JP6673756B2 - Method of manufacturing or collecting single substance - Google Patents

Method of manufacturing or collecting single substance Download PDF

Info

Publication number
JP6673756B2
JP6673756B2 JP2016117710A JP2016117710A JP6673756B2 JP 6673756 B2 JP6673756 B2 JP 6673756B2 JP 2016117710 A JP2016117710 A JP 2016117710A JP 2016117710 A JP2016117710 A JP 2016117710A JP 6673756 B2 JP6673756 B2 JP 6673756B2
Authority
JP
Japan
Prior art keywords
compound
flask
gold
dissolved
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016117710A
Other languages
Japanese (ja)
Other versions
JP2017221883A (en
Inventor
林 謙一
謙一 林
正道 安原
正道 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2016117710A priority Critical patent/JP6673756B2/en
Publication of JP2017221883A publication Critical patent/JP2017221883A/en
Application granted granted Critical
Publication of JP6673756B2 publication Critical patent/JP6673756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、単体を製造若しくは回収する方法に関する。より詳細に、本発明は、単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物から単体を製造する方法若しくは前記化合物を含有する水溶液から単体を回収する方法に関する。   The present invention relates to a method for producing or recovering a simple substance. More specifically, the present invention provides a method for producing a simple substance from a water-soluble compound in which a standard electrode potential in a reduction half reaction for producing a simple substance is higher than a potential of a standard hydrogen electrode, or a simple substance from an aqueous solution containing the compound. And a method for collecting the same.

ポリシランは金属イオンの還元能を持つことが知られている(非特許文献1)。また、ポリシランの層をAu、Ag、Pt、Pd等の金属イオンの還元剤として利用して金属層を形成できることが知られている(非特許文献2)。
特許文献1は、標準電極電位が0Vよりも大きい元素のイオンをプロトン性溶媒に溶解してなる溶液と、前記プロトン性溶媒に対して難溶性のポリシランとを混合して、標準電極電位が0Vよりも大きい元素のイオンから、該元素の粒子を製造する方法を開示している。この方法で得られる粒子はポリシランに吸着して複合体を形成する。
特許文献2は、親水性ポリマーとポリシランとのブロック共重合体から得られる前記ポリシランをミセル内面に有し、該ミセルのシェル部が架橋されている親水性ミセルを用い金属イオンを該ミセルを還元剤として還元することにより該金属の単分散微粒子を調製する方法を開示している。
It is known that polysilane has the ability to reduce metal ions (Non-Patent Document 1). It is also known that a metal layer can be formed using a polysilane layer as a reducing agent for metal ions such as Au, Ag, Pt, and Pd (Non-Patent Document 2).
Patent Literature 1 discloses that a solution obtained by dissolving an ion of an element having a standard electrode potential higher than 0 V in a protic solvent and a polysilane that is hardly soluble in the protic solvent are mixed to obtain a standard electrode potential of 0 V. A method is disclosed for producing particles of an element from ions of a larger element. The particles obtained by this method adsorb to the polysilane to form a complex.
Patent Document 2 discloses that a polysilane obtained from a block copolymer of a hydrophilic polymer and a polysilane is provided on the inner surface of a micelle, and the micelle is reduced by a hydrophilic micelle in which a shell portion of the micelle is crosslinked. It discloses a method for preparing monodispersed fine particles of the metal by reduction as an agent.

WO 2014/065204 A1WO 2014/065204 A1 特開2003−147418号公報JP 2003-147418 A

A.F.Diaz,M.Baier,G.M.Wallraff,R.D.Miller,J.Nelson, W.Piero,J.Elwctrochem.Soc.138,742 (1991).A.F. Diaz, M. Baier, G.M.Wallraff, R.D. Miller, J. Nelson, W. Piero, J. Elwctrochem. Soc. 138, 742 (1991). M.Fukushima,N.Noguti,M.Aramata,Y.Hamada,E.Tabei,S.Mori,and Y.Yamamoto.Syth.Met.,97, 273-280 (1998).M. Fukushima, N. Noguti, M. Aramata, Y. Hamada, E. Tabei, S. Mori, and Y. Yamamoto. Syth. Met., 97, 273-280 (1998).

本発明の目的は、単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物から単体を高効率で製造する方法若しくは前記化合物を含有する水溶液から単体を高効率で回収する方法を提供することである。   An object of the present invention is to provide a method for producing a simple substance from a water-soluble compound in which the standard electrode potential in the reduction half reaction for producing the simple substance is higher than the potential of the standard hydrogen electrode, or from an aqueous solution containing the compound. An object of the present invention is to provide a method for recovering a simple substance with high efficiency.

本発明は以下の形態を包含する。   The present invention includes the following embodiments.

〔1〕 水および水に非相溶な溶媒からなる不均一液媒体中にて、
水に難溶で且つ水に非相溶な溶媒に可溶なポリシランの存在下に、
単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物を還元することを含む、前記化合物から単体を製造する方法。
[1] In a heterogeneous liquid medium comprising water and a solvent immiscible with water,
In the presence of polysilane that is hardly soluble in water and soluble in a solvent that is incompatible with water,
A method for producing a simple substance from said compound, comprising reducing a compound soluble in water, wherein a standard electrode potential in a reduction half reaction for producing a simple substance is higher than a potential of a standard hydrogen electrode.

〔2〕 単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物を含有する水溶液と、水に非相溶な溶媒と、水に難溶で且つ水に非相溶な溶媒に可溶なポリシランとを含有する不均一反応液を得、
該反応液において前記化合物を還元することを含む、
前記化合物を含有する水溶液から単体を回収する方法。
[2] The standard electrode potential in the reduction half-reaction for forming a simple substance is higher than the potential of the standard hydrogen electrode and contains an aqueous solution containing a compound soluble in water, a solvent incompatible with water, and a water-insoluble solvent. And to obtain a heterogeneous reaction solution containing a polysilane soluble in a solvent incompatible with water,
Reducing the compound in the reaction solution.
A method for recovering a simple substance from an aqueous solution containing the compound.

本発明に係る方法にしたがって、単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物を不均一液媒体中でポリシランを用いて還元すると、生成した単体がポリシランや他の物質に吸着しないので、ポリシランを用いた従来の還元法に比べて効率的に単体を製造若しくは回収することができる。   According to the method of the present invention, when the standard electrode potential in the reduction half-reaction for producing a simple substance is higher than the potential of the standard hydrogen electrode and a compound soluble in water is reduced using polysilane in a heterogeneous liquid medium, Since the obtained simple substance does not adsorb to polysilane or other substances, the simple substance can be produced or recovered more efficiently than the conventional reduction method using polysilane.

