる。プラズマ中のイオンは異方性があるため保護膜の改質にばらつきが生じる可能性があるが、このような装置構成にすることで保護膜が均一に改質される。また、イオンをトラップすることで、石英22のエッチングが抑制され高い改質レートを保つことができる。
水蒸気プラズマで処理された後の保護膜10は、その表面から深さ方向に沿ってハロゲン原子の含有率が増加する濃度勾配を持つことが好ましい。すなわち、保護膜10はその表面側は改質されてハロゲン原子の含有率が低く、保護膜10の基板側の領域は改質されぬまま残っていることが好ましい。保護膜10の表面は耐液性が高くなるように改質されていることが好ましい。一方、改質された保護膜10はその分改質前の保護膜10に対しエッチングレートが遅くパターニング性が劣っている。基板1の表面には、吐出エネルギー発生素子2や配線膜等に起因する凹凸が形成されており、保護膜10を後述するようにパターニングする場合には、基板1側の保護膜10の凹凸の段差部分に残渣が生じやすい。そこで、保護膜10の基板1の表面に近い領域のエッチングレートを維持するため、その領域では改質があまり行われていないことが好ましい。保護膜10の改質の程度は水蒸気プラズマ処理条件により調整可能である。具体的には、保護膜10の表面におけるハロゲン原子の含有率が0.1%以下、特には0.0%であることが好ましい。また、保護膜10の基板側の面におけるハロゲン原子の含有率は0.2%以上0.5%以下であることが好ましい。
次に、図2(H)に示すように、基板1の表面上に流路形成部材5を形成する。まず、フィルム基材上に感光性樹脂材料が塗布されたドライフィルムレジストを、基板1の表面上に貼り合わせる。感光性樹脂としてはエポキシ樹脂であることが好ましい。その後、ドライフィルムレジストを露光・現像することによって、流路形成部材5の側壁7をパターニングする。次に、同様のドライフィルムレジストを用いて流路形成部材5の天板6をパターニングする。最後に、非露光部分を現像することによって吐出口4および圧力室8を形成し、液体吐出ヘッドが完成する。
本実施形態では、保護膜10の水蒸気プラズマ処理工程を保護膜10のパターニング工程後に行う。保護膜10のパターニング工程においてウェットエッチングにより保護膜10の一部を除去する場合、残渣が発生する可能性がある。本実施形態の製造方法によれば、保護膜10のパターニング工程後に水蒸気プラズマ処理工程を行うため、水蒸気プラズマ処理工程において残渣が水蒸気プラズマによって容易に除去される。
(第2の実施形態)
図3(A)〜(H)は第2の実施形態の液体吐出ヘッドの製造方法を工程毎に説明する図である。第2の実施形態の第1の実施形態との違いは、保護膜10の水蒸気プラズマ処理工程を保護膜10のパターニング工程の後ではなく、保護膜10の形成工程後パターニング工程前に行う点である。すなわち、第2の実施形態においては、保護膜10が基板1の全面を覆った状態で保護膜10の水蒸気プラズマ処理が行われる。
第2の実施形態は、特に保護膜10の下層に配線膜13が存在する場合に有利である。配線膜13は通常金属膜または金属膜の積層体から構成されている。金属膜としては具体的には、Mo、Ti、W、Ni、Ta、Cu、Al、Crおよびそれらの合金が挙げられる。これら金属膜は水素脆化するため、水蒸気プラズマに晒されることは好ましくない。本実施形態によれば、配線膜13が露出していない状態で保護膜10を水蒸気プラズマに晒すため、配線膜13を変質させずに保護膜10を処理することができる。
以下に図3(A)〜(H)を参照して液体吐出ヘッドの製造方法を説明する。なお、以下の説明においては第1の実施形態と異なる点を重点的に述べるものとする。
まず、図3(A)に示すように、基板1の表面上に中間層9を形成する。基板1にはあらかじめ流路3、吐出エネルギー発生素子2および配線膜13が設けられている。次に、図3(B)に示すように、基板上に保護膜10を形成する。次に、図3(C)に示すように、保護膜10の表面を水蒸気プラズマで処理する。以降は、第1の実施形態と同様に、保護膜10をパターニングし流路形成部材5を形成することにより、液体吐出ヘッドが完成する。
