JP6627390B2 - Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device - Google Patents

Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device Download PDF

Info

Publication number
JP6627390B2
JP6627390B2 JP2015198461A JP2015198461A JP6627390B2 JP 6627390 B2 JP6627390 B2 JP 6627390B2 JP 2015198461 A JP2015198461 A JP 2015198461A JP 2015198461 A JP2015198461 A JP 2015198461A JP 6627390 B2 JP6627390 B2 JP 6627390B2
Authority
JP
Japan
Prior art keywords
resin composition
manufactured
sealing resin
photosensitive
trade name
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015198461A
Other languages
Japanese (ja)
Other versions
JP2017073441A (en
Inventor
紀一 福原
紀一 福原
一行 満倉
一行 満倉
正也 鳥羽
正也 鳥羽
蔵渕 和彦
和彦 蔵渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015198461A priority Critical patent/JP6627390B2/en
Publication of JP2017073441A publication Critical patent/JP2017073441A/en
Application granted granted Critical
Publication of JP6627390B2 publication Critical patent/JP6627390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Materials For Photolithography (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本開示は、感光性封止樹脂組成物に関する。特に、微細化や高密度化の要求が高い半導体装置を効率よく、低コストに製造するための半導体装置製造用の感光性封止樹脂組成物と、それを用いた半導体装置の製造方法及び半導体装置に関する。   The present disclosure relates to a photosensitive sealing resin composition. In particular, a photosensitive encapsulating resin composition for manufacturing a semiconductor device for efficiently and inexpensively manufacturing a semiconductor device that requires high miniaturization and high density, a method for manufacturing a semiconductor device using the same, and a semiconductor Equipment related.

半導体パッケージの高密度化、高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されており、コスト面に優れたチップ間の高密度インターコネクト技術やパッケージ上に異なるパッケージをフリップチップ実装によって積層することで接続するパッケージ・オン・パッケージが重要になっている(例えば非特許文献1及び非特許文献2参照)。   For the purpose of increasing the density and performance of semiconductor packages, mounting forms in which chips with different performances are mixed in one package have been proposed. A package-on-package that is connected by stacking packages by flip-chip mounting has become important (for example, see Non-Patent Documents 1 and 2).

特にパッケージ・オン・パッケージのように半導体装置上に半導体装置を積む場合、下段の半導体装置上に、上段の半導体装置を実装するための、外部接続用端子を設ける必要がある。従って下段の半導体装置と、上段の半導体装置を接続するために、下段の半導体装置の封止材に開口部を設けて金属を充填する、いわゆるTMV(Through Mold Via)構造の半導体装置が台頭してきた。このTMVを有する半導体パッケージでは、開口部を設けるために、レーザーで装置間の接続用ビアを熱硬化性樹脂に設けるというものである(例えば特許文献1〜7参照)。   In particular, when a semiconductor device is stacked on a semiconductor device such as a package-on-package, it is necessary to provide an external connection terminal for mounting the upper semiconductor device on the lower semiconductor device. Therefore, in order to connect the lower semiconductor device and the upper semiconductor device, a so-called TMV (Through Mold Via) structure semiconductor device in which an opening is provided in a sealing material of the lower semiconductor device and metal is filled, has been emerging. Was. In a semiconductor package having this TMV, a via for connection between devices is provided in a thermosetting resin by a laser in order to provide an opening (for example, see Patent Documents 1 to 7).

米国特許出願公開第2012/0329249号明細書US Patent Application Publication No. 2012/0329249 米国特許出願公開第2015/0091182号明細書U.S. Patent Application Publication No. 2015/0091182 米国特許出願公開第2015/0145138号明細書US Patent Application Publication No. 2015/0145138 米国特許第7671457号明細書U.S. Pat. No. 7,671,457 米国特許第7633765号明細書U.S. Pat. No. 7,633,765 米国特許第8026587号明細書US Patent No. 8026587 米国特許第8018068号明細書US Patent No. 8018068

本多進 「半導体素子の2D〜3D実装技術動向と狙うべき方向」 エレクトロニクス実装学会誌 Vol.18、No.3、(2015)、pp.130Susumu Honda "2D to 3D Packaging Technology Trends of Semiconductor Devices and Future Directions" Journal of Japan Institute of Electronics Packaging Vol. 18, No. 3, (2015), pp. 130 SeungJae Lee,et al., Electrical Characerization of Wafer Level Fan−Out (WLFO) Using Film Substrate for Low Cost Millimeter Wave Application, IEEE Electronic Components and Technology Conference, 2010, 1461.See SeungJae Lee, et al. , Electrical Characerization of Wafer Level Fan-Out (WLFO) Using Film Substrate for Low Cost Millimeter Enforcement Electronics Application, IEICE Electronics Co., Ltd.

図12に示す封止材を用いた従来の製造により得られた下段半導体パッケージ100Aは、対応する箇所に封止開口141が形成されているため、上段パッケージを下段パッケージに載せて電気的に接続を確保することができる。ここで示した封止材の接続を確保すための開口形成は、炭酸ガスレーザーで行うのが一般的である。しかしながら、レーザーによる封止材の開口では、一括での開口操作が出来ないため時間がかかる点、100μmの厚みに対して開口可能な開口部の直径は100μm程度が限界であり、これよりも小さい径の開口部を形成しにくい点、レーザーによって開口するために開口操作後に残渣が生じやすいこと、封止材の取り扱いのためにコンプレッション装置やビア開口のためのレーザー装置導入の必要がありパッケージの製造コストが抑えにくい点、等の問題があった。   In the lower semiconductor package 100A obtained by the conventional manufacturing method using the sealing material shown in FIG. 12, the sealing opening 141 is formed at the corresponding position, so that the upper package is placed on the lower package and electrically connected. Can be secured. The opening for ensuring the connection of the sealing material shown here is generally formed by a carbon dioxide laser. However, in the opening of the sealing material by laser, it takes time because the opening operation cannot be performed at a time, and the diameter of the opening that can be opened for a thickness of 100 μm is limited to about 100 μm, which is smaller than this. It is difficult to form an opening with a diameter, the residue is likely to be generated after the opening operation due to laser opening, and it is necessary to introduce a compression device and a laser device for via opening to handle the sealing material. There were problems such as difficulty in reducing the manufacturing cost.

本発明は、上記課題に鑑みてなされたものであり、微細化及び高密度化の要求が高い三次元対応の半導体装置を効率良く、低コストに製造するための半導体装置製造用の感光性封止樹脂組成物と、それを用いた半導体装置の製造方法及び半導体装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above problem, and has been demanded to efficiently and inexpensively manufacture a three-dimensional semiconductor device that requires high miniaturization and high density. An object of the present invention is to provide a resin stopper composition, a method for manufacturing a semiconductor device using the same, and a semiconductor device.

本発明は、[1]露光及び現像によってパターン形成可能な感光性封止樹脂組成物であって、アルカリ現像溶液に対して3.0μm/s以下の速度で溶解する、感光性封止樹脂組成物である。
また、本発明は、[2]半導体素子封止後の封止材厚みが50μmから200μmとなる上記[1]に記載の感光性封止樹脂組成物である。
また、本発明は、[3] 感光性封止樹脂組成物の最低溶融粘度が、10Pa・sから1000Pa・sである上記[1]又は[2]に記載の感光性封止樹脂組成物である。
また、本発明は、[4] 露光後、さらに熱硬化処理された後の熱硬化物の0〜80℃における熱膨張係数が10×10-6/Kから100×10-6/Kの範囲である上記[1]〜[3]のいずれか一項に記載の感光性封止樹脂組成物である。
また、本発明は、[5] 前記感光性封止樹脂組成物が、ポリイミド樹脂を含む上記[1]〜[4]のいずれか一項に記載の感光性封止樹脂組成物である。
さらに、本発明は、[6] (I)上記[1]〜[5]のいずれか一項に記載の感光性封止樹脂組成物で半導体素子を封止する工程と、
(II)前記感光性封止樹脂組成物を、露光処理、及び、アルカリ現像溶液に対して3.0μm/s以下の速度で溶解させるアルカリ現像処理の工程によってパターンを形成する工程と、
(III)前記形成したパターンに導電性の材料を付与する工程と、
を備える半導体装置の製造方法である。
また、本発明は、[7]上記[1]〜[5]に記載の感光性封止樹脂組成物の硬化物を有する半導体装置である。
The present invention relates to [1] a photosensitive sealing resin composition capable of forming a pattern by exposure and development, wherein the photosensitive sealing resin composition dissolves in an alkali developing solution at a speed of 3.0 μm / s or less. Things.
The present invention also provides [2] the photosensitive encapsulating resin composition according to [1], wherein the thickness of the encapsulant after encapsulating the semiconductor element is from 50 μm to 200 μm.
Further, the present invention provides the photosensitive sealing resin composition according to the above [1] or [2], wherein the minimum melting viscosity of the photosensitive sealing resin composition is from 10 Pa · s to 1000 Pa · s. is there.
Further, the present invention provides [4] a thermal expansion coefficient at 0 to 80 ° C. of the heat-cured material after the exposure and the heat-curing treatment in the range of 10 × 10 −6 / K to 100 × 10 −6 / K. The photosensitive sealing resin composition according to any one of the above [1] to [3].
The present invention also provides [5] the photosensitive sealing resin composition according to any one of [1] to [4], wherein the photosensitive sealing resin composition contains a polyimide resin.
Further, the present invention provides [6] (I) a step of sealing a semiconductor element with the photosensitive sealing resin composition according to any one of [1] to [5];
(II) a step of forming a pattern by a step of exposure treatment and an alkali development treatment of dissolving the photosensitive sealing resin composition in an alkali development solution at a speed of 3.0 μm / s or less;
(III) applying a conductive material to the formed pattern;
Is a method for manufacturing a semiconductor device comprising:
Further, the present invention is [7] a semiconductor device having a cured product of the photosensitive sealing resin composition according to any of [1] to [5].

本発明の感光性封止樹脂組成物は、半導体装置の封止材に開口部を設けて導体を形成する、いわゆるTMV(Through Mold Via)構造の半導体装置を作製する際に、既存の封止材を封止するためのコンプレッション装置等の高価な設備を必要とせず、ラミネータ等のより安価な装置で封止でき、また、穴あけのレーザー装置等を必要とせず、微細配線形成に有利なフォトリソグラフィの技術を用いて行なうため、接続部の高密度化を実現でき、これを効率よく、低コストで製造可能になる。そして、これを用いて半導体装置を製造するので高密度伝送が可能な半導体装置を効率よく、低コストで製造することができ、得られた半導体装置は、低コストで高密度な伝送が可能となりコストパフォーマンスに優れる。   The photosensitive encapsulating resin composition of the present invention is used for producing a semiconductor device having a so-called TMV (Through Mold Via) structure in which an opening is provided in an encapsulating material of a semiconductor device to form a conductor. It does not require expensive equipment such as a compression device for sealing the material, can be sealed with a less expensive device such as a laminator, and does not require a laser device or the like for drilling. Since the connection is performed using the lithography technique, the density of the connection portion can be increased, and the connection can be efficiently manufactured at low cost. And since a semiconductor device is manufactured using this, a semiconductor device capable of high-density transmission can be manufactured efficiently and at low cost, and the obtained semiconductor device can perform high-density transmission at low cost. Excellent cost performance.

金属を表面に貼付した固定部材を模式的に示す断面図である。It is sectional drawing which shows typically the fixing member which stuck the metal on the surface. 固定部材上に、半導体素子を固定した状態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically illustrating a state where a semiconductor element is fixed on a fixing member. 半導体素子上に封止材料を封止した状態を模式的に示す断面図である。It is sectional drawing which shows the state which sealed the sealing material on the semiconductor element typically. 露光処理及び現像処理を施して封止材料に開口部を設けた状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which provided the opening part in the sealing material after performing exposure processing and development processing. 封止材料の開口部に金属を付与(充填)した状態を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically illustrating a state in which a metal is applied (filled) to an opening of a sealing material. 固定部材及び表面に貼付した金属を除去し、反転した状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state in which the metal adhered to the fixing member and the surface is removed and the metal member is inverted. 封止材料上に再配線絶縁層を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which formed the rewiring insulating layer on the sealing material. 配線パターンを模式的に示す断面図である。It is sectional drawing which shows a wiring pattern typically. 配線パターン上に再配線絶縁層を形成し、パッケージ搭載用バンプを搭載した状態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a state in which a rewiring insulating layer is formed on a wiring pattern and bumps for mounting a package are mounted. 再配線絶縁層を形成し、バンプを搭載した状態のものを個片化する操作を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an operation of forming a rewiring insulating layer and singulating a state in which bumps are mounted. 個片化後、得られた半導体装置を模式的に示す断面図である。It is sectional drawing which shows typically the obtained semiconductor device after singulation. 従来の半導体装置を製造する工程を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a step of manufacturing a conventional semiconductor device.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また、本明細書において「封止」とは、半導体素子を覆うように配置されていればよく、凹板状でも平板状でもよく、凹板状の樹脂組成物と平板状の固定部材(又は、再配線絶縁層)の間に半導体素子を挟んで覆ってもよい。また、透明性、電気絶縁性は特に問わない。また、樹脂組成物と、再配線絶縁層と、必要に応じて、導体パターン(配線パターン)等と、半導体素子が覆われていてもよい。また、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts will be denoted by the same reference characters, without redundant description. Unless otherwise specified, the positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
In this specification, the term "step" is included not only in an independent step but also in the case where the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. . Further, in this specification, “sealing” means that it is only necessary to cover the semiconductor element, it may be a concave plate or a flat plate, and a concave plate-shaped resin composition and a flat fixing member (or , A rewiring insulating layer). In addition, transparency and electrical insulation are not particularly limited. Further, the resin composition, the rewiring insulating layer, and if necessary, the conductor pattern (wiring pattern) and the like, and the semiconductor element may be covered. Further, the term “layer” includes, in a plan view, a partially formed shape structure in addition to a partially formed shape structure.

