JP6670261B2 - Tandem rolling mill control device and tandem rolling mill control method - Google Patents

Tandem rolling mill control device and tandem rolling mill control method Download PDF

Info

Publication number
JP6670261B2
JP6670261B2 JP2017032247A JP2017032247A JP6670261B2 JP 6670261 B2 JP6670261 B2 JP 6670261B2 JP 2017032247 A JP2017032247 A JP 2017032247A JP 2017032247 A JP2017032247 A JP 2017032247A JP 6670261 B2 JP6670261 B2 JP 6670261B2
Authority
JP
Japan
Prior art keywords
rolling
stand
stands
rolling stand
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017032247A
Other languages
Japanese (ja)
Other versions
JP2018134673A (en
Inventor
鹿山 昌宏
昌宏 鹿山
服部 哲
哲 服部
光一 榎田
光一 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017032247A priority Critical patent/JP6670261B2/en
Priority to CN201810041988.4A priority patent/CN108500064B/en
Priority to DE102018200939.2A priority patent/DE102018200939A1/en
Publication of JP2018134673A publication Critical patent/JP2018134673A/en
Application granted granted Critical
Publication of JP6670261B2 publication Critical patent/JP6670261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

本発明は、タンデム圧延ミル制御装置およびタンデム圧延ミル制御方法に関する。   The present invention relates to a tandem rolling mill control device and a tandem rolling mill control method.

タンデム圧延では、各圧延スタンドの荷重を程良いバランスで被圧延材を圧延することが重要である。ここで、各圧延スタンドの荷重を全圧延スタンドの荷重の総和で割った値を各圧延スタンドの荷重比といい、入側圧延スタンドから最終段の出側圧延スタンドまでの各圧延スタンドの荷重比で構成されるパターンを荷重バランスという。   In tandem rolling, it is important that the material to be rolled be rolled with an appropriate balance between the loads of the rolling stands. Here, the value obtained by dividing the load of each rolling stand by the sum of the loads of all rolling stands is referred to as the load ratio of each rolling stand, and the load ratio of each rolling stand from the incoming rolling stand to the final outgoing rolling stand. The pattern composed of is called load balance.

タンデム圧延では、この荷重バランスが良くないと様々な不都合が生じる。例えば、被圧延材が各圧延スタンドに噛み込まれるときの挙動が不安定になったり、圧延スタンド間および最終段の圧延スタンド出側で被圧延材の形状が乱れたり、圧延スタンド間の張力変動が異常に大きくなったりする。したがって、タンデム圧延を良好に行うためには、適切な荷重バランスの下で圧延を行うことが重要となる。   In tandem rolling, various inconveniences occur if the load balance is not good. For example, the behavior when the material to be rolled is bitten by each rolling stand becomes unstable, the shape of the material to be rolled is disturbed between the rolling stands and at the exit side of the last stage rolling stand, and the tension fluctuation between the rolling stands is caused. Becomes abnormally large. Therefore, in order to perform tandem rolling well, it is important to perform rolling under an appropriate load balance.

例えば、特許文献1や特許文献2には、適切な荷重バランスの下でタンデム圧延を行う技術の例が開示されている。特許文献1には、圧延に先立った演算(セットアップ制御)で、隣接した圧延スタンド間における圧延荷重のバランスに配慮したスケジュールを簡単な処理で実現する手法が示されている。具体的には、各圧延スタンドの圧延荷重予測モデルによる学習値のバラツキが荷重バランスを悪化させる問題に対して、隣接する圧延スタンド間での学習値を移動平均することにより、セットアップする荷重バランスを滑らかな荷重バランスにすることができる。   For example, Patent Literature 1 and Patent Literature 2 disclose examples of a technique for performing tandem rolling under an appropriate load balance. Patent Literature 1 discloses a method of realizing a schedule that considers the balance of a rolling load between adjacent rolling stands by a simple process in an operation (setup control) prior to rolling. Specifically, for the problem that the variation of the learning value by the rolling load prediction model of each rolling stand deteriorates the load balance, the moving average of the learning value between adjacent rolling stands is used to set up the load balance. A smooth load balance can be achieved.

また、特許文献2には、圧延に先立った演算で各圧延機の圧延荷重バランスを評価し、特定の圧延スタンドの荷重が重いなどの適切でない荷重バランスが検出された場合には、これを自動修正して、理想荷重バランスのセットアップ値を得る手法が示されている。具体的には、まず、各圧延スタンドの圧延荷重の総和を計算し、その圧延荷重の総和に、予め鋼種や目標板厚や目標板幅で層別された理想荷重配分係数を乗じて各圧延スタンドの理想圧延荷重を算出する。そして、最終段の圧延スタンドの出側目標板厚を確保しつつ、前記理想圧延荷重となるように、最終段の圧延スタンドから上流圧延スタンドに向かって1圧延スタンドずつ入側板厚の修正計算を行い、その結果として理想荷重バランスを得る。   Further, in Patent Document 2, the rolling load balance of each rolling mill is evaluated by calculation prior to rolling, and when an inappropriate load balance such as a heavy load of a specific rolling stand is detected, this is automatically determined. A method is shown in which the setup value of the ideal load balance is obtained by modification. Specifically, first, the total of the rolling loads of each rolling stand is calculated, and the total of the rolling loads is multiplied by an ideal load distribution coefficient previously stratified by a steel type, a target plate thickness, and a target plate width. Calculate the ideal rolling load of the stand. Then, while securing the output target thickness of the final rolling stand, the correction calculation of the incoming thickness is performed one rolling stand at a time from the final rolling stand toward the upstream rolling stand so that the ideal rolling load is obtained. To obtain an ideal load balance.

特開2016−74008号公報JP-A-2006-74008 特開平9−192715号公報JP-A-9-192715

特許文献1や特許文献2に開示された技術によれば、被圧延材の圧延に先立ってセットアップされる各圧延スタンドの圧延荷重については、確かに良好な荷重バランスにすることができる。しかしながら、被圧延材が実際に圧延されているとき、そのセットアップされた荷重バランスが維持されるようにすることについては、必ずしも十分な配慮はなされていない。   According to the techniques disclosed in Patent Literature 1 and Patent Literature 2, the rolling load of each rolling stand set up prior to the rolling of the material to be rolled can be surely balanced. However, when the material to be rolled is actually rolled, sufficient care is not taken to maintain the set load balance.

実際、圧延中の被圧延材は、長手方向に温度や硬度が変化する。また、セットアップ制御の結果、想定以上の板厚偏差が発生することもある。このような場合、圧延中の各圧延スタンドでは、自動板厚制御(AGC:Automatic Gauge Control)が動作するため、圧延中の各圧延スタンドでの圧延荷重が変化する。すなわち、各圧延スタンド間の荷重バランスが変化することとなる。   Actually, the material to be rolled during rolling changes in temperature and hardness in the longitudinal direction. In addition, as a result of the setup control, an unexpected thickness deviation may occur. In such a case, an automatic thickness control (AGC) operates in each rolling stand during rolling, so that a rolling load in each rolling stand during rolling changes. That is, the load balance between the rolling stands changes.

例えば、最終段の圧延スタンドの出側で測定された実測板厚が目標板厚と異なる場合には、実測板厚を目標板厚と一致させるためにモニタAGCと呼ばれる板厚制御が行われる。このモニタAGCでは、圧下位置は、板厚偏差が厚いとき閉方向に制御され、板厚偏差が薄いとき開方向に制御される。モニタAGCでは、応答性への配慮から、操作量の多くは、通常後段圧延スタンド(とりわけ最終段の圧延スタンド)に配分される。このため、被圧延材の先端部で大きな板厚偏差があったときには、後段圧延スタンドの荷重のみが大きく変化し、前段圧延スタンドの荷重はほとんど変化しないので、全体の荷重バランスが損なわれることとなる。   For example, when the measured plate thickness measured on the exit side of the final rolling stand is different from the target plate thickness, a plate thickness control called a monitor AGC is performed to match the measured plate thickness with the target plate thickness. In this monitor AGC, the rolling down position is controlled in the closing direction when the plate thickness deviation is large, and is controlled in the opening direction when the plate thickness deviation is small. In the monitor AGC, in consideration of responsiveness, a large amount of operation is usually allocated to the second-stage rolling stand (particularly, the last-stage rolling stand). For this reason, when there is a large thickness deviation at the leading end of the material to be rolled, only the load of the latter rolling stand changes significantly, and the load of the former rolling stand hardly changes, so that the overall load balance is impaired. Become.

加えて、熱間圧延では、タンデム圧延機に進入するときの被圧延材の粗材の温度は、徐々に低くなる。そのため、上流圧延スタンドで圧延される被圧延材(粗材)は、圧延中に次第に硬くなる。このとき、各圧延スタンドの出側板厚を一定に保つためにBISRA−AGCと呼ばれる板厚制御が働くため、上流圧延スタンドの荷重も次第に上昇する。一方、タンデム圧延機出側の被圧延材の温度は、圧延スタンド間で冷却水を適宜増減させることにより、ほぼ一定の温度に維持されている。そのため、下流圧延スタンドでの被圧延材の硬さは、ほとんど変化しないので、荷重が上昇することもない。この結果、セットアップされた荷重バランスが変化する。   In addition, in hot rolling, the temperature of the raw material to be rolled when entering the tandem rolling mill gradually decreases. Therefore, the material to be rolled (coarse material) rolled in the upstream rolling stand gradually becomes harder during rolling. At this time, since the thickness control called BISRA-AGC works to keep the exit side thickness of each rolling stand constant, the load of the upstream rolling stand also gradually increases. On the other hand, the temperature of the material to be rolled on the exit side of the tandem rolling mill is maintained at a substantially constant temperature by appropriately increasing or decreasing the cooling water between the rolling stands. Therefore, the hardness of the material to be rolled at the downstream rolling stand hardly changes, so that the load does not increase. As a result, the set up load balance changes.

以上のように、荷重バランスを考慮した荷重が各圧延スタンドにセットアップされていたとしても、その荷重バランスは、被圧延材の圧延中に様々な要因により変化する。特許文献1や特許文献2に開示された技術のように、従来技術では、被圧延材圧延中の荷重バランスの変化については、十分な考慮がなされていない。そのため、圧延中に乱れた荷重バランスの影響によって、圧延スタンド間および最終段の圧延スタンド出側の被圧延材の形状や板幅が乱れ、品質が低下したり、圧延の安定性が損なわれたりすることあった。   As described above, even if a load considering the load balance is set up in each rolling stand, the load balance changes due to various factors during rolling of the material to be rolled. As in the techniques disclosed in Patent Literature 1 and Patent Literature 2, in the related art, sufficient consideration is not given to a change in load balance during rolling of the material to be rolled. As a result, the shape and width of the material to be rolled between the rolling stands and the exit side of the final rolling stand are disturbed due to the influence of the load balance that has been disturbed during rolling, and the quality is reduced, and the stability of rolling is impaired. There was something to do.

本発明の目的は、被圧延材を圧延中であっても予めセットアップされた良好な荷重バランスを維持することが可能なタンデム圧延ミル制御装置およびタンデム圧延ミル制御方法を提供することにある。   An object of the present invention is to provide a tandem rolling mill control device and a tandem rolling mill control method capable of maintaining a good load balance set up in advance even during rolling of a material to be rolled.

本発明に係るタンデム圧延ミル制御装置は、複数の圧延スタンドにより被圧延材を連続的に圧延するタンデム圧延ミルを制御するタンデム圧延ミル制御装置であって、前記被圧延材の圧延に先立って、前記複数の圧延スタンドそれぞれに対し、前記被圧延材の目標板厚を実現するための設定圧延荷重および設定圧下位置を設定するセットアップ制御部と、前記複数の圧延スタンドから選択された1つの圧延スタンドである第1の圧延スタンドについて、前記第1の圧延スタンドに設定された前記設定圧延荷重と、前記複数の圧延スタンドそれぞれに設定された前記設定圧延荷重とに基づき、前記第1の圧延スタンドについての設定荷重比を算出する設定荷重比算出部と、前記被圧延材の圧延中に、前記第1の圧延スタンドから得られる実績圧延荷重と、前記複数の圧延スタンドそれぞれから得られる実績圧延荷重とに基づき、前記第1の圧延スタンドについての実績荷重比を算出する実績荷重比算出部と、前記被圧延材の圧延中に、前記第1の圧延スタンドにおける前記実績荷重比の前記設定荷重比からの偏差が小さくなるように、前記第1の圧延スタンドの荷重比を単位量補正するのに必要な前記第1の圧延スタンドの上流に位置する第2の圧延スタンドの圧下位置補正量として算出される影響係数と前記第1の圧延スタンドにおける前記実績荷重比の前記設定荷重比からの偏差とに基づき算出した圧下位置補正量と、BISRA AGCに基づく圧下位置補正量と、ゲージメータAGCに基づく圧下位置補正量と、モニタAGCに基づく圧下位置補正量と、を加算して求めた前記第2の圧延スタンドの圧下位置補正量により、前記第2の圧延スタンドの圧下位置を制御する圧下位置制御部と、
を備えることを特徴とする。
The tandem rolling mill control device according to the present invention is a tandem rolling mill control device that controls a tandem rolling mill that continuously rolls a material to be rolled by a plurality of rolling stands, prior to rolling the material to be rolled, wherein the plurality of rolling stands, respectively, the and setup control unit for setting the set rolling load and setting pressing position to achieve the target thickness of the rolled material, one roll stand which has been selected from the plurality of rolling stands For the first rolling stand, based on the set rolling load set in the first rolling stand and the set rolling load set in each of the plurality of rolling stands, the first rolling stand A set load ratio calculating unit for calculating a set load ratio of the actual rolling pressure obtained from the first rolling stand during the rolling of the material to be rolled. Load, based on the actual rolling load obtained from each of the plurality of rolling stands, an actual load ratio calculating unit that calculates an actual load ratio for the first rolling stand, and during rolling of the material to be rolled, Upstream of the first rolling stand required to correct the load ratio of the first rolling stand by a unit amount such that the deviation of the actual load ratio from the set load ratio in the first rolling stand is reduced. The rolling factor correction amount calculated based on the influence coefficient calculated as the rolling position correction amount of the second rolling stand located in and the deviation from the set load ratio of the actual load ratio in the first rolling stand, The rolling position correction amount based on the BISRA AGC, the rolling position correction amount based on the gauge meter AGC, and the rolling position correction amount based on the monitor AGC are added and obtained. By pressing position correction amount of the rolling stand 2, and pressing position control unit for controlling the rolling position of the second rolling stand,
It is characterized by having.

本発明によれば、被圧延材を圧延中であっても予めセットアップされた良好な荷重バランスを維持することが可能なタンデム圧延ミル制御装置およびタンデム圧延ミル制御方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the tandem rolling mill control apparatus and tandem rolling mill control method which can maintain the favorable load balance set up beforehand even while rolling the to-be-rolled material are provided.