本発明は、以下に述べる化合物(基質)から単体を製造する方法、または該化合物(基質)を含有する水溶液から単体を回収する方法である。   The present invention is a method for producing a simple substance from a compound (substrate) described below, or a method for recovering a simple substance from an aqueous solution containing the compound (substrate).

本発明において用いられる化合物(基質)は、水に可溶な化合物である。該化合物(基質)の水への溶解度は、好ましくは0.001質量%以上、より好ましくは0.1質量%以上である。
本発明において用いられる化合物(基質)は、単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きい化合物、好ましくは前記標準電極電位が標準水素電極の電位よりも0.2V以上大きい化合物、より好ましくは前記標準電極電位が標準水素電極の電位よりも0.7V以上大きい化合物である。標準電極電位は、標準水素電極と測定対象化学種の電極を組み合わせて作製された電池の標準状態における起電力(emf)と等しい。
The compound (substrate) used in the present invention is a compound that is soluble in water. The solubility of the compound (substrate) in water is preferably 0.001% by mass or more, more preferably 0.1% by mass or more.
The compound (substrate) used in the present invention is a compound having a standard electrode potential higher than the potential of the standard hydrogen electrode in the reduction half reaction for producing a simple substance, preferably the standard electrode potential is 0.2 V higher than the potential of the standard hydrogen electrode. A compound having a larger potential than the above, more preferably a compound whose standard electrode potential is 0.7 V or more higher than the potential of the standard hydrogen electrode. The standard electrode potential is equal to an electromotive force (emf) in a standard state of a battery prepared by combining a standard hydrogen electrode and an electrode of a chemical species to be measured.

本発明において用いられる化合物(基質)の具体例としては、
(銅)
Cu2++2e-=Cu(E*(25℃)=0.340V)で表される還元半反応を引き起こす銅化合物(酢酸銅(II)、臭化銅(II)、塩化銅(II)、ヨウ化銅(II)、硝酸銅(II)、ビス(2,4−ペンタンジオネート)銅(II)など)、
Cu++e-=Cu(E*(25℃)=0.520V)で表される還元半反応を引き起こす銅化合物(例えば、酢酸銅(I)、臭化銅(I)、塩化銅(I)、ヨウ化銅(I)など)、
Specific examples of the compound (substrate) used in the present invention include:
(copper)
Copper compounds (copper (II) acetate, copper (II) bromide, copper (II) chloride, etc.) which cause a reduction half reaction represented by Cu 2+ + 2e = Cu (E * (25 ° C.) = 0.340 V); Copper (II) iodide, copper (II) nitrate, bis (2,4-pentanedionate) copper (II), etc.),
A copper compound (for example, copper (I) acetate, copper (I) bromide, copper (I) chloride) that causes a reduction half reaction represented by Cu + + e = Cu (E * (25 ° C.) = 0.520 V) , Copper (I) iodide),

(ルテニウム)
RuO2+4H++4e-=Ru+2H2O(E*(25℃)=0.68V)で表される還元半反応を引き起こすルテニウム化合物(酸化ルテニウム(IV))、
RuO4+4H++4e-=RuO2+H2O(E*(25℃)=1.387V)で表される還元半反応を引き起こすルテニウム化合物(酸化ルテニウム(VIII))、
(ruthenium)
A ruthenium compound (ruthenium (IV) oxide) that causes a reduction half reaction represented by RuO 2 + 4H + + 4e = Ru + 2H 2 O (E * (25 ° C.) = 0.68 V);
A ruthenium compound (ruthenium oxide (VIII)) that causes a reduction half reaction represented by RuO 4 + 4H + + 4e = RuO 2 + H 2 O (E * (25 ° C.) = 1.387 V);

(テクネチウム)
Tc2++2e-=Tc(E*(25℃)=0.400V)で表される還元半反応を引き起こすテクネチウム化合物(テクネチウムイオン)、
(technetium)
A technetium compound (technetium ion) that causes a reduction half reaction represented by Tc 2+ + 2e = Tc (E * (25 ° C.) = 0.400 V);

(テルル)
TeO2+4H++4e-=Te+2H2O(E*(25℃)=0.521V)で表される還元半反応を引き起こすテルル化合物(酸化テルル(IV))、
2TeO4+6H++2e-=Te4++2H2O(E*(25℃)=0.926V)で表される還元半反応を引き起こすテルル化合物(テルル酸ナトリウム(VI)、テルル酸カリウム(VI))
(tellurium)
A tellurium compound (tellurium (IV) oxide) that causes a reduction half reaction represented by TeO 2 + 4H + + 4e = Te + 2H 2 O (E * (25 ° C.) = 0.521 V);
H 2 TeO 4 + 6H + + 2e = Te 4+ + 2H 2 O (E * (25 ° C.) = 0.926 V) tellurium compound (sodium (VI) tellurium, potassium tellurate (VI) VI))

(ロジウム)
Rh3++3e-=Rh(E*(25℃)=0.758V)で表される還元半反応を引き起こすロジウム化合物(塩化ロジウム(III)、硝酸ロジウム(III))、
(rhodium)
A rhodium compound (rhodium (III) chloride, rhodium (III) nitrate) which causes a reduction half reaction represented by Rh 3+ + 3e = Rh (E * (25 ° C.) = 0.758 V);

(パラジウム)
Pd2++2e-=Pd(E*(25℃)=0.915V)で表される還元半反応を引き起こすパラジウム化合物(酢酸パラジウム(II)、硝酸パラジウム(II)、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II))、
(palladium)
Palladium compound (palladium acetate (II), palladium (II) nitrate, palladium (II) chloride, palladium (II), which causes a reduction half reaction represented by Pd 2+ + 2e = Pd (E * (25 ° C.) = 0.915 V) Palladium (II) iodide, palladium (II) iodide),