ここでは、図11に示す半導体装置(半導体パッケージ)100を製造する方法について説明する。なお、本実施形態の半導体装置の製造方法は、微細化及び多ピン化が必要とされる形態において特に好適である。特に、本発明の製造方法は、FO−WLP(Fan−out Wafer Level Package)を三次元化する形態において好適である。   Here, a method for manufacturing the semiconductor device (semiconductor package) 100 shown in FIG. 11 will be described. The method for manufacturing a semiconductor device according to the present embodiment is particularly suitable for a mode that requires miniaturization and multi-pins. In particular, the manufacturing method of the present invention is suitable for a form in which a FO-WLP (Fan-out Wafer Level Package) is made three-dimensional.

図1から図11を参照しながら、半導体装置(半導体パッケージ)100の製造方法について説明する。
まず、半導体素子固定用基材1及び固定部材2からなる支持体を準備する(図1参照)。半導体素子固定用基材1は特に限定されるものではないが、ガラスクロスに樹脂を含浸させたガラスクロス入り基板、シリコンウェハ、ガラス、SUS(ステンレス)板等が挙げられ、25℃での貯蔵弾性率が1GPa以上の材料(「高剛性材料」ともいえる)が好適である。
半導体素子固定用基材1の厚さは0.2〜0.8mmであることが好ましい。0.2mm以上では、組立てプロセス中の反りを抑制することができ、ハンドリングが容易になる傾向がある。一方、0.8mm以下の場合は、半導体素子固定用基材1の取り外しが容易になるうえ、材料費を抑えられる傾向にある。半導体素子固定用基材1の室温(25℃)から150℃までの平均熱膨張係数は、1×10−6〜15×10−6/Kであることが好ましい。1×10−6/K以上では、材料費を抑えられる傾向がある。一方、15×10−6/K以下の場合はチップ実装後の反りを抑制できる傾向にある。
A method for manufacturing the semiconductor device (semiconductor package) 100 will be described with reference to FIGS.
First, a support comprising a semiconductor element fixing base material 1 and a fixing member 2 is prepared (see FIG. 1). The substrate 1 for fixing a semiconductor element is not particularly limited, and examples thereof include a glass cloth-impregnated substrate in which a glass cloth is impregnated with a resin, a silicon wafer, glass, and a SUS (stainless steel) plate. Materials having an elastic modulus of 1 GPa or more (also referred to as “high-rigidity materials”) are suitable.
The thickness of the semiconductor element fixing substrate 1 is preferably 0.2 to 0.8 mm. If it is 0.2 mm or more, warpage during the assembly process can be suppressed, and handling tends to be easy. On the other hand, when the thickness is 0.8 mm or less, the semiconductor element fixing base material 1 is easily removed, and the material cost tends to be reduced. The average coefficient of thermal expansion from room temperature (25 ° C.) to 150 ° C. of the semiconductor element fixing substrate 1 is preferably 1 × 10 −6 to 15 × 10 −6 / K. If it is 1 × 10 −6 / K or more, the material cost tends to be reduced. On the other hand, in the case of 15 × 10 −6 / K or less, the warpage after chip mounting tends to be suppressed.

次いで、半導体素子3を、固定部材2上に固定する(図2参照)。半導体素子3は固定部材2を介して接着する。固定部材2は予めウェハ状の半導体素子3の裏面にラミネート等で設置し、個片化したものを使用することができる。固定部材2は特に限定されるものではないが、フィルム状のものを選択することが好ましい。フィルム状だと半導体素子固定用基材1上への貼付と、支持体除去時の剥離操作性が良好だからである。半導体素子3の搭載にはダイボンダ等の搭載機を用い、固定する。固定部材2として熱剥離シートを用いた場合は、例えば、所定温度に設定されたホットプレート上に載せて加熱する方法により、剥離することができる。加熱する温度は、用いる熱剥離シートに応じて適宜決定すればよい。   Next, the semiconductor element 3 is fixed on the fixing member 2 (see FIG. 2). The semiconductor element 3 is bonded via the fixing member 2. The fixing member 2 can be used by previously setting it on the back surface of the wafer-shaped semiconductor element 3 by laminating or the like and dividing the semiconductor element 3 into individual pieces. Although the fixing member 2 is not particularly limited, it is preferable to select a film-shaped fixing member. This is because, when the film is in the form of a film, the operability of sticking on the semiconductor element fixing base material 1 and peeling operation at the time of removing the support are good. The semiconductor element 3 is fixed by using a mounting machine such as a die bonder. When a heat-peelable sheet is used as the fixing member 2, the heat-peelable sheet can be peeled off by, for example, placing it on a hot plate set at a predetermined temperature and heating. The heating temperature may be appropriately determined according to the heat release sheet to be used.

次いで、感光性封止樹脂組成物4を用いて半導体素子3を覆うように封止する(図3参照)。
本実施形態の感光性封止樹脂組成物4は、(A)アルカリ可溶性樹脂、(B)放射線重合性化合物、及び(C)光開始剤、を含むことが好ましい。なお、本明細書において、これらの成分は、単に(A)成分、(B)成分、(C)成分等と称することがある。また、本実施形態の感光性封止樹脂組成物は、半導体素子を封止するために好適に用いることができる。
Next, the semiconductor element 3 is sealed so as to cover the semiconductor element 3 using the photosensitive sealing resin composition 4 (see FIG. 3).
The photosensitive sealing resin composition 4 of the present embodiment preferably contains (A) an alkali-soluble resin, (B) a radiation-polymerizable compound, and (C) a photoinitiator. In the present specification, these components may be simply referred to as component (A), component (B), component (C), and the like. Further, the photosensitive sealing resin composition of the present embodiment can be suitably used for sealing a semiconductor element.

本実施形態の感光性封止樹脂組成物4では、(A)成分としては、アルカリ可溶性基を有するポリマーが好ましく、アルカリ可溶性基を末端、又は側鎖に有するポリマーがより好ましい。アルカリ可溶性基としては、エチレングリコール基、カルボキシル基、水酸基、スルホニル基、フェノール性水酸基等が挙げられる。アルカリ可溶性基を有するポリマーは、上記の官能基1種を単独で有するものであってもよく、又は2種以上を有するものであってもよい。   In the photosensitive sealing resin composition 4 of the present embodiment, as the component (A), a polymer having an alkali-soluble group is preferable, and a polymer having an alkali-soluble group at a terminal or a side chain is more preferable. Examples of the alkali-soluble group include an ethylene glycol group, a carboxyl group, a hydroxyl group, a sulfonyl group, and a phenolic hydroxyl group. The polymer having an alkali-soluble group may have one of the above functional groups alone or may have two or more of the above functional groups.

(A)成分としては、例えば、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、これらの共重合体、これらの前駆体(ポリアミド酸等)の他、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、重量平均分子量が10,000〜1,000,000の(メタ)アクリル共重合体、ノボラック樹脂、フェノール樹脂等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。また、これらの樹脂の主鎖及び/又は側鎖に、エチレングリコール、プロピレングリコール等のグリコール基、カルボキシル基及び/又は水酸基が付与されたものであってもよい。   As the component (A), for example, polyester resin, polyether resin, polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, polyurethane resin, polyurethaneimide resin, polyurethaneamideimide resin, siloxane polyimide resin, polyesterimide resin , These copolymers, their precursors (polyamic acid, etc.), polybenzoxazole resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, polyester resin, polyether resin, polycarbonate resin, poly Examples thereof include an ether ketone resin, a (meth) acrylic copolymer having a weight average molecular weight of 10,000 to 1,000,000, a novolak resin, and a phenol resin. These can be used alone or in combination of two or more. Further, these resins may have a main chain and / or a side chain to which a glycol group such as ethylene glycol or propylene glycol, a carboxyl group and / or a hydroxyl group is provided.

これらの中でも、高温接着性、耐熱性、及びフィルム形成性の観点から、(A)成分はポリイミド樹脂であることが好ましい。ポリイミド樹脂は、例えば、テトラカルボン酸二無水物とジアミンとを公知の方法で縮合反応させて得ることができる。   Among these, the component (A) is preferably a polyimide resin from the viewpoints of high-temperature adhesion, heat resistance, and film formability. The polyimide resin can be obtained, for example, by subjecting a tetracarboxylic dianhydride and a diamine to a condensation reaction by a known method.

上記縮合反応における、テトラカルボン酸二無水物とジアミンとの混合モル比は、テトラカルボン酸二無水物の合計1.0molに対して、ジアミンの合計が0.5〜2.0molであることが好ましく、0.8〜1.0molであることがより好ましい。なお、テトラカルボン酸無水物、及びジアミンの添加順序は任意でよい。   In the above condensation reaction, the mixing molar ratio of the tetracarboxylic dianhydride and the diamine is such that the total of the diamine is 0.5 to 2.0 mol with respect to the total of 1.0 mol of the tetracarboxylic dianhydride. More preferably, it is 0.8 to 1.0 mol. The order of addition of the tetracarboxylic anhydride and the diamine may be arbitrary.

(B)成分は、光重合可能な化合物、光架橋可能な化合物であれば、特に制限なく用いることができるが、例えば、分子内に少なくとも1つのエチレン性不飽和結合を有する化合物を用いることができる。(C)成分は、(B)成分を重合させることができるものであれば、特に制限は無く、通常用いられる光重合開始剤から適宜選択することができる。   The component (B) can be used without particular limitation as long as it is a photopolymerizable compound or a photocrosslinkable compound. For example, a compound having at least one ethylenically unsaturated bond in the molecule may be used. it can. The component (C) is not particularly limited as long as the component (B) can be polymerized, and can be appropriately selected from commonly used photopolymerization initiators.

感光性封止樹脂組成物4による封止はラミネート方式でもコンプレッション方式でも構わない。フィルム状の感光性封止樹脂組成物を用いて、ラミネートすることで、生産性が向上する。開口部5は露光処理及び現像処理によって開口される(図4参照)。露光処理については、マスクパターンを通して活性光線を照射することにより、感光性封止樹脂組成物4の所定部分を露光し、光硬化させる。活性光線の光源としては、公知の光源を用いることができるが、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射するものを使用できる。また、直接描画方式のダイレクトレーザ露光を用いてもよい。露光量は、使用する装置や感光性封止樹脂組成物4の組成によって異なるが、好ましくは100〜1000mJ/cm2であり、より好ましくは600〜800mJ/cm2である。露光量が100mJ/cm2以上であれば光硬化が充分となり成型しやすくなる傾向にあり、他方、1000mJ/cm2以下であれば開口部5を感光性封止樹脂組成物4の上面から、固定部材2上まで貫通させた状態で形成させることに有利となる。次いで、現像により露光部以外の感光性封止樹脂組成物4を除去することで、被覆した感光性封止樹脂組成物4から固定部材2を露出させる。現像処理に用いる現像液としては、例えば、20〜50℃のテトラメチルアンモニウムヒドロキシド水溶液(1〜5質量%水溶液)等のアルカリ現像液が用いられ、スプレー、揺動浸漬、ブラッシング及びスクラッピング等の公知の方法により現像する。これにより所定のパターンが形成される。感光性封止樹脂組成物4の現像液に対する溶解速度については、3.0μm/s以下であり、より好ましくは1.0〜2.5μm/sである。3.0μm/s以下であれば露光操作によって形成したパターン形状を比較的良好に保持することが出来る。一方、3.0μm/sを超えて大きい場合は、未露光部のみならず露光部においての溶解度も大きくなり、開口部の形成不良を起こすといった不具合が生じる傾向にある。なお、現像液に対する溶解速度は、用いる感光性封止樹脂組成物、現像液(種類、温度)等によって、調整することができる。現像処理により開口部5を設けた後、150℃前後で1時間程度の熱硬化処理を行っても構わない。感光性封止樹脂組成物4の厚さは、50〜200μmであることが好ましい。感光性封止樹脂組成物4の厚さは、図3の固定部材2の上面に接する感光性封止樹脂組成物面からその反対面の高さである。50μm以上であることで、半導体素子3を封止することが容易になる傾向がある。一方、200μm以下であれば、封止後の反り発生を抑制し、開口部5の形成を容易に出来る傾向がある。
感光性封止樹脂組成物の、最低溶融粘度は、10〜500Pa・sであってもよい。なお、最低溶融粘度は、露光前の感光性封止樹脂組成物を用い、昇温10℃/min、周波数1Hzに設定し、25〜200℃の範囲で溶融粘度を測定した値とする。
露光処理及び熱硬化処理後の、感光性封止樹脂組成物4の硬化物の、0〜80℃における熱膨張係数は20×10-6〜80×10-6/Kであることが好ましい。20×10-6/K以上であれば、フィラーを増量しなくてもよく、感光性封止樹脂組成物4の解像性を低下させる懸念が少なくなる。また、80×10-6/K以下の場合は、パッケージの反りを抑制しやすくなる傾向となる。熱硬化処理は、150℃前後で1時間程度行うことが好ましい。好ましくは100〜230℃、より好ましくは120〜220℃、さらに好ましくは140〜210℃であり、硬化時間についても特に限定するものではないが、好ましくは30〜300分間、より好ましくは40〜240分間、更に好ましくは50〜200分間である。
The sealing with the photosensitive sealing resin composition 4 may be performed by a lamination method or a compression method. The productivity is improved by laminating using the film-shaped photosensitive sealing resin composition. The opening 5 is opened by exposure processing and development processing (see FIG. 4). In the exposure treatment, a predetermined portion of the photosensitive encapsulating resin composition 4 is exposed to light by irradiating an actinic ray through a mask pattern, and photocured. As a light source for the actinic ray, a known light source can be used, and a light source that effectively emits ultraviolet rays such as a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp can be used. Further, a direct drawing type direct laser exposure may be used. The exposure dose varies depending on the device used and the composition of the photosensitive sealing resin composition 4, but is preferably 100 to 1000 mJ / cm 2 , more preferably 600 to 800 mJ / cm 2 . Tend to exposure is likely to be molded with sufficient photocuring if 100 mJ / cm 2 or more, while the opening 5 from the upper surface of the photosensitive sealing resin composition 4 if 1000 mJ / cm 2 or less, It is advantageous to form the fixing member 2 so as to penetrate it. Next, the fixing member 2 is exposed from the coated photosensitive sealing resin composition 4 by removing the photosensitive sealing resin composition 4 other than the exposed portions by development. As a developing solution used in the developing treatment, for example, an alkali developing solution such as an aqueous solution of tetramethylammonium hydroxide (1 to 5% by mass aqueous solution) at 20 to 50 ° C. is used, and spraying, rocking immersion, brushing, scraping and the like are used. Developed by the known method. Thereby, a predetermined pattern is formed. The dissolution rate of the photosensitive sealing resin composition 4 in a developing solution is 3.0 μm / s or less, and more preferably 1.0 to 2.5 μm / s. If it is 3.0 μm / s or less, the pattern shape formed by the exposure operation can be held relatively well. On the other hand, when it is larger than 3.0 μm / s, the solubility in not only the unexposed portion but also the exposed portion is increased, and there is a tendency that a defect such as a defective formation of the opening occurs. The dissolution rate in the developer can be adjusted depending on the photosensitive sealing resin composition to be used, the developer (type, temperature), and the like. After the opening 5 is provided by the developing process, a thermosetting process at about 150 ° C. for about 1 hour may be performed. The thickness of the photosensitive sealing resin composition 4 is preferably 50 to 200 μm. The thickness of the photosensitive sealing resin composition 4 is the height from the photosensitive sealing resin composition surface in contact with the upper surface of the fixing member 2 in FIG. When the thickness is 50 μm or more, the semiconductor element 3 tends to be easily sealed. On the other hand, if it is 200 μm or less, the occurrence of warpage after sealing tends to be suppressed, and the opening 5 tends to be easily formed.
The minimum melt viscosity of the photosensitive sealing resin composition may be 10 to 500 Pa · s. The minimum melt viscosity is a value obtained by measuring the melt viscosity in the range of 25 to 200 ° C. by using the photosensitive sealing resin composition before exposure, setting the temperature to 10 ° C./min, the frequency to 1 Hz.
The cured product of the photosensitive sealing resin composition 4 after the exposure treatment and the heat curing treatment preferably has a coefficient of thermal expansion at 0 to 80 ° C. of 20 × 10 −6 to 80 × 10 −6 / K. If it is 20 × 10 −6 / K or more, the amount of filler does not need to be increased, and there is less concern that the resolution of the photosensitive encapsulating resin composition 4 is reduced. On the other hand, when it is 80 × 10 −6 / K or less, the warpage of the package tends to be easily suppressed. The heat curing treatment is preferably performed at about 150 ° C. for about 1 hour. Preferably it is 100-230 degreeC, More preferably, it is 120-220 degreeC, More preferably, it is 140-210 degreeC, Although it does not specifically limit about a curing time, Preferably, it is 30-300 minutes, More preferably, it is 40-240. Minutes, more preferably 50 to 200 minutes.