本発明の第1の実施形態に係るタンデム圧延ミル制御装置およびその制御対象の構成の例を示した図。FIG. 1 is a diagram showing an example of a configuration of a tandem rolling mill control device and a control target thereof according to a first embodiment of the present invention. セットアップ制御部によって実行されるセットアップ制御処理の処理フローの例を示した図。FIG. 5 is a diagram illustrating an example of a processing flow of a setup control process executed by a setup control unit. ドラフトスケジュール記憶部に記憶されるドラフトスケジュールテーブルの構成の例を示した図。FIG. 4 is a diagram illustrating an example of a configuration of a draft schedule table stored in a draft schedule storage unit. 速度パターン記憶部に記憶される速度パターンテーブルの構成の例を示した図。FIG. 4 is a diagram illustrating an example of a configuration of a speed pattern table stored in a speed pattern storage unit. 設定荷重比算出部によって実行される設定荷重比算出処理の処理フローの例を示した図。The figure showing the example of the processing flow of the set load ratio calculation processing performed by the set load ratio calculation part. 影響係数算出部によって実行される影響係数算出処理の処理フローの例を示した図。The figure showing the example of the processing flow of the influence coefficient calculation processing performed by the influence coefficient calculation part. 荷重バランス維持部によって実行される荷重バランス維持処理の処理フローの例を示した図。The figure showing the example of the processing flow of the load balance maintenance processing performed by the load balance maintenance part. 圧下位置制御部によって実行される圧下位置制御処理の処理フローの例を示した図。The figure which showed the example of the processing flow of the rolling position control processing performed by the rolling position control part. 荷重バランス維持部における処理構成の例を模式的に示した図。The figure which showed typically the example of the processing structure in a load balance maintenance part. 本発明の第2の実施形態に係るタンデム圧延ミル制御装置の構成の例を、荷重バランス維持部における処理構成を中心として示した図。The figure which showed the example of the structure of the tandem rolling mill control apparatus which concerns on 2nd Embodiment of this invention centering on the processing structure in a load balance maintenance part. 本発明の第2の実施形態に係る制御パラメータ記憶部に記憶される制御パラメータテーブルの構成の例を示した図。FIG. 9 is a diagram illustrating an example of a configuration of a control parameter table stored in a control parameter storage unit according to a second embodiment of the present invention. 本発明の第2の実施形態に係る制御パラメータ検索補助記憶部に記憶される制御パラメータ検索補助テーブルの構成の例を示した図。FIG. 9 is a diagram illustrating an example of a configuration of a control parameter search auxiliary table stored in a control parameter search auxiliary storage unit according to a second embodiment of the present invention. 本発明の第2の実施形態に係る制御パラメータ抽出部が実行する制御パラメータ抽出処理の処理フローの例を示した図。FIG. 10 is a diagram illustrating an example of a processing flow of control parameter extraction processing executed by a control parameter extraction unit according to a second embodiment of the present invention. 本発明の第2の実施形態の変形例に係る制御パラメータ検索補助記憶部に記憶される制御パラメータ検索補助テーブルの構成の例を示した図。FIG. 14 is a diagram showing an example of a configuration of a control parameter search auxiliary table stored in a control parameter search auxiliary storage unit according to a modification of the second embodiment of the present invention. 本発明の第2の実施形態の変形例において制御パラメータ抽出部が実行する制御パラメータ抽出処理の処理フローの例を示した図。FIG. 15 is a diagram illustrating an example of a processing flow of a control parameter extraction process executed by a control parameter extraction unit in a modification of the second embodiment of the present invention.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each of the drawings, common components are denoted by the same reference numerals, and redundant description will be omitted.

≪第1の実施形態≫
図1は、本発明の第1の実施形態に係るタンデム圧延ミル制御装置100およびその制御対象150の構成の例を示した図である。図1に示すように、第1の実施形態に係るタンデム圧延ミル制御装置100は、制御対象150から種々の信号を受信し、それに応じて、種々の制御信号を制御対象150に出力する。
<< 1st Embodiment >>
FIG. 1 is a diagram showing an example of a configuration of a tandem rolling mill control device 100 and a control target 150 thereof according to a first embodiment of the present invention. As shown in FIG. 1, the tandem rolling mill control device 100 according to the first embodiment receives various signals from a control target 150 and outputs various control signals to the control target 150 in response thereto.

本実施形態では、制御対象150は、仕上げミル160を備えた熱間タンデム圧延ミルである。仕上げミル160は、複数の圧延スタンド161によって構成され、本実施形態では、7つの圧延スタンド161(F〜F)を連続配置した構成となっている。なお、この構成は、熱間タンデム圧延ミルの一般的な構成である。 In the present embodiment, the control target 150 is a hot tandem rolling mill provided with the finishing mill 160. Finishing mill 160 is composed of a plurality of rolling stands 161, in this embodiment, has a continuous arrangement of seven rolling stands 161 (F 1 ~F 7). This configuration is a general configuration of a hot tandem rolling mill.

図1において、被圧延材である鋼板163は、左から右に移動し、前の工程である粗圧延機で圧延された厚さ30〜40mm程度の粗材165を圧延して、薄厚の鋼板163を生産する。なお、粗材165は、粗バー、インカミングバー、トランスファーバーなどの名称で呼ばれることもある。   In FIG. 1, a steel plate 163 to be rolled moves from left to right, and a rough plate 165 having a thickness of about 30 to 40 mm, which has been rolled by a rough rolling mill in the previous step, is rolled to form a thin steel plate. 163 is produced. Note that the coarse material 165 may be referred to as a coarse bar, an incoming bar, a transfer bar, or the like.

粗材165は、仕上げミル160の各圧延スタンド161で圧延されて、順次薄く加工され、最終段の圧延スタンド161(F)の出側では、厚さが1.6mm〜15mm程度の鋼板163として払い出される。なお、仕上げミル160において、粗材165および鋼板163を直接圧延するのは、各圧延スタンド161のワークロール162である。本明細書でロール速度とは、このワークロール162の周速を意味している。 The coarse material 165 is rolled at each rolling stand 161 of the finishing mill 160 and is sequentially thinned, and at the exit side of the final rolling stand 161 (F 7 ), a steel plate 163 having a thickness of about 1.6 mm to 15 mm is provided. Will be paid out as. In the finishing mill 160, the work roll 162 of each rolling stand 161 directly rolls the rough material 165 and the steel plate 163. In the present specification, the roll speed means the peripheral speed of the work roll 162.

また、本実施形態では、圧延される鋼板163の状態を把握するための検出器として、仕上げミル160の最終段の圧延スタンド161(F)の出側に鋼板163の板厚、板幅、温度などを測定するマルチゲージ164が設けられている。なお、ここでは図示を省略しているが、実際には、鋼板163の平坦度を計測する形状計、表面傷を検知する表面疵計、粗材165の先尾端形状のイメージを測定するクロッププロファイル計など、種々の検出器が適宜各所に設けられる。 In the present embodiment, as a detector for grasping the state of the steel plate 163 to be rolled, the thickness, width, and width of the steel plate 163 are provided on the exit side of the final-stage rolling stand 161 (F 7 ) of the finishing mill 160. A multi gauge 164 for measuring temperature and the like is provided. Although not shown here, in actuality, a shape meter for measuring the flatness of the steel plate 163, a surface flaw meter for detecting surface flaws, and a crop for measuring an image of the tip end shape of the coarse material 165. Various detectors such as a profile meter are provided at various places as appropriate.

<タンデム圧延ミル制御装置100の全体構成>
続いて、図1を参照しながら、タンデム圧延ミル制御装置100の構成について説明する。タンデム圧延ミル制御装置100は、セットアップ制御部101、設定荷重比算出部104、影響係数算出部105、圧下位置制御部106、圧延実績収集部107、速度制御部108などの処理機能ブロックを含んで構成される。また、タンデム圧延ミル制御装置100は、ドラフトスケジュール記憶部102、速度パターン記憶部103などの記憶機能ブロックを含んで構成される。
<Overall configuration of tandem rolling mill control device 100>
Subsequently, the configuration of the tandem rolling mill control device 100 will be described with reference to FIG. The tandem rolling mill control device 100 includes processing function blocks such as a setup control unit 101, a set load ratio calculation unit 104, an influence coefficient calculation unit 105, a rolling position control unit 106, a rolling performance collection unit 107, and a speed control unit 108. Be composed. Further, the tandem rolling mill control device 100 is configured to include storage function blocks such as a draft schedule storage unit 102 and a speed pattern storage unit 103.

セットアップ制御部101は、鋼板163(粗材165)の圧延に先立って、各圧延スタンド161(F〜F)に出力すべき圧延荷重、圧下位置、ロール速度を計算し、それらを設定圧延荷重、設定圧下位置、設定ロール速度として設定する。すなわち、セットアップ制御部101は、上位コンピュータ50から送信される鋼板163の圧延仕様(鋼種、目標板厚、目標板幅など)を受信する。そして、その受信した圧延仕様に応じて、ドラフトスケジュール記憶部102および速度パターン記憶部103を参照し、目標板厚を実現するための各圧延スタンド161(F〜F)の圧延荷重、圧下位置、ロール速度を計算する。そして、その計算により得られた圧延荷重、圧下位置、ロール速度を、設定圧延荷重、設定圧下位置、設定ロール速度として設定(セットアップ)する。 Setup controller 101, prior to the rolling of the steel sheet 163 (coarse material 165), rolling load, pressing position, the roll speed to calculate to be output to the rolling stand 161 (F 1 to F 7), they set rolling Set as the load, the set reduction position, and the set roll speed. That is, the setup control unit 101 receives the rolling specifications (steel type, target plate thickness, target plate width, etc.) of the steel plate 163 transmitted from the host computer 50. Then, according to the received rolling specifications, the rolling load and rolling reduction of each rolling stand 161 (F 1 to F 7 ) for realizing the target plate thickness are referred to by referring to the draft schedule storage unit 102 and the speed pattern storage unit 103. Calculate position and roll speed. Then, the rolling load, the rolling position, and the roll speed obtained by the calculation are set (set up) as the set rolling load, the set rolling position, and the set roll speed.

圧延実績収集部107は、制御対象150から送信される圧延状態の実績値(マルチゲージ164の検出値など)や、タンデム圧延ミル制御装置100が実際に制御対象150に出力した制御指令の実績値などを収集する。圧下位置制御部106は、圧延実績収集部107で収集された各種の実績値に基づき、最終段の圧延スタンド161(F)の出側板厚が目標板厚となるようにセットアップ制御部101で設定された圧延スタンド161(F〜F)の設定圧下位置を補正する。また、速度制御部108は、圧延実績収集部107によって収集された各種の実績値に基づき、セットアップ制御部101によって設定された各圧延スタンド161(F〜F)の設定ロール速度を補正する。 The rolling result collection unit 107 records the actual value of the rolling state transmitted from the controlled object 150 (such as the detection value of the multi-gauge 164) and the actual value of the control command actually output to the controlled object 150 by the tandem rolling mill control device 100. Collect and so on. The rolling-down position control unit 106 controls the setup control unit 101 based on the various actual values collected by the actual-rolling result collection unit 107 so that the exit-side sheet thickness of the final rolling stand 161 (F 7 ) becomes the target sheet thickness. setting pressing position of the set rolling stand 161 (F 1 ~F 7) corrected. Further, the speed control unit 108 corrects the set roll speed of each rolling stand 161 (F 1 to F 7 ) set by the setup control unit 101, based on the various actual values collected by the actual rolling result collection unit 107. .

ところで、圧下位置制御部106は、セットアップ制御部101により予めセットアップされた各圧延スタンド161の設定圧下位置を、鋼板163の圧延中にその圧延状況に応じて自動補正する自動板厚制御(以下、AGCという)機能をも有している。本実施形態では、AGC機能は、例えば、BISRA AGC111、ゲージメータAGC112、モニタAGC113により実現されるものとする。   Incidentally, the rolling position control unit 106 automatically adjusts the set rolling position of each rolling stand 161 set up in advance by the setup control unit 101 during rolling of the steel plate 163 according to the rolling state. AGC function). In the present embodiment, the AGC function is realized by, for example, a BISRA AGC 111, a gauge meter AGC 112, and a monitor AGC 113.

なお、これらのAGC技術は、公知の技術であり、例えば、BISRA AGC111は、鋼板長手方向に沿って各圧延スタンド161の出側板厚のバラツキを抑制する。また、ゲージメータAGC112は、各圧延スタンド161の推定出側板厚を望ましい板厚に一致させるように、各圧延スタンド161の圧下位置を補正する。また、モニタAGC113は、マルチゲージ164で検出した鋼板163の実績板厚と目標板厚が一致するように、後段の圧延スタンド(主として最終段の圧延スタンド161(F))の圧下位置を補正する。 These AGC techniques are known techniques. For example, the BISRA AGC 111 suppresses variation in the thickness of the delivery side of each rolling stand 161 along the longitudinal direction of the steel sheet. Further, the gauge meter AGC 112 corrects the rolling-down position of each rolling stand 161 so that the estimated outlet plate thickness of each rolling stand 161 matches the desired plate thickness. The monitor AGC 113 corrects the rolling position of the subsequent rolling stand (mainly, the final rolling stand 161 (F 7 )) so that the actual thickness of the steel plate 163 detected by the multi gauge 164 matches the target thickness. I do.

なお、AGCとしては、この他にも、スミス補償器を付加したゲージメータAGCなど種々の形態のAGCが知られている。圧下位置制御部106では、以上のようなAGCを適宜組み合わせて用いることもできる。   Various other types of AGC are known as the AGC, such as a gauge meter AGC to which a Smith compensator is added. In the rolling position control unit 106, the above-mentioned AGCs can be used in appropriate combination.

圧下位置制御部106は、鋼板163を圧延中に、各圧延スタンド161の荷重比を予めセットアップ制御部101によって設定された設定荷重比に維持するための荷重バランス維持部110を備えている。圧下位置制御部106は、セットアップ制御部101で設定された各圧延スタンド161の圧下位置に、BISRA AGC111、ゲージメータAGC112、モニタAGC113、荷重バランス維持部110のそれぞれの出力を加算する。そして、この加算により得られた圧下位置を、各圧延スタンド161への圧下位置の制御指令として仕上げミル160に出力する。   The rolling position control unit 106 includes a load balance maintaining unit 110 for maintaining the load ratio of each rolling stand 161 at the set load ratio set in advance by the setup control unit 101 during rolling of the steel plate 163. The rolling position control unit 106 adds the outputs of the BISRA AGC 111, the gauge meter AGC 112, the monitor AGC 113, and the load balance maintaining unit 110 to the rolling position of each rolling stand 161 set by the setup control unit 101. The rolling position obtained by this addition is output to the finishing mill 160 as a rolling position control command for each rolling stand 161.

以上のような構成を有するタンデム圧延ミル制御装置100は、演算処理装置と記憶装置とを少なくとも備えた一般的なコンピュータにより実現することができる。その場合、タンデム圧延ミル制御装置100を構成する各部の機能は、コンピュータの演算装置が記憶装置に記憶されたプログラムを実行することにより実現される。ただし、ドラフトスケジュール記憶部102および速度パターン記憶部103は、記憶装置上に記憶された情報として構成される。また、記憶装置には、前記プログラムの実行に際して用いられる様々な情報が記憶される。   The tandem rolling mill control device 100 having the above configuration can be realized by a general computer including at least an arithmetic processing unit and a storage device. In this case, the function of each unit constituting the tandem rolling mill control device 100 is realized by an arithmetic unit of a computer executing a program stored in a storage device. However, the draft schedule storage unit 102 and the speed pattern storage unit 103 are configured as information stored on a storage device. Further, the storage device stores various information used when the program is executed.

続いて、タンデム圧延ミル制御装置100を構成する各部の機能や動作について詳細に説明する。   Subsequently, the functions and operations of each unit constituting the tandem rolling mill control device 100 will be described in detail.

<セットアップ制御部101>
前記したように、セットアップ制御部101は、鋼板163の圧延に先立って、上位コンピュータ50から送信される、次に圧延される鋼板163の圧延仕様(鋼種、目標板厚、目標板幅など)を受信する。そして、その受信した圧延仕様に応じて、各圧延スタンド161(F〜F)に対する設定圧延荷重、設定圧下位置、設定ロール速度などの制御指令を算出する。これらの設定圧延荷重、設定圧下位置、設定ロール速度などの制御指令は、適宜補正された上で、制御対象150の仕上げミル160に出力される。
<Setup control unit 101>
As described above, the setup control unit 101 sets the rolling specifications (steel type, target plate thickness, target plate width, etc.) of the steel plate 163 to be rolled next transmitted from the host computer 50 before rolling the steel plate 163. Receive. Then, according to the rolling specification that the received, set the rolling load for each roll stand 161 (F 1 ~F 7), set pressing position, and calculates a control command, such as setting the roll speed. The control commands such as the set rolling load, the set rolling position, and the set roll speed are output to the finishing mill 160 of the control target 150 after being appropriately corrected.