(第3の実施形態)
図4(A)〜(H)は第3の実施形態の液体吐出ヘッドの製造方法を工程毎に説明する図である。第3の実施形態は第2の実施形態と同様、保護膜10の水蒸気プラズマ処理工程を保護膜10の形成工程後パターニング工程前に行う。第2の実施形態との違いは、保護膜10の水蒸気プラズマ処理工程を保護膜10のパターニングのためのマスクパターン11aを形成するマスク形成工程の後、保護膜10のパターニング工程の前に行う点である。第3の実施形態も第2の実施形態と同様に、配線膜13が露出していない状態で保護膜10を水蒸気プラズマに晒すため、配線膜13を変質させずに保護膜10を改質することができる。
(第4の実施形態)
図5(A)〜(H)は第4の実施形態の液体吐出ヘッドの製造方法を工程毎に説明する図である。第4の実施形態においては保護膜10が2層であり、第2の実施形態と同様に保護膜10の水蒸気プラズマ処理工程を保護膜10の形成工程後パターニング工程前に行う。保護膜10は第1の保護膜(第1の膜)10aと、第1の保護膜10aの下に設けられた第2の保護膜(第2の膜)10bとからなる。第1の保護膜10aは、第1の実施形態の保護膜10と同様にSiO、SiOC、およびSiNからなる群より選ばれる化合物を含む。第2の保護膜10bは、第1の保護膜10aよりも耐液性の高い保護膜であり、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の、酸化物、酸炭化物、または窒化物を含むことが好ましい。保護膜10をこのような2層構成とすることで、流路3の壁面をより効果的に液体から保護することができる。
以下に図5(A)〜(H)を参照して液体吐出ヘッドの製造方法を説明する。なお、以下の説明においてはすでに述べた実施形態と異なる点を重点的に述べるものとする。
まず、図5(A)に示すように、基板1の表面上に中間層9を形成する。基板1にはあらかじめ吐出エネルギー発生素子2および流路3が設けられている。
次に、図5(B)に示すように、基板上に第2の保護膜10bを形成する。第2の保護膜10bは、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の、酸化物、酸炭化物、または窒化物を含むことが好ましい。さらに、第2の保護膜10bは、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の酸化物を含むことが好ましく、TiOを含むことがより好ましい。第2の保護膜10bはCVD法またはALD法により形成することができる。第2の保護膜10bは、膜欠陥が少なく高品位・高密度な膜を形成することができることからALD法により形成されることが好ましい。
第2の保護膜10bの形成に用いる原料化合物としては、低温での成膜が容易であることからハロゲノ基を有する化合物を用いることが好ましい。ハロゲノ基としては、フルオロ基、クロロ基、ブロモ基およびヨード基が挙げられ、特にクロロ基が好ましい。
反応性ガスとしては純水が好ましい。また、それぞれのガスを堆積する際に触媒を同時に基板上へ堆積させてもよい。触媒として好適な材料としては、ピリジン、ピコリン、およびアニリンが挙げられる。
第2の保護膜10bの成膜温度は、すでに基板上に形成されている素子や中間層等の構造体へのダメージを抑制するため、250℃以下、特には100℃以下の低温であることが好ましい。また、原料化合物の反応性を考慮し、60℃以上、特には70℃以上であることが好ましい。
次に、図5(C)に示すように、第2の保護膜10b上に、SiO、SiOC、およびSiNからなる群より選ばれるシリコン化合物を含む第1の保護膜10aをCVD法またはALD法により形成する。
次に、図5(D)に示すように、保護膜10を水蒸気プラズマで処理する。具体的には、基板全体を水蒸気プラズマに晒すことにより第1の保護膜10aの表面を水蒸気プラズマで処理する。第2の保護膜10bの下層の第1の保護膜10aに含まれる上記金属元素の酸化物、酸炭化物、または窒化物は水素脆化するものである。本実施形態においても第2の実施形態と同様に、第1の保護膜10aが露出していない状態で保護膜10を水蒸気プラズマに晒すため、第1の保護膜10aを変質させずに第1の保護膜10aを改質することができる。