(銀)
Ag++e-=Ag(E*(25℃)=0.799V)で表される還元半反応を引き起こす銀化合物(酢酸銀(I)、硝酸銀(I)、トリフルオロメタンスルホン酸銀(I)、p−トルエンスルホン酸銀(I))、
[Ag(NH32++e-=Ag+2NH3(E*(25℃)=0.373V)で表される還元半反応を引き起こす銀化合物(塩化ジアンミン銀(I))、
(Silver)
Ag + + e = Ag (E * (25 ° C.) = 0.799 V) A silver compound (silver acetate (I), silver nitrate (I), silver trifluoromethanesulfonate (I), silver (I) p-toluenesulfonate),
A silver compound (silver diammine chloride (I)) that causes a reduction half-reaction represented by [Ag (NH 3 ) 2 ] + + e = Ag + 2NH 3 (E * (25 ° C.) = 0.373 V);

(オスミウム)
OsO2+4H++4e-=Os+2H2O(E*(25℃)=0.687V)で表される還元半反応を引き起こすオスミウム化合物、
OsO4+8H++8e-=Os+4H2O(E*(25℃)=0.84V)で表される還元半反応を引き起こすオスミウム化合物(酸化オスミウム(VIII))
(osmium)
An osmium compound which causes a reduction half reaction represented by OsO 2 + 4H + + 4e = Os + 2H 2 O (E * (25 ° C.) = 0.687 V);
Osmium compound (osmium (VIII) oxide) that causes a reduction half reaction represented by OsO 4 + 8H + + 8e = Os + 4H 2 O (E * (25 ° C.) = 0.84 V)

(白金)
Pt2++2e-=Pt(E*(25℃)=1.188V)で表される還元半反応を引き起こす白金化合物(塩化白金(II))
[PtCl64-+2e-=[PtCl42-+2Cl-(E*(25℃)=0.726V)で表される還元半反応を引き起こす白金化合物(ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム、ヘキサクロロ白金(IV)酸(=塩化白金(IV)の塩酸溶液))
[PtCl42-+2e-=Pt+4Cl-(E*(25℃)=0.758V)で表される還元半反応を引き起こす白金化合物(テトラクロロ白金(II)酸カリウム)
(platinum)
Pt 2+ + 2e = Pt (E * (25 ° C.) = 1.188 V) Platinum compound (platinum (II) chloride) which causes a reduction half reaction
Platinum compounds (potassium hexachloroplatinate (IV), hexachloroplatinum) that cause a reduction half-reaction represented by [PtCl 6 ] 4- + 2e = [PtCl 4 ] 2- + 2Cl (E * (25 ° C.) = 0.726 V) Sodium platinum (IV) acid, hexachloroplatinic (IV) acid (= platinum (IV) chloride solution in hydrochloric acid)
A platinum compound (potassium tetrachloroplatinate (II)) which causes a reduction half-reaction represented by [PtCl 4 ] 2- + 2e = Pt + 4Cl (E * (25 ° C.) = 0.758 V)

(イリジウム)
[IrCl63-+3e-=Ir+6Cl-(E*(25℃)=0.86V)で表される還元半反応を引き起こすイリジウム化合物
Ir3++3e-=Ir(E*(25℃)=1.156V)で表される還元半反応を引き起こすイリジウム化合物(塩化イリジウム(III)、臭化イリジウム(III))
(iridium)
[IrCl 6 ] 3- + 3e = Ir + 6Cl (E * (25 ° C.) = 0.86 V) An iridium compound that causes a reduction half reaction Ir 3+ + 3e = Ir (E * (25 ° C.) = 1) Iridium compound (iridium (III) chloride, iridium (III) bromide) which causes a reduction half reaction represented by .156V)

(金)
[AuCl4-+3e-=Au+4Cl-(E*(25℃)=1.002V)で表される還元半反応を引き起こす金化合物(テトラクロロ金(III)酸)、
Au3++3e-=Au(E*(25℃)=1.52V)で表される還元半反応を引き起こす金化合物(塩化金(III)、臭化金(III))、
Au++e-=Au(E*(25℃)=1.83V)で表される還元半反応を引き起こす金化合物(塩化金(I))
(Money)
[AuCl 4 ] + 3e = Au + 4Cl (E * (25 ° C.) = 1.002 V) A gold compound (tetrachloroaurate (III) acid) that causes a reduction half reaction,
Au 3+ + 3e = Au (E * (25 ° C.) = 1.52 V), a gold compound (gold (III) chloride, gold (III) bromide) which causes a reduction half reaction,
Au + + e = Au (E * (25 ° C.) = 1.83 V) A gold compound which causes a reduction half reaction (gold (I) chloride)

(水銀)
Hg2 2++2e-=2Hg(l)(E*(25℃)=0.796V)で表される還元半反応を引き起こす水銀化合物(酢酸水銀(I)、塩化水銀(I)、硝酸水銀(I))
2Hg2++2e-=Hg2 2+(E*(25℃)=0.9110V)で表される還元半反応を引き起こす水銀化合物(塩化水銀(II)、酢酸水銀(II)、硝酸水銀(II))
(mercury)
Hg 2 2+ + 2e = 2Hg (l) (E * (25 ° C.) = 0.796 V) A mercury compound (mercury acetate (I), mercury chloride (I), mercury nitrate ( I))
2Hg 2+ + 2e = Hg 2 2+ (E * (25 ° C.) = 0.110 110 V) Mercury compounds (mercury chloride (II), mercury acetate (II), mercuric nitrate (II) ))

(鉛)
PbO2(α)+H2O+2e-=Pb(red)+2OH-(E*(25℃)=0.249V)で表される還元半反応を引き起こす鉛化合物、
(lead)
A lead compound which causes a reduction half-reaction represented by PbO 2 (α) + H 2 O + 2e = Pb (red) + 2OH (E * (25 ° C.) = 0.249 V);

(ゲルマニウム)
Ge2++2e-=Ge(E*(25℃)=0.247V)で表される還元半反応を引き起こすゲルマニウム化合物
(germanium)
Ge 2+ + 2e = Ge (E * (25 ° C.) = 0.247 V) Germanium compound causing reduction half reaction

(ヒ素)
HAsO2+3H++3e-=As+2H2O(E*(25℃)=0.248V)で表される還元半反応を引き起こすヒ素化合物
(Arsenic)
Arsenic compound that causes a reduction half-reaction represented by HAsO 2 + 3H + + 3e = As + 2H 2 O (E * (25 ° C.) = 0.248 V)