ところで、鋼板163が仕上げミル160で圧延されるとき、鋼板163の先端部は、セットアップ制御部101から出力された制御指令にしたがって圧延される。したがって、圧延された鋼板163の先端部から所望の板厚(目標板厚)を得るためには、各圧延スタンド161(F〜F)における設定圧延荷重やワークロール162の設定圧下位置は、適切に決定されなければならない。また、鋼板163が下流の圧延スタンド161に噛み込まれるときの挙動を安定化するためには、各圧延スタンド161(F〜F)の設定ロール速度は、鋼板163のマスフロー(板厚と板速の積)に乱れのないバランスのとれたものでなければならない。なお、これら適切な設定圧下位置や設定ロール速度を計算する方法については、その計算式を含め後記する。 When the steel plate 163 is rolled by the finishing mill 160, the tip of the steel plate 163 is rolled according to a control command output from the setup control unit 101. Therefore, in order to obtain a desired thickness from the distal end portion of the rolled steel plate 163 (target thickness) is set pressing position setting the rolling load and the work rolls 162 in each rolling stand 161 (F 1 to F 7) is Must be determined appropriately. Further, in order to stabilize the behavior when the steel plate 163 is bitten by the downstream rolling stand 161, the set roll speed of each rolling stand 161 (F 1 to F 7 ) is set to the mass flow (sheet thickness and thickness) of the steel plate 163. The product must be well-balanced without disturbance. The method of calculating the appropriate set reduction position and set roll speed will be described later, including the calculation formula.

さらに、鋼板163の圧延中には、マルチゲージ164で検出した鋼板163の板厚などの実績値に基づいて、圧下位置制御部106および速度制御部108は、各圧延スタンド161(F〜F)へ出力する圧下位置およびロール速度をそれぞれ補正する。この補正の影響を受けて、各圧延スタンド161(F〜F)での圧延荷重が変化し、各圧延スタンド161(F〜F)相互の荷重バランスが崩れることがある。そこで、本実施形態では、荷重バランス維持部110は、このような補正が行われた後も、セットアップ制御部101により設定された各圧延スタンド161(F〜F)の設定圧延荷重に基づく荷重バランスを維持する制御を行う。 Furthermore, during the rolling of the steel sheet 163, on the basis of the actual values, such as the plate thickness of the steel sheet 163 detected in a multi-gauge 164, pressing position control unit 106 and the speed control unit 108, the rolling stand 161 (F 1 to F 7 ) Correct the rolling position and the roll speed output to the respective items. Affected by this correction, is rolling load varies in the rolling stand 161 (F 1 ~F 7), each rolling stand 161 (F 1 ~F 7) may be load balanced mutual collapses. Therefore, in this embodiment, the load balance maintenance unit 110 even after this correction has been made, based on the set rolling load of each rolling stand 161 which is set by the setup controller 101 (F 1 ~F 7) Control to maintain load balance.

図2は、セットアップ制御部101によって実行されるセットアップ制御処理の処理フローの例を示した図である。図2に示すように、セットアップ制御部101は、まず、上位コンピュータ50から送信される次に圧延される鋼板163の圧延仕様(鋼種、目標板厚、目標板幅)を取得する(ステップS20)。次に、セットアップ制御部101は、ドラフトスケジュール記憶部102を参照して、この圧延仕様に応じたドラフトスケジュールを取得する(ステップS21)。ここで、ドラフトスケジュールとは、各圧延スタンド161において、粗材165または鋼板163をどの程度の割合で板厚を薄くするかを表した情報である。   FIG. 2 is a diagram illustrating an example of a processing flow of a setup control process performed by the setup control unit 101. As shown in FIG. 2, first, the setup control unit 101 acquires rolling specifications (steel type, target plate thickness, target plate width) of the steel plate 163 to be rolled next transmitted from the host computer 50 (step S20). . Next, the setup control unit 101 refers to the draft schedule storage unit 102 and acquires a draft schedule according to the rolling specifications (step S21). Here, the draft schedule is information indicating how much the thickness of the coarse material 165 or the steel plate 163 is reduced in each rolling stand 161.

図3は、ドラフトスケジュール記憶部102に記憶されるドラフトスケジュールテーブル102Tの構成の例を示した図である。図3のドラフトスケジュールテーブル102Tにおいて、「鋼種」、「目標板厚」、「目標板幅」の各項目欄の情報は、圧延される鋼板163の圧延仕様を層別する情報である。また、「F」〜「F」の項目欄の情報は、各圧延スタンド161(F〜F)で鋼板163が圧延される圧下率(パーセント)を圧延仕様の層別毎に示した情報である。なお、圧下率とは、入側板厚に対する入側と出側の板厚差の比率をいう。 FIG. 3 is a diagram showing an example of the configuration of the draft schedule table 102T stored in the draft schedule storage unit 102. In the draft schedule table 102T of FIG. 3, information in each item column of “steel type”, “target plate thickness”, and “target plate width” is information for stratifying rolling specifications of the steel plate 163 to be rolled. Further, the information in the item columns of “F 1 ” to “F 7 ” indicates the rolling reduction (percent) at which the steel plate 163 is rolled at each rolling stand 161 (F 1 to F 7 ) for each layer of the rolling specification. Information. The rolling reduction refers to the ratio of the thickness difference between the entrance side and the exit side with respect to the entrance side thickness.

例えば、鋼種がSS400で板厚が35mmの粗材165を、目標板厚が2.5mm、目標板幅が900mmの鋼板163に圧延する場合のドラフトスケジュールは、図3のドラフトスケジュールテーブル102Tでは、1行目のデータに該当する。すなわち、目標板厚が2.5mm、目標板幅が900mmの鋼板163は、鋼種がSS400、目標板厚が2.0〜3.0mm、目標板幅が1000mm以下の圧延仕様に該当する。   For example, a draft schedule in the case of rolling a coarse material 165 having a steel type of SS400 and a plate thickness of 35 mm to a steel plate 163 having a target plate thickness of 2.5 mm and a target plate width of 900 mm is obtained by the draft schedule table 102T in FIG. This corresponds to the data in the first row. That is, the steel plate 163 having the target plate thickness of 2.5 mm and the target plate width of 900 mm corresponds to the rolling specification having the steel type of SS400, the target plate thickness of 2.0 to 3.0 mm, and the target plate width of 1000 mm or less.

さらに、このドラフトスケジュールテーブル102Tの1行目のデータによれば、圧延スタンド161(F)では、板厚35mmの粗材165は、その板厚の40%に相当する14mmが圧延され、出側板厚21mmとなる。また、圧延スタンド161(F)では、入側板厚21mmの鋼板163は、その板厚の35%に相当する分の板厚が圧延され、出側板厚13.65mmとなる。 Further, according to the data in the first row of the draft schedule table 102T, in the rolling stand 161 (F 1 ), the rough material 165 having a thickness of 35 mm is rolled by 14 mm, which corresponds to 40% of the thickness, and is output. The side plate thickness is 21 mm. In the rolling stand 161 (F 2 ), the steel plate 163 having a thickness of 21 mm on the entry side is rolled by a thickness equivalent to 35% of the thickness of the steel plate 163 to a thickness of 13.65 mm on the delivery side.

以下同様にして、圧延が行われる。そして、最終段の圧延スタンド161(F)からは、目標板厚2.5mmの鋼板163が払い出される。なお、以上のようにして得られた最終段の圧延スタンド161(F)の出側板厚に目標板厚2.5mmからの偏差が生じる場合には、その偏差に応じて他の圧延スタンド161(F〜F)の圧下率を適宜調整すればよい。 Thereafter, rolling is performed in the same manner. Then, a steel plate 163 having a target plate thickness of 2.5 mm is paid out from the final rolling stand 161 (F 7 ). If a deviation from the target plate thickness of 2.5 mm occurs in the exit side plate thickness of the final rolling stand 161 (F 7 ) obtained as described above, the other rolling stands 161 are changed according to the deviation. The rolling reduction of (F 1 to F 6 ) may be appropriately adjusted.

図2に戻り、セットアップ制御処理の説明を続ける。次に、セットアップ制御部101は、速度パターン記憶部103を参照して、上位コンピュータ50から送信された圧延仕様(鋼種、目標板厚、目標板幅)に対応する鋼板163の速度パターンを取得する(ステップS22)。   Returning to FIG. 2, the description of the setup control process will be continued. Next, the setup control unit 101 refers to the speed pattern storage unit 103 and acquires the speed pattern of the steel plate 163 corresponding to the rolling specification (steel type, target plate thickness, target plate width) transmitted from the host computer 50. (Step S22).

図4は、速度パターン記憶部103に記憶される速度パターンテーブル103Tの構成の例を示した図である。図4に示すように、速度パターンテーブル103Tの各行のデータは、圧延される鋼板163の圧延仕様(鋼種、目標板厚、目標板幅)に応じて予め設定された圧延速度(板速ともいう)またはその加速度を表した情報である。   FIG. 4 is a diagram illustrating an example of the configuration of the speed pattern table 103T stored in the speed pattern storage unit 103. As shown in FIG. 4, data in each row of the speed pattern table 103 </ b> T includes a rolling speed (also referred to as a sheet speed) set in advance according to the rolling specifications (steel type, target thickness, target width) of the steel plate 163 to be rolled. ) Or information representing the acceleration.

ここで、初期速度は、鋼板163の先端部が最終段の圧延スタンド161(F)から払い出されるときの鋼板速度である。また、第1加速度は、鋼板速度が初期速度から次第に速度を上げていくときの加速度であり、第2加速度は、鋼板163が後段設備であるダウンコイラ(図示省略)に噛み込まれた後、定常速度に達するまでの加速度である。また、減速度は、鋼板163が安定的に各圧延スタンド161(F〜F)を抜けるための、定常速度から終期速度まで減速するときの負の加速度である。また、終期速度は、鋼板163の尾端部が最終段の圧延スタンド161(F)から払い出されるときの鋼板速度である。 Here, the initial speed is the speed of the steel sheet when the leading end of the steel sheet 163 is paid out from the final rolling stand 161 (F 7 ). The first acceleration is an acceleration when the steel sheet speed gradually increases from the initial speed, and the second acceleration is a steady state after the steel sheet 163 is caught in a down-coiler (not shown) which is a downstream equipment. This is the acceleration up to speed. Furthermore, deceleration, for steel sheet 163 exiting the stably the rolling stand 161 (F 1 ~F 7), a negative acceleration when decelerating from the steady speed to the end speed. The terminal speed is the speed of the steel sheet when the tail end of the steel sheet 163 is discharged from the final rolling stand 161 (F 7 ).

図4によれば、圧延対象の鋼板163の鋼種がSS400、板厚1.2〜1.4mm、板幅が1000mm以下である場合には、初期速度は650mpm、定常速度は1100mpm、終期速度700mpmとなる。そして、第1加速度として2mpm/s、第2加速度として12mpm/s、減速度として6mpm/sが設定される。   According to FIG. 4, when the steel type of the steel plate 163 to be rolled is SS400, the plate thickness is 1.2 to 1.4 mm, and the plate width is 1000 mm or less, the initial speed is 650 mpm, the steady speed is 1100 mpm, and the final speed is 700 mpm. Becomes Then, 2 mpm / s is set as the first acceleration, 12 mpm / s as the second acceleration, and 6 mpm / s as the deceleration.

再度、図2に戻り、セットアップ制御処理の説明を続ける。セットアップ制御部101は、各圧延スタンド161(F〜F)における鋼板163の圧延温度を推定する(ステップS23)。すなわち、セットアップ制御部101は、制御対象150の各所に設置されている温度計(図示省略)から得られる温度に加え、鋼板163からの熱輻射、加工発熱、ワークロール162を介して奪われるロール接触伝熱などを考慮して圧延時の鋼板163の温度を推定する。 Returning to FIG. 2 again, the description of the setup control process will be continued. Setup controller 101 estimates the rolling temperature of the steel sheet 163 in the rolling stand 161 (F 1 ~F 7) (step S23). That is, in addition to the temperatures obtained from the thermometers (not shown) installed at various places of the control target 150, the setup control unit 101 performs heat radiation from the steel plate 163, heat generated during processing, and rolls robbed via the work rolls 162. The temperature of the steel sheet 163 during rolling is estimated in consideration of contact heat transfer and the like.

なお、この場合の温度推定の方法は、熱力学の各種文献で多数紹介されている。とくに圧延時の温度変化については、例えば「板圧延の理論と実際(日本鉄鋼協会)」の第6章(圧延における温度変化)で詳しく述べられている。   Many methods for estimating the temperature in this case are introduced in various thermodynamics documents. The temperature change during rolling is described in detail in, for example, Chapter 6 (Temperature Change in Rolling) of "Theory and Practice of Sheet Rolling (Iron and Steel Institute of Japan)".

次に、セットアップ制御部101は、各圧延スタンド161で圧延される鋼板163の硬さに相当する値である変形抵抗を計算する(ステップS24)。変形抵抗の求め方についても、種々の文献に示されており、例えば、前記の「板圧延の理論と実際(日本鉄鋼協会)」の第7章(変形抵抗)に詳しく説明されている。   Next, the setup control unit 101 calculates a deformation resistance which is a value corresponding to the hardness of the steel plate 163 rolled by each rolling stand 161 (step S24). Various methods for determining the deformation resistance are also described in various documents, and are described in detail, for example, in Chapter 7 (deformation resistance) of “Theory and Practice of Sheet Rolling (Iron and Steel Institute of Japan)”.

変形抵抗kfの代表的な計算式としては、例えば、圧延時の鋼板温度Tを用いて計算する次の式(1)がある(「板圧延の理論と実際」の7.54式を参照)。

kf=Kε(dε/dt)exp(A/T) (1)
ここで、ε:ひずみ
(dε/dt):ひずみ速度
K,n,m,A:鋼種によりに決まる定数
As a typical calculation formula of the deformation resistance kf, there is, for example, the following formula (1) calculated using the steel sheet temperature T during rolling (refer to the 7.54 formula of “Theory and Practice of Strip Rolling”). .

kf = Kε n (dε / dt) m exp (A / T) (1)
Where ε: strain
(dε / dt): strain rate
K, n, m, A: constants determined by steel type

次に、セットアップ制御部101は、各圧延スタンド161(F〜F)のロール速度Vrを計算する(ステップS25)。ステップS22で取得した速度パターンのデータは、最終段の圧延スタンド161(F)の出側板速(圧延速度)であるから、この出側板速を用いて各圧延スタンド161(F〜F)のロール速度Vrを、次の手順1および手順2により計算する。 Next, the setup control unit 101 calculates a roll speed Vr i of the rolling stand 161 (F 1 ~F 7) (step S25). Step data for the obtained speed pattern in S22, because it is rolling stand 161 of the final stage (F 7) of the delivery side speed (rolling speed) the rolling stand 161 (F 1 with side plates speed this out to F 7 the roll speed Vr i) of is calculated by the following procedure 1 and procedure 2.

(手順1)セットアップ制御部101は、次の式(2)を用いて各圧延スタンド161(F〜F)の出側板速Vs(i=1〜7)を計算する。

Vs=Vs×h/h (2)
ここで、Vs:圧延スタンド(F)の出側板速
:圧延スタンド(F)の出側板厚
:圧延スタンド(F)(最終段圧延スタンド)の出側板厚
(Procedure 1) The setup control unit 101 calculates the exit side sheet speed Vs i (i = 1 to 7 ) of each rolling stand 161 (F 1 to F 7 ) using the following equation (2).