以降は、第1の実施形態と同様に、マスクパターン11aを用いて保護膜10をパターニングし流路形成部材5を形成することにより、液体吐出ヘッドが完成する。
(第5の実施形態)
図6(A)〜(H)は第5の実施形態の液体吐出ヘッドの製造方法を工程毎に説明する図である。
第5の実施形態においては、第4の実施形態と同様に、保護膜が、SiO、SiOC、およびSiNからなる群より選ばれるシリコン化合物を含む第1の保護膜10aと、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の、酸化物、酸炭化物、または窒化物を含む第2の保護膜10bとからなる。しかし、第5の実施形態においては第4の実施形態とは異なり、第1の保護膜10aと第2の保護膜10bの位置が逆、すなわち第1の保護膜10a上に第2の保護膜10bが設けられている。
本実施形態においては、第1の保護膜10aが直接水蒸気プラズマに晒されないが、条件によっては水素脆化した第2の保護膜10bから水素ラジカルが入り込み第1の保護膜10aを改質することができる。
第2の保護膜10bを上層とする構成にすることにより、第2の保護膜10bが水素脆化し耐液性も低下する。そのため、耐液性の観点からは、第4の実施形態のように第2の保護膜10bを下層とし第2の保護膜10bがプラズマに晒されないようにすることが好ましい。しかし、両者をウェットエッチング処理によりパターニングする場合、本実施形態は第2の保護膜10bが下層である場合と比較して精度よくパターニングすることができるという利点がある。
第1の保護膜10aはその材料の特性上通常第2の保護膜10bと比較してエッチングレートが速い。そのため、第1の保護膜10aが下層であると、第1の保護膜10aがオーバーエッチングされ、第1の保護膜10aのさらに下層に設けられた配線膜等にダメージを与えることがある。本実施形態のように第2の保護膜10bを上層とすることにより、第2の保護膜10bが水蒸気プラズマに晒されることにより水素脆化し、エッチングレートが向上する。例えば、TiO膜とSiO膜とからなる積層膜をバッファードフッ酸でエッチングする場合、TiO膜とSiO膜との選択比がおよそ1:70である。TiO膜をSiO膜上に重ねた状態で水蒸気プラズマ処理をすると、TiO膜のエッチングレートが向上し、およそ1:3まで選択比を改善することができる。その結果、ウェットエッチング処理によりパターニングする場合であっても、保護膜10を精度よくパターニングし、配線膜等へのダメージを抑えることができる。
本実施形態においては、保護膜10の水蒸気プラズマ処理工程を、保護膜10のパターニング工程の前に行えばよい。保護膜10の水蒸気プラズマ処理工程は、特には、保護膜10のパターニング工程の直前、すなわち、第3の実施形態と同様に、保護膜10のパターニングのためのマスクパターン11aを形成するマスク形成工程の後、保護膜10のパターニング工程の前に行うことが好ましい。
以下に図6(A)〜(H)を参照して液体吐出ヘッドの製造方法を説明する。なお、以下の説明においてはすでに述べた実施形態と異なる点を重点的に述べるものとする。
まず、図6(A)に示すように、基板1の表面上に中間層9を形成する。基板1にはあらかじめ吐出エネルギー発生素子2および流路3が設けられている。
次に、図6(B)に示すように、基板上に、SiO、SiOC、およびSiNからなる群より選ばれるシリコン化合物を含む第1の保護膜10aをCVD法またはALD法により形成する。
次に、図6(C)に示すように、第1の保護膜10a上に、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の、酸化物、酸炭化物、または窒化物を含む第2の保護膜10bを形成する。
次に、図6(D)に示すように、基板1の表面上にレジスト11を設ける。
次に、図6(E)に示すように、レジスト11を露光装置により露光し現像することによりマスクパターン11aを形成する。