次いで、感光性封止樹脂組成物4の開口部5に導電性の材料を付与する(図5参照)。導電性の材料はAl、Cu、Sn、Ni、Au、Ag等の他、導電性を有する材料又は合金を付与できる。付与方法としては、スパッタリング、PVD、CVD、電解めっき、無電解めっき等が挙げられる。特に電解めっきを施す場合、予めスパッタリング等によって金属のシード層を形成し、次いで電解めっき等の方法で開口部に金属を付与(充填)することができる。金属めっきを形成する前に固定部材2上の残渣を除去する目的で、酸洗処理やプラズマ処理を施しても構わない。   Next, a conductive material is applied to the openings 5 of the photosensitive sealing resin composition 4 (see FIG. 5). As the conductive material, besides Al, Cu, Sn, Ni, Au, Ag, or the like, a conductive material or alloy can be given. Examples of the applying method include sputtering, PVD, CVD, electrolytic plating, and electroless plating. In particular, when electrolytic plating is performed, a metal seed layer is formed in advance by sputtering or the like, and then the metal can be applied (filled) to the openings by a method such as electrolytic plating. Before the metal plating is formed, pickling treatment or plasma treatment may be performed in order to remove the residue on the fixing member 2.

次いで、半導体素子固定用基材1及び固定部材2を除去する(図6、反転した状態を示す。)。除去方法については特に制限するものではないが、固定部材2に熱剥離性のものを使用し、加熱をすることで、半導体素子固定用基材1及び固定部材2を除去することが出来る。   Next, the semiconductor element fixing base material 1 and the fixing member 2 are removed (FIG. 6 shows an inverted state). Although there is no particular limitation on the removing method, the semiconductor element fixing base material 1 and the fixing member 2 can be removed by using a heat-peelable fixing member 2 and heating the fixing member 2.

感光性封止樹脂組成物4上に形成する再配線絶縁層7及び9に用いる材料は、感光性樹脂でも熱硬化性樹脂でも構わない(図7、8及び9参照)。また、液状でもフィルム状でも構わない。液状の感光性材料を用いる場合は、スピンコーターで所定の厚さの層を形成し、その後、露光、現像処理により所定のパターンを形成し、窒素雰囲気で熱硬化させる。その後、必要に応じて、無電解めっきやスパッタ処理等によりシード層を形成する(図示省略)。その後、配線形成用レジストを形成し、露光、現像処理によりパターンを形成する。次いで、電解めっき等により配線パターン8を形成する(図8参照)。次いで、レジストをはく離し、シード層を除去する(図示省略)。その後、感光性材料で再配線絶縁層9を形成する(図9参照)。多層化が必要な場合は、これらサイクルを再度繰り返すことができる。無電解銅めっき法によりシード層を形成する場合、シード層の厚さは特に制限はないが、通常0.1〜1.0μmが好ましく使用される。配線パターン8を形成する前にシード層を形成することにより、電解銅めっき法が可能となり、選択的に配線パターン8を形成することができる。シード層の形成は無電解銅めっき法の他に、スパッタ法によっても形成できる。ターゲットは適宜選択できるが、Ti/Cuが一般的である。TiやCuの層の厚さは特に制限はないが、Tiで20〜100nm、Cuで100〜500nm程度が好適である。はんだボール形成のため最外層の電極には市販の無電解ニッケル/金めっき液等を用いてめっき処理を施すこともできる。ニッケルめっきの厚みは、好ましくは1〜10μmであり、金めっきの厚みは、好ましくは0.01〜1.0μm、より好ましくは0.05〜0.15μmである。   The material used for the rewiring insulating layers 7 and 9 formed on the photosensitive sealing resin composition 4 may be a photosensitive resin or a thermosetting resin (see FIGS. 7, 8 and 9). Further, it may be liquid or film. In the case of using a liquid photosensitive material, a layer having a predetermined thickness is formed by a spin coater, and then a predetermined pattern is formed by exposure and development, followed by thermosetting in a nitrogen atmosphere. Thereafter, if necessary, a seed layer is formed by electroless plating or sputtering (not shown). Thereafter, a wiring forming resist is formed, and a pattern is formed by exposure and development. Next, a wiring pattern 8 is formed by electrolytic plating or the like (see FIG. 8). Next, the resist is stripped, and the seed layer is removed (not shown). Thereafter, the rewiring insulating layer 9 is formed of a photosensitive material (see FIG. 9). If multiple layers are required, these cycles can be repeated again. When the seed layer is formed by the electroless copper plating method, the thickness of the seed layer is not particularly limited, but usually 0.1 to 1.0 μm is preferably used. By forming the seed layer before forming the wiring pattern 8, the electrolytic copper plating method becomes possible, and the wiring pattern 8 can be selectively formed. The seed layer can be formed not only by electroless copper plating but also by sputtering. The target can be appropriately selected, but Ti / Cu is generally used. The thickness of the Ti or Cu layer is not particularly limited, but is preferably about 20 to 100 nm for Ti and about 100 to 500 nm for Cu. For the formation of solder balls, the outermost layer electrode can be plated using a commercially available electroless nickel / gold plating solution or the like. The thickness of the nickel plating is preferably 1 to 10 μm, and the thickness of the gold plating is preferably 0.01 to 1.0 μm, more preferably 0.05 to 0.15 μm.

次いで、図9に示すように、電極にはんだボール10を搭載する。はんだボール10の搭載は市販のNリフロー装置等を用いて容易に行うことができる。はんだボール10の搭載のタイミングは特に限定するものではなく、必要に応じて個片化後でもかまわない。
最後に、図10に示すように、個片化することで、半導体装置100を得ることができる。
Next, as shown in FIG. 9, the solder balls 10 are mounted on the electrodes. Mounting the solder balls 10 can be easily performed by using a commercially available N 2 reflow apparatus. The timing for mounting the solder balls 10 is not particularly limited, and may be after the individual pieces as needed.
Finally, as shown in FIG. 10, the semiconductor device 100 can be obtained by singulation.

上記の半導体パッケージ100は、微細化や多ピン化が必要とされる形態において特に好適である。特に、本発明の製造方法は、FO−WLP(Fan−out Wafer Level Package)を三次元化する形態において好適である。   The above-described semiconductor package 100 is particularly suitable in a mode in which miniaturization and increase in the number of pins are required. In particular, the manufacturing method of the present invention is suitable for a form in which a FO-WLP (Fan-out Wafer Level Package) is made three-dimensional.

以上、本発明に係る半導体装置(半導体パッケージ)の製造方法、及び半導体パッケージ用材料について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。   As described above, the method for manufacturing a semiconductor device (semiconductor package) and the material for a semiconductor package according to the present invention have been described. However, the present invention is not necessarily limited to the above-described embodiment, and may be appropriately changed without departing from the gist of the present invention. Changes may be made.

本開示の目的及び利点を、以下の実施例によって更に例示するが、これらの実施例において列挙される特定の材料及びその量並びに他の諸条件及び詳細によって、本開示を不当に制限するものではないと解釈すべきである。   The objects and advantages of the present disclosure will be further illustrated by the following examples, which should not be unduly limited by the specific materials and amounts thereof, as well as other conditions and details, recited in these examples. Should not be interpreted.

まず、半導体素子固定用基材としてSUS板(SUS304を直径220mm、厚さ1.5mmに加工したもの)を準備した。SUS板の表面には厚さ18μmの固定部材(日東電工株式会社製、商品名:リバアルファ;熱はく離シート)をロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)を用いて貼付した(図1)。その際、固定部材(リバアルファ)フィルムの加熱によって発泡する面(発泡面)とは反対側を、上記SUS板と張り合わせた。   First, an SUS plate (SUS304 processed to a diameter of 220 mm and a thickness of 1.5 mm) was prepared as a substrate for fixing a semiconductor element. On the surface of the SUS plate, a fixing member (manufactured by Nitto Denko Corporation, trade name: Riba Alpha; heat release sheet) having a thickness of 18 μm is roll-laminated (trade name: HOTDOG 12DX, manufactured by Ramie Corporation, temperature: 60 ° C., wire) It was attached using a pressure of 4 kgf / cm (39.2 N / cm) and a feed rate of 0.5 m / min (FIG. 1). At that time, the side opposite to the surface (foamed surface) of the fixing member (river alpha) film that was foamed by heating was bonded to the SUS plate.

<半導体素子用シリコンウェハの準備>
8inchウェハの半導体素子(株式会社ウォルツ製、商品名:WALTS−TEG CC80−0101JY_(PI)_ModelI)を準備した(図省略)。ウェハ厚さはバックグラインド加工を行い、40μmの厚さに加工した。
<Preparation of silicon wafer for semiconductor device>
An 8-inch wafer semiconductor element (Waltz Co., Ltd., trade name: WALTS-TEG CC80-0101JY_ (PI) _ModelI) was prepared (not shown). The wafer was processed to a thickness of 40 μm by back grinding.

<ダイシングテープの半導体素子用シリコンウェハへの貼付>
ダイシングテープ(日立化成株式会社製、商品名:HAE−1504)を準備した。ダイシングテープの形成方法を以下に示す。上記半導体素子用ウェハの能動面とは反対側の面にダイシングテープを、保護フィルムのポリエチレンフィルムをはく離して、プレス式真空ラミネータ(株式会社名機製作所製、商品名:MVLP−500)を用いて貼付した。プレス条件は、プレス熱板温度40℃、真空引き時間30秒、ラミネートプレス時間60秒、気圧4kPa以下、圧着圧力0.5MPaの下で行った。
<Attaching dicing tape to silicon wafer for semiconductor device>
A dicing tape (manufactured by Hitachi Chemical Co., Ltd., trade name: HAE-1504) was prepared. The method of forming the dicing tape will be described below. The dicing tape is peeled off from the surface opposite to the active surface of the semiconductor element wafer, and the polyethylene film as the protective film is peeled off, and a press-type vacuum laminator (manufactured by Meiki Seisakusho Co., Ltd., trade name: MVLP-500) is used. Attached. The pressing was performed at a hot plate temperature of 40 ° C., a vacuum evacuation time of 30 seconds, a lamination press time of 60 seconds, an air pressure of 4 kPa or less, and a pressure of 0.5 MPa.

<半導体素子の準備>
上記のダイシングテープ貼付済み半導体素子用シリコンウェハを縦10mm、横10mmのサイズに個片化した。個片化にはシリコンウェハ用ダイシングソー(株式会社ディスコ製、商品名:DAD−3350)を用いた。ダイシングブレードには27HEFFを用い、一分間あたりの回転数は30000回転/分、切削速度は20mm/秒で行なった。
<Preparation of semiconductor device>
The above-mentioned silicon wafer for semiconductor elements to which the dicing tape was attached was diced into a size of 10 mm in length and 10 mm in width. For dicing, a dicing saw for silicon wafers (trade name: DAD-3350, manufactured by Disco Corporation) was used. A 27 HEFF dicing blade was used, and the number of revolutions per minute was 30,000 revolutions / minute and the cutting speed was 20 mm / sec.