Vs i = Vs 7 × h i / h 7 (2)
Here, Vs i : delivery side plate speed of the rolling stand (F i )
h i : Outer thickness of rolling stand (F i )
h 7 : Thickness of the exit side of the rolling stand (F 7 ) (final rolling stand)

(手順2)セットアップ制御部101は、各圧延スタンド161(F〜F)の出側板速Vsと先進率fとを用いて、次の式(3)に従い、各圧延スタンド161(F〜F)のロール速度Vr(i=1〜7)を算出する。

Vr=Vs/f (3)
ここで、Vr:圧延スタンド(F)のロール速度
:圧延スタンド(F)の先進率
(Procedure 2) The setup control unit 101 uses the exit side sheet speed Vs i and the advance rate f i of each rolling stand 161 (F 1 to F 7 ) and calculates each rolling stand 161 (F 1 to F 7 ) according to the following equation (3). calculating the F 1 roll speed Vr i of ~F 7) (i = 1~7) .

Vr i = Vs i / f i (3)
Here, V r i : the roll speed of the rolling stand (F i )
f i : advance rate of the rolling stand (F i )

ここで、先進率fとは、ワークロール162の周速とワークロール162により圧延される鋼板163の出側板速Vsとの比に対応した値であり、例えば式(4)のような関数で表されることが知られている。なお、その詳細は、「板圧延の理論と実際」(日本鉄鋼協会編)などに示されている。

f=F(H,h,R’,Kp,tb,tf) (4)
ここで,H:入側板厚
h:出側板厚
R’:偏平ロール径,
Kp:変形抵抗
tb:入側張力
tf:出側張力
(パラメータの記号H,h,R’,Kp,tb,tfの意味は、式(5)以下の式でも同じ。また、式(4)、式(5)、式(6)では、圧延スタンド(F)を識別する記号iを省略。)
Here, the forward slip f, a value corresponding to the ratio of the side plate speed Vs i out of the steel sheet 163 is rolled by the peripheral speed and the work rolls 162 of the work roll 162, for example, a function such as equation (4) It is known that The details are described in "Theory and Practice of Sheet Rolling" (edited by the Iron and Steel Institute of Japan).

f = F (H, h, R ', Kp, tb, tf) (4)
Here, H: thickness of the inlet side plate
h: Outer side plate thickness
R ': flat roll diameter,
Kp: deformation resistance
tb: Entry tension
tf: Outgoing side tension (the meanings of the parameter symbols H, h, R ', Kp, tb, and tf are the same in the expressions following Expression (5). In addition, Expressions (4), (5), and (6) )), The symbol i for identifying the rolling stand (F i ) is omitted.)

したがって、セットアップ制御部101は、圧延スタンド161毎に先進率fを計算した上で各圧延スタンド161のロール速度Vrを求めることとなる。 Therefore, the setup controller 101, and thus obtaining the roll speed Vr i of each rolling stand 161 on which to calculate the forward slip f i for each rolling stand 161.

次に、セットアップ制御部101は、各圧延スタンド161(F〜F)の設定圧延荷重Pset_iを計算する(ステップS26)。圧延荷重Pの計算式の詳細は、「板圧延の理論と実際」(日本鉄鋼協会編)などに示されており、例えば、次の式(5)のように表される。

P=G(w,Kp,Qp,tf,tb,R’,H,h,μ) (5)
ここで、w:板幅
Kp:変形抵抗
Qp:圧下力関数
μ:摩擦係数
Next, the setup control unit 101 calculates a set rolling load P set_i of each rolling stand 161 (F 1 to F 7 ) (Step S26). The details of the calculation formula of the rolling load P are shown in “Theory and Practice of Sheet Rolling” (edited by the Iron and Steel Institute of Japan) and the like, and are expressed, for example, by the following formula (5).

P = G (w, Kp, Qp, tf, tb, R ′, H, h, μ) (5)
Here, w: board width
Kp: deformation resistance
Qp: rolling force function
μ: friction coefficient

最後に、セットアップ制御部101は、各圧延スタンド161(F〜F)のワークロール162の圧下位置(ロールギャップ)Sを計算し、これを設定圧下位置Sset_iとする(ステップS27)。なお、圧下位置Sは、基本的には、次の式(6)を用いて計算することができる。ただし、実際には、計算の精度を上げるため、ロールのたわみを制御するベンダー圧を始めとした種々の補正項が付加されることが多いが、ここでは省略している。

S=h−P/K (6)
ここで、S:圧下位置
P:圧延荷重
K:ミルばね定数
Finally, the setup control unit 101, the pressing position of the work roll 162 (roll gap) S i of the rolling stand 161 (F 1 ~F 7) is calculated and a set pressing position S Set_i this (step S27) . The rolling position Si can be basically calculated using the following equation (6). In practice, however, various correction terms such as a bender pressure for controlling the deflection of the roll are often added in order to increase the accuracy of the calculation, but are omitted here.

S = h-P / K (6)
Here, S: rolling position
P: Rolling load
K: Mill spring constant

セットアップ制御部101は、以上のようにして算出した各圧延スタンド161(F〜F)のワークロール162の設定圧下位置Sset_iおよびロール速度Vrを、次に圧延される鋼板163に対する制御指令として出力する。 Setup controller 101, above manner set pressing position S Set_i and roll speed Vr i work roll 162 of the rolling stand 161 (F 1 ~F 7) which is calculated, then the control to the steel sheet 163 is rolled Output as a command.

<設定荷重比算出部104>
図5は、設定荷重比算出部104によって実行される設定荷重比算出処理の処理フローの例を示した図である。図5に示すように、設定荷重比算出部104は、各圧延スタンド161(F〜F)についての設定圧延荷重Pset_iの総和Ptotal_setを、次の式(7)により算出する(ステップS51)。

total_set=Pset_1+Pset_2+Pset_3+Pset_4+Pset_5+Pset_6+Pset_7 (7)
ここで、Pset_i:圧延スタンド(F)の設定圧延荷重
<Set load ratio calculation unit 104>
FIG. 5 is a diagram illustrating an example of a processing flow of a set load ratio calculation process executed by the set load ratio calculation unit 104. As shown in FIG. 5, the set load ratio calculation unit 104 calculates the total sum P total_set of the set roll loads P set_i for each of the rolling stands 161 (F 1 to F 7 ) using the following equation (7) (step). S51).

P total_set = P set_1 + P set_2 + P set —3 + P set —4 + P set —5 + P set —6 + P set —7 (7)
Here, P set_i is a set rolling load of the rolling stand (F i ).

続いて、設定荷重比算出部104は、次の式(8)により圧延スタンド161(F)の設定荷重比Prset_iを算出する(ステップS52)。

Prset_i=Pset_i/Ptotal_set (8)
Subsequently, the set load ratio calculation unit 104 calculates the set load ratio Pr set_i of the rolling stand 161 (F i ) using the following equation (8) (step S52).

Pr set_i = P set_i / P total_set (8)

次に、設定荷重比算出部104は、圧延スタンド(F〜F)の全てについて設定荷重比Prset_iの計算が終了したか否かを判定し(ステップS53)、終了していない場合には(ステップS53でNo)、ステップS52の処理を再度実行する。また、圧延スタンド(F〜F)の全てについて設定荷重比Prset_iの計算が終了した場合には(ステップS53でYes)、当該設定荷重比算出処理を終了する。 Next, the set load ratio calculating unit 104 determines whether the calculation of the set load ratio Pr set_i has been completed for all of the rolling stands (F 1 to F 7 ) (step S53). (No in Step S53), the processing of Step S52 is executed again. When the calculation of the set load ratio Pr set_i is completed for all of the rolling stands (F 1 to F 7 ) (Yes in step S53), the set load ratio calculation processing ends.

以上のようにして算出された設定荷重比Prset_iは、セットアップ制御部101で設定された各圧延スタンド(F〜F)の適切な設定圧延荷重に基づき算出されたものである。したがって、設定荷重比Prset_iは、各圧延スタンド(F〜F)間の好ましい荷重バランスを表した情報といえる。 The set load ratio Pr set_i calculated as described above is calculated based on an appropriate set rolling load of each rolling stand (F 1 to F 7 ) set by the setup control unit 101. Therefore, the set load ratio Pr set_i can be said to be information representing a preferable load balance between the rolling stands (F 1 to F 7 ).

<影響係数算出部105>
図6は、影響係数算出部105によって実行される影響係数算出処理の処理フローの例を示した図である。図6に示すように、設定荷重比算出部104は、次に示す式(9)により圧延スタンド161(F)の影響係数φcoef_iを算出する(ステップS61)。

φcoef_i=(∂S/∂P)(∂P/∂h)(∂Hi+1/∂Pi+1) (9)
ここで、S:圧延スタンド(F)の圧下位置
:圧延スタンド(F)の圧延荷重
:圧延スタンド(F)の入側板厚
:圧延スタンド(F)の出側板厚(ただし、Hi+1=h
<Influence coefficient calculation unit 105>
FIG. 6 is a diagram illustrating an example of a processing flow of the influence coefficient calculation process executed by the influence coefficient calculation unit 105. As shown in FIG. 6, the set load ratio calculation unit 104 calculates the influence coefficient φ coef_i of the rolling stand 161 (F i ) according to the following equation (9) (step S61).

φ coef_i = (∂S i / ∂P i) (∂P i / ∂h i) (∂H i + 1 / ∂P i + 1) (9)
Here, S i : the rolling position of the rolling stand (F i )
P i : rolling load of the rolling stand (F i )
h i : Thickness of the entry side of the rolling stand (F i )
H i: thickness at delivery side of the rolling stand (F i) (However, H i + 1 = h i )

なお、影響係数φcoef_iとは、圧延スタンド161(F)の下流の圧延スタンド161(Fi+1)の荷重比を単位量補正するための圧延スタンド161(F)の圧下位置補正量ということができる。したがって、影響係数φcoef_iは、圧延スタンド(F〜F)については、計算することができるが、最終段の圧延スタンド(F)については、定義されない。 Incidentally, the influence coefficient phi Coef_i, pressing position correction amount of the rolling stands 161 (F i) for a unit amount correction load ratio of the downstream rolling stand 161 (F i + 1) of the rolling stand 161 (F i) It can be said. Therefore, the influence coefficient φ coef_i can be calculated for the rolling stands (F 1 to F 6 ), but is not defined for the final rolling stand (F 7 ).

また、式(9)における(∂S/∂P)は、式(6)をPで偏微分することにより計算することができる。同様に、(∂P/∂h)および(∂Hi+1/∂Pi+1)は、式(5)をhで偏微分することにより計算することができる。 (∂S i / ∂P i ) in the equation (9) can be calculated by partially differentiating the equation (6) with P i . Similarly, (∂P i / ∂h i) and (∂H i + 1 / ∂P i + 1) can be calculated by partially differentiating equation (5) h i.

次に、設定荷重比算出部104は、圧延スタンド(F〜F)の全てについて影響係数φcoef_iの計算が終了したか否かを判定し(ステップS62)、終了していない場合には(ステップS62でNo)、ステップS61の処理を再度実行する。また、圧延スタンド(F〜F)の全てについて影響係数φcoef_iの計算が終了した場合には(ステップS62でYes)、当該影響係数算出処理を終了する。 Next, the set load ratio calculation unit 104 determines whether or not the calculation of the influence coefficient φ coef_i has been completed for all of the rolling stands (F 1 to F 6 ) (step S62). (No in step S62), the processing in step S61 is executed again. When the calculation of the influence coefficient φ coef_i is completed for all of the rolling stands (F 1 to F 6 ) (Yes in step S62), the influence coefficient calculation processing ends.

<圧下位置制御部106>
以上、ここまでに示したセットアップ制御部101、設定荷重比算出部104、影響係数算出部105の処理は、鋼板163が仕上げミル160で圧延されるのに先立って実行される。そして、圧下位置制御部106は、鋼板163の先端部が各圧延スタンド161に噛み込まれていく際には、セットアップ制御部101から出力される設定圧下位置に従いワークロール162の圧下位置を制御する。同様に、速度制御部108は、鋼板163の先端部が各圧延スタンド161に噛み込まれていく際には、セットアップ制御部101から出力される設定ロール速度に従いワークロール162のロール速度を制御する。
<Reduction position control unit 106>
As described above, the processes of the setup control unit 101, the set load ratio calculation unit 104, and the influence coefficient calculation unit 105 described above are executed before the steel plate 163 is rolled by the finishing mill 160. Then, when the leading end of the steel plate 163 is bitten by each rolling stand 161, the rolling position control unit 106 controls the rolling position of the work roll 162 according to the set rolling position output from the setup control unit 101. . Similarly, the speed control unit 108 controls the roll speed of the work roll 162 according to the set roll speed output from the setup control unit 101 when the tip of the steel plate 163 is bitten into each rolling stand 161. .

一方、鋼板163の圧延が開始され、圧延実績収集部107による圧延実績の取得が開始されると、荷重バランス維持部110および3つのAGC111〜113により各圧延スタンド161の圧下位置の補正が行われる。そこで、圧下位置制御部106は、この圧下位置を補正する処理を一定の周期で(例えば、1秒間隔で)実行し、その都度、セットアップ制御部101で得られた設定圧下位置を補正する。そして、その補正して得られた圧下位置を仕上げミル160に出力する。   On the other hand, when the rolling of the steel plate 163 is started and the acquisition of the rolling result by the rolling result collecting unit 107 is started, the load balance maintaining unit 110 and the three AGCs 111 to 113 correct the rolling position of each rolling stand 161. . Therefore, the rolling position control unit 106 executes the process of correcting the rolling position at a constant cycle (for example, at one-second intervals), and corrects the set rolling position obtained by the setup control unit 101 each time. Then, the reduced position obtained by the correction is output to finishing mill 160.

以下では、圧下位置制御部106の処理のうち、まず、荷重バランス維持部110の処理について説明した後、圧下位置制御部106全体の処理について説明する。   Hereinafter, among the processes of the rolling position control unit 106, first, the process of the load balance maintaining unit 110 will be described, and then the processing of the entire rolling position control unit 106 will be described.

図7は、荷重バランス維持部110によって実行される荷重バランス維持処理の処理フローの例を示した図である。なお、荷重バランス維持処理では、下流に他の圧延スタンド161が存在する圧延スタンド161(F〜F)についてのみ、設定圧下位置の補正を行う。したがって、図7の処理は、i=1〜6について実行される。 FIG. 7 is a diagram illustrating an example of a processing flow of a load balance maintaining process performed by the load balance maintaining unit 110. In load balancing maintenance process, the only rolling stand 161 other rolling stand 161 on the downstream exists (F 1 ~F 6), corrects the set pressing position. Therefore, the process of FIG. 7 is executed for i = 1 to 6.

図7に示すように、荷重バランス維持部110は、まず、設定荷重比算出部104で計算された、当該圧延スタンド161(F)の下流の圧延スタンド161(Fi+1)の設定荷重比Prset_i+1を取得する(ステップS71)。次に、荷重バランス維持部110は、影響係数算出部105で計算された当該圧延スタンド161(F)の影響係数φcoef_iを取得する(ステップS72)。 As shown in FIG. 7, the load balance maintenance unit 110 first calculated in set load ratio calculating unit 104, downstream of the set load of the rolling stands 161 (F i + 1) of the rolling stands 161 (F i) The ratio Pr set_i + 1 is obtained (step S71). Next, the load balance maintaining unit 110 acquires the influence coefficient φ coef_i of the rolling stand 161 (F i ) calculated by the influence coefficient calculation unit 105 (Step S72).

次に、荷重バランス維持部110は、圧延実績収集部107を介して、各圧延スタンド161(F〜F)のそれぞれの実績圧延荷重Pract_i(i=1〜7)を取得する(ステップS73)。そして、次の式(10)に従い、当該圧延スタンド161(F)の下流の圧延スタンド161(Fi+1)の実績荷重比Pract_i+1を算出する(ステップS74)。

Pract_i+1=Pact_i+1/Ptotal_act (10)
ここで、Ptotal_act=Pact_1+Pact_2+Pact_3+Pact_4+Pact_5+Pact_6+Pact_7
act_i+1:下流の圧延スタンド(Fi+1)の実績圧延荷重
Next, the load balance maintaining unit 110 acquires the actual rolling loads Pr act_i (i = 1 to 7 ) of the respective rolling stands 161 (F 1 to F 7 ) via the rolling actual collecting unit 107 (step). S73). Then, according to the following equation (10), calculates the actual load ratio Pr act_i + 1 downstream of the rolling stand 161 of the rolling stands 161 (F i) (F i + 1) ( step S74).