次に、図6(F)に示すように、保護膜10を水蒸気プラズマで処理する。具体的には、基板全体を水蒸気プラズマに晒すことにより、第1の保護膜10aおよび第2の保護膜10bを水蒸気プラズマで処理する。
次に、図6(G)に示すように、マスクパターン11aをマスクとしてウェットエッチング処理を行うことにより、第1の保護膜10aと第2の保護膜10bを所望の形状にパターニングする。
次に、図6(H)に示すように、マスクパターン11aを剥離し除去する。
次に、図6(I)に示すように、基板1の表面上に流路形成部材5を形成することにより液体吐出ヘッドが完成する。
まず、図2(A)に示すように、流路3が貫通孔として形成された基板1の表面上にポリアミド樹脂からなる中間層9を形成した。
次に、図2(B)に示すように、ALD法により流路3の壁面を含む基板1全域に保護膜10を形成した。保護膜10は、プリカーサとしてヘキサクロロジシラン(HCD)を、反応性ガスとして純水を、触媒としてピリジンを用い、HCDと純水を交互に供給すること形成した。成膜温度は75℃とした。
次に、図2(C)に示すように、保護膜10上にレジスト11を形成した。レジスト11は感光性樹脂材料をフィルム化したものを、テンティング法により基板1の表面側にはりつけることにより形成した。感光性樹脂材料としては、東京応化工業(株)の「OFPR800」(商品名)を用いた。
次に、図2(D)に示すように、i線によってレジスト11を露光し現像することにより、流路3の壁面に保護膜10が残すためのマスクパターン11aを形成した。
次に、図2(E)に示すように、マスクパターン11aをマスクとして保護膜10をパターニングした。パターニングは、基板1の表面側から表面のみウェットエッチング処理することにより行った。ウェットエッチング処理は、スピンエッチャー装置を用い、バッファードフッ酸を用いて行った。
次に、図2(F)に示すように、マスクパターン11aを、ローム・アンド・ハース電子材料(株)製の「リムバー1112A」(商品名)により除去した。その後、基板1の流路3内の水分を取り除くため、ポストベークを行った。
次に、図2(G)に示すように、図7に示す水蒸気プラズマ処理装置内で、基板1を120Paの真空下で水蒸気プラズマに晒し、保護膜10を処理した。水蒸気プラズマ処理により基板1の温度が上昇していくため、基板1の温度が200℃以下で保たれるように、放電工程と自然除冷による冷却工程とを繰り返し行った。1回の放電工程は2分間とし、断続的に合計60分間行った。HOガス源として純水を用い、ガス流量200sccmでチャンバー内に導入した。2800W、2.45GHzのマイクロ波を用いてHOガスをプラズマ化させた。
最後に、図2(H)に示すように流路形成部材5を形成し、液体吐出ヘッドを製造した。
水蒸気プラズマ処理工程前後の保護膜10の原子組成をX線電子分光法であるESCA(Electron Spectroscopy for Chemical Analysis)によって測定した。保護膜10の原子組成は、保護膜の表面から厚さ方向に10nmごとに測定した値の平均値とした。その結果、水蒸気プラズマ処理前の塩素含有率は0.45%であったが、水蒸気プラズマ処理工程を経ると0.20%まで低下していた。また、水蒸気プラズマ処理工程後の保護膜10の塩素含有率は、深さ方向に勾配があり、表層で0.0%、表層から30nmの深さでは0.25%であった。
また、得られた液体吐出ヘッドを加速試験として60℃のインク(キヤノン製)20mlに浸漬し、5時間後の保護膜10の膜厚を大塚電子社製エリプソ装置(FE7000L、商品名)で測定し、保護膜の減少速度[nm/min]を求めた。比較として水蒸気プラズマ処理工程を行わずに製造した液体吐出ヘッドを用いた。その結果、水蒸気プラズマ処理を行わず形成した保護膜の減少速度は70.6nm/minであるのに対し、水蒸気プラズマ処理を行った保護膜の減少速度は36.7nm/minであった。
1 基板
2 吐出エネルギー発生素子
3 流路
4 吐出口
5 流路形成部材
9 中間層
10 保護膜
10a 第1の保護膜(第1の膜)
10b 第2の保護膜(第2の膜)
13 配線膜