<半導体素子の実装>
個片化した上記半導体素子を能動面が上記固定部材に貼り合わさるように実装した(図2参照)。実装にはフリップチップボンダー(パナソニック株式会社製、商品名:FCB3 NM−SB50A)を用いた。ステージ上に固定部材を貼付したSUS板を、吸引によって固定した。ステージ設定温度を50℃、フリップチップボンダーのヘッド温度が50℃、圧着時間1秒間の設定で実装した。圧着時の荷重は10Nで行った。
<Semiconductor device mounting>
The singulated semiconductor element was mounted such that the active surface was bonded to the fixing member (see FIG. 2). A flip chip bonder (manufactured by Panasonic Corporation, trade name: FCB3 NM-SB50A) was used for mounting. The SUS plate with the fixing member attached to the stage was fixed by suction. The stage was mounted at a setting temperature of 50 ° C., a head temperature of the flip chip bonder was 50 ° C., and a pressure bonding time was 1 second. The load at the time of press bonding was 10 N.

<感光性封止樹脂組成物の合成:アルカリ可溶性樹脂 PI−1>
撹拌機、温度計、窒素置換装置(窒素流入管)、及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366、)を39g(0.11mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を46g(0.11mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive sealing resin composition: alkali-soluble resin PI-1>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen purge device (nitrogen inflow tube), and a reflux condenser with a water receiver, 2,2-bis (3-amino-4-hydroxy) as a diamine was placed. 39 g (0.11 mol) of phenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylene diamine, manufactured by BASF), trade name: D-400, molecular weight: 433) was 46 g (0.11 mol), and BY16-871EG (siloxane diamine, manufactured by Dow Corning Toray Co., Ltd., trade name: BY16-871EG, molecular weight: 248.5) was 6.6 g (0). .027 mol) and 13.1 g (0.12 mol) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade) And a solvent in which NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−1を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4'-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After the addition was completed, the temperature of the solution was raised to 180 ° C. while blowing nitrogen gas, and the temperature was maintained for 3 hours to obtain a polyimide resin PI-1 as an alkali-soluble resin. The obtained polyimide resin was thinly applied on an aluminum cup, and was dried at 180 ° C. for 3 hours using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.). The heating residue of the polyimide was measured to be 75% by mass.

<感光性封止樹脂組成物溶液(S―1)の調製>
上記で得られたアルカリ可溶性樹脂、及び、以下に示すその他の化合物を用いて、下記に示す組成比(単位:質量部)にて各成分を配合し、感光性封止樹脂組成物溶液(S―1)を得た。
<Preparation of photosensitive sealing resin composition solution (S-1)>
Using the alkali-soluble resin obtained above and the other compounds shown below, the respective components were blended at the following composition ratio (unit: parts by mass), and a photosensitive sealing resin composition solution (S -1) was obtained.

(I)イソシアヌル酸EO変性ジ及びトリアクリレート(東亜合成株式会社製、商品名:M−313):29.8質量%。
(II)ビスフェノールF型ビスグリシジルエーテル(東都化成工業株式会社製、商品名:YDF−870GS):18.24質量%。
(III)トリスフェノール化合物(α,α,α´−トリス(4−ヒドロキシフェノル)−1−エチル−4−イソプロピルベンゼン)(本州化学工業株式会社製、商品名:TrisP−PA):4.3質量%。
(IV)疎水性フュームドシリカ(平均粒径:約16nm)(日本アエロジル株式会社製、商品名:R−972)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に20質量%分散):4.3質量%。
(V)上記アルカリ可溶性樹脂(ポリイミド樹脂PI−1):42.5質量%。
(VI)光開始剤(ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製、商品名:I−819)):1.24質量%。
(VII)ジクミルパーオキサイド(日油株式会社製、商品名:パークミルD)0.43質量%。
(VIII)硬化促進剤(四国化成工業株式会社製、商品名:2P4MHZ)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に10質量%溶解):0.43質量%。
(IX)溶媒(N−メチル−2−ピロリドン)(関東化学株式会社製、特級):10mL。
(I) Isocyanuric acid EO-modified di and triacrylate (manufactured by Toagosei Co., Ltd., trade name: M-313): 29.8% by mass.
(II) bisphenol F type bisglycidyl ether (manufactured by Toto Kasei Kogyo Co., Ltd., trade name: YDF-870GS): 18.24% by mass.
(III) Trisphenol compound (α, α, α′-tris (4-hydroxyphenol) -1-ethyl-4-isopropylbenzene) (trade name: TrisP-PA, manufactured by Honshu Chemical Industry Co., Ltd.): 4. 3% by mass.
(IV) Hydrophobic fumed silica (average particle size: about 16 nm) (manufactured by Nippon Aerosil Co., Ltd., trade name: R-972) (N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd., special grade)) % By mass): 4.3% by mass.
(V) The alkali-soluble resin (polyimide resin PI-1): 42.5% by mass.
(VI) Photoinitiator (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, trade name: I-819)): 1.24% by mass.
(VII) Dicumyl peroxide (manufactured by NOF CORPORATION, trade name: Parkmill D) 0.43% by mass.
(VIII) Curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MHZ) (10% by mass dissolved in N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd., special grade)): 0.43% by mass.
(IX) Solvent (N-methyl-2-pyrrolidone) (Kanto Chemical Co., Ltd., special grade): 10 mL.

<感光性封止樹脂組成物の合成:アルカリ可溶性樹脂 PI−2>
撹拌機、温度計、窒素置換装置(窒素流入管)、及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366、)を54g(0.15mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を22g(0.051mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive sealing resin composition: alkali-soluble resin PI-2>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen purge device (nitrogen inflow tube), and a reflux condenser with a water receiver, 2,2-bis (3-amino-4-hydroxy) as a diamine was placed. 54 g (0.15 mol) of phenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylene diamine, manufactured by BASF), trade name: D-400, molecular weight: 433) 22 g (0.051 mol), BY16-871EG (siloxane diamine, manufactured by Dow Corning Toray, trade name: BY16-871EG, molecular weight: 248.5) 6.6 g (0) .027 mol) and 13.1 g (0.12 mol) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade) , And the solvent is a NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−2を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4'-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After completion of the addition, the solution was heated to 180 ° C. while blowing nitrogen gas, and kept warm for 3 hours to obtain a polyimide resin PI-2, which is an alkali-soluble resin. The obtained polyimide resin was thinly applied on an aluminum cup, and was dried at 180 ° C. for 3 hours using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.). The heating residue of the polyimide was measured to be 75% by mass.

<感光性封止樹脂組成物溶液(S―2)の調製>
アルカリ可溶性樹脂(PI−1)の代わりに、アルカリ可溶性樹脂(PI−2)を用いた以外は、感光性封止樹脂組成物溶液(S−1)と同様の方法で、感光性封止樹脂組成物溶液(S−2)を得た。
<Preparation of photosensitive sealing resin composition solution (S-2)>
Except for using the alkali-soluble resin (PI-2) instead of the alkali-soluble resin (PI-1), the photosensitive sealing resin is prepared in the same manner as the photosensitive sealing resin composition solution (S-1). A composition solution (S-2) was obtained.

<感光性封止樹脂組成物の合成:アルカリ可溶性樹脂 PI−3>
撹拌機、温度計、窒素置換装置(窒素流入管)、及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366、)を77.5g(0.21mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive sealing resin composition: alkali-soluble resin PI-3>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen purge device (nitrogen inflow tube), and a reflux condenser with a water receiver, 2,2-bis (3-amino-4-hydroxy) as a diamine was placed. 77.5 g (0.21 mol) of phenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), BY16-871EG (siloxane diamine, manufactured by Dow Corning Toray Co., Ltd.) 6.6 g (0.027 mol) of trade name: BY16-871EG, molecular weight: 248.5), and 13.1 g (0.12 mol) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade) ) And 200 g of NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) as a solvent, and stirred to dissolve the diamine in the solvent. It was.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−3を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While the flask was cooled in an ice bath, 93 g (0.30 mol) of ODPA (4,4'-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After the addition was completed, the temperature of the solution was raised to 180 ° C. while blowing nitrogen gas, and the temperature was maintained for 3 hours to obtain a polyimide resin PI-3 as an alkali-soluble resin. The obtained polyimide resin was thinly applied on an aluminum cup, and was dried at 180 ° C. for 3 hours using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.). The heating residue of the polyimide was measured to be 75% by mass.

<感光性封止樹脂組成物溶液(S−3)の調製>
アルカリ可溶性樹脂(PI−1)の代わりに、アルカリ可溶性樹脂(PI−3)を用いた以外は、感光性封止樹脂組成物溶液(S−1)と同様の方法で、感光性封止樹脂組成物溶液(S−3)を得た。
<Preparation of photosensitive sealing resin composition solution (S-3)>
Except for using the alkali-soluble resin (PI-3) instead of the alkali-soluble resin (PI-1), the photosensitive encapsulating resin is prepared in the same manner as the photosensitive encapsulating resin composition solution (S-1). A composition solution (S-3) was obtained.

<感光性封止樹脂組成物の合成:アルカリ可溶性樹脂 PI−4>
撹拌機、温度計、窒素置換装置(窒素流入管)、及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366、)を43.8g(0.12mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を51.9g(0.12mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を7.47g(0.030mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を6.54g(0.060mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive sealing resin composition: alkali-soluble resin PI-4>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen purge device (nitrogen inflow tube), and a reflux condenser with a water receiver, 2,2-bis (3-amino-4-hydroxy) as a diamine was placed. 43.8 g (0.12 mol) of phenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylenediamine, manufactured by BASF), product 51.9 g (0.12 mol) of name: D-400, molecular weight: 433), and 7 of BY16-871EG (siloxane diamine, manufactured by Dow Corning Toray, trade name: BY16-871EG, molecular weight: 248.5) 7 6.5 g (0.030 mol), 6.54 g (0.03 g) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd.) 0 mol), and the solvent is a NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−4を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While the flask was cooled in an ice bath, 93 g (0.30 mol) of ODPA (4,4'-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After the addition was completed, the temperature of the solution was raised to 180 ° C. while blowing nitrogen gas, and the temperature was maintained for 3 hours to obtain a polyimide resin PI-4, which is an alkali-soluble resin. The obtained polyimide resin was thinly applied on an aluminum cup, and was dried at 180 ° C. for 3 hours using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.). The heating residue of the polyimide was measured to be 75% by mass.

<感光性封止樹脂組成物溶液(S−4)の調製>
アルカリ可溶性樹脂(PI−1)の代わりに、アルカリ可溶性樹脂(PI−4)を用いた以外は、感光性封止樹脂組成物溶液(S−1)と同様の方法で、感光性封止樹脂組成物溶液(S−4)を得た。
<Preparation of photosensitive sealing resin composition solution (S-4)>
Except for using the alkali-soluble resin (PI-4) instead of the alkali-soluble resin (PI-1), the photosensitive sealing resin is prepared in the same manner as the photosensitive sealing resin composition solution (S-1). A composition solution (S-4) was obtained.

<感光性封止樹脂組成物の合成:アルカリ可溶性樹脂 PI−5>
撹拌機、温度計、窒素置換装置(窒素流入管)、及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366、)を18g(0.049mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を65g(0.15mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive sealing resin composition: alkali-soluble resin PI-5>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen purge device (nitrogen inflow tube), and a reflux condenser with a water receiver, 2,2-bis (3-amino-4-hydroxy) as a diamine was placed. 18 g (0.049 mol) of phenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylene diamine, manufactured by BASF), trade name: D-400, molecular weight: 433) was 65 g (0.15 mol), and BY16-871EG (siloxane diamine, manufactured by Dow Corning Toray, trade name: BY16-871EG, molecular weight: 248.5) was 6.6 g (0). .027 mol) and 13.1 g (0.12 mol) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade) , And the solvent is a NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

<感光性封止樹脂組成物溶液の調製>
上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−5を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。
<Preparation of photosensitive sealing resin composition solution>
While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4'-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After the addition was completed, the temperature of the solution was raised to 180 ° C. while blowing nitrogen gas, and the temperature was maintained for 3 hours to obtain a polyimide resin PI-5, which is an alkali-soluble resin. The obtained polyimide resin was thinly applied on an aluminum cup, and was dried at 180 ° C. for 3 hours using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.). The heating residue of the polyimide was measured to be 75% by mass.

<感光性封止樹脂組成物溶液(S―5)の調製>
アルカリ可溶性樹脂(PI−1)の代わりに、アルカリ可溶性樹脂(PI−5)を用いた以外は、感光性封止樹脂組成物溶液(S−1)と同様の方法で、感光性封止樹脂組成物溶液(S―5)を得た。
<Preparation of photosensitive sealing resin composition solution (S-5)>
Except for using the alkali-soluble resin (PI-5) instead of the alkali-soluble resin (PI-1), the photosensitive sealing resin is prepared in the same manner as the photosensitive sealing resin composition solution (S-1). A composition solution (S-5) was obtained.

<感光性封止樹脂組成物の合成:アルカリ可溶性樹脂PI−6>
撹拌機、温度計、窒素置換装置(窒素流入管)、及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366、)を39g(0.11mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を46g(0.11mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive sealing resin composition: alkali-soluble resin PI-6>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen purge device (nitrogen inflow tube), and a reflux condenser with a water receiver, 2,2-bis (3-amino-4-hydroxy) as a diamine was placed. 39 g (0.11 mol) of phenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylene diamine, manufactured by BASF), trade name: D-400, molecular weight: 433) was 46 g (0.11 mol), and BY16-871EG (siloxane diamine, manufactured by Dow Corning Toray Co., Ltd., trade name: BY16-871EG, molecular weight: 248.5) was 6.6 g (0). .027 mol) and 13.1 g (0.12 mol) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade) And a solvent in which NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−6を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While the flask was cooled in an ice bath, 93 g (0.30 mol) of ODPA (4,4'-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After the addition was completed, the temperature of the solution was raised to 180 ° C. while blowing nitrogen gas, and the temperature was maintained for 3 hours to obtain a polyimide resin PI-6, which is an alkali-soluble resin. The obtained polyimide resin was thinly applied on an aluminum cup, and was dried at 180 ° C. for 3 hours using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.). The heating residue of the polyimide was measured to be 75% by mass.