Pr act_i + 1 = P act_i + 1 / P total_act (10)
Here, P total_act = P act_1 + P act_2 + P act —3 + P act —4 + P act —5 + P act —6 + P act —7
P act_i + 1 : Actual rolling load of the downstream rolling stand (F i + 1 )

次に、荷重バランス維持部110は、次の式(11)に従い、当該圧延スタンド161(F)の下流の圧延スタンド161(Fi+1)の荷重バランスを維持するための当該圧延スタンド161(F)の圧下位置補正量Dr_iを算出する(ステップS75)。

r_i=φcoef_i・ΔPri+1・Kp・(1+1/(T・s)) (11)
ここで、ΔPri+1=Pract_i+1−Prset_i+1
Kp:比例ゲイン
:積分時間
s:ラプラス演算子
Next, the load balance maintaining unit 110, in accordance with the following equation (11), the rolling stand 161 to maintain load balance of the downstream roll stand 161 of the rolling stands 161 (F i) (F i + 1) calculating a pressing position correction amount D r_i of (F i) (step S75).

D r_i = φ coef_i · ΔPr i + 1 · Kp i · (1 + 1 / (T i · s)) (11)
Here, ΔPr i + 1 = Pr acti + 1 −Pr seti + 1
Kp i : proportional gain
T i : integration time
s: Laplace operator

式(11)において、ΔPri+1は、下流の圧延スタンド161(Fi+1)における実績荷重比Pract_i+1の設定荷重比Prset_i+1からの偏差である。そこで、荷重バランス維持部110は、この偏差ΔPri+1を小さくする方向に、圧延スタンド161(F)の設定圧下位置Sset_iを補正する。 In the formula (11), ΔPr i + 1 is the deviation from set load ratio Pr set_i + 1 Actual load ratio Pr act_i + 1 downstream of the roll stand 161 (F i + 1). Therefore, the load balance maintaining unit 110 corrects the set reduction position S set_i of the rolling stand 161 (F i ) in a direction to reduce the deviation ΔPri + 1 .

なお、式(11)は、比例積分制御を想定した場合の例であり、この場合、荷重バランス維持部110は、圧延スタンド161(F)毎に比例ゲインKpと積分時間Tsとを用いて比例積分制御を行うこととなる。また、圧下位置補正量Dr_iを算出する際には、比例のみあるいは積分のみの制御を想定してもよい。また、補正量応答の一律性を考慮する場合には、圧延スタンド161間における鋼板163の速度、圧延スタンド161間の距離、圧延実績値のサンプリング周期などを含んだ計算式に従い、圧下位置補正量Dr_iを算出することもできる。 Expression (11) is an example in the case of assuming proportional integral control. In this case, the load balance maintaining unit 110 determines the proportional gain Kp i and the integration time Ts i for each rolling stand 161 (F i ). To perform proportional integral control. Further, when calculating the roll- down position correction amount Dr_i , control of only proportional or integral may be assumed. When considering the uniformity of the correction amount response, the rolling position correction amount is calculated according to a calculation formula including the speed of the steel plate 163 between the rolling stands 161, the distance between the rolling stands 161, the sampling period of the actual rolling value, and the like. Dr_i can also be calculated.

次に、荷重バランス維持部110は、圧延スタンド(F〜F)の全てについて圧下位置補正量Dr_iの計算が終了したか否かを判定し(ステップS76)、終了していない場合には(ステップS76でNo)、ステップS71以下の処理を再度実行する。また、圧延スタンド(F〜F)の全てについて圧下位置補正量Dr_iの計算が終了した場合には(ステップS76でYes)、当該荷重バランス維持処理を終了する。 Next, the load balance maintaining unit 110 determines whether or not the calculation of the rolling position correction amount Dr_i has been completed for all of the rolling stands (F 1 to F 6 ) (step S76). (No in step S76), the processing in step S71 and subsequent steps is executed again. Further, if all the calculation of rolling position correction amount D r_i the rolling stands (F 1 ~F 6) has been completed (Yes in step S76), and finishes the load balance keeping process.

図8は、圧下位置制御部106によって実行される圧下位置制御処理の処理フローの例を示した図である。この圧下位置制御処理は、一定の周期(例えば1秒周期)で起動されて実行される。   FIG. 8 is a diagram illustrating an example of a process flow of the rolling position control process executed by the rolling position control unit 106. This rolling-down position control process is started and executed at a constant cycle (for example, one second cycle).

圧下位置制御部106は、まず、鋼板163の圧延に先立ちセットアップ制御部101により計算された各圧延スタンド(F)の設定圧下位置Sset_iを取得する(ステップS81)。 Pressing position control unit 106 first obtains a set pressing position S Set_i of each rolling stand, which is calculated by the setup controller 101 prior to the rolling of the steel sheet 163 (F i) (step S81).

次に、圧下位置制御部106は、鋼板163の圧延開始を判定し(ステップS82)、圧延が開始されていない場合には(ステップS82でNo)、ステップS82の圧延開始の判定処理を繰り返し実行する。一方、鋼板163の圧延が開始された場合には(ステップS82でYes)、圧下位置制御部106は、各圧延スタンド161(F〜F)に対してBISRA AGCの計算を行い、これにより生じる圧下位置補正量Dbsr_iを算出する(ステップS83)。 Next, the rolling position control unit 106 determines the start of rolling of the steel plate 163 (step S82). If the rolling is not started (No in step S82), the rolling start determination process of step S82 is repeatedly performed. I do. On the other hand, if the rolling of the steel sheet 163 is started (in step S82 Yes), pressing position control unit 106 performs calculation of BISRA AGC for each rolling stand 161 (F 1 ~F 7), thereby The generated rolling position correction amount D bsr_i is calculated (step S83).

なお、BISRA AGCは、鋼板163の長手方向の硬度ムラや厚み偏差を補償し、均一な厚みを得るためのAGC機能である。このBISRA AGCに基づく圧下位置補正量Dbsr_iの計算式は、各種の文献に示されているが、例えば、次の式(12)がある。

bsr_i=A1_i・(Pact_i−Plock_i) (12)
ここで、Plock_i:鋼板163の先端でロックオンしたときの実績荷重
1_i:比例係数
The BISRA AGC is an AGC function for compensating for hardness unevenness and thickness deviation in the longitudinal direction of the steel plate 163 and obtaining a uniform thickness. Formulas for calculating the rolling position correction amount D bsr_i based on the BISRA AGC are shown in various documents, and for example, there is the following formula (12).

D bsr_i = A 1_i · (P act_i −P lock_i ) (12)
Here, P lock_i is the actual load at the time of locking on at the tip of the steel plate 163.
A 1_i : Proportional coefficient

次に、圧下位置制御部106は、各圧延スタンド161(F〜F)に対してゲージメータAGCの計算を行い、これにより生じる圧下位置補正量Dgmt_iを算出する(ステップS84)。ゲージメータAGCは、ゲージメータ式で推定される各圧延スタンド161(F〜F)の望ましい出側板厚からの偏差を低減するためのAGC機能である。このゲージメータAGCに基づく圧下位置補正量Dgmt_iの計算式は、各種の文献に示されているが、例えば、次の式(13)がある。

gmt_i=A2_i・(htarget_i−hest_i) (13)
ここで、hest_i=Sact_i+Pact_i/K+ΔD
target_i:圧延スタンド(F)の望ましい出側板厚
est_i:圧延スタンド(F)の推定出側板厚
act_i:圧延スタンド(F)の実績圧下位置
ΔD:補正係数
:圧延スタンド(F)のバネ係数
2_i:係数
Then, pressing position control unit 106 performs calculation of the gauge meter AGC for each rolling stand 161 (F 1 ~F 7), thereby to calculate the pressing position correction amount D Gmt_i caused (step S84). Gauge meter AGC is AGC function to reduce the deviation from the exit side thickness desired of the rolling stand 161 (F 1 ~F 7) which is estimated by the gauge meter equation. The calculation formula of the roll-down position correction amount D gmt_i based on the gauge meter AGC is shown in various documents, and for example, there is the following formula (13).

D gmt_i = A 2 — i · (h target — i −hest — i ) (13)
Here, h est_i = S act_i + P act_i / K i + ΔD i
h target_i : Desired exit plate thickness of the rolling stand (F i )
h est_i : Estimated exit plate thickness of rolling stand (F i )
S act_i: Actual pressure position of the rolling stand (F i)
ΔD i : correction coefficient
K i : spring coefficient of rolling stand (F i )
A 2_i : Coefficient

次に、圧下位置制御部106は、各圧延スタンド161(F〜F)に対してモニタAGCの計算を行い、これにより生じる圧下位置補正量Dmnt_iを算出する(ステップS85)。モニタAGCは、マルチゲージ164で検出された圧延スタンド161(F)の出側板厚の目標板厚からの偏差を低減するためのAGC機能である。このモニタAGCに基づく圧下位置補正量Dmnt_iの計算式は、各種の文献に示されているが、例えば、次の式(14)がある。

mnt_i=A3_i・(htarget_7−hact_7) (14)
ここで、htarget_7:圧延スタンド(F)の望ましい出側板厚(目標板厚)
act_7:圧延スタンド(F)の実績出側板厚,
3_i:係数
Then, pressing position control unit 106 performs calculation of monitor AGC for each rolling stand 161 (F 1 ~F 7), thereby to calculate the pressing position correction amount D Mnt_i caused (step S85). The monitor AGC is an AGC function for reducing the deviation of the exit plate thickness of the rolling stand 161 (F 7 ) from the target plate thickness detected by the multi gauge 164. Formulas for calculating the roll-down position correction amount D mnt_i based on the monitor AGC are described in various documents, and for example, there is the following formula (14).

D mnt_i = A 3i · (h target — 7 −h act — 7 ) (14)
Here, h target_7: exit side thickness desired rolling stands (F i) (target thickness)
h act_7: Actual delivery side thickness of the rolling stand (F i),
A 3_i : Coefficient

次に、圧下位置制御部106は、荷重バランス維持部110による荷重バランス維持処理(図7参照)で算出された荷重バランスを維持するための圧下位置補正量Dr_iを取得する(ステップS86)。そして、ステップS81で求めた設定圧下位置Sset_iに、ステップS83〜S86で求めた各圧下位置補正量Dbsr_i,Dgmt_i,Dmnt_i,Dr_iを加算し、その加算により得られた圧下位置Sを、仕上げミル160の各圧延スタンド161に出力する(ステップS87)。 Next, the rolling position control unit 106 acquires the rolling position correction amount Dr_i for maintaining the load balance calculated in the load balance maintaining process (see FIG. 7) by the load balance maintaining unit 110 (step S86). Then, the set pressure position S Set_i obtained in step S81, the pressing position correction amount D Bsr_i obtained in step S83~S86, D gmt_i, D mnt_i, adding D r_i, pressing position S obtained by the addition i is output to each rolling stand 161 of the finishing mill 160 (step S87).

次に、圧下位置制御部106は、鋼板163の圧延が終了したかを判定し(ステップS88)、鋼板163の圧延が終了していない場合には(ステップS88でNo)、ステップS83〜S87の処理を繰り返し実行する。一方、鋼板163の圧延が終了した場合には(ステップS88でYes)、当該圧下位置制御処理を終了する。   Next, the rolling position control unit 106 determines whether the rolling of the steel plate 163 has been completed (Step S88). If the rolling of the steel plate 163 has not been completed (No in Step S88), the process proceeds to Steps S83 to S87. Repeat the process. On the other hand, when the rolling of the steel plate 163 has been completed (Yes in step S88), the rolling position control process ends.

図9は、荷重バランス維持部110における処理構成の例を模式的に示した図である。すなわち、図9には、下流スタンド902(Fi+1)の実績荷重比Pract_i+1が設定荷重比Prset_i+1に近い値となるように上流スタンド901(F)の圧下位置Sを制御するような荷重バランス維持部110の処理構成が示されている。 FIG. 9 is a diagram schematically illustrating an example of a processing configuration in the load balance maintaining unit 110. That is, FIG. 9 shows the rolling position S of the upstream stand 901 (F i ) such that the actual load ratio Pr act_i + 1 of the downstream stand 902 (F i + 1 ) is close to the set load ratio Pr set_i + 1. The processing configuration of the load balance maintaining unit 110 that controls i is shown.

図9に示すように、荷重バランス維持部110は、圧下位置制御部106の内部に設けられている。また、荷重バランス維持部110の内部には、実績荷重比算出部904および圧下位置補正量算出部906が設けられている。ここで、実績荷重比算出部904は、圧延実績収集部107を介して取得された各圧延スタンド161(F〜F)の実績圧延荷重Pact_iを用いて、各圧延スタンド161(F〜F)の実績荷重比Pract_iを算出する。さらに、圧下位置補正量算出部906は、上流スタンド901(F)における影響係数φcoef_iと、下流スタンド902(Fi+1)における実績荷重比Pract_i+1の設定荷重比Prset_i+1からの偏差ΔPri+1と、に基づき上流スタンド901(F)の圧下位置補正量Dr_iを算出する。 As shown in FIG. 9, the load balance maintaining unit 110 is provided inside the rolling position control unit 106. Further, inside the load balance maintaining unit 110, an actual load ratio calculating unit 904 and a rolling position correction amount calculating unit 906 are provided. Here, the actual load ratio calculating unit 904, using the actual rolling load P Act_i rolling result collection unit 107 each rolling stand 161 which is obtained through the (F 1 ~F 7), each rolling stand 161 (F 1 FF 7 ) is calculated. Further, the rolling position correction amount calculation unit 906 determines the influence coefficient φ coef_i in the upstream stand 901 (F i ) and the set load ratio Pr set_i + 1 of the actual load ratio Pr act_i + 1 in the downstream stand 902 (F i + 1 ). the deviation? Pr i + 1 from, for calculating a pressing position correction amount D r_i upstream stand 901 (F i) on the basis of.

すなわち、こうして得られた圧下位置補正量Dr_iは、下流スタンド902(Fi+1)における実績荷重比Pract_i+1の設定荷重比Prset_i+1からの偏差ΔPri+1を解消するための圧下位置の補正量ということができる。換言すれば、上流スタンド901(F)における圧下位置補正量Dr_iは、下流スタンド902(Fi+1)における実績荷重比Pract_i+1を、設定荷重比Prset_i+1から変動しないように維持するための圧下位置の補正量ということができる。 That is, pressing position correction amount D r_i thus obtained, in order to eliminate the deviation? Pr i + 1 from the set load ratio Pr set_i + 1 downstream stand 902 (F i + 1) Actual load ratio of Pr act_i + 1 Can be said to be the correction amount of the rolling-down position. In other words, pressing position correction amount D r_i the upstream stand 901 (F i), the actual load ratio Pr act_i + 1 at the downstream stand 902 (F i + 1), so as not to change the setting load ratio Pr set_i + 1 It can be said that the amount of correction of the roll-down position for maintaining the pressure is maintained.

また、圧下位置補正量算出部906からの出力910は、BISRA AGC111、ゲージメータAGC112、モニタAGC113(図示省略:図1参照)からの出力に加算された上で、セットアップ制御部101により設定された圧下位置を補正する。そして、その補正された圧下位置が上流スタンド901(F)に出力される。 The output 910 from the rolling position correction amount calculation unit 906 is set by the setup control unit 101 after being added to the outputs from the BISRA AGC 111, the gauge meter AGC 112, and the monitor AGC 113 (not shown: see FIG. 1). Correct the rolling position. Then, the corrected rolling position is output to the upstream stand 901 (F i ).