(ビスマス)
Bi3++3e-=Bi(E*(25℃)=0.317V)で表される還元半反応を引き起こすビスマス化合物(硝酸ビスマス(III)、塩化ビスマス(III)、臭化ビスマス(III))、
(Bismuth)
Bi 3+ + 3e = Bi (E * (25 ° C.) = 0.317 V) Bismuth compound that causes a reduction half reaction (bismuth (III) nitrate, bismuth (III) chloride, bismuth (III) bromide) ,

(ポロニウム)
Po2++2e-=Po(E*(25℃)=0.368V)で表される還元半反応を引き起こすポロニウム化合物、
(polonium)
A polonium compound which causes a reduction half-reaction represented by Po 2+ + 2e = Po (E * (25 ° C.) = 0.368 V),

(ヨウ素)
2IO3 -+12H++10e-=I2+6H2O(E*(25℃)=1.195V)で表される還元半反応を引き起こすヨウ素化合物(ヨウ素酸ナトリウム(V)、ヨウ素酸カリウム(V))
(Iodine)
2IO 3 + 12H + + 10e = I 2 + 6H 2 O (E * (25 ° C.) = 1.195 V) An iodine compound (sodium iodate (V), potassium iodate (V)) that causes a reduction half reaction )

(臭素)
2HBrO+2H++2e-=Br2(l)+2H2O(E*(25℃)=1.604V)で表される還元半反応を引き起こす臭素化合物、
(bromine)
A bromine compound which causes a reduction half-reaction represented by 2HBrO + 2H + + 2e = Br 2 (l) + 2H 2 O (E * (25 ° C.) = 1.604 V);

〔塩素)
2HClO(aq)+2H++2e-=Cl2(g)+2H2O(E*(25℃)=1.630V)で表される還元半反応を引き起こす塩素化合物、
〔chlorine)
2HClO (aq) + 2H + + 2e = Cl 2 (g) + 2H 2 O (E * (25 ° C.) = 1.630 V);

(硫黄)
2SO3+4H++4e-=S+3H2O(E*(25℃)=0.500V)で表される還元半反応を引き起こす硫黄化合物、
SO4 2-+4H++2e-=H2SO3+H2O(E*(25℃)=0.158V)硫酸ナトリウム(VI)、硫酸カリウム(VI)
などを挙げることができる。
(sulfur)
A sulfur compound which causes a reduction half reaction represented by H 2 SO 3 + 4H + + 4e = S + 3H 2 O (E * (25 ° C.) = 0.500 V);
SO 4 2- + 4H + + 2e = H 2 SO 3 + H 2 O (E * (25 ° C.) = 0.158 V) Sodium sulfate (VI), potassium sulfate (VI)
And the like.

本発明に用いられる不均一系液媒体は、水と、水に非相溶な溶媒からなるものである。
ここで、非相溶な溶媒とは、等体積の水と当該溶媒とを混ぜ合わせたときに2相に分離する溶媒である。よって、当該溶媒が水に多少溶解するものでも、または水が当該溶媒に多少溶解するものであってもよい。水に非相溶な溶媒としては、オクタン、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、アニソール、ジn−ブチルエーテル、メチルイソブチルケトンなどを挙げることができる。
The heterogeneous liquid medium used in the present invention is composed of water and a solvent immiscible with water.
Here, the incompatible solvent is a solvent that separates into two phases when an equal volume of water and the solvent are mixed. Thus, the solvent may be slightly soluble in water or water may be slightly soluble in the solvent. Examples of the solvent incompatible with water include octane, chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, anisole, di-n-butyl ether, and methyl isobutyl ketone.

本発明に用いられるポリシランは、水に難溶で且つ水に非相溶な溶媒に可溶なものである。「水に難溶」とは、室温の水に対するポリシランの溶解度が1重量%未満であることを意味する。「溶媒に可溶」とは、室温の溶媒に対するポリシランの溶解度が 重量%以上であることを意味する。   The polysilane used in the present invention is hardly soluble in water and soluble in a solvent that is incompatible with water. "Slightly soluble in water" means that the solubility of polysilane in water at room temperature is less than 1% by weight. "Soluble in solvent" means that the solubility of polysilane in a solvent at room temperature is at least% by weight.

ポリシランは、Si−Si結合で連なる重合体である。ポリシランの分子鎖は、直鎖状、環状、分岐鎖状、網目状などになっていてもよい。また、ポリシランは、1種のシランモノマーのみからなるホモポリマーであってもよいし、2種以上のシランモノマーからなるコポリマーであってもよい。   Polysilane is a polymer connected by Si-Si bonds. The molecular chain of the polysilane may be linear, cyclic, branched, or network-like. The polysilane may be a homopolymer composed of only one type of silane monomer or a copolymer composed of two or more types of silane monomers.

ポリシランとしては、例えば、式(1)で表される構造単位を有する分子鎖からなるものが挙げられる。   Examples of the polysilane include those composed of a molecular chain having a structural unit represented by the formula (1).

Figure 0006673756
1およびR2は、特に限定されないが、それぞれ独立に、アルキル基、またはアリール基であることができる。
直鎖状ポリシランの具体例としては、ポリ(ジアルキルシラン)、ポリ(アルキルアリールシラン)、ポリ(ジアリールシラン)などが挙げられる。
Figure 0006673756
R 1 and R 2 are not particularly limited, but can be each independently an alkyl group or an aryl group.
Specific examples of the linear polysilane include poly (dialkylsilane), poly (alkylarylsilane), and poly (diarylsilane).

分岐鎖または網目状のポリシランは、例えば、式(2)または式(3)で表される構造単位などを分子鎖の分岐部として有する。

Figure 0006673756

Figure 0006673756
3は、特に限定されないが、それぞれ独立に、アルキル基、またはアリール基であることができる。
分子鎖の末端には、式(4)で表される構造単位を有することができる。

Figure 0006673756
4およびR6は、特に限定されないが、それぞれ独立に、アルキル基、またはアリール基であることができる。R5は、水素原子、アルキル基、またはアリール基であることができる。 The branched or network-like polysilane has, for example, a structural unit represented by the formula (2) or the formula (3) as a branched portion of a molecular chain.

Figure 0006673756

Figure 0006673756
R 3 is not particularly limited, but can be each independently an alkyl group or an aryl group.
The terminal of the molecular chain can have a structural unit represented by the formula (4).