<感光性封止樹脂組成物溶液(S―6)の調製>
上記で得られたアルカリ可溶性樹脂、及び、以下に示すその他の化合物を用いて、下記に示す組成比(単位:質量部)にて各成分を配合し、感光性封止樹脂組成物溶液(S―6)を得た。
<Preparation of photosensitive sealing resin composition solution (S-6)>
Using the alkali-soluble resin obtained above and the other compounds shown below, the respective components were blended at the following composition ratio (unit: parts by mass), and a photosensitive sealing resin composition solution (S -6) was obtained.

(I)イソシアヌル酸EO変性ジ及びトリアクリレート(東亜合成株式会社製、商品名:M−313):33.4質量%。
(II)ビスフェノールF型ビスグリシジルエーテル(東都化成工業株式会社製、商品名:YDF−870GS):9.5質量%。
(III)トリスフェノール化合物(α,α,α´−トリス(4−ヒドロキシフェノル)−1−エチル−4−イソプロピルベンゼン)(本州化学工業株式会社製、商品名:TrisP−PA):2.39質量%。
(IV)疎水性フュームドシリカ(平均粒径:約16nm)(日本アエロジル株式会社製、商品名:R−972)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に20質量%分散):4.77質量%。
(V)上記アルカリ可溶性樹脂(ポリイミド樹脂PI−6):47.7質量%
(VI)光開始剤(ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製、商品名:I−819)):1.43質量%。
(VII)ジクミルパーオキサイド(日油株式会社製、商品名:パークミルD)0.48質量%。
(VIII)硬化促進剤(四国化成工業株式会社製、商品名:2P4MHZ)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に10質量%溶解):0.24質量%。
(IX)溶媒(N−メチル−2−ピロリドン)(関東化学株式会社製、特級):10mL。
(I) Isocyanuric acid EO-modified di- and triacrylate (manufactured by Toagosei Co., Ltd., trade name: M-313): 33.4% by mass.
(II) bisphenol F-type bisglycidyl ether (manufactured by Toto Kasei Kogyo Co., Ltd., trade name: YDF-870GS): 9.5% by mass.
(III) Trisphenol compound (α, α, α'-tris (4-hydroxyphenol) -1-ethyl-4-isopropylbenzene) (trade name: TrisP-PA, manufactured by Honshu Chemical Industry Co., Ltd.): 39% by mass.
(IV) Hydrophobic fumed silica (average particle size: about 16 nm) (manufactured by Nippon Aerosil Co., Ltd., trade name: R-972) (N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd., special grade)) % By mass): 4.77% by mass.
(V) The alkali-soluble resin (polyimide resin PI-6): 47.7% by mass
(VI) Photoinitiator (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, trade name: I-819)): 1.43% by mass.
(VII) Dicumyl peroxide (manufactured by NOF CORPORATION, trade name: Parkmill D) 0.48% by mass.
(VIII) Curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MHZ) (dissolved in N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd., special grade) at 10% by mass): 0.24% by mass.
(IX) Solvent (N-methyl-2-pyrrolidone) (Kanto Chemical Co., Ltd., special grade): 10 mL.

<感光性封止樹脂組成物溶液(SE−1)の調整>
下記に示す組成比(単位:質量部)にて各成分を配合し、感光性封止樹脂組成物溶液(SE−1)を得た。
(I)酸変性クレゾールノボラック型エポキシアクリレート(DIC株式会社製、商品名:EXP−2810):39.2質量%。
(II)光反応性化合物(ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレート混合物、日本化薬株式会社製、商品名:KAYARAD DPHA):6.9質量%。
(III)光開始剤として、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド、BASF社製、商品名:DAROCURE−TPO):1.4質量%、及び2,4−ジエチルチオキサントン(日本化薬株式会社製、商品名:カヤキュアDETX−S):0.1質量%。
(IV)熱硬化樹脂(ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000H):4.6質量%、ビスフェノールF型エポキシ樹脂である(新日鉄住金化学株式会社製、商品名:YSLV−80):9.2質量%。
(V)無機フィラー成分:硫酸バリウム(堺化学工業株式会社製、商品名:B30):14質量%、シリカ(株式会社アドマテックス社製、サンプル名:MEKスラリー(1)):23質量%。無機充填材の感光性樹脂組成物中に分散した状態における平均粒径及び最大粒径は、レーザー回折散乱式マイクロトラック粒度分布計(日機装株式会社製、商品名:MT−3100)を用いて測定した。B30の平均粒径が0.3μm、MEKスラリー(1)の平均粒径が0.5μmであった。また、B30及びMEKスラリーを含む無機充填材の最大粒径は3μm以下であった。また、フィルム化後の無機充填材の粒径はフィルムを硬化後に断面を電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:SU−1510)で観察して確認した。フィルム中に分散されている無機充填材の最大粒径が5μm以下であることを確認した。
(VI)その他成分としては以下のものを用いた。ブタジエン系エラストマ(株式会社ダイセル製、商品名:エポリードPB3600):1.4質量%、重合禁止剤(川口化学工業株式会社製、商品名:アンテージ500):0.2質量%。
<Preparation of photosensitive sealing resin composition solution (SE-1)>
Each component was blended at the composition ratio (unit: parts by mass) shown below to obtain a photosensitive sealing resin composition solution (SE-1).
(I) Acid-modified cresol novolak type epoxy acrylate (manufactured by DIC, trade name: EXP-2810): 39.2% by mass.
(II) Photoreactive compound (mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA): 6.9% by mass.
(III) As photoinitiator, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF, trade name: DAROCURE-TPO): 1.4% by mass, and 2,4-diethylthioxanthone (Nippon Kagaku) Product name: Kayacure DETX-S, manufactured by Yakuhin Co., Ltd .: 0.1% by mass.
(IV) Thermosetting resin (biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000H): 4.6% by mass, bisphenol F type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Name: YSLV-80): 9.2% by mass.
(V) Inorganic filler component: Barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., trade name: B30): 14% by mass, silica (manufactured by Admatex Co., Ltd., sample name: MEK slurry (1)): 23% by mass. The average particle size and the maximum particle size in a state where the inorganic filler is dispersed in the photosensitive resin composition are measured using a laser diffraction scattering microtrack particle size distribution meter (manufactured by Nikkiso Co., Ltd., trade name: MT-3100). did. The average particle size of B30 was 0.3 μm, and the average particle size of MEK slurry (1) was 0.5 μm. The maximum particle size of the inorganic filler containing B30 and MEK slurry was 3 μm or less. The particle size of the inorganic filler after forming the film was confirmed by observing a cross section of the inorganic filler after curing the film with an electron microscope (manufactured by Hitachi High-Technologies Corporation, trade name: SU-1510). It was confirmed that the maximum particle size of the inorganic filler dispersed in the film was 5 μm or less.
(VI) The following were used as other components. Butadiene-based elastomer (manufactured by Daicel Corporation, trade name: Eporide PB3600): 1.4% by mass, polymerization inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., trade name: Antage 500): 0.2% by mass.

<感光性封止樹脂組成物溶液(SE−2)の調整>
下記に示す組成比(単位:質量部)にて各成分を配合し、感光性封止樹脂組成物溶液(SE−2)を得た。
(I)酸変性クレゾールノボラック型エポキシアクリレート(DIC株式会社製、商品名:EXP−2810):48.4質量%。
(II)光反応性化合物(ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレート混合物、日本化薬株式会社製、商品名:KAYARAD DPHA):8.5質量%。
(III)光開始剤として、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド、BASF社製、商品名:DAROCURE−TPO):1.7質量%、及び2,4−ジエチルチオキサントン(日本化薬株式会社製、商品名:カヤキュアDETX−S):0.2質量%。
(IV)熱硬化樹脂(ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000H):5.7質量%、ビスフェノールF型エポキシ樹脂である(新日鉄住金化学株式会社製、商品名:YSLV−80):11質量%。
(V)無機フィラー成分:硫酸バリウム(堺化学工業株式会社製、商品名:B30):8.5質量%、シリカ(株式会社アドマテックス社製、サンプル名:MEKスラリー(1)):14質量%。無機充填材の感光性樹脂組成物中に分散した状態における平均粒径及び最大粒径は、レーザー回折散乱式マイクロトラック粒度分布計(日機装株式会社製、商品名:MT−3100)を用いて測定した。B30の平均粒径が0.3μm、MEKスラリー(1)の平均粒径が0.5μmであった。また、B30及びMEKスラリーを含む無機充填材の最大粒径は3μm以下であった。また、フィルム化後の無機充填材の粒径はフィルムを硬化後に断面を電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:SU−1510)で観察して確認した。フィルム中に分散されている無機充填材の最大粒径が5μm以下であることを確認した。
(VI) その他成分としては以下のものを用いた。ブタジエン系エラストマ(株式会社ダイセル製、商品名:エポリードPB3600):1.7質量%、重合禁止剤(川口化学工業株式会社製、商品名:アンテージ500):0.3質量%。
<Preparation of photosensitive sealing resin composition solution (SE-2)>
Each component was blended at the composition ratio (unit: parts by mass) shown below to obtain a photosensitive sealing resin composition solution (SE-2).
(I) Acid-modified cresol novolak type epoxy acrylate (manufactured by DIC Corporation, trade name: EXP-2810): 48.4% by mass.
(II) Photoreactive compound (mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA): 8.5% by mass.
(III) As a photoinitiator, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF, trade name: DAROCURE-TPO): 1.7% by mass, and 2,4-diethylthioxanthone (Nippon Kagaku) Product name: Kayacure DETX-S, manufactured by Yakuhin Co., Ltd .: 0.2% by mass.
(IV) Thermosetting resin (biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000H): 5.7% by mass, bisphenol F type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Name: YSLV-80): 11% by mass.
(V) Inorganic filler component: Barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., trade name: B30): 8.5% by mass, silica (manufactured by Admatechs, sample name: MEK slurry (1)): 14% by mass %. The average particle size and the maximum particle size in a state where the inorganic filler is dispersed in the photosensitive resin composition are measured using a laser diffraction scattering microtrack particle size distribution meter (manufactured by Nikkiso Co., Ltd., trade name: MT-3100). did. The average particle size of B30 was 0.3 μm, and the average particle size of MEK slurry (1) was 0.5 μm. The maximum particle size of the inorganic filler containing B30 and MEK slurry was 3 μm or less. The particle size of the inorganic filler after forming the film was confirmed by observing a cross section of the inorganic filler after curing the film with an electron microscope (manufactured by Hitachi High-Technologies Corporation, trade name: SU-1510). It was confirmed that the maximum particle size of the inorganic filler dispersed in the film was 5 μm or less.
(VI) The following were used as other components. Butadiene-based elastomer (manufactured by Daicel Corporation, trade name: Eporide PB3600): 1.7% by mass, polymerization inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., trade name: Antage 500): 0.3% by mass.

<感光性封止樹脂組成物溶液のフィルム成形>
上記で得られた感光性封止樹脂組成物溶液を用いて下記に示す操作でフィルム状に成形し、実施例1〜6、参考例1〜3及び比較例1〜3の感光性封止樹脂組成物(フィルム状の感光性封止樹脂材料)を得た。支持層である厚さ50μmのポリエチレンテレフタレートフィルム(帝人株式会社製、商品名:G2−16)上に、上記で得られた感光性封止樹脂組成物溶液をコーター(株式会社康井精機製、商品名:βコーターSNC280)を使用して均一に塗布することにより感光性封止樹脂組成物層を形成した。塗布速度は3.0mm/minとした。続いて、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて80℃で20分間乾燥したのち、さらに120℃で20分間乾燥した。塗布時の厚みについては、下記の手順で半導体素子を封止した後に、下記の測定方法にて測定した際に所定の厚みが得られるよう、コーターのナイフと塗布面との間隔を設定することで調整した。
<Film molding of photosensitive sealing resin composition solution>
Using the photosensitive sealing resin composition solution obtained above, it was formed into a film by the following operation, and the photosensitive sealing resins of Examples 1 to 6, Reference Examples 1 to 3 and Comparative Examples 1 to 3 were formed. A composition (a film-shaped photosensitive sealing resin material) was obtained. The photosensitive sealing resin composition solution obtained above was coated on a 50 μm-thick polyethylene terephthalate film (manufactured by Teijin Limited, trade name: G2-16) as a support layer using a coater (manufactured by Yasui Seiki Co., Ltd. (Trade name: β coater SNC280) to form a photosensitive sealing resin composition layer by uniform application. The coating speed was 3.0 mm / min. Subsequently, the resultant was dried at 80 ° C for 20 minutes using a hot air convection dryer (trade name: MSO-80TPS, manufactured by Futaba Kagaku Co., Ltd.), and further dried at 120 ° C for 20 minutes. For the thickness at the time of coating, after sealing the semiconductor element by the following procedure, set the distance between the knife of the coater and the coating surface so that a predetermined thickness is obtained when measured by the following measuring method. Was adjusted.

続いて、感光性封止樹脂組成物層の支持層と接している側とは反対側の表面上に、ポリエチレンフィルム(タマポリ株式会社製、商品名:NF−15)(保護フィルム)としてロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)貼り合わせ、感光性封止樹脂組成物を得た。   Subsequently, a roll laminator was formed as a polyethylene film (trade name: NF-15) (protective film) on the surface of the photosensitive sealing resin composition layer opposite to the side in contact with the support layer as a protective film. (Trade name: HOTDOG 12DX, temperature 60 ° C., linear pressure 4 kgf / cm (39.2 N / cm), feed rate 0.5 m / min, manufactured by Ramie Corporation) to obtain a photosensitive sealing resin composition Was.