なお、最終段の圧延スタンド161(F)については図9でいう下流スタンド902(Fi+1)に相当するものが存在しないので、荷重バランス維持部110は設けられない。この場合には、圧下位置補正量算出部906からの出力910、すなわち、圧下位置補正量Dr_7は、ゼロとみなされる。 Note that, as for the final rolling stand 161 (F 7 ), there is no one corresponding to the downstream stand 902 (F i + 1 ) in FIG. 9, so that the load balance maintaining unit 110 is not provided. In this case, the output 910 from the rolling position correction amount calculation unit 906, that is, the rolling position correction amount Dr_7 is regarded as zero.

以上のように、本発明の第1の実施形態によれば、鋼板163の圧延中に、下流スタンド902(Fi+1)の実績荷重比Pract_i+1が予め適切に設定された設定荷重比Prset_i+1と同じになるように、上流スタンド901(F)の圧下位置Sが制御される。すなわち、実績荷重比Pract_iを設定荷重比Prset_i+1に近付けるような制御が行われる。したがって、本発明に係る実施形態では、鋼板163の圧延中であっても、予めセットアップされた適切な荷重バランスを維持することができるようになる。その結果、圧延操業の安定性が向上するので、製造される鋼板163における形状、板幅、板厚の乱れを防止することができ、鋼板163の製品としての品質が向上する。 As described above, according to the first embodiment of the present invention, the actual load ratio Pr act_i + 1 of the downstream stand 902 (F i + 1 ) is appropriately set in advance during the rolling of the steel plate 163. The roll-down position S i of the upstream stand 901 (F i ) is controlled so as to be the same as the ratio Pr set — i + 1 . That is, control is performed such that the actual load ratio Pr act_i approaches the set load ratio Pr set_i + 1 . Therefore, in the embodiment according to the present invention, an appropriate load balance set up in advance can be maintained even during the rolling of the steel plate 163. As a result, the stability of the rolling operation is improved, so that the shape, width and thickness of the manufactured steel plate 163 can be prevented from being disordered, and the quality of the steel plate 163 as a product is improved.

≪第2の実施形態≫
図10は、本発明の第2の実施形態に係るタンデム圧延ミル制御装置100aの構成の例を、荷重バランス維持部110における処理構成を中心として示した図である。第2の実施形態に係るタンデム圧延ミル制御装置100aは、制御パラメータ抽出部1001、制御パラメータ記憶部1002および制御パラメータ検索補助記憶部1003が追加された点でのみ、第1の実施形態に係るタンデム圧延ミル制御装置100と相違する。
<< 2nd Embodiment >>
FIG. 10 is a diagram illustrating an example of the configuration of the tandem rolling mill control device 100a according to the second embodiment of the present invention, focusing on the processing configuration in the load balance maintaining unit 110. The tandem rolling mill control device 100a according to the second embodiment is different from the tandem rolling mill control device 100a according to the first embodiment only in that a control parameter extraction unit 1001, a control parameter storage unit 1002, and a control parameter search auxiliary storage unit 1003 are added. This is different from the rolling mill control device 100.

制御パラメータ抽出部1001は、圧下位置補正量算出部906で用いられる制御パラメータである比例ゲインKpと積分時間Tについて、次回圧延する鋼板163に適した値を求める。そして、その求めた比例ゲインKpと積分時間Tの値を、鋼板163の圧延に先立って圧下位置補正量算出部906に出力する。この制御パラメータを求めるに当たって、制御パラメータ抽出部1001は、制御パラメータ記憶部1002および制御パラメータ検索補助記憶部1003を参照するが、その詳細については後記する。 The control parameter extraction unit 1001 obtains a value suitable for the steel sheet 163 to be rolled next time for the proportional gain Kp i and the integration time T i that are the control parameters used in the rolling position correction amount calculation unit 906. Then, the obtained values of the proportional gain Kp i and the integration time T i are output to the rolling position correction amount calculation unit 906 prior to the rolling of the steel plate 163. In obtaining the control parameters, the control parameter extraction unit 1001 refers to the control parameter storage unit 1002 and the control parameter search auxiliary storage unit 1003, the details of which will be described later.

図11は、本発明の第2の実施形態に係る制御パラメータ記憶部1002に記憶される制御パラメータテーブル1002Tの構成の例を示した図である。図11に示すように、制御パラメータテーブル1002Tには、各圧延スタンド161(F〜F)に対する荷重バランス維持部110で用いられる制御パラメータの値が圧延仕様番号に対応付けられて記憶される。ここで、制御パラメータとは、式(11)に含まれる比例ゲインKpおよび積分時間Tをいう。 FIG. 11 is a diagram illustrating an example of a configuration of a control parameter table 1002T stored in the control parameter storage unit 1002 according to the second embodiment of the present invention. As shown in FIG. 11, the control parameter table 1002T, the value of the control parameters used by the load balancing maintaining portion 110 for each rolling stand 161 (F 1 ~F 6) are stored in association with the rolling specifications No. . Here, the control parameter refers to a proportional gain Kp i and integral time T i included in equation (11).

なお、圧延スタンド161(F)については、下流の圧延スタンド161が存在しないので、荷重バランス維持部110は設けられない。したがって、制御パラメータテーブル1002Tには、圧延スタンド161(F)に対して設定される制御パラメータは存在しない。 In addition, regarding the rolling stand 161 (F 7 ), since the downstream rolling stand 161 does not exist, the load balance maintaining unit 110 is not provided. Therefore, there is no control parameter set for the rolling stand 161 (F 7 ) in the control parameter table 1002T.

図11の制御パラメータテーブル1002Tの例では、圧延仕様番号が「1〜4」の場合には、i=1〜6の圧延スタンド161(F)のそれぞれに比例ゲインKpおよび積分時間Tの値が記憶されている。これは、圧延スタンド161(F〜F)の全てで荷重バランス維持のための圧下位置補正処理が行われることを意味する。 In the example of a control parameter table 1002T shown in FIG. 11, when the rolling specification number "1-4" is proportional to the respective gains of i = 1 to 6 in the rolling stands 161 (F i) Kp i and integral time T i Is stored. This means that the pressing position correction processing for load balance maintenance is performed on all the rolling stands 161 (F 1 ~F 6).

一方、圧延仕様番号が「5」の場合には、比例ゲインKpおよび積分時間Tの値は、圧延スタンド161(F)については記憶されているが、圧延スタンド161(F〜F)については記憶されていない(図中の記号「−」はブランクを表す)。これは、荷重バランス維持のための圧下位置補正処理が、圧延スタンド161(F)でのみ行われ、圧延スタンド161(F〜F)では行われないことを意味する。なお、圧下位置補正処理が行われない場合には、圧下位置補正量算出部906からの出力910をゼロとすればよい。 On the other hand, when the rolling specification number is “5”, the values of the proportional gain Kp 6 and the integration time T 6 are stored for the rolling stand 161 (F 6 ), but are stored in the rolling stand 161 (F 1 to F 6 ). 5 ) is not stored (the symbol "-" in the figure represents a blank). This means that the rolling position correction processing for maintaining the load balance is performed only in the rolling stand 161 (F 6 ), and is not performed in the rolling stand 161 (F 1 to F 5 ). When the rolling position correction processing is not performed, the output 910 from the rolling position correction amount calculation unit 906 may be set to zero.

一般に、荷重比が最も変動し易く、鋼板163の品質に最も大きな影響を及ぼす圧延スタンド161は、最終段の圧延スタンド161(F)である。例えば、圧延仕様番号が「5」の例では、最終段の圧延スタンド161(F)における実績荷重比Pract_7のみを、セットアップ制御部101で設定された設定荷重比Prset_7に維持するようにする。そして、圧延スタンド161(F)のみで荷重バランス維持のための圧下位置補正を行う。なお、この場合には、圧延スタンド161(F〜F)では、圧下位置の補正量が小さくなるので、その分、圧下位置の変動が抑制され、圧延操業が安定化される効果も期待することができる。 Generally, the rolling stand 161 in which the load ratio is most likely to fluctuate and has the greatest influence on the quality of the steel plate 163 is the last rolling stand 161 (F 7 ). For example, in the example of the rolling specifications numbers "5", only the actual load ratio Pr ACT_7 in the rolling stand 161 of the final stage (F 7), so as to maintain the set load ratio Pr Set_7 set by the setup controller 101 I do. Then, the rolling position correction for maintaining the load balance is performed only by the rolling stand 161 (F 6 ). In this case, in the rolling stand 161 (F 1 to F 5 ), the correction amount of the rolling position is small, and accordingly, the fluctuation of the rolling position is suppressed and the effect of stabilizing the rolling operation is expected. can do.

また、圧延仕様番号が「6」の場合、制御パラメータテーブル1002Tには、2つの圧延スタンド161(F,F)についてのみ、比例ゲインKpおよび積分時間Tの値が記憶されている。この場合には、圧延スタンド161(F〜F)では、荷重バランス維持のための圧下位置補正処理は行われない。以下、同様に、下流の3つ以上の圧延スタンド161について、適宜、荷重バランス維持のための圧下位置補正処理を行うようにすることもできる。 Further, if the rolling specifications number is "6", the control parameter table 1002T, for only two rolling stands 161 (F 5, F 6) , the value of the proportional gain Kp 6 and integral time T 6 is stored . In this case, the rolling stands 161 (F 1 ~F 4), pressing position correction processing for load balancing maintenance is not performed. Hereinafter, similarly, the rolling position correction processing for maintaining the load balance may be appropriately performed for three or more rolling stands 161 on the downstream side.

以上のように本実施形態では、制御パラメータテーブル1002Tを導入したことにより、隣接した2つの圧延スタンド161(F,Fi+1)間での荷重バランス維持制御を、制御パラメータの組み合わせ方の変更により容易に様々な形態に変更することができる。しかも、その変更は、全ての圧延スタンド161(F〜F)での荷重バランス維持制御にも適用でき、また、特定の圧延スタンド161(F,Fi+1)間だけでの荷重バランス維持制御にも適用できる。 As described above, in the present embodiment, by introducing the control parameter table 1002T, the load balance maintaining control between the two adjacent rolling stands 161 (F i , F i + 1 ) can be controlled by combining the control parameters. Various forms can be easily changed by the change. In addition, the change can be applied to the load balance maintaining control in all the rolling stands 161 (F 1 to F 6 ), and the load only between the specific rolling stands 161 (F i , F i + 1 ). It can also be applied to balance maintenance control.

図12は、本発明の第2の実施形態に係る制御パラメータ検索補助記憶部1003に記憶される制御パラメータ検索補助テーブル1003Tの構成の例を示した図である。図12に示すように、制御パラメータ検索補助テーブル1003Tは、圧延される鋼板163が鋼種、板厚、板幅で層別され、各層別の鋼板163に対して圧延仕様番号が対応付けられて構成される。   FIG. 12 is a diagram showing an example of the configuration of the control parameter search auxiliary table 1003T stored in the control parameter search auxiliary storage unit 1003 according to the second embodiment of the present invention. As shown in FIG. 12, the control parameter search assistance table 1003T is configured such that the steel plate 163 to be rolled is stratified by steel type, plate thickness, and plate width, and a rolling specification number is associated with the steel plate 163 of each stratum. Is done.

例えば、圧延される鋼板163の鋼種が「SS400」、目標板厚が「2.5mm」、目標板幅が「900mm」の場合、この鋼板163は、鋼種が「SS400」、目標板厚が「2.0〜3.0mm」、目標板幅が「〜1000mm」の層別に該当する。したがって、この場合の鋼板163の圧延仕様番号は、「3」となる。   For example, when the steel type of the steel plate 163 to be rolled is “SS400”, the target plate thickness is “2.5 mm”, and the target plate width is “900 mm”, the steel plate 163 has the steel type “SS400” and the target plate thickness “ 2.0 to 3.0 mm "and a target plate width of" to 1000 mm ". Therefore, the rolling specification number of the steel plate 163 in this case is “3”.

図13は、本発明の第2の実施形態に係る制御パラメータ抽出部1001が実行する制御パラメータ算出処理の処理フローの例を示した図である。図13に示すように、制御パラメータ抽出部1001は、まず、セットアップ制御部101を介して上位コンピュータ50から送信される情報である、次に圧延される鋼板163の鋼種、目標板厚、目標板幅を取得する(ステップS131)。次に、制御パラメータ抽出部1001は、図12の制御パラメータ検索補助テーブル1003Tを参照して、前記の鋼板163の鋼種、目標板厚、目標板幅に対応付けられた圧延仕様番号を抽出する(ステップS132)。   FIG. 13 is a diagram illustrating an example of a processing flow of a control parameter calculation process executed by the control parameter extraction unit 1001 according to the second embodiment of the present invention. As shown in FIG. 13, the control parameter extracting unit 1001 first transmits information transmitted from the host computer 50 via the setup control unit 101, that is, the steel type, the target plate thickness, and the target plate of the steel plate 163 to be rolled next. The width is obtained (step S131). Next, the control parameter extracting unit 1001 refers to the control parameter search auxiliary table 1003T in FIG. 12 to extract the rolling specification number associated with the steel type, the target plate thickness, and the target plate width of the steel plate 163 (see FIG. 12). Step S132).

次に、制御パラメータ抽出部1001は、図11の制御パラメータテーブル1002Tを参照して、前記抽出した圧延仕様番号に対応付けられた制御パラメータを抽出する(ステップS133)。このとき、圧延スタンド161(F〜F)のそれぞれに対応する制御パラメータ(比例ゲインKp〜Kpおよび積分時間T〜T)が抽出される。そこで、制御パラメータ抽出部1001は、その抽出した制御パラメータを、それぞれ対応する圧延スタンド161(F〜F)の圧下位置補正量算出部906に出力する(ステップS134)。 Next, the control parameter extracting unit 1001 refers to the control parameter table 1002T of FIG. 11 to extract the control parameters associated with the extracted rolling specification number (Step S133). At this time, control parameters corresponding to each of the rolling stands 161 (F 1 ~F 6) (proportional gain Kp 1 ~Kp 6 and integral time T 1 through T 6) is extracted. Therefore, the control parameter extraction unit 1001, the control parameters thereof extracted and output to the pressing position correction amount calculating unit 906 of the corresponding rolling stands 161 (F 1 ~F 6) (step S134).

なお、図11、図12の制御パラメータテーブル1002Tおよび制御パラメータ検索補助テーブル1003Tによって関連付けられる、圧延される鋼板163の圧延仕様と制御パラメータとの間には、以下のような関連を想定することができる。例えば、目標板厚が厚い場合には、圧延速度が遅いので、比例ゲインKpを小さくし、積分時間Tを大きく設定する。また、鋼板163の鋼種が硬い材料の場合には、先端部で荷重の予測が外れることに配慮し、圧延が不安定にならないように圧延スタンド161(F)の比例ゲインを小さく設定する。 Note that the following relationship may be assumed between the rolling parameters of the steel plate 163 to be rolled and the control parameters, which are related by the control parameter table 1002T and the control parameter search auxiliary table 1003T in FIGS. it can. For example, when the target plate thickness is large, the rolling speed is low, so the proportional gain Kp is reduced and the integration time T is set large. Further, when the steel type of the steel plate 163 is a hard material, the proportional gain of the rolling stand 161 (F 6 ) is set small so that the rolling is not unstable, considering that the load is not predicted at the tip.

また、本実施形態では、鋼板163の全長にわたって同じ制御パラメータの組合せで荷重バランスを制御するものとしたが、鋼板163の先端部や尾端部を圧延するときと、それ以外の部分を圧延するときとで、異なる制御パラメータの組合せで制御してもよい。例えば、鋼板163の先端部では、圧延の安定性に配慮して比例ゲインKpを小さく設定するが、それ以外の部分では応答性に配慮して比例ゲインKpをやや大きい値に設定してもよい。あるいは、このような設定を鋼板163が薄板の場合に限定し、鋼板163の先端部でも圧延が不安定になりにくい厚板の場合には、先端部とそれ以外の部分とで同じ比例ゲインKpと同じ積分時間Tを設定してもよい。   Further, in the present embodiment, the load balance is controlled by the same combination of control parameters over the entire length of the steel plate 163. However, when the front end portion or the tail end portion of the steel plate 163 is rolled, the other portions are rolled. At times, control may be performed using a combination of different control parameters. For example, at the tip of the steel plate 163, the proportional gain Kp is set small in consideration of the stability of rolling, but in other portions, the proportional gain Kp may be set to a slightly large value in consideration of responsiveness. . Alternatively, such a setting is limited to the case where the steel plate 163 is a thin plate, and in the case of a thick plate where rolling is not likely to be unstable even at the leading end of the steel plate 163, the same proportional gain Kp is applied to the leading end and other parts. The same integration time T may be set.