Figure 0006673756
R 4 and R 6 are not particularly limited, but may be each independently an alkyl group or an aryl group. R 5 can be a hydrogen atom, an alkyl group, or an aryl group.

1、R2、R3、R4、R5、又はR6におけるアルキル基は、直鎖アルキル基、分岐鎖アルキル基、および環状アルキル基のいずれであってもよい。該アルキル基は、それを構成する炭素原子の数が、好ましくは8個以下、より好ましくは6個以下である。
アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−へキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などを挙げることができる。これらのうち、炭素数1〜6の直鎖アルキル基が好ましい。
The alkyl group for R 1 , R 2 , R 3 , R 4 , R 5 , or R 6 may be any of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group. The alkyl group has preferably eight or less carbon atoms, more preferably six or less carbon atoms.
Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, and n -Hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. Among these, a linear alkyl group having 1 to 6 carbon atoms is preferable.

1、R2、R3、R4、R5、又はR6におけるアリール基は、単環であっても、多環であってもよい。多環アリール基は、少なくとも一つの環が芳香環であれば、残りの環が飽和環、不飽和環又は芳香環のいずれであってもよい。当該アリール基は、それを構成する炭素原子の数が、好ましくは6〜10個である。アリール基の具体例としては、フェニル基、1−ナフチル基、2−ナフチル基、アズレニル基、インダニル基、テトラリニル基を挙げることができる。これらのうち、フェニル基が好ましい。 The aryl group represented by R 1 , R 2 , R 3 , R 4 , R 5 , or R 6 may be monocyclic or polycyclic. As long as at least one ring of the polycyclic aryl group is an aromatic ring, the remaining ring may be a saturated ring, an unsaturated ring, or an aromatic ring. The aryl group preferably has 6 to 10 carbon atoms. Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an azulenyl group, an indanyl group, and a tetralinyl group. Of these, a phenyl group is preferred.

本発明に好ましく用いられるポリシランとしては、ジメチルポリシラン、ジフェニルポリシラン、デカメチルシクロヘキサシラン(式(a)参照)、デカフェニルシクロペンタシラン(式(b〕参照)、ポリメチルフェニルシラン(式(c)参照)、ジメチルシランとモノフェニルシランのポリマー(式(e)参照)、ジフェニルシランとモノメチルシランのポリマー(式(g)参照)、ジフェニルシランとモノフェニルシランのポリマー(式(f)参照)、ジメチルシランとジフェニルシランのポリマー(式(d)参照)を挙げることができる。これらのうち、ドデカメチルシクロヘキサシラン、デカフェニルシクロペンタシランが好ましい。これらポリシランは1種を単独で若しくは2種以上を組み合わせて用いることができる。   Examples of the polysilane preferably used in the present invention include dimethylpolysilane, diphenylpolysilane, decamethylcyclohexasilane (see formula (a)), decaphenylcyclopentasilane (see formula (b)), and polymethylphenylsilane (formula (c) )), Polymer of dimethylsilane and monophenylsilane (see formula (e)), polymer of diphenylsilane and monomethylsilane (see formula (g)), polymer of diphenylsilane and monophenylsilane (see formula (f)) And a polymer of dimethylsilane and diphenylsilane (see formula (d)), of which dodecamethylcyclohexasilane and decaphenylcyclopentasilane are preferred, and these polysilanes may be used alone or in combination. These can be used in combination.

Figure 0006673756
なお、式(d)、(e)、(f)および(g)中のxおよびyは括弧内の構造単位の繰り返し数を表す。
Figure 0006673756
Note that x and y in the formulas (d), (e), (f) and (g) represent the number of repetitions of the structural unit in parentheses.

本発明に用いられるポリシランは、その重量平均分子量が、1000〜10000であることが好ましい。なお、ポリシランの重量平均分子量は、ゲル浸透クロマトグラフまたは超高温ゲル浸透クロマトグラフにより得られるクロマトグラムを標準ポリスチレンの分子量に換算することによって得られる値である。   The polysilane used in the present invention preferably has a weight average molecular weight of 1,000 to 10,000. The weight average molecular weight of polysilane is a value obtained by converting a chromatogram obtained by gel permeation chromatography or ultra-high temperature gel permeation chromatography into the molecular weight of standard polystyrene.

ポリシランは、特許文献1や2に記載のとおり、還元性を有する。このポリシランの還元性によって、前述した基質が還元され単体を生成する。この還元反応は、通常、10〜99℃の温度で行うことが好ましい。基質は水に溶解しており、ポリシランは水に非相溶な溶媒に溶解しているので、基質とポリシランとを接触させるために、不均一系溶媒を撹拌することが好ましい。   Polysilane has a reducing property as described in Patent Documents 1 and 2. By the reducing property of this polysilane, the above-mentioned substrate is reduced to generate a simple substance. Usually, this reduction reaction is preferably performed at a temperature of 10 to 99 ° C. Since the substrate is dissolved in water and the polysilane is dissolved in a solvent incompatible with water, it is preferable to stir the heterogeneous solvent to bring the substrate and the polysilane into contact.

この還元反応で得られる単体は、水および水に非相溶な溶媒からなる不均一系液媒体に難溶なものであることが好ましい。具体的には、金、白金、水銀、銀、パラジウム、ロジウムが好ましい。
難溶な単体は、不均一系液媒体中にて、析出し、粒状の固体として回収することができる。ポリシランは、既に述べたように水に非相溶な溶媒に可溶であるので、析出した単体がポリシランに付着することなく、濾過などの固液分離操作で容易にポリシランと単体とを分離することができ、そのため、比重差などを利用しての固固分離操作や、ポリシランの焼却処理操作を行う必要がない。
The simple substance obtained by this reduction reaction is preferably hardly soluble in a heterogeneous liquid medium composed of water and a solvent incompatible with water. Specifically, gold, platinum, mercury, silver, palladium, and rhodium are preferred.
The hardly soluble simple substance precipitates in the heterogeneous liquid medium and can be recovered as a granular solid. Since polysilane is soluble in a solvent that is incompatible with water as described above, the precipitated simple substance does not adhere to the polysilane, and the polysilane and the simple substance can be easily separated by a solid-liquid separation operation such as filtration. Therefore, there is no need to perform a solid-solid separation operation using a specific gravity difference or the like or an incineration operation of polysilane.