<感光性封止樹脂組成物を用いた、半導体素子の封止>
この感光性封止樹脂組成物を用いて、上記固定部材上に固定した上記半導体素子上に貼付した。感光性封止樹脂組成物の形成方法を以下に示す。上記半導体素子上に感光性封止樹脂組成物を、保護フィルムのポリエチレンフィルムをはく離して、プレス式真空ラミネータ(ニッコー・マテリアルズ株式会社製、商品名:V130)を用いて貼付した(図3参照)。ラミネート条件は、プレス用熱板温度100℃、真空引き時間18秒、ラミネートプレス時間60秒、気圧4kPa以下、圧着圧力0.4MPで行なった。
<Seal of semiconductor element using photosensitive sealing resin composition>
Using this photosensitive sealing resin composition, it was stuck on the semiconductor element fixed on the fixing member. The method for forming the photosensitive sealing resin composition is described below. The photosensitive encapsulating resin composition was adhered on the semiconductor element using a press-type vacuum laminator (trade name: V130, manufactured by Nikko Materials Co., Ltd.) after peeling off the polyethylene film of the protective film (FIG. 3). reference). Laminating conditions were as follows: a hot plate temperature for pressing was 100 ° C., a vacuuming time was 18 seconds, a laminating press time was 60 seconds, an air pressure was 4 kPa or less, and a pressure for bonding was 0.4MP.

<半導体素子封止後の、感光性封止樹脂組成物の厚みの計測方法>
感光性封止樹脂組成物の封止後の厚みの計測方法について説明する。
上記感光性封止樹脂組成物で上記半導体素子を封止後、半導体素子の存在しない部分の厚みを、膜厚計(株式会社ミツトヨ製、商品名:デジマチックインジケータID−H)にて測定した。
<Method for measuring thickness of photosensitive sealing resin composition after semiconductor element sealing>
A method for measuring the thickness of the photosensitive sealing resin composition after sealing will be described.
After sealing the semiconductor element with the photosensitive sealing resin composition, the thickness of a portion where no semiconductor element was present was measured with a film thickness meter (manufactured by Mitutoyo Corporation, trade name: Digimatic Indicator ID-H). .

<評価試験>
上記で得られた感光性封止樹脂組成物について、以下の評価試験を行った。
<Evaluation test>
The following evaluation tests were performed on the photosensitive sealing resin composition obtained above.

<感光性封止樹脂組成物の現像液溶解速度測定方法>
感光性封止樹脂組成物の現像液溶解速度の測定方法について説明する。上記の感光性封止樹脂組成物で、厚み300μmに塗工したものを、厚み725μmの8インチシリコンウェハ(エナテック株式会社製)の鏡面上にプレス式真空ラミネータ(ニッコー・マテリアルズ株式会社製、商品名:V130)を用いて貼付した。ラミネート条件は、プレス用熱板温度100℃、真空引き時間18秒、ラミネートプレス時間60秒、気圧4kPa以下、圧着圧力0.4MPで行なった。貼付後、膜厚計(株式会社ミツトヨ製、商品名:デジマチックインジケータID−H)にて膜厚を測定し、これを初期値とした。スピン現像機(ミカサ株式会社製、商品名:AD−3000、スプレー圧力0.2MPa、スキャン幅4.0cm、スキャン速度5.0cm/秒)を用いて26℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)を20秒間スプレーし、次いで20秒間純水で洗浄、さらに10秒間の風乾を行なった。現像後、上記膜厚計にて膜厚を計測した。以上を繰り返し、現像時間に対する残膜量をプロットし、直線近似をすることで傾きの値から現像速度を算出した。
<Measurement method of developer dissolution rate of photosensitive sealing resin composition>
A method for measuring the developer dissolution rate of the photosensitive sealing resin composition will be described. The above photosensitive encapsulating resin composition, coated to a thickness of 300 μm, is pressed on a mirror surface of an 8-inch silicon wafer (manufactured by Enatec Co., Ltd.) having a thickness of 725 μm, and a press-type vacuum laminator (manufactured by Nikko Materials Co., Ltd.) (Trade name: V130). Laminating conditions were as follows: a hot plate temperature for pressing was 100 ° C., a vacuuming time was 18 seconds, a laminating press time was 60 seconds, an air pressure was 4 kPa or less, and a pressure for bonding was 0.4MP. After sticking, the film thickness was measured with a film thickness meter (manufactured by Mitutoyo Corporation, trade name: Digimatic Indicator ID-H), and this was used as an initial value. 2.38% by mass of tetramethylammonium at 26 ° C. using a spin developing machine (manufactured by Mikasa Corporation, trade name: AD-3000, spray pressure: 0.2 MPa, scan width: 4.0 cm, scan speed: 5.0 cm / sec) An aqueous hydroxide solution (manufactured by Tama Chemical Industry Co., Ltd.) was sprayed for 20 seconds, then washed with pure water for 20 seconds, and further air-dried for 10 seconds. After the development, the film thickness was measured by the above film thickness meter. By repeating the above, the residual film amount with respect to the developing time was plotted, and a linear approximation was performed to calculate the developing speed from the slope value.

<感光性封止樹脂組成物の溶融粘度測定方法>
感光性封止樹脂組成物の溶融粘度の測定方法について説明する。
溶融粘度は低粘度粘弾性測定装置(株式会社アントンパール・ジャパン(AntonPaar社)製、商品名:MCR−301)を用いて測定した。直径4cm、深さ5mmのアルミニウム製円形プレート(株式会社アントンパール・ジャパン製、商品名:ディスポーザブルプレート EMS/CTD600)の底部中央に、縦30mm、横30mm、厚み300μmのフィルム状に成形した感光性封止樹脂組成物を貼付し、円形プレートを装置のステージに固定した。測定セル(株式会社アントンパール・ジャパン製、商品名:Messkorperachse D−CP/PP7)を装置に取り付けた後、セルの先端には治具(株式会社アントンパール・ジャパン製、商品名:SPPYU08−07)を装着した。治具の先端が上記円形プレートの底面から200μmの高さに来るように、上記測定セルを下降し、上記治具の先端を上記感光性封止樹脂組成物内に埋没させた。測定条件は昇温10℃/min、周波数1Hzに設定し、25〜200℃の範囲で溶融粘度の測定を行なった。当該温度範囲での溶融粘度の最低値を、最低溶融粘度とした。
<Measurement method of melt viscosity of photosensitive sealing resin composition>
A method for measuring the melt viscosity of the photosensitive sealing resin composition will be described.
The melt viscosity was measured using a low viscosity viscoelasticity measuring device (trade name: MCR-301, manufactured by Anton Paar Japan, Inc.). A photosensitive film formed into a film having a length of 30 mm, a width of 30 mm, and a thickness of 300 μm in the center of the bottom of an aluminum circular plate having a diameter of 4 cm and a depth of 5 mm (trade name: Disposable Plate EMS / CTD600, manufactured by Anton Paar Japan). The sealing resin composition was attached, and the circular plate was fixed on the stage of the device. After a measuring cell (manufactured by Anton Paar Japan, Inc., trade name: Messkoperachse D-CP / PP7) was attached to the apparatus, a jig (manufactured by Anton Paar Japan, Inc., trade name: SPPYU08-07) was attached to the tip of the cell. ). The measurement cell was lowered so that the tip of the jig was at a height of 200 μm from the bottom of the circular plate, and the tip of the jig was buried in the photosensitive sealing resin composition. The measurement conditions were set to a temperature rise of 10 ° C./min and a frequency of 1 Hz, and the melt viscosity was measured in the range of 25 to 200 ° C. The lowest value of the melt viscosity in the temperature range was defined as the lowest melt viscosity.

<感光性封止樹脂測定物の貯蔵弾性率測定方法>
感光性封止樹脂組成物の、露光及び現像後の貯蔵弾性率の測定方法について説明する。まず、厚さ40μmの感光性封止樹脂組成物の層を作製し、この層を、高精度平行露光機(株式会社オーク製作所製、商品名:EXM−1172−B−∞)により1000mJ/cmで全面露光し、次いで、80℃のホットプレート上で約30秒間加熱する。その後、上記の層に、現像機(ミカサ株式会社製、商品名:AD−3000、スプレー圧力0.2MPa、スキャン幅4.0cm、スキャン速度5.0cm/秒)を用いて26℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)を180秒間スプレーし、次いで20秒間純水で洗浄、さらに10秒間の風乾を行なった。こうして得られたフィルムを2枚用意し、120℃で10分間加熱乾燥させた後、ロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)によって積層し、厚さが80μmの積層体を得る。次に、得られた積層体をオーブン中で180℃、3時間の条件で加熱する。この加熱硬化された積層体を5mm幅、長さ30mmの短冊状に切断したものをサンプルとし、粘弾性アナライザー(レオメトリックス社製、商品名:RSA−2)を用いて、昇温速度5℃/min、周波数1Hz、測定温度−50〜300℃の条件で測定を行い、110℃における貯蔵弾性率を求める。
<Method of measuring storage elastic modulus of photosensitive sealing resin measurement object>
A method for measuring the storage elastic modulus of the photosensitive sealing resin composition after exposure and development will be described. First, a layer of a photosensitive encapsulating resin composition having a thickness of 40 μm was prepared, and this layer was subjected to 1000 mJ / cm using a high-precision parallel exposure machine (manufactured by Oak Co., Ltd., trade name: EXM-1172-B-∞). Exposure is carried out for 2 seconds, and then heated on a hot plate at 80 ° C. for about 30 seconds. Thereafter, the above layer was treated at a temperature of 26 ° C. using a developing machine (manufactured by Mikasa Corporation, trade name: AD-3000, spray pressure: 0.2 MPa, scan width: 4.0 cm, scan speed: 5.0 cm / sec). A 38% by mass aqueous solution of tetramethylammonium hydroxide (manufactured by Tama Chemical Industry Co., Ltd.) was sprayed for 180 seconds, then washed with pure water for 20 seconds, and further air-dried for 10 seconds. Two films thus obtained were prepared, dried by heating at 120 ° C. for 10 minutes, and then roll laminator (trade name: HOTDOG 12DX, manufactured by Ramie Corporation, temperature: 60 ° C., linear pressure: 4 kgf / cm (39.2 N) / Cm) at a feed rate of 0.5 m / min) to obtain a laminate having a thickness of 80 μm. Next, the obtained laminate is heated in an oven at 180 ° C. for 3 hours. A sample obtained by cutting the heat-cured laminate into a strip having a width of 5 mm and a length of 30 mm was used as a sample, and the temperature was raised at a rate of 5 ° C. using a viscoelastic analyzer (trade name: RSA-2, manufactured by Rheometrics). / Min, a frequency of 1 Hz, and a measurement temperature of −50 to 300 ° C., and the storage elastic modulus at 110 ° C. is determined.

<感光性封止樹脂組成物の熱膨張係数測定方法>
感光性封止樹脂組成物の熱膨張係数の測定方法について説明する。まず、厚さ100μmの感光性封止樹脂組成物の層を作製し、この層を、平行露光機(株式会社オーク製作所製、商品名:EXM−1201)を使用して、1600mJ/cm2のエネルギー量で露光を行った。次いで、ホットプレート(AS−ONE株式会社製、商品名:Triplet Hotplate TH−900)の上に置き、80℃で1分間加熱した。感光性封止樹脂組成物上のポリエチレンテレフタレートを剥離し、現像機(ミカサ株式会社製、商品名:AD−3000、スプレー圧力0.2MPa、スキャン幅4.0cm、スキャン速度5.0cm/秒)を用いて26℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)を180秒間スプレーし、次いで20秒間純水で洗浄、さらに10秒間の風乾を行なった。こうして得られたフィルムを2枚用意し、120℃で10分間加熱乾燥させた後、ロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)で積層し、厚さが200μmの積層体を得る。次に、得られた積層体をオーブン(エスペック株式会社製、商品名:PVC−212)中で175℃、2時間の条件で加熱する。この加熱硬化された積層体を5mm幅、長さ30mmの短冊状に切断して短冊状のサンプルを得た。この短冊状のサンプルの両端を治具で固定し、さらにこれを熱分析装置(セイコーインスツル株式会社製、商品名:TMA/SS6000)に固定し、荷重が一定になるように両端を引っ張りながら昇温させ、各温度でのひずみ量を測定した。荷重19.6mN、昇温速度5℃/min、測定温度−20〜250℃の条件で行い、0℃から80℃までの温度とひずみ量の直線の傾きから熱膨張係数を得た。
<Method of measuring thermal expansion coefficient of photosensitive sealing resin composition>
A method for measuring the thermal expansion coefficient of the photosensitive sealing resin composition will be described. First, a layer of a photosensitive encapsulating resin composition having a thickness of 100 μm was prepared, and this layer was 1600 mJ / cm 2 using a parallel exposure machine (manufactured by Oak Manufacturing Co., Ltd., trade name: EXM-1201). Exposure was performed with the amount of energy. Next, it was placed on a hot plate (trade name: Triplet Hotplate TH-900, manufactured by AS-ONE Corporation) and heated at 80 ° C. for 1 minute. The polyethylene terephthalate on the photosensitive sealing resin composition is peeled off, and a developing machine (trade name: AD-3000, manufactured by Mikasa Corporation, spray pressure 0.2 MPa, scan width 4.0 cm, scan speed 5.0 cm / sec) Was sprayed with a 2.38% by mass aqueous solution of tetramethylammonium hydroxide (manufactured by Tama Chemical Industry Co., Ltd.) for 180 seconds, washed with pure water for 20 seconds, and air-dried for 10 seconds. Two films thus obtained were prepared, dried by heating at 120 ° C. for 10 minutes, and then roll laminator (trade name: HOTDOG 12DX, manufactured by Ramie Corporation, temperature: 60 ° C., linear pressure: 4 kgf / cm (39.2 N) / Cm) at a feed rate of 0.5 m / min) to obtain a laminate having a thickness of 200 μm. Next, the obtained laminate is heated at 175 ° C. for 2 hours in an oven (trade name: PVC-212, manufactured by Espec Corporation). This heat-cured laminate was cut into a strip having a width of 5 mm and a length of 30 mm to obtain a strip-shaped sample. Fix both ends of this strip-shaped sample with a jig, fix it to a thermal analyzer (trade name: TMA / SS6000, manufactured by Seiko Instruments Inc.), and pull both ends so that the load becomes constant. The temperature was raised, and the strain at each temperature was measured. The load was 19.6 mN, the temperature was raised at a rate of 5 ° C./min, and the measurement temperature was -20 to 250 ° C., and the coefficient of thermal expansion was obtained from the linear gradient of the temperature and strain from 0 ° C. to 80 ° C.