また、鋼板163の先端部では、下流の圧延スタンド161(F,F)に限定して荷重バランスの制御を行い、先端部の圧延が終わると、全ての圧延スタンド161(F〜F)を対象に、荷重バランスの制御を行うようにしてもよい。 Further, the distal end portion of the steel plate 163, and controls the load balancing is limited to downstream of the rolling stand 161 (F 5, F 6) , the rolling of the tip ends, all the rolling stands 161 (F 1 to F The load balance may be controlled for 6 ).

また、荷重バランス維持部110を、鋼板163の全長にわたって働かせてもよいし、鋼板163の先端部を一定長あるいは一定時間圧延した後に動作を始めたり、鋼板163を圧延し終わる一定長あるいは一定時間前に動作を終了させたりしてもよい。また、これらの制御が各圧延スタンド161(F〜F)のそれぞれで異なったものであってもよい。例えば、圧延スタンド161(F〜F)では、荷重バランス維持部110を鋼板163の全長にわたって動作させ、圧延スタンド161(F)では、鋼板163の先端部除いた部分で動作させるようにしてもよい。本実施形態では、以上のような制御を、鋼板163の長手方向で、適宜、圧延仕様番号を切り替えることで容易に実現できる。 Further, the load balance maintaining unit 110 may be operated over the entire length of the steel plate 163, or the operation may be started after the tip of the steel plate 163 is rolled for a fixed length or for a fixed time, or may be started after the steel plate 163 is rolled for a fixed length or a fixed time. The operation may be terminated before. Further, it may be one of these control are different for each respective rolling stand 161 (F 1 ~F 6). For example, in the rolling stand 161 (F 1 to F 5 ), the load balance maintaining unit 110 is operated over the entire length of the steel plate 163, and in the rolling stand 161 (F 6 ), the load balance maintaining unit 110 is operated in a portion excluding the leading end of the steel plate 163. You may. In the present embodiment, the above control can be easily realized by appropriately switching the rolling specification number in the longitudinal direction of the steel plate 163.

また、本実施形態は、制御パラメータ抽出部1001が圧下位置補正量算出部906に含まれる比例ゲインKpおよび積分時間Tの両方を設定するものであるが、その一方だけを設定するものであってもよい。あるいは、制御パラメータ抽出部1001が微分時間など他の制御パラメータをさらに設定するものであってもよい。   In the present embodiment, the control parameter extraction unit 1001 sets both the proportional gain Kp and the integration time T included in the rolling position correction amount calculation unit 906, but sets only one of them. Is also good. Alternatively, the control parameter extraction unit 1001 may further set another control parameter such as a differentiation time.

なお、第2の実施形態においても、第1の実施形態と同様に、圧延中であっても、予めセットアップされた荷重バランスを維持することが可能となる。さらに、制御パラメータ抽出部1001や制御パラメータ記憶部1002などを設けたことから、荷重バランス維持部110における制御の融通性や多様性を向上させることができる。   In the second embodiment, similarly to the first embodiment, it is possible to maintain a preset load balance even during rolling. Further, since the control parameter extracting unit 1001 and the control parameter storing unit 1002 are provided, the flexibility and variety of control in the load balance maintaining unit 110 can be improved.

≪第2の実施形態の変形例≫
図14は、本発明の第2の実施形態の変形例に係る制御パラメータ検索補助記憶部1003に記憶される制御パラメータ検索補助テーブル1003Taの構成の例を示した図である。なお、本変形例では、制御パラメータテーブル1002Tの構成は、図11に示した構成と同じである。
<< Modified Example of Second Embodiment >>
FIG. 14 is a diagram showing an example of the configuration of a control parameter search auxiliary table 1003Ta stored in the control parameter search auxiliary storage unit 1003 according to a modification of the second embodiment of the present invention. In this modification, the configuration of the control parameter table 1002T is the same as the configuration shown in FIG.

制御パラメータ検索補助テーブル1003Taは、圧延を終えた鋼板163と次に圧延される鋼板163との鋼種差、目標板厚差、目標板幅差により層別された各層別に対し、圧延仕様番号が対応付けられて構成される。図14によれば、例えば、圧延を終えた鋼板163と次に圧延される鋼板163との鋼種差が「異鋼種」、目標板厚差および目標板幅差がともに「0」である場合には、圧延仕様番号として「3」が対応付けられる。また、鋼種差が「異鋼種」、板厚差が「7%」、板幅差が「12%」である場合には、圧延仕様番号として「4」が対応付けられる。   In the control parameter search auxiliary table 1003Ta, a rolling specification number corresponds to each layer stratified by a steel type difference, a target sheet thickness difference, and a target sheet width difference between the rolled steel sheet 163 and the next rolled steel sheet 163. Attached and configured. According to FIG. 14, for example, when the steel type difference between the rolled steel sheet 163 and the steel sheet 163 to be rolled next is “different steel type”, and the target thickness difference and the target thickness difference are both “0”. Is associated with “3” as a rolling specification number. When the steel type difference is “different steel type”, the sheet thickness difference is “7%”, and the sheet width difference is “12%”, “4” is associated as the rolling specification number.

図15は、本発明の第2の実施形態の変形例において制御パラメータ抽出部1001が実行する制御パラメータ算出処理の処理フローの例を示した図である。図15に示すように、制御パラメータ抽出部1001は、まず、セットアップ制御部101を介して上位コンピュータ50から送信される、圧延を終えた鋼板163と次に圧延される鋼板163との鋼種差、目標板厚差、目標板幅差を取得する(ステップS151)。次に、制御パラメータ抽出部1001は、図14の制御パラメータ検索補助テーブル1003Taを参照して、前記の鋼種差、目標板厚差、目標板幅差に対応付けられた圧延仕様番号を抽出する(ステップS152)。   FIG. 15 is a diagram illustrating an example of a process flow of a control parameter calculation process executed by the control parameter extraction unit 1001 in a modification of the second embodiment of the present invention. As shown in FIG. 15, first, the control parameter extracting unit 1001 transmits a difference in steel type between the rolled steel plate 163 and the next rolled steel plate 163, transmitted from the host computer 50 via the setup control unit 101, A target plate thickness difference and a target plate width difference are acquired (Step S151). Next, the control parameter extraction unit 1001 refers to the control parameter search auxiliary table 1003Ta of FIG. 14 to extract the rolling specification number associated with the steel type difference, the target plate thickness difference, and the target plate width difference ( Step S152).

次に、制御パラメータ抽出部1001は、図11の制御パラメータテーブル1002Tを参照して、前記抽出した圧延仕様番号に対応付けられた制御パラメータを抽出する(ステップS153)。このとき、圧延スタンド161(F〜F)のそれぞれに対応する制御パラメータ(比例ゲインKp〜Kpおよび積分時間T〜T)が抽出される。そこで、制御パラメータ抽出部1001は、その抽出した制御パラメータを、それぞれ対応する圧延スタンド161(F〜F)の圧下位置補正量算出部906に出力する(ステップS154)。 Next, the control parameter extracting unit 1001 refers to the control parameter table 1002T of FIG. 11 to extract the control parameters associated with the extracted rolling specification number (Step S153). At this time, control parameters corresponding to each of the rolling stands 161 (F 1 ~F 6) (proportional gain Kp 1 ~Kp 6 and integral time T 1 through T 6) is extracted. Therefore, the control parameter extracting unit 1001 outputs the extracted control parameters to the corresponding rolling position correction amount calculating units 906 of the rolling stands 161 (F 1 to F 6 ) (step S154).

なお、圧延を終えた鋼板163と次に圧延される鋼板163との鋼種差、板厚差、板幅差と、制御パラメータとの間には、以下のような関連を想定することができる。例えば、鋼種差が異鋼種の場合には、鋼板163の先端部の板厚偏差が大きくなるので、これを解消するためにモニタAGC113による圧延スタンド161(F)の圧下位置補正でその圧下位置が動く頻度が大きくなる。そこで、このような場合には、鋼板163の先端部を安定して通板させるために、比例ゲインKpとして小さい値を、積分時間Tとして大きい値を設定するのが好ましい。加えて、板厚差が大きい場合には、鋼板163の先端部の板厚偏差がさらに大きくなる可能性があるので、比例ゲインKpをさらに小さく、積分時間Tをさらに大きく設定するのが好ましい。 The following relationship can be assumed between the difference in steel type, the difference in plate thickness, the difference in plate width between the steel plate 163 after rolling and the steel plate 163 to be rolled next, and the control parameter. For example, when the steel type difference is a different steel type, the thickness deviation at the tip end of the steel plate 163 becomes large. In order to solve this, the reduction position of the rolling stand 161 (F 7 ) by the monitor AGC 113 is corrected. Moves more frequently. Therefore, in such a case, it is preferable to set a small value as the proportional gain Kp and a large value as the integration time T in order to stably pass the leading end of the steel plate 163. In addition, when the plate thickness difference is large, the plate thickness deviation at the leading end of the steel plate 163 may be further increased. Therefore, it is preferable to set the proportional gain Kp smaller and the integration time T larger.

また、本実施形態の変形例では、鋼種の違いを「同鋼種」か「異鋼種」かにより層別したが、さらに、鋼種の違いを「強度差」など用いて、より精細に層別してもよい。   Further, in the modified example of the present embodiment, the difference between the steel types is stratified by `` the same steel type '' or the `` different steel type '', but the difference between the steel types is further classified by using `` strength difference '' or the like. Good.

なお、この第2の実施形態の変形例でも、前記の第2の実施形態と同様の効果を得ることでできることには変わりがない。   It should be noted that even in the modification of the second embodiment, there is no change in that the same effect as that of the second embodiment can be obtained.

本発明は、以上に説明した実施形態および変形例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施形態および変形例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態や変形例の構成の一部を、他の実施形態や変形例の構成に置き換えることが可能であり、また、ある実施形態や変形例の構成に他の実施形態や変形例の構成を加えることも可能である。また、各実施形態や変形例の構成の一部について、他の実施形態や変形例に含まれる構成を追加・削除・置換することも可能である。   The present invention is not limited to the above-described embodiments and modified examples, and further includes various modified examples. For example, the above-described embodiments and modified examples have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of an embodiment or a modified example can be replaced with the configuration of another embodiment or a modified example. Can be added. Further, for a part of the configuration of each embodiment or modification, the configuration included in another embodiment or modification can be added, deleted, or replaced.

50 上位コンピュータ
100,100a タンデム圧延ミル制御装置
101 セットアップ制御部
102 ドラフトスケジュール記憶部
102T ドラフトスケジュールテーブル
103 速度パターン記憶部
103T 速度パターンテーブル
104 設定荷重比算出部
105 影響係数算出部
106 圧下位置制御部
107 圧延実績収集部
108 速度制御部
110 荷重バランス維持部
111 BISRA AGC
112 ゲージメータAGC
113 モニタAGC
150 制御対象
160 仕上げミル
161 圧延スタンド
162 ワークロール
163 鋼板(被圧延材)
164 マルチゲージ
165 粗材(被圧延材)
901 上流スタンド(第2の圧延スタンド)
902 下流スタンド(第1の圧延スタンド)
904 実績荷重比算出部
906 圧下位置補正量算出部
910 圧下位置補正量算出部の出力
1001 制御パラメータ抽出部
1002 制御パラメータ記憶部
1003 制御パラメータ検索補助記憶部
1002T 制御パラメータテーブル
1003T,1003Ta 制御パラメータ検索補助テーブル
set_i 圧延スタンド(F)の設定圧延荷重
act_i 圧延スタンド(F)の実績圧延荷重
Prset_i 圧延スタンド(F)の設定荷重比
Pract_i 圧延スタンド(F)の実績荷重比
ΔPr 圧延スタンド(F)の実績荷重比の設定荷重比からの偏差
圧延スタンド(F)の圧下位置
set_i 圧延スタンド(F)の設定圧下位置
act_i 圧延スタンド(F)の実績圧下位置
φcoef_i 圧延スタンド(F)の影響係数
r_i 下流の圧延スタンド(Fi+1)の荷重バランスを維持するための上流の圧延
スタンド(F)の圧下位置補正量
bsr_i 圧延スタンド(F)のBISRA AGCに基づく圧下位置補正量
gmt_i 圧延スタンド(F)のゲージメータAGCに基づく圧下位置補正量
mnt_i 圧延スタンド(F)のモニタAGCに基づく圧下位置補正量
Reference Signs List 50 upper computer 100, 100a tandem rolling mill control device 101 setup control unit 102 draft schedule storage unit 102T draft schedule table 103 speed pattern storage unit 103T speed pattern table 104 set load ratio calculation unit 105 influence coefficient calculation unit 106 rolling position control unit 107 Rolling record collection unit 108 Speed control unit 110 Load balance maintenance unit 111 BISRA AGC
112 gauge AGC
113 Monitor AGC
150 Control target 160 Finishing mill 161 Rolling stand 162 Work roll 163 Steel plate (rolled material)
164 Multi gauge 165 Coarse material (rolled material)
901 Upstream stand (second rolling stand)
902 Downstream stand (first rolling stand)
904 Actual load ratio calculation unit 906 Rolling position correction amount calculation unit 910 Output of rolling position correction amount calculation unit 1001 Control parameter extraction unit 1002 Control parameter storage unit 1003 Control parameter search auxiliary storage unit 1002T Control parameter table 1003T, 1003Ta Control parameter search auxiliary actual load ratio table P Set_i rolling stands (F i) of the set rolling load P Act_i rolling stands (F i) actual rolling load Pr Set_i rolling stands (F i) set load ratio Pr Act_i rolling stands of (F i)? Pr i rolling stands (F i) set pressing position S Act_i rolling stands pressing position S Set_i rolling stands of the deviation S i roll stand from set load ratio of actual load ratio (F i) (F i) of the (F i) influence coefficient D r_i under actual pressing position phi Coef_i rolling stands (F i) Rolling stands (F i + 1) pressing position correction amount D Gmt_i rolling based on BISRA AGC of rolling position correction amount D Bsr_i rolling stand of the rolling stand upstream to maintain a load balance (F i) (F i) of the stand pressing position correction amount based on the monitoring of AGC (F i) of the pressing position correction amount D Mnt_i rolling stand based on the gauge meter AGC (F i)

Claims (10)