本発明の方法は、ポリシランと単体とを固液分離操舵で分離することができ、且つポリシランを焼却しないでもよいので、ポリシランの再利用が可能である。本発明の方法は、工場排液や生活排液等に含まれる希少元素の回収に好適である。また、海、湖沼、河川、土壌等の自然界からの希少元素の回収にも好適である。   According to the method of the present invention, polysilane and a simple substance can be separated by solid-liquid separation steering, and the polysilane does not need to be incinerated, so that the polysilane can be reused. The method of the present invention is suitable for recovering rare elements contained in factory wastewater, domestic wastewater, and the like. It is also suitable for recovering rare elements from the natural world such as the sea, lakes, marshes, rivers and soil.

以下、実施例を示し、本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものでない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(金の回収)
実施例1
フラスコにてドデカメチルシクロヘキサシラン1gをトルエン30mLに溶解させた。塩化金酸を塩酸に溶解させて、金100mgを含む水溶液10mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(100mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。該粉末は純度100%の金であった。金としての回収率は100%であった。
(Collection of gold)
Example 1
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 30 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 10 mL of an aqueous solution containing 100 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (100 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The powder was 100% pure gold. The recovery rate as gold was 100%.

(金の回収)
実施例2
フラスコにてドデカメチルシクロヘキサシラン1gをオクタン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(28mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は93%であった。
(Collection of gold)
Example 2
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of octane. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (28 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 93%.

(金の回収)
実施例3
フラスコにてドデカメチルシクロヘキサシラン1gをクロロホルム20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を60℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 3
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of chloroform. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 60 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.


(金の回収)
実施例4
フラスコにてドデカメチルシクロヘキサシラン1gをジn−ブチルエーテル20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(27mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は90%であった。
.
(Collection of gold)
Example 4
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of di-n-butyl ether. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (27 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 90%.

(金の回収)
実施例5
フラスコにてドデカメチルシクロヘキサシラン1gをアニソール20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(27mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は90%であった。
(Collection of gold)
Example 5
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of anisole. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (27 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 90%.

(金の回収)
実施例6
フラスコにてドデカメチルシクロヘキサシラン1gをモノクロロベンゼン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を30℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 6
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of monochlorobenzene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 30 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.

(金の回収)
実施例7
フラスコにてドデカメチルシクロヘキサシラン1gをメチルイソブチルケトン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を90℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(24mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は80%であった。
(Collection of gold)
Example 7
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of methyl isobutyl ketone. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 90 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (24 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 80%.

(金の回収)
比較例1
塩化金酸を塩酸に溶解させて、金100mgを含む水溶液10mLを得た。フラスコに、前記水溶液10mLと、ドデカメチルシクロヘキサシラン1gと、テトラヒドロフラン20mLとを入れた。当該フラスコ内を80℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を得ることができなかった。金としての回収率は0%であった。
(Collection of gold)
Comparative Example 1
Chloroauric acid was dissolved in hydrochloric acid to obtain 10 mL of an aqueous solution containing 100 mg of gold. The flask was charged with 10 mL of the aqueous solution, 1 g of dodecamethylcyclohexasilane, and 20 mL of tetrahydrofuran. The inside of the flask was heated to 80 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. Filtrate could not be obtained. The recovery rate as gold was 0%.

(金の回収)
比較例2
塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。フラスコに前記水溶液30mLと、ドデカメチルシクロヘキサシラン1gと、メタノール30mLとを入れた。当該フラスコ内を80℃に加熱して、5時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を得ることができなかった。金としての回収率は0%であった。
(Collection of gold)
Comparative Example 2
Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. The flask was charged with 30 mL of the aqueous solution, 1 g of dodecamethylcyclohexasilane, and 30 mL of methanol. The inside of the flask was heated to 80 ° C. and stirred for 5 hours. After returning to room temperature, the obtained liquid was filtered. Filtrate could not be obtained. The recovery rate as gold was 0%.

(金の回収)
比較例3
塩化金酸を塩酸に溶解させて、金100mgを含む水溶液10mLを得た。フラスコに、前記水溶液10mLと、ドデカメチルシクロヘキサシラン1gと、アセトン20mLとを入れた。当該フラスコ内を50℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を得ることができなかった。金としての回収率は0%であった。
(Collection of gold)
Comparative Example 3
Chloroauric acid was dissolved in hydrochloric acid to obtain 10 mL of an aqueous solution containing 100 mg of gold. The flask was charged with 10 mL of the aqueous solution, 1 g of dodecamethylcyclohexasilane, and 20 mL of acetone. The inside of the flask was heated to 50 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. Filtrate could not be obtained. The recovery rate as gold was 0%.


(金の回収)
比較例4
フラスコに、塩化金酸47mg(金として23mg)と、ドデカメチルシクロヘキサシラン1gと、テトラヒドロフラン20mLとを入れた。当該フラスコ内を80℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(13mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は56%であった。
.
(Collection of gold)
Comparative Example 4
A flask was charged with 47 mg of chloroauric acid (23 mg as gold), 1 g of dodecamethylcyclohexasilane, and 20 mL of tetrahydrofuran. The inside of the flask was heated to 80 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (13 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 56%.

(銀の回収)
実施例8
フラスコにてドデカメチルシクロヘキサシラン1gをトルエン20mLに溶解させた。酢酸銀を酢酸に溶解させて、銀30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。次いで、1%水酸化ナトリウム水溶液を加えてpH9に調整した。当該フラスコ内を97℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。灰色の粉末(8mg)を得た。この粉末をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。銀としての回収率は27%であった。
(Recovery of silver)
Example 8
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of toluene. Silver acetate was dissolved in acetic acid to obtain 30 mL of an aqueous solution containing 30 mg of silver. This aqueous solution was added to the flask. Then, the pH was adjusted to 9 by adding a 1% aqueous sodium hydroxide solution. The inside of the flask was heated to 97 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A gray powder (8 mg) was obtained. This powder was analyzed by an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as silver was 27%.

(白金の回収)
実施例9
フラスコにてドデカメチルシクロヘキサシラン1gをトルエン30mLに溶解させた。塩化白金酸を塩酸に溶解させて、白金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。次いで、1%水酸化ナトリウム水溶液を加えてpH12に調整した。当該フラスコ内を97℃に加熱して、48時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。灰色の粉末(14mg)を得た。この粉末をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。白金としての回収率は46%であった。
(Platinum recovery)
Example 9
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 30 mL of toluene. Chloroplatinic acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of platinum. This aqueous solution was added to the flask. Then, the pH was adjusted to 12 by adding a 1% aqueous sodium hydroxide solution. The inside of the flask was heated to 97 ° C. and stirred for 48 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A gray powder (14 mg) was obtained. This powder was analyzed by an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as platinum was 46%.