<開口部の形成>
貼付した感光性封止樹脂組成物上に、パターンを形成したフォトマスクを密着させ、平行露光機(株式会社オーク製作所製、商品名:EXM−1201)を使用して、800mJ/cm2のエネルギー量で露光を行った。次いで、ホットプレート(アズワン株式会社製、商品名:Triplet Hotplate TH−900)の上に置き、80℃で1分間加熱した。感光性封止樹脂組成物上のポリエチレンテレフタレートを剥離し、現像機(ミカサ株式会社製、商品名:AD−3000、スプレー圧力0.2MPa、スキャン幅4.0cm、スキャン速度5.0cm/秒)を用いて26℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)を180秒間スプレーし、次いで20秒間純水で洗浄、さらに10秒間の風乾を行なうことで感光性封止樹脂組成物に開口部を設けた。続いて、平行露光機(株式会社オーク製作所製、商品名:EXM−1201)を使用して2000mJ/cm2のエネルギー量で紫外線照射を行い、オーブン(エスペック株式会社製、商品名:PVC−212)で175℃、2時間で熱硬化した(図4参照)。
<Formation of opening>
A photomask on which a pattern is formed is brought into close contact with the applied photosensitive sealing resin composition, and an energy of 800 mJ / cm 2 is applied using a parallel exposure machine (trade name: EXM-1201 manufactured by Oak Manufacturing Co., Ltd.). Exposure was performed in quantity. Then, it was placed on a hot plate (trade name: Triplet Hotplate TH-900, manufactured by As One Corporation) and heated at 80 ° C. for 1 minute. The polyethylene terephthalate on the photosensitive sealing resin composition is peeled off, and a developing machine (trade name: AD-3000, manufactured by Mikasa Corporation, spray pressure 0.2 MPa, scan width 4.0 cm, scan speed 5.0 cm / sec) Is sprayed with a 2.38% by mass aqueous solution of tetramethylammonium hydroxide (manufactured by Tama Chemical Industry Co., Ltd.) at 26 ° C. for 180 seconds, then washed with pure water for 20 seconds, and further air-dried for 10 seconds to obtain a photosensitive solution. An opening was provided in the sealing resin composition. Subsequently, ultraviolet irradiation was performed using a parallel exposure machine (manufactured by Oak Manufacturing Co., Ltd., trade name: EXM-1201) at an energy amount of 2000 mJ / cm 2 , and an oven (manufactured by Espec Corporation, trade name: PVC-212) was used. ) At 175 ° C. for 2 hours (see FIG. 4).

<電解銅めっきの形成>
上記感光性封止樹脂組成物の上記開口部に、スパッタ装置(芝浦プレシジョン株式会社製、商品名:CFS−12P−100)によってシード層を形成した。スパッタは、まず接着層としてTiを100nm成膜し、次いでCuを300nm積層させた。スパッタ時の圧力は10−5Pa、電圧印加時間はそれぞれTiが10分、Cuが30分で行った。
次いで上記開口部に、電解銅めっき法で、金属材料(銅)をめっき付与(充填)した(図5参照)。電解めっき用のめっき液組成を以下に示す。
(電解めっき液組成)
硫酸銅(和光純薬工業株式会社製、特級) 5.0g、
濃硫酸(和光純薬工業株式会社製、特級) 120g、
塩酸(和光純薬工業株式会社製、特級) 0.2g
を純水中に溶解させ、全体を1Lとした。電解めっきの手順を、以下に示す。まず陽極を銅板に接続し、陰極を上記感光性封止樹脂組成物上に形成した上記スパッタ銅に接続し、上記めっき液内に浸潤させた。電流密度を1.0A/dmとし、4時間処理することで上記開口部内にめっき銅を付与(充填)させた。
<Formation of electrolytic copper plating>
A seed layer was formed in the opening of the photosensitive sealing resin composition by a sputtering apparatus (trade name: CFS-12P-100, manufactured by Shibaura Precision Co., Ltd.). In the sputtering, first, a Ti film was formed to a thickness of 100 nm as an adhesive layer, and then Cu was laminated to a thickness of 300 nm. The pressure during sputtering was 10 −5 Pa, and the voltage application time was 10 minutes for Ti and 30 minutes for Cu, respectively.
Next, a metal material (copper) was applied (filled) to the opening by electrolytic copper plating (see FIG. 5). The plating solution composition for electrolytic plating is shown below.
(Electroplating solution composition)
5.0 g of copper sulfate (manufactured by Wako Pure Chemical Industries, Ltd., special grade)
120 g of concentrated sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.)
Hydrochloric acid (Wako Pure Chemical Industries, Ltd., special grade) 0.2 g
Was dissolved in pure water to make the whole 1 L. The procedure of electrolytic plating is shown below. First, the anode was connected to a copper plate, and the cathode was connected to the sputtered copper formed on the photosensitive sealing resin composition, so as to be immersed in the plating solution. The current density was set to 1.0 A / dm 2, and treatment was carried out for 4 hours to give (fill) plated copper in the openings.

<半導体素子固定用基材、固定部材の除去>
次いで、半導体素子固定用基材の面をテープリムーバー(アズワン株式会社製、商品名:NEO HOTPLATE HI−1000)に真空吸着して150℃に加熱することで、固定部材を発泡させ、半導体素子、めっき銅を含む感光性封止樹脂組成物を剥離した(図6参照)。
<Removal of semiconductor element fixing substrate and fixing member>
Next, the surface of the semiconductor element fixing base material is vacuum-adsorbed to a tape remover (manufactured by AS ONE Corporation, trade name: NEO HOTPLATE HI-1000), and heated to 150 ° C., thereby foaming the fixing member. The photosensitive sealing resin composition containing plated copper was peeled off (see FIG. 6).

<再配線絶縁層の形成>
感光性封止樹脂組成物の上に再配線絶縁層を形成した(図7、8、9参照)。具体的には、スピンコーターで感光性絶縁材料(日立化成株式会社製、商品名:AH−1170T)を塗布し、マスクを装着し露光(ミカサ株式会社製、商品名:マスクアライナー MA−200、300mJ/cm)した後、現像機(ミカサ株式会社製、商品名:AD−3000)を用い、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)でディップ現像(35秒浸潤後、スピンで廃液)を行なった。
次いで、200℃で窒素雰囲気(酸素濃度50体積ppm以下)下、オーブン(エスペック株式会社製、商品名:PVC−212)で1時間の熱硬化を行った。次いで、スパッタ装置(芝浦プレシジョン株式会社製、商品名:CFS−12P−100)により、Tiを100nmの厚さ蒸着し、連続してCuを300nmの厚さ蒸着し、シード層を形成した。次いで、ドライフィルムレジスト(日立化成株式会社製、商品名:Photec RY−3525)をロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)で貼着し、パターンを形成したフォトマスクを密着させ、露光機(株式会社オーク製作所製、商品名:EXM−1201、100mJ/cm)で露光を行った。次いで、30℃の1質量%炭酸ナトリウム水溶液で、90秒間スプレー現像を行い、ドライフィルムレジストを開口させた。次いで、電解銅めっき法により、シード層上に、厚さ5μmの銅めっきを形成した。次いで、はく離液により、ドライフィルムレジストを剥離した。次いでシード層をエッチング液より除去した。次いで、スピンコーターで再度、感光性絶縁材料(日立化成株式会社製、商品名:AH−1170T)を塗布し、露光処理及び現像処理を行った。次いで、所定温度200℃で窒素雰囲気(酸素濃度50体積ppm以下)下、1時間の熱硬化を行った(図示省略)。
<Formation of rewiring insulating layer>
A rewiring insulating layer was formed on the photosensitive sealing resin composition (see FIGS. 7, 8, and 9). Specifically, a photosensitive insulating material (manufactured by Hitachi Chemical Co., Ltd., trade name: AH-1170T) is applied by a spin coater, and a mask is attached and exposed (Mikasa Corporation, trade name: mask aligner MA-200, After performing 300 mJ / cm 2 ), using a developing machine (manufactured by Mikasa Corporation, trade name: AD-3000), dip-developing (35) with a 2.38% by mass aqueous solution of tetramethylammonium hydroxide (manufactured by Tama Chemical Industry Co., Ltd.). After infiltration for 2 seconds, a waste liquid was performed by spinning.
Next, heat curing was performed at 200 ° C. for 1 hour in an oven (manufactured by Espec Corporation, trade name: PVC-212) under a nitrogen atmosphere (oxygen concentration: 50 ppm by volume or less). Next, Ti was deposited to a thickness of 100 nm by a sputtering apparatus (trade name: CFS-12P-100, manufactured by Shibaura Precision Co., Ltd.), and Cu was continuously deposited to a thickness of 300 nm to form a seed layer. Next, a dry film resist (manufactured by Hitachi Chemical Co., Ltd., trade name: Phototec RY-3525) was roll-laminated (trade name: HOTDOG 12DX, manufactured by Ramie Corporation, temperature: 60 ° C., linear pressure: 4 kgf / cm (39.2 N / cm) at a feed rate of 0.5 m / min), and a photomask on which a pattern is formed is brought into close contact with each other, and exposed with an exposure machine (manufactured by Oak Manufacturing Co., Ltd., trade name: EXM-1201, 100 mJ / cm 2 ). went. Next, spray development was performed for 90 seconds with a 1% by mass aqueous solution of sodium carbonate at 30 ° C. to open the dry film resist. Next, copper plating having a thickness of 5 μm was formed on the seed layer by an electrolytic copper plating method. Next, the dry film resist was peeled off by peeling liquid. Next, the seed layer was removed from the etching solution. Next, a photosensitive insulating material (trade name: AH-1170T, manufactured by Hitachi Chemical Co., Ltd.) was applied again by a spin coater, and exposed and developed. Subsequently, thermal curing was performed at a predetermined temperature of 200 ° C. in a nitrogen atmosphere (oxygen concentration: 50 ppm by volume or less) for one hour (not shown).

<はんだボール搭載>
リフロー装置(株式会社タムラ製作所製、商品名:TNP25−337EM)を用いて、窒素雰囲気(酸素濃度100体積ppm以下)ではんだボールを搭載した(図9参照)。
最後に、ダイサー(株式会社ディスコ製、商品名:DAD−3350)を用いて個片化することによって、パッケージサイズが縦15mm、横15mmの半導体装置100を得た(図10、11参照)。ダイシングブレードには27HEFF(株式会社ディスコ製)を用い(一分間あたりの回転数は30000回転/分、切削速度は20mm/秒)、個片化を行った。
<Mounting solder balls>
Using a reflow apparatus (trade name: TNP25-337EM, manufactured by Tamura Corporation), the solder balls were mounted in a nitrogen atmosphere (oxygen concentration: 100 ppm by volume or less) (see FIG. 9).
Finally, the semiconductor device 100 having a package size of 15 mm in length and 15 mm in width was obtained by singulating using Dicer (trade name: DAD-3350, manufactured by Disco Corporation) (see FIGS. 10 and 11). 27 HEFF (manufactured by Disco Corporation) was used as a dicing blade (the number of revolutions per minute was 30,000 revolutions / minute, and the cutting speed was 20 mm / sec) to singulate.