複数の圧延スタンドにより被圧延材を連続的に圧延するタンデム圧延ミルを制御するタンデム圧延ミル制御装置であって、
前記被圧延材の圧延に先立って、前記複数の圧延スタンドそれぞれに対し、前記被圧延材の目標板厚を実現するための設定圧延荷重および設定圧下位置を設定するセットアップ制御部と、
前記複数の圧延スタンドから選択された1つの圧延スタンドである第1の圧延スタンドについて、前記第1の圧延スタンドに設定された前記設定圧延荷重と、前記複数の圧延スタンドそれぞれに設定された前記設定圧延荷重とに基づき、前記第1の圧延スタンドについての設定荷重比を算出する設定荷重比算出部と、
前記被圧延材の圧延中に、前記第1の圧延スタンドから得られる実績圧延荷重と、前記複数の圧延スタンドそれぞれから得られる実績圧延荷重とに基づき、前記第1の圧延スタンドについての実績荷重比を算出する実績荷重比算出部と、
前記被圧延材の圧延中に、前記第1の圧延スタンドにおける前記実績荷重比の前記設定荷重比からの偏差が小さくなるように、前記第1の圧延スタンドの荷重比を単位量補正するのに必要な前記第1の圧延スタンドの上流に位置する第2の圧延スタンドの圧下位置補正量として算出される影響係数と前記第1の圧延スタンドにおける前記実績荷重比の前記設定荷重比からの偏差とに基づき算出した圧下位置補正量と、BISRA AGCに基づく圧下位置補正量と、ゲージメータAGCに基づく圧下位置補正量と、モニタAGCに基づく圧下位置補正量と、を加算して求めた前記第2の圧延スタンドの圧下位置補正量により、前記第2の圧延スタンドの圧下位置を制御する圧下位置制御部と、
を備えること
を特徴とするタンデム圧延ミル制御装置。
A tandem rolling mill control device that controls a tandem rolling mill that continuously rolls a material to be rolled by a plurality of rolling stands,
Prior to the rolling of the material to be rolled, for each of the plurality of rolling stands, a setup control unit for setting a set rolling load and a set rolling position for realizing a target thickness of the material to be rolled,
For a first rolling stand that is one rolling stand selected from the plurality of rolling stands, the set rolling load set for the first rolling stand, and the setting set for each of the plurality of rolling stands. A set load ratio calculation unit that calculates a set load ratio for the first rolling stand based on the rolling load;
During the rolling of the material to be rolled, an actual load ratio for the first rolling stand based on an actual rolling load obtained from the first rolling stand and an actual rolling load obtained from each of the plurality of rolling stands. An actual load ratio calculation unit that calculates
During the rolling of the material to be rolled, the load ratio of the first rolling stand is corrected by a unit amount such that the deviation of the actual load ratio in the first rolling stand from the set load ratio is reduced. An influence coefficient calculated as a required rolling position correction amount of a second rolling stand located upstream of the first rolling stand, and a deviation from the set load ratio of the actual load ratio in the first rolling stand. The second position obtained by adding the rolling position correction amount calculated based on the above, the rolling position correction amount based on the BISRA AGC, the rolling position correction amount based on the gauge meter AGC, and the rolling position correction amount based on the monitor AGC. A rolling position control unit that controls a rolling position of the second rolling stand according to a rolling position correction amount of the rolling stand;
A control device for a tandem rolling mill, comprising:
前記第1の圧延スタンドは、
前記複数の圧延スタンドのうち、最上流に位置する初段の圧延スタンドを含まない圧延スタンドから、順次選択された圧延スダンドであること
を特徴とする請求項1に記載のタンデム圧延ミル制御装置。
The first rolling stand comprises:
The tandem rolling mill control device according to claim 1, wherein the rolling stand is a rolling stand selected sequentially from rolling stands that do not include a first rolling stand positioned at the most upstream position among the plurality of rolling stands.
前記第2の圧延スタンドは、
前記第1の圧延スタンドの上流に隣接する圧延スタンドであること
を特徴とする請求項2に記載のタンデム圧延ミル制御装置。
The second rolling stand includes:
The tandem rolling mill control device according to claim 2, wherein the rolling stand is a rolling stand adjacent to the upstream of the first rolling stand.
前記設定荷重比算出部は、
前記複数の圧延スタンドそれぞれに設定された設定圧延荷重を、前記複数の圧延スタンドそれぞれに設定された設定圧延荷重の総和で除した値を、前記複数の圧延スタンドそれぞれの設定荷重比として計算し、
前記実績荷重比算出部は、
前記複数の圧延スタンドそれぞれで得られた実績圧延荷重を、前記複数の圧延スタンドそれぞれで得られた実績圧延荷重の総和で除した値を、前記複数の圧延スタンドそれぞれの実績荷重比として計算すること
を特徴とする請求項1に記載のタンデム圧延ミル制御装置。
The set load ratio calculation unit,
The set rolling load set for each of the plurality of rolling stands, a value divided by the sum of the set rolling loads set for each of the plurality of rolling stands is calculated as a set load ratio of each of the plurality of rolling stands,
The actual load ratio calculation unit,
The actual rolling load obtained in each of the plurality of rolling stands, a value obtained by dividing by the sum of the actual rolling loads obtained in each of the plurality of rolling stands, is calculated as the actual load ratio of each of the plurality of rolling stands. The control device for a tandem rolling mill according to claim 1, wherein:
前記被圧延材の圧延仕様毎に、比例積分制御により板厚制御する圧延スタンドにおいて圧下位置補正量の計算で用いられる比例ゲインと積分時間の制御パラメータを記憶した制御パラメータ記憶部と、
前記被圧延材の圧延に先立って、前記制御パラメータ記憶部から前記被圧延材の圧延仕
様に応じた制御パラメータを抽出し、前記抽出した制御パラメータを出力する制御パラメータ抽出部と、
をさらに備えること
を特徴とする請求項に記載のタンデム圧延ミル制御装置。
For each rolling specification of the material to be rolled, a control parameter storage unit that stores a control parameter of a proportional gain and an integration time used in calculation of a reduction position correction amount in a rolling stand that controls a thickness by a proportional integral control ,
Said prior to rolling of the rolled material, the control parameter from said storage unit extracts the control parameters corresponding to the rolling specifications of the rolled material, wherein you output the control parameters extracted control parameter extraction unit,
The tandem rolling mill control device according to claim 3 , further comprising:
前記制御パラメータ記憶部には、前記被圧延材の圧延仕様毎に、前記複数の圧延スタンドのうち最終段の圧延スタンドを除くそれぞれの圧延スタンドについて、その圧延スタンドの圧下位置補正量を計算するか否かを指示する情報が記憶されており、
記指示する情報が計算を指示する情報であった場合に限って、前記圧延スタンドの圧下位置補正量を計算すること
を特徴とする請求項に記載のタンデム圧延ミル制御装置。
In the control parameter storage unit, said each rolling specifications of the rolled material, for each rolling stand, except for rolling stands of the plurality of rolling stands sac Chi final stage, calculating a pressing position correction amount of the rolling stand Information for instructing whether or not to perform
Only when the information indicating previous SL was information indicating a calculation, tandem rolling mill control apparatus according to claim 5, characterized in that calculating a pressing position correction amount of the rolling stand.
複数の圧延スタンドにより被圧延材を連続的に圧延するタンデム圧延ミルを制御するコンピュータが、
前記被圧延材の圧延に先立って、前記複数の圧延スタンドそれぞれに対し、前記被圧延材の目標板厚を実現するための設定圧延荷重および設定圧下位置を設定する第1のステップと、
前記複数の圧延スタンドから選択された1つの圧延スタンドである第1の圧延スタンドについて、前記第1の圧延スタンドに設定された前記設定圧延荷重と、前記複数の圧延スタンドそれぞれに設定された前記設定圧延荷重とに基づき、前記第1の圧延スタンドについての設定荷重比を算出する第2のステップと、
前記被圧延材の圧延中に、前記第1の圧延スタンドから得られる実績圧延荷重と、前記複数の圧延スタンドそれぞれから得られる実績圧延荷重とに基づき、前記第1の圧延スタンドについての実績荷重比を算出する第3のステップと、
前記被圧延材の圧延中に、
前記第1の圧延スタンドにおける前記実績荷重比の前記設定荷重比からの偏差が小さくなるように、前記第1の圧延スタンドの荷重比を単位量補正するのに必要な前記第1の圧延スタンドの上流に位置する第2の圧延スタンドの圧下位置補正量として算出される影響係数と前記第1の圧延スタンドにおける前記実績荷重比の前記設定荷重比からの偏差とに基づき圧下位置補正量を算出し、BISRA AGCに基づく圧下位置補正量を算出し、ゲージメータAGCに基づく圧下位置補正量を算出し、モニタAGCに基づく圧下位置補正量を算出し、4つの前記圧下位置補正量を加算して求めた前記第2の圧延スタンドの圧下位置補正量により、前記第2の圧延スタンドの圧下位置を制御する第4のステップと、
を実行すること
を特徴とするタンデム圧延ミル制御方法。
A computer that controls a tandem rolling mill that continuously rolls the material to be rolled by a plurality of rolling stands,
Prior to the rolling of the material to be rolled, for each of the plurality of rolling stands, a first step of setting a set rolling load and a set rolling position for realizing a target thickness of the material to be rolled,
For a first rolling stand that is one rolling stand selected from the plurality of rolling stands, the set rolling load set for the first rolling stand, and the setting set for each of the plurality of rolling stands. A second step of calculating a set load ratio for the first rolling stand based on the rolling load;
During the rolling of the material to be rolled, an actual load ratio for the first rolling stand based on an actual rolling load obtained from the first rolling stand and an actual rolling load obtained from each of the plurality of rolling stands. A third step of calculating
During the rolling of the material to be rolled,
The first rolling stand of the first rolling stand necessary to correct the load ratio of the first rolling stand by a unit amount such that the deviation of the actual load ratio from the set load ratio in the first rolling stand is reduced . A rolling position correction amount is calculated based on an influence coefficient calculated as a rolling position correction amount of a second rolling stand located upstream and a deviation of the actual load ratio from the set load ratio in the first rolling stand. , Calculating the roll-down position correction amount based on the BISRA AGC, calculating the roll-down position correction amount based on the gauge meter AGC, calculating the roll-down position correction amount based on the monitor AGC, and adding the four roll-down position correction amounts. A fourth step of controlling the rolling position of the second rolling stand by the amount of correction of the rolling position of the second rolling stand,
And a tandem rolling mill control method.
前記第1の圧延スタンドは、
前記複数の圧延スタンドのうち、最上流に位置する初段の圧延スタンドを含まない圧延スタンドから、順次選択された圧延スタンドであること
を特徴とする請求項に記載のタンデム圧延ミル制御方法。
The first rolling stand comprises:
The tandem rolling mill control method according to claim 7 , wherein the plurality of rolling stands are rolling stands sequentially selected from rolling stands that do not include a first rolling stand positioned at the most upstream position .
前記第2の圧延スタンドは、
前記第1の圧延スタンドの上流に隣接する圧延スタンドであること
を特徴とする請求項に記載のタンデム圧延ミル制御方法。
The second rolling stand includes:
The tandem rolling mill control method according to claim 8 , wherein the rolling stand is a rolling stand adjacent to the upstream of the first rolling stand.
前記コンピュータは、
前記第2のステップでは、
前記複数の圧延スタンドそれぞれに設定された設定圧延荷重を、前記複数の圧延スタンドそれぞれに設定された設定圧延荷重の総和で除した値を、前記複数の圧延スタンドそれぞれの設定荷重比として計算し、
前記第3のステップでは、
前記複数の圧延スタンドそれぞれで得られた実績圧延荷重を、前記複数の圧延スタンドそれぞれで得られた実績圧延荷重の総和で除した値を、前記複数の圧延スタンドそれぞれの実績荷重比として計算すること
を特徴とする請求項に記載のタンデム圧延ミル制御方法。
The computer is
In the second step,
The set rolling load set for each of the plurality of rolling stands, a value divided by the sum of the set rolling loads set for each of the plurality of rolling stands is calculated as a set load ratio of each of the plurality of rolling stands,
In the third step,
The actual rolling load obtained in each of the plurality of rolling stands, a value obtained by dividing by the sum of the actual rolling loads obtained in each of the plurality of rolling stands, is calculated as the actual load ratio of each of the plurality of rolling stands. The tandem rolling mill control method according to claim 7 , characterized in that:
JP2017032247A 2017-02-23 2017-02-23 Tandem rolling mill control device and tandem rolling mill control method Active JP6670261B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017032247A JP6670261B2 (en) 2017-02-23 2017-02-23 Tandem rolling mill control device and tandem rolling mill control method
CN201810041988.4A CN108500064B (en) 2017-02-23 2018-01-17 Tandem rolls rolling mill control apparatus and tandem rolls milling train control method
DE102018200939.2A DE102018200939A1 (en) 2017-02-23 2018-01-22 Tandem rolling mill control device and tandem rolling mill control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017032247A JP6670261B2 (en) 2017-02-23 2017-02-23 Tandem rolling mill control device and tandem rolling mill control method

Publications (2)

Publication Number Publication Date
JP2018134673A JP2018134673A (en) 2018-08-30
JP6670261B2 true JP6670261B2 (en) 2020-03-18

Family

ID=63045855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017032247A Active JP6670261B2 (en) 2017-02-23 2017-02-23 Tandem rolling mill control device and tandem rolling mill control method

Country Status (3)

Country Link
JP (1) JP6670261B2 (en)
CN (1) CN108500064B (en)
DE (1) DE102018200939A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439791B (en) * 2019-08-29 2022-11-18 宝山钢铁股份有限公司 Thickness control method in finish rolling threading process
US20230011915A1 (en) * 2020-11-16 2023-01-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Continuous rolling system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356309A (en) * 1991-05-31 1992-12-10 Nippon Steel Corp Method for controlling load balance of plural lines of rolling mill
JP3506119B2 (en) * 2001-01-05 2004-03-15 Jfeスチール株式会社 Method of changing rolling load distribution of tandem rolling mill
JP4323273B2 (en) * 2003-09-18 2009-09-02 東芝三菱電機産業システム株式会社 Load distribution control device for continuous rolling mill
JP4466259B2 (en) * 2004-07-30 2010-05-26 Jfeスチール株式会社 Load distribution control method and apparatus for continuous rolling mill
JP4673848B2 (en) * 2005-05-16 2011-04-20 東芝三菱電機産業システム株式会社 Plate thickness controller
KR100643372B1 (en) * 2005-12-21 2006-11-10 주식회사 포스코 An apparatus and method for predicting and warning coil breakage generation in cold rolling mill process
JP5071376B2 (en) * 2007-01-22 2012-11-14 東芝三菱電機産業システム株式会社 Plate thickness controller
JP4452323B2 (en) * 2008-03-14 2010-04-21 新日本製鐵株式会社 Learning method of rolling load prediction in hot strip rolling.
JP5519472B2 (en) * 2010-10-27 2014-06-11 株式会社日立製作所 Rolled material tension control device, rolled material tension control method, and hot tandem rolling mill
JP6315818B2 (en) * 2014-10-07 2018-04-25 株式会社日立製作所 Control device and control method for tandem rolling mill

Also Published As

Publication number Publication date
CN108500064B (en) 2019-08-02
JP2018134673A (en) 2018-08-30
CN108500064A (en) 2018-09-07
DE102018200939A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
RU2448789C2 (en) Method of tracking hot metal sheet or strip physical state in control over plate mill
JP6315818B2 (en) Control device and control method for tandem rolling mill
CN103464471A (en) Automatic gauge control (AGC) self-adaptive control method for hot rolling mill
JP2009090348A (en) Method of controlling thickness in cold rolling
JP6670261B2 (en) Tandem rolling mill control device and tandem rolling mill control method
KR20160111477A (en) Energy consumption predicting device for rolling line
JP6438753B2 (en) Tandem rolling mill control device and tandem rolling mill control method
JP6025553B2 (en) Rolling control device, rolling control method, and rolling control program
JP4968001B2 (en) Load distribution control device for continuous rolling mill
WO2018216215A1 (en) Tandem rolling mill tail end meander control device
KR20170076866A (en) Apparatus for controlling strip deviation
JP4696775B2 (en) Plate width control method and apparatus
JP4788349B2 (en) Rolling control method and hot finish rolling mill
JP6663872B2 (en) Rolling mill control device, rolling mill control method, and rolling mill control program
JP7230880B2 (en) Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model
JPH09276915A (en) Dynamic setup method in continuous rolling mill
JP6801642B2 (en) Running plate thickness change method and equipment
JP5705083B2 (en) Thickness control method of rolling mill
JP6045420B2 (en) Hot tandem rolling mill control apparatus and hot tandem rolling mill control method
KR101462332B1 (en) Method and device for controlling speed of rolling mill
JP3937997B2 (en) Sheet width control method in hot finish rolling mill
JP2010253501A (en) Method and device for controlling tension in multistage rolling mill
JP6091411B2 (en) Thickness control method of rolling mill
JP2002346616A (en) Method for controlling sheet thickness
JP2001347308A (en) Method and device for setting pass schedule of rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150