(パラジウムの回収)
実施例10
フラスコにてドデカメチルシクロヘキサシラン1gをトルエン20mLに溶解させた。酢酸パラジウムを酢酸に溶解させて、パラジウム32mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。黒色の粉末(29mg)を得た。この粉末をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。パラジウムとしての回収率は90%であった。
(Recovery of palladium)
Example 10
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of toluene. Palladium acetate was dissolved in acetic acid to obtain 30 mL of an aqueous solution containing 32 mg of palladium. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A black powder (29 mg) was obtained. This powder was analyzed by an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery as palladium was 90%.

(ロジウムの回収)
実施例11
フラスコにてドデカメチルシクロヘキサシラン1gをトルエン20mLに溶解させた。塩化ロジウムを硝酸に溶解させて、ロジウム24mgを含む水溶液24mLを得た。この水溶液をフラスコに加えた。次いで、1%水酸化ナトリウム水溶液を加えてpH13に調整した。当該フラスコ内を97℃に加熱して、4時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。黄色〜茶色の粉末(24mg)を得た。この粉末をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。ロジウムとしての回収率は100%であった。
(Recovery of rhodium)
Example 11
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of toluene. Rhodium chloride was dissolved in nitric acid to obtain 24 mL of an aqueous solution containing 24 mg of rhodium. This aqueous solution was added to the flask. Subsequently, the pH was adjusted to 13 by adding a 1% aqueous sodium hydroxide solution. The inside of the flask was heated to 97 ° C. and stirred for 4 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A yellow-brown powder (24 mg) was obtained. This powder was analyzed by an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as rhodium was 100%.

(水銀の回収)
実施例12
フラスコにてドデカメチルシクロヘキサシラン1gをトルエン20mLに溶解させた。塩化水銀を硝酸に溶解させて、水銀30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。次いで、1%水酸化ナトリウム水溶液を加えてpH14に調整した。当該フラスコ内を97℃に加熱して、5時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。銀色の粉末(23mg)を得た。この粉末をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。白金としての回収率は76%であった。
(Recovery of mercury)
Example 12
In a flask, 1 g of dodecamethylcyclohexasilane was dissolved in 20 mL of toluene. Mercuric chloride was dissolved in nitric acid to obtain 30 mL of an aqueous solution containing 30 mg of mercury. This aqueous solution was added to the flask. Then, the pH was adjusted to 14 by adding a 1% aqueous sodium hydroxide solution. The inside of the flask was heated to 97 ° C. and stirred for 5 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A silver powder (23 mg) was obtained. This powder was analyzed by an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as platinum was 76%.

(金の回収)
実施例13
フラスコにてデカフェニルシクロペンタシラン1gをトルエン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、3時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(28mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は93%であった。
(Collection of gold)
Example 13
In a flask, 1 g of decaphenylcyclopentasilane was dissolved in 20 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 3 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (28 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 93%.

(金の回収)
実施例14
フラスコにてポリメチルフェニルシラン1gをトルエン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 14
In a flask, 1 g of polymethylphenylsilane was dissolved in 20 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.

(金の回収)
実施例15
フラスコにてジメチルシランとジフェニルシランの50:50モル%のポリマー1gをトルエン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、1時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 15
In a flask, 1 g of a 50:50 mol% polymer of dimethylsilane and diphenylsilane was dissolved in 20 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 1 hour. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.

(金の回収)
実施例16
フラスコにてジメチルシランとモノフェニルシランの50:50モル%のポリマー1gをトルエン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。次いで、1%水酸化ナトリウム水溶液を加えてpH13に調整した。当該フラスコ内を97℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 16
In a flask, 1 g of a 50:50 mol% polymer of dimethylsilane and monophenylsilane was dissolved in 20 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. Subsequently, the pH was adjusted to 13 by adding a 1% aqueous sodium hydroxide solution. The inside of the flask was heated to 97 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.

(金の回収)
実施例17
フラスコにてジフェニルシランとモノメチルシランの50:50モル%のポリマー1gをトルエン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 17
In a flask, 1 g of a 50:50 mol% polymer of diphenylsilane and monomethylsilane was dissolved in 20 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.

(金の回収)
実施例18
フラスコにてジフェニルシランとモノフェニルシランの50:50モル%のポリマー1gをトルエン20mLに溶解させた。塩化金酸を塩酸に溶解させて、金30mgを含む水溶液30mLを得た。この水溶液をフラスコに加えた。当該フラスコ内を97℃に加熱して、2時間撹拌した。室温に戻した後、得られた液を濾過した。濾物を60℃で乾燥させた。金色〜茶色の粉末(30mg)を得た。この粉末を王水に溶かした溶液をICP発光分析装置IRIS Intrepid II XDL(Thermo Elemental社製)にて分析した。金としての回収率は100%であった。
(Collection of gold)
Example 18
In a flask, 1 g of a 50:50 mol% polymer of diphenylsilane and monophenylsilane was dissolved in 20 mL of toluene. Chloroauric acid was dissolved in hydrochloric acid to obtain 30 mL of an aqueous solution containing 30 mg of gold. This aqueous solution was added to the flask. The inside of the flask was heated to 97 ° C. and stirred for 2 hours. After returning to room temperature, the obtained liquid was filtered. The residue was dried at 60 ° C. A golden-brown powder (30 mg) was obtained. A solution of this powder dissolved in aqua regia was analyzed using an ICP emission spectrometer IRIS Intrepid II XDL (manufactured by Thermo Elemental). The recovery rate as gold was 100%.

以上の結果から、本発明の方法は、生成した単体がポリシランや他の物質に吸着しないので、ポリシランを用いた従来の還元法に比べて効率的に単体を製造若しくは回収できることがわかる。   From the above results, it can be seen that in the method of the present invention, since the produced simple substance does not adsorb to polysilane or other substances, the simple substance can be produced or recovered more efficiently than the conventional reduction method using polysilane.