Claims (15)

  1. 液体の流路と、前記流路が設けられた基板とを有する液体吐出ヘッドの製造方法であって、
    前記流路の壁面にSiO、SiOC、およびSiNからなる群より選択されるシリコン化合物を含む膜をCVD法またはALD法により形成する膜形成工程と、
    前記膜形成工程において形成された膜を水蒸気プラズマで処理する水蒸気プラズマ処理工程と、
    前記膜形成工程において形成された膜上にマスクを形成するマスク形成工程と、
    前記マスクを用いて前記膜をパターニングするパターニング工程と、を有し、
    前記水蒸気プラズマ処理工程は前記パターニング工程の後に行われることを特徴とする液体吐出ヘッドの製造方法。
  2. 液体の流路と、前記流路が設けられた基板とを有する液体吐出ヘッドの製造方法であって、
    前記流路の壁面にSiO、SiOC、およびSiNからなる群より選択されるシリコン化合物を含む膜をCVD法またはALD法により形成する膜形成工程と、
    前記膜形成工程において形成された膜を水蒸気プラズマで処理する水蒸気プラズマ処理工程と、
    前記膜形成工程において形成された膜上にマスクを形成するマスク形成工程と、
    前記マスクを用いて前記膜をパターニングするパターニング工程と、を有し、
    前記水蒸気プラズマ処理工程は前記パターニング工程の前に行われることを特徴とする液体吐出ヘッドの製造方法。
  3. 液体の流路と、前記流路が設けられた基板とを有する液体吐出ヘッドの製造方法であって、
    前記流路の壁面にSiO、SiOC、およびSiNからなる群より選択されるシリコン化合物を含む膜をCVD法またはALD法により形成する膜形成工程と、
    前記膜形成工程において形成された膜を水蒸気プラズマで処理する水蒸気プラズマ処理工程と、
    前記膜形成工程において形成された膜上にマスクを形成するマスク形成工程と、
    前記マスクを用いて前記膜をパターニングするパターニング工程と、を有し、
    前記水蒸気プラズマ処理工程は、前記マスク形成工程の後、前記パターニング工程の前に行われることを特徴とする液体吐出ヘッドの製造方法。
  4. 前記膜形成工程において前記膜をALD法により形成する請求項1〜3のいずれか1項に記載の液体吐出ヘッドの製造方法。
  5. 前記膜形成工程において原料としてハロゲノ基を有するシリコン化合物を用いる請求項に記載の液体吐出ヘッドの製造方法。
  6. 前記水蒸気プラズマで処理された膜の表面におけるハロゲン原子の含有率が0.1%以下である請求項に記載の液体吐出ヘッドの製造方法。
  7. 前記水蒸気プラズマで処理された膜は、表面から深さ方向に沿ってハロゲン原子の含有率が増加する濃度勾配を有する請求項5または6に記載の液体吐出ヘッドの製造方法。
  8. 前記膜形成工程において前記膜を250℃以下で形成する請求項1〜のいずれか1項に記載の液体吐出ヘッドの製造方法。
  9. 前記パターニング工程において前記膜をウェットエッチングによりパターニングする請求項1〜8のいずれか1項に記載の液体吐出ヘッドの製造方法。
  10. 前記液体吐出ヘッドは、前記基板上の流路形成部材と、前記流路形成部材と前記基板との間の樹脂を含む中間層とを有し、
    前記中間層は前記膜形成工程の前にあらかじめ前記基板上に設けられている請求項1〜のいずれか1項に記載の液体吐出ヘッドの製造方法。
  11. 前記液体吐出ヘッドは、前記基板上の、液体を吐出するためのエネルギーを発生する吐出エネルギー発生素子と、前記吐出エネルギー発生素子を内部に備える圧力室とを備え、前記圧力室内の液体は前記圧力室の外部との間で循環される請求項1〜10のいずれか1項に記載の液体吐出ヘッドの製造方法。
  12. 前記液体吐出ヘッドは、前記基板上に、液体を吐出するためのエネルギーを発生する吐出エネルギー発生素子と、前記吐出エネルギー発生素子を駆動するための配線膜とを有し、
    前記配線膜は、前記膜形成工程の前にあらかじめ前記基板上に設けられている請求項1〜10のいずれか1項に記載の液体吐出ヘッドの製造方法。
  13. 前記配線膜は、Mo、Ti、W、Ni、Ta、Cu、Al、Crおよびそれらの合金を含む金属膜である請求項12に記載の液体吐出ヘッドの製造方法。
  14. 前記液体吐出ヘッドは、前記膜形成工程において形成された膜を第1の膜としたとき、前記第1の膜の下に第2の膜をさらに有し、
    前記第2の膜は、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の、酸化物、酸炭化物または窒化物を含む請求項1〜13のいずれか1項に記載の液体吐出ヘッドの製造方法。
  15. 前記液体吐出ヘッドは、前記膜形成工程において形成された膜を第1の膜としたとき、前記第1の膜の上に第2の膜をさらに有し、
    前記第2の膜は、Ta、Zr、Hf、Nb、およびTiからなる群から選択されるいずれかの金属元素の、酸化物、酸炭化物または窒化物を含む請求項1〜13のいずれか1項に記載の液体吐出ヘッドの製造方法。
JP2017159809A 2017-08-22 2017-08-22 液体吐出ヘッドの製造方法 Active JP6676592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159809A JP6676592B2 (ja) 2017-08-22 2017-08-22 液体吐出ヘッドの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159809A JP6676592B2 (ja) 2017-08-22 2017-08-22 液体吐出ヘッドの製造方法