<感光性封止樹脂組成物の半導体素子封止後の平坦性評価方法>
半導体素子封止後の感光性封止樹脂組成物の平坦性を、半導体素子上部と半導体素子のない部分の封止後の段差で評価した。段差は膜厚計(株式会社ミツトヨ製、商品名:デジマチックインジケータID−H)にて測定した。
「◎」:半導体素子上部と、半導体素子の存在しない部分の感光性封止樹脂組成物の段差が0μmのもの
「○」:半導体素子上部と、半導体素子の存在しない部分の感光性封止樹脂組成物の段差が0μmを超え〜5μm未満のもの
「△」:半導体素子上部と、半導体素子の存在しない部分の感光性封止樹脂組成物の段差が5μm以上〜10μm未満のもの
「×」:上記に当てはまらないもの(10μm以上のもの)
<Evaluation Method of Flatness after Sealing Semiconductor Element of Photosensitive Encapsulating Resin Composition>
The flatness of the photosensitive sealing resin composition after sealing the semiconductor element was evaluated based on the step after sealing the upper part of the semiconductor element and the part without the semiconductor element. The step was measured with a film thickness meter (trade name: Digimatic Indicator ID-H, manufactured by Mitutoyo Corporation).
“◎”: The photosensitive sealing resin composition at the upper portion of the semiconductor element and the portion where the semiconductor element is not present has a step of 0 μm. “○”: The photosensitive sealing resin at the upper portion of the semiconductor element and the portion where the semiconductor element is not present. When the step of the composition exceeds 0 μm and is less than 5 μm “△”: When the step of the photosensitive sealing resin composition in the upper part of the semiconductor element and the portion where the semiconductor element does not exist is 5 μm or more and less than 10 μm “X”: Not applicable to the above (10μm or more)

<パッケージ個片化後の反り量測定方>
パッケージの反り量は、個片化した半導体装置の表面を、室温下(25℃)、レーザー変位計(株式会社キーエンス製、LKG80、ステップ100μm、測定範囲縦15mm、横15mm)で測定した。得られた各点の変位から3次元の平均面を算出し、得られた平均面と、計測で得られた変位との差が最も大きいものを反り量とし、以下のように評価した。
「◎」:反り量が3μm未満のもの
「○」:反り量が3μm以上〜5μm未満のもの
「△」:反り量が5μm以上〜10μm未満のもの
「×」:上記に当てはまらないもの(10μm以上のもの)
<How to measure the amount of warpage after package singulation>
The amount of warpage of the package was measured at room temperature (25 ° C.) using a laser displacement meter (manufactured by KEYENCE CORPORATION, LKG80, step 100 μm, measurement range: 15 mm long, 15 mm wide) at room temperature (25 ° C.). A three-dimensional average plane was calculated from the obtained displacement of each point, and the one having the largest difference between the obtained average plane and the displacement obtained by the measurement was defined as the amount of warpage, and evaluated as follows.
“◎”: The amount of warpage is less than 3 μm “○”: The amount of warpage is 3 μm or more and less than 5 μm “△”: The amount of warpage is 5 μm or more and less than 10 μm “×”: The above does not apply (10 μm) Above)

<感光性封止樹脂組成物の開口可能アスペクト比評価方法>
感光性封止樹脂組成物の開口可能アスペクト比(膜厚/開口径)については以下の基準に基づいて評価した。
「◎」:アスペクト比が2.0以上のもの
「○」:アスペクト比が1.0以上、2.0未満のもの
「×」:アスペクト比が1.0未満のもの
<Evaluation method of the aspect ratio that allows opening of the photosensitive sealing resin composition>
The openable aspect ratio (film thickness / opening diameter) of the photosensitive sealing resin composition was evaluated based on the following criteria.
“◎”: Aspect ratio of 2.0 or more “○”: Aspect ratio of 1.0 or more and less than 2.0 “×”: Aspect ratio of less than 1.0

<パッケージ個片化後の耐熱衝撃試験評価方法>
耐熱衝撃試験は、個片化した同一のパッケージを5つ熱衝撃試験機(エスペック株式会社製、NT−1010)中に静置し、最低温度−55℃から最高温度125℃を一回の温度サイクルとして、1000回の温度サイクルに曝した。その後、各パッケージの開口部を無作為に100個抽出しヒビ割れや剥がれ等の欠陥数を金属顕微鏡(オンリンパス株式会社製、正立金属顕微鏡BX51)を使用して数えた。これを5つのパッケージで行い平均値をとり、以下の基準に基づいて評価した。
「A」:開口部100個中、欠陥を生じた開口部の平均数が10個以下のもの
「B」:開口部100個中、欠陥を生じた開口部の平均数が10個を超えて、50個以下のもの
「C」:開口部100個中、欠陥を生じた開口部の平均数が50個を超えるもの
<Evaluation method of thermal shock test after package singulation>
In the thermal shock test, five pieces of the same singulated package were allowed to stand in a thermal shock tester (NT-1010, manufactured by Espec Corporation), and the temperature was changed from a minimum temperature of −55 ° C. to a maximum temperature of 125 ° C. once. The cycle was subjected to 1000 temperature cycles. Thereafter, 100 openings were randomly extracted from each package, and the number of defects such as cracks and peeling was counted using a metallographic microscope (Erecting Metals Microscope BX51, manufactured by Onlimpus Corporation). This was performed for five packages, the average value was obtained, and the evaluation was performed based on the following criteria.
“A”: Out of 100 openings, the average number of openings with defects was 10 or less “B”: Out of 100 openings, the average number of openings with defects exceeded 10 , 50 or less “C”: Of 100 openings, the average number of openings having defects exceeds 50

溶解速度、封止後の感光性封止樹脂組成物の厚み、最低溶融粘度、および熱膨張係数に関して行った実施例1〜6、参考例1〜3の感光性封止樹脂組成物の測定(評価)結果を表1に示した。 Measurement of the photosensitive sealing resin compositions of Examples 1 to 6 and Reference Examples 1 to 3 performed on the dissolution rate, the thickness of the photosensitive sealing resin composition after sealing, the minimum melt viscosity, and the coefficient of thermal expansion ( Evaluation) The results are shown in Table 1.

Figure 0006627390
Figure 0006627390

比較例1〜3の感光性封止樹脂組成物の測定(評価)結果を表2に示した。   Table 2 shows the measurement (evaluation) results of the photosensitive sealing resin compositions of Comparative Examples 1 to 3.

Figure 0006627390
Figure 0006627390

表1及び表2に示す通り、本発明の感光性封止用樹脂組成物及び半導体装置の製造方法によれば、溶解速度が3.0μm/s以下であれば露光操作によって形成した微細な開口部を封止材に有する半導体装置(パッケージ)を製造できることが確認された。他方、溶解速度が3.0μm/sを超えて高い比較例1、比較例2、及び比較例3ではアスペクト比に悪影響をし、高アスペクト形状が得られにくくなる傾向にある。半導体素子封止後の封止材厚みが200μmを超えて大きい実施例4では、封止後のパッケージ反り量がやや悪化する傾向にあり、50μmよりも小さい実施例5では封止後の平坦性がやや劣る結果となった。最低溶融粘度が500Pa・sを超える参考例2では封止後の平坦性が劣る傾向にあり、熱膨張係数が80×10−6/Kを超えて大きい参考例2及び参考例3では封止後のパッケージ反り量に劣る傾向にある。
As shown in Tables 1 and 2, according to the resin composition for photosensitive encapsulation and the method for manufacturing a semiconductor device of the present invention, if the dissolution rate is 3.0 μm / s or less, the fine opening formed by the exposure operation. It was confirmed that a semiconductor device (package) having a portion as a sealing material could be manufactured. On the other hand, in Comparative Examples 1, 2, and 3 in which the dissolution rate is higher than 3.0 μm / s, the aspect ratio is adversely affected, and a high aspect shape tends to be hardly obtained. In Example 4 in which the thickness of the encapsulant after encapsulation of the semiconductor element is larger than 200 μm, the amount of package warpage after encapsulation tends to slightly deteriorate, and in Example 5 in which the encapsulation material is smaller than 50 μm, flatness after encapsulation is obtained. Was slightly inferior. In Reference Example 2 in which the minimum melt viscosity exceeds 500 Pa · s, the flatness after sealing tends to be inferior, and in Reference Examples 2 and 3 in which the coefficient of thermal expansion is larger than 80 × 10 −6 / K, sealing is performed. It tends to be inferior in the amount of package warpage later.

1…半導体素子固定用基材、2…固定部材、3…半導体素子、4…感光性封止樹脂組成物、5…開口部、6…金属付与(充填)物(導電性材料の付与物)、7…再配線絶縁層、8…配線パターン、9…再配線絶縁層、10…はんだボール、100…半導体装置(半導体パッケージ)、100A …下段半導体パッケージ、111…コア基材、112…配線パターン、113…層間絶縁層、114…ビア開口、110…下段パッケージ用プリント配線板、120…バンプ付き半導体素子、130…アンダーフィル材、140…封止材、141…封止開口、142…接続材料。   DESCRIPTION OF SYMBOLS 1 ... Substrate for fixing a semiconductor element, 2 ... Fixing member, 3 ... Semiconductor element, 4 ... Photosensitive sealing resin composition, 5 ... Opening, 6 ... Reference numeral 7 Rewiring insulating layer 8 Wiring pattern 9 Rewiring insulating layer 10 Solder ball 100 Semiconductor device (semiconductor package) 100A Lower semiconductor package 111 Core substrate 112 Wiring pattern Reference numerals 113, interlayer insulating layer, 114, via opening, 110, printed wiring board for lower package, 120, semiconductor element with bump, 130, underfill material, 140, sealing material, 141, sealing opening, 142, connection material .

Claims (5)

露光及び現像によってパターン形成可能な感光性封止樹脂組成物であって、
アルカリ現像溶液に対して1.3〜3.0μm/sの速度で溶解し、
前記感光性封止樹脂組成物の最低溶融粘度が、10Pa・sから500Pa・sであり、
前記感光性封止樹脂組成物が、ポリイミド樹脂を含む、感光性封止樹脂組成物。
A photosensitive sealing resin composition capable of forming a pattern by exposure and development,
Dissolving in an alkali developing solution at a speed of 1.3 to 3.0 μm / s ,
The minimum melt viscosity of the photosensitive sealing resin composition is 10 Pa · s to 500 Pa · s,
A photosensitive sealing resin composition, wherein the photosensitive sealing resin composition contains a polyimide resin .
半導体素子封止後の封止材厚みが50μmから200μmとなる請求項1に記載の感光性封止樹脂組成物。   The photosensitive sealing resin composition according to claim 1, wherein the thickness of the sealing material after sealing the semiconductor element is 50 µm to 200 µm. 露光後、さらに熱硬化処理された後の熱硬化物の0〜80℃における熱膨張係数が20×10−6/Kから80×10−6/Kの範囲である請求項1又は2に記載の感光性封止樹脂組成物。 After exposure, further claim 1 or 2 thermal expansion coefficient at 0 to 80 ° C. of thermoset after being heat-cured is in the range of 20 × 10 -6 / K from 80 × 10 -6 / K Photosensitive sealing resin composition. (I)請求項1〜のいずれか一項に記載の感光性封止樹脂組成物で半導体素子を封止する工程と、
(II)前記感光性封止樹脂組成物を、露光処理、及び、アルカリ現像溶液に対して1.3〜3.0μm/sの速度で溶解させるアルカリ現像処理の工程によってパターンを形成する工程と、
(III)前記形成したパターンに導電性の材料を付与する工程と、
を備える半導体装置の製造方法。
(I) a step of sealing a semiconductor element with the photosensitive sealing resin composition according to any one of claims 1 to 3 ,
(II) a step of forming a pattern by subjecting the photosensitive encapsulating resin composition to an exposure treatment and an alkali development treatment for dissolving the photosensitive sealing resin composition in an alkali development solution at a rate of 1.3 to 3.0 μm / s; ,
(III) applying a conductive material to the formed pattern;
A method for manufacturing a semiconductor device comprising:
請求項1〜のいずれか一項に記載の感光性封止樹脂組成物の硬化物を有する半導体装置。 The semiconductor device having a cured product of the photosensitive sealing resin composition according to any one of claims 1-3.
JP2015198461A 2015-10-06 2015-10-06 Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device Active JP6627390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015198461A JP6627390B2 (en) 2015-10-06 2015-10-06 Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198461A JP6627390B2 (en) 2015-10-06 2015-10-06 Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2017073441A JP2017073441A (en) 2017-04-13
JP6627390B2 true JP6627390B2 (en) 2020-01-08

Family

ID=58538378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198461A Active JP6627390B2 (en) 2015-10-06 2015-10-06 Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP6627390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216172B1 (en) * 2017-07-14 2021-02-15 주식회사 엘지화학 Method for manufacturing insulating film and semiconductor package
KR102069659B1 (en) 2017-08-31 2020-01-23 해성디에스 주식회사 Method for manufacturing semiconductor package substrate and semiconductor package substrate manufactured using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291619B1 (en) * 1997-01-30 2001-09-18 Hitachi Chemical Co., Ltd Photosensitive resin composition, method for forming pattern therefrom, electronic devices produced by using the same, and method for production thereof
JPH1115157A (en) * 1997-06-24 1999-01-22 Hitachi Chem Co Ltd Photosensitive polyimide precursor composition and manufacture of semiconductor element using the same
JP4225162B2 (en) * 2003-08-18 2009-02-18 日立化成工業株式会社 Sealing film
JP2006222164A (en) * 2005-02-08 2006-08-24 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP5732839B2 (en) * 2010-12-13 2015-06-10 住友ベークライト株式会社 Manufacturing method of semiconductor element sealing body and manufacturing method of semiconductor package
JP2012212724A (en) * 2011-03-30 2012-11-01 Sekisui Chem Co Ltd Method for manufacturing semiconductor chip-mount structure, and sealing resin
CN105143310B (en) * 2013-04-25 2020-09-18 三井化学株式会社 Block polyimide and block polyamic acid imide, and use thereof

Also Published As

Publication number Publication date
JP2017073441A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4935670B2 (en) Semiconductor device, resin composition for buffer coating, resin composition for die bonding, and resin composition for sealing
TWI502659B (en) Method of producing electronic device, and method of producing electronic device package
JP6874350B2 (en) Resin sheet
WO2012133384A1 (en) Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
Braun et al. Through mold vias for stacking of mold embedded packages
JP2013251368A (en) Semiconductor device manufacturing method, thermosetting resin composition used therefor and semiconductor device obtained thereby
KR101754008B1 (en) Method and system for semiconductor packaging
TW201841268A (en) Method for manufacturing semiconductor device, photosensitive resin composition for mold underfill, and semiconductor device
JP2014056924A (en) Semiconductor device manufacturing method and thermosetting resin composition used therefor, and semiconductor device obtained by those
JP2011195742A (en) Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
KR20190039613A (en) Method for manufacturing semiconductor device
JP6627390B2 (en) Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device
JP2016213321A (en) Semiconductor device manufacturing method and semiconductor device
TW201812939A (en) Method of manufacturing semiconductor device capable of improving production efficiency with excellent reliability
JP6468017B2 (en) Manufacturing method of semiconductor device
JP2016213315A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2018067659A (en) Method for manufacturing semiconductor device
JP6739893B2 (en) Semiconductor sealing member, semiconductor device manufacturing method, and semiconductor device
JP3855900B2 (en) Manufacturing method of semiconductor device
JP2015090926A (en) Film for manufacturing semiconductor device, semiconductor device using the same, and manufacturing method of semiconductor device
JP2016139754A (en) Method for manufacturing semiconductor device
JP2004087789A (en) Semiconductor device
Liu et al. Process Development and Failure Analysis for Chip-Last Panel Level Fan-out Packaging (PLP)
JP2016143671A (en) Method for manufacturing semiconductor device and semiconductor device
JP6465340B2 (en) Method for manufacturing semiconductor device using silicon-containing substrate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350