Claims (2)

水および水に非相溶な溶媒からなる不均一液媒体中にて、
ジメチルポリシラン、ジフェニルポリシラン、デカメチルシクロヘキサシラン、デカフェニルシクロペンタシラン、ポリメチルフェニルシラン、またはジメチルシランとジフェニルシランのポリマーの存在下に、
単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物を還元することを含む、
前記化合物から単体を製造する方法。
In a heterogeneous liquid medium consisting of water and a solvent incompatible with water,
In the presence of dimethylpolysilane, diphenylpolysilane, decamethylcyclohexasilane, decaphenylcyclopentasilane, polymethylphenylsilane, or a polymer of dimethylsilane and diphenylsilane ,
Reducing the compound soluble in water, wherein the standard electrode potential in the reduction half reaction to produce a simple substance is larger than the potential of the standard hydrogen electrode, and
A method for producing a simple substance from the compound.
単体を生成する還元半反応における標準電極電位が標準水素電極の電位よりも大きく且つ水に可溶な化合物を含有する水溶液と、
水に非相溶な溶媒と、
ジメチルポリシラン、ジフェニルポリシラン、デカメチルシクロヘキサシラン、デカフェニルシクロペンタシラン、ポリメチルフェニルシラン、またはジメチルシランとジフェニルシランのポリマー
を含有する不均一反応液を得、
該反応液において前記化合物を還元することを含む、
前記化合物を含有する水溶液から単体を回収する方法。
An aqueous solution containing a compound in which the standard electrode potential in the reduction half-reaction that produces a simple substance is larger than the potential of the standard hydrogen electrode and is soluble in water,
A solvent incompatible with water,
Dimethyl polysilane, diphenyl polysilane, decamethylcyclohexasilane, decaphenylcyclopentasilane, polymethylphenylsilane, or obtain a heterogeneous reaction solution containing dimethylsilane and diphenylsilane polymer ,
Reducing the compound in the reaction solution.
A method for recovering a simple substance from an aqueous solution containing the compound.
JP2016117710A 2016-06-14 2016-06-14 Method of manufacturing or collecting single substance Active JP6673756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117710A JP6673756B2 (en) 2016-06-14 2016-06-14 Method of manufacturing or collecting single substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117710A JP6673756B2 (en) 2016-06-14 2016-06-14 Method of manufacturing or collecting single substance

Publications (2)

Publication Number Publication Date
JP2017221883A JP2017221883A (en) 2017-12-21
JP6673756B2 true JP6673756B2 (en) 2020-03-25

Family

ID=60686649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117710A Active JP6673756B2 (en) 2016-06-14 2016-06-14 Method of manufacturing or collecting single substance

Country Status (1)

Country Link
JP (1) JP6673756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465466A (en) * 2018-12-21 2019-03-15 江苏经贸职业技术学院 A kind of synthetic method based on oxidation-reduction method reduction simple substance silver nanoclusters

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230527A (en) * 2000-02-14 2001-08-24 Seiko Epson Corp Method for forming conductive film pattern and conductive film pattern
JP4094277B2 (en) * 2001-11-09 2008-06-04 独立行政法人科学技術振興機構 Preparation of metal nanoparticles using shell-crosslinked micelles as templates
JP2005314712A (en) * 2004-04-27 2005-11-10 Osaka Gas Co Ltd Composition for forming metal particulate and metal particulate
JP4973645B2 (en) * 2005-03-18 2012-07-11 セイコーエプソン株式会社 Metal particle dispersion, method for producing metal particle dispersion, method for producing conductive film-formed substrate, electronic device and electronic apparatus
JP5231710B2 (en) * 2005-04-28 2013-07-10 大阪瓦斯株式会社 Composition comprising metal fine particles and inorganic fine particles and method for producing the same
TW200925199A (en) * 2007-10-11 2009-06-16 Dow Corning Toray Co Ltd Metal particle dispersion structure, microparticles comprising this structure, articles coated with this structure, and methods of producing the preceding
KR101696565B1 (en) * 2012-10-24 2017-01-13 닛뽕소다 가부시키가이샤 Production method for particles of element having standard electrode potential greater than 0v
JP6074777B2 (en) * 2015-07-06 2017-02-08 国立研究開発法人産業技術総合研究所 Nano ink applicator

Also Published As

Publication number Publication date
JP2017221883A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
EP3672721B1 (en) Use of composites for extraction of metal or contaminating chemical species
JP6673756B2 (en) Method of manufacturing or collecting single substance
JP2011084783A (en) Method for collecting gold and/or silver
RU2693285C1 (en) METHOD OF SEPARATING METALS FROM PLATINUM, PALLADIUM, RHODIUM Pt-Pd-Rh
US20020139753A1 (en) Materials and methods for the separation of copper ions and ferric iron in liquid solutions
JP4769524B2 (en) Purification method of polysilane
JP4827146B2 (en) Gold separation method
JP5644250B2 (en) Method for recovering platinum group elements
JP4862148B2 (en) Metal separation and recovery method
KR101696565B1 (en) Production method for particles of element having standard electrode potential greater than 0v
JPH03505597A (en) Process for producing composite elements containing polyethers or copolymerized polyethers and their use for extraction and separation of metal cations
JP5818315B2 (en) Metal selective extractant
Xia et al. Sustainable technologies for the recycling and upcycling of precious metals from e-waste
JP4945202B2 (en) Method for producing metal fine particle dispersion
JP5881044B2 (en) Method for preparing solid extractant and method for extracting palladium
JP7224632B2 (en) Method for leaching and individual recovery of platinum group metals from fuel cell catalysts
JP2008127604A (en) Method of recovering noble metal element
JP5658608B2 (en) Purification method of polysilane
CN102060878B (en) Preparation method of Cis-iodine, chlorine-((1R,2R)-1,2-diaminocyclohexane) platinum complex (II)
Glatz et al. Terpyridine-based silica supports prepared by ring-opening metathesis polymerization for the selective extraction of noble metals
JP5339516B2 (en) Extractant made of phosphorus-containing polymer
JP2019112533A (en) Copolymer that allows noble metal separation recovery, and noble metal recovery method using the copolymer
WO2021117385A1 (en) Method and device for recovering catalytic metal from aqueous solution including catalytic metal coprecipitated with tin
Xiong et al. Solvent extraction and stripping of gold (III) from hydrochloric acid solution using vacuum pump oil
JP2014136794A (en) Aqueous dispersion, and method for producing aqueous dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250