Publications (2)

Publication Number Publication Date
JP2019038126A JP2019038126A (ja) 2019-03-14
JP6676592B2 true JP6676592B2 (ja) 2020-04-08

Family

ID=65725022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159809A Active JP6676592B2 (ja) 2017-08-22 2017-08-22 液体吐出ヘッドの製造方法

Country Status (1)

Country Link
JP (1) JP6676592B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7066534B2 (ja) * 2018-06-04 2022-05-13 キヤノン株式会社 液体吐出ヘッドの製造方法
EP4129692A4 (en) * 2020-03-30 2023-09-13 FUJIFILM Corporation LIQUID DISCHARGE STRUCTURE, LIQUID DISCHARGE HEAD AND LIQUID DISCHARGE DEVICE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729897A (ja) * 1993-06-25 1995-01-31 Nec Corp 半導体装置の製造方法
JPH10774A (ja) * 1996-06-14 1998-01-06 Canon Inc インクジェット記録ヘッド用基板及びこれを備えたインクジェット記録ヘッド
JP2006303007A (ja) * 2005-04-18 2006-11-02 Sharp Corp 電界効果型トランジスタ
JP4766658B2 (ja) * 2005-05-10 2011-09-07 キヤノン株式会社 液体吐出ヘッドおよびその製造方法
JP5398179B2 (ja) * 2008-06-09 2014-01-29 富士フイルム株式会社 ノズル孔の形成方法及びインクジェット記録ヘッドの製造方法
US9460912B2 (en) * 2012-04-12 2016-10-04 Air Products And Chemicals, Inc. High temperature atomic layer deposition of silicon oxide thin films
JP6238760B2 (ja) * 2014-01-16 2017-11-29 キヤノン株式会社 構造物の製造方法及び液体吐出ヘッドの製造方法
JP2016175232A (ja) * 2015-03-19 2016-10-06 キヤノン株式会社 膜の製造方法
JP7034586B2 (ja) * 2016-01-08 2022-03-14 キヤノン株式会社 液体吐出ヘッド及び液体吐出方法

Also Published As

Publication number Publication date
JP2019038126A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
US7517059B2 (en) Liquid jet head and method for producing the same
JP5305691B2 (ja) 液体吐出ヘッドおよびその製造方法
JP5002290B2 (ja) 液体吐出ヘッド基体の製造方法
JP6676592B2 (ja) 液体吐出ヘッドの製造方法
US10286664B2 (en) Liquid ejection head, method for manufacturing the same, and printing method
KR101155989B1 (ko) 잉크젯 프린트헤드의 제조방법
WO2007105801A1 (ja) 液体吐出ヘッド基体、その基体を用いた液体吐出ヘッドおよびそれらの製造方法
JP6522040B2 (ja) 積層体の製造方法および液体吐出ヘッドの製造方法
JP6234095B2 (ja) 液体吐出ヘッド及びその製造方法
US8012773B2 (en) Method for manufacturing liquid discharge head
JP5031597B2 (ja) インクジェット記録ヘッドの製造方法
JP5980020B2 (ja) 液体吐出ヘッド用基板の製造方法
US9676193B2 (en) Substrate processing method and method of manufacturing substrate for liquid discharge head including forming hole in substrate by dry etching
JP2009525898A (ja) プリントヘッド及びその製造方法
JP6929657B2 (ja) 液体吐出ヘッドの製造方法
US11081349B2 (en) Method of forming film on substrate and method of manufacturing liquid ejection head
JP2007126692A (ja) 凹部付き基板の製造方法および凹部付き基板
JP2016037625A (ja) エッチング方法及び液体吐出ヘッド用基板の製造方法
JP6932519B2 (ja) 液体吐出ヘッドおよびその製造方法、並びに記録方法
JP4385680B2 (ja) 液体吐出ヘッドの製造方法、液体吐出ヘッド及び液体吐出装置
JP6921564B2 (ja) 液体吐出ヘッドの製造方法
JP2006315190A (ja) 液体噴射ヘッドおよびその製造方法
KR100854514B1 (ko) 패턴기판 제조방법
JP2007144915A (ja) 液滴吐出ヘッドの製造方法およびパターン形成方法
US7767103B2 (en) Micro-fluid ejection assemblies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R151 Written notification of patent or utility model registration

Ref document number: 6676592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151