JP2018067659A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2018067659A
JP2018067659A JP2016206032A JP2016206032A JP2018067659A JP 2018067659 A JP2018067659 A JP 2018067659A JP 2016206032 A JP2016206032 A JP 2016206032A JP 2016206032 A JP2016206032 A JP 2016206032A JP 2018067659 A JP2018067659 A JP 2018067659A
Authority
JP
Japan
Prior art keywords
resin layer
sealing
semiconductor element
manufactured
trade name
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016206032A
Other languages
Japanese (ja)
Inventor
紀一 福原
Kiichi Fukuhara
紀一 福原
一行 満倉
Kazuyuki Mitsukura
一行 満倉
正也 鳥羽
Masaya Toba
正也 鳥羽
蔵渕 和彦
Kazuhiko Kurabuchi
和彦 蔵渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016206032A priority Critical patent/JP2018067659A/en
Publication of JP2018067659A publication Critical patent/JP2018067659A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of efficiently and inexpensively manufacturing a semiconductor device highly demanding miniaturization, thinning, and lower repulsion.SOLUTION: A method for manufacturing a semiconductor device includes the steps of: forming a resin layer 5 on a surface 3f of a base material 3 in which a semiconductor element 1 is arranged so as to cover the semiconductor element 1; removing the resin layer 5 with a chemical till the semiconductor element 1 is exposed on an upper surface of the resin layer 5; forming an exposed part 5A in the resin layer 5 by irradiating a prescribed region of the resin layer with active rays; and forming an opening in the resin layer 5 by removing at least a part of an unexposed part of the resin layer 5 with the chemical. The step of removing the resin layer 5 with the chemical reduces the thickness of the resin layer 5 so as to meet the conditions indicated in the following inequality (1): H-H<10 μm...(1)[H indicates a height from the surface of the base material to the upper surface of the semiconductor element 1, and Hindicates a height from the surface of the base material 3 in a region in which the semiconductor element 1 is not arranged to an upper surface of the thinnest portion of the resin layer 5]SELECTED DRAWING: Figure 4

Description

本発明は、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

半導体パッケージの高密度化及び高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されており、これに伴ってコスト面に優れた実装技術が求められている。例えば、チップ間の高密度インターコネクト、並びにパッケージ上に異なるパッケージをフリップチップ実装によって積層するパッケージ・オン・パッケージを低コストで実現する技術が重要になっている(例えば非特許文献1,2参照)。   For the purpose of increasing the density and performance of a semiconductor package, a mounting form in which chips having different performances are mixedly mounted in one package has been proposed, and accordingly, a mounting technique with excellent cost is required. For example, a technology for realizing a high-density interconnect between chips and a package-on-package in which different packages are stacked on the package by flip-chip mounting has become important (see, for example, Non-Patent Documents 1 and 2). .

パッケージ・オン・パッケージに関し、今後ウェハレベルプロセスを利用してパッケージの多段積層構造が主流になるとされている(例えば非特許文献3参照)。このようなパッケージの多段積層化に伴い、パッケージ全体の薄型化及び低反化が求められる。これらの実現のためには各段の封止材の厚さを研削等の方法で減じるなどの方法が行われており、特に半導体素子を封止材から露出させる、エクスポーズド・ダイ構造がしばしば用いられている(例えば特許文献1)。   With regard to package-on-package, it is said that a multi-layer package structure of a package will become mainstream in the future using a wafer level process (for example, see Non-Patent Document 3). With such multi-layered packaging of packages, it is required to make the entire package thin and low. In order to realize these, methods such as reducing the thickness of the sealing material at each stage by a method such as grinding have been performed, and in particular, an exposed die structure that exposes the semiconductor element from the sealing material is used. It is often used (for example, Patent Document 1).

エクスポーズド・ダイ構造を実現するためのもう一つの方法として以下のものが提案されている。すなわち、感光性樹脂を封止材として使用し、これを半導体素子上の樹脂のみが未露光部となるように、他の領域を露光した後、現像液を用いて当該未露光部の感光性樹脂を除去する方法が提案されている(例えば特許文献第2)。   The following has been proposed as another method for realizing the exposed die structure. That is, a photosensitive resin is used as a sealant, and after exposing other regions so that only the resin on the semiconductor element becomes an unexposed portion, the photosensitive property of the unexposed portion using a developer is used. A method for removing the resin has been proposed (for example, Patent Document 2).

更に、パッケージ・オン・パッケージは、半導体装置の樹脂部分(封止材層)にレーザーを用いて微細な開口部を形成するプロセスを経て製造される場合がある。すなわち、下段の半導体装置と、上段の半導体装置を接続するために、下段の半導体装置の封止材に開口部を設け、これに導電材料を充填する、いわゆるTMV(Through Mold Via)構造の半導体装置が台頭してきた。このTMVを有する半導体パッケージの製造過程では、開口部を設けるために、熱硬化性樹脂からなる封止材層に接続用ビアがレーザーで設けられる(例えば特許文献3〜6参照)。   Further, the package-on-package may be manufactured through a process of forming fine openings using a laser in a resin portion (encapsulant layer) of a semiconductor device. That is, in order to connect the lower semiconductor device and the upper semiconductor device, a semiconductor having a so-called TMV (Through Mold Via) structure in which an opening is provided in the sealing material of the lower semiconductor device and filled with a conductive material. The device has emerged. In the manufacturing process of the semiconductor package having this TMV, in order to provide an opening, a connection via is provided with a laser in a sealing material layer made of a thermosetting resin (see, for example, Patent Documents 3 to 6).

米国特許出願公開2015/0145138号明細書US Patent Application Publication No. 2015/0145138 特許第5736714号明細書Japanese Patent No. 5736714 米国特許第7671457号明細書U.S. Pat. No. 7,671,457 米国特許第7633765号明細書U.S. Pat. No. 7,633,765 米国特許第8026587号明細書US Patent No. 8026587 米国特許第8018068号明細書US Patent No. 801068

本多進、「半導体素子の2D〜3D実装技術動向と狙うべき方向」、エレクトロニクス実装学会誌、Vol.18、No.3、(2015)、pp.130Honda, “2D-3D mounting technology trend of semiconductor elements and direction to be aimed at”, Journal of Japan Institute of Electronics Packaging, Vol. 18, no. 3, (2015), pp. 130 SeungJae Lee,et al.、Electrical Characerization of Wafer Level Fan−Out (WLFO) Using Film Substrate for Low Cost Millimeter Wave Application、IEEE Electronic Components and Technology Conference、2010、p.1461SeungJae Lee, et al. , Electrical Charaization of Wafer Level Fan-Out (WLFO) Using Film Substrate for Low Cost Millimeter Wave on Application, IEEE Electron Corporation. 1461 一般社団法人電子情報技術産業界編、「2015年度版 実装技術ロードマップ」、2015General Incorporated Association Electronic Information Technology Industry Edition, “2015 Implementation Technology Roadmap”, 2015 J. Osenbach、et al.、Development of Exposed Die Large Body to Die Size Ratio Wafer Level Package Technology、IEEE Electronic Components and Technology Conference、2014、p.952J. et al. Osenbach, et al. , Development of Exposed Die Large Body to Die Size Ratio Wafer Level Package Technology, IEEE Electronic Components and Technol. 952

特許文献2に記載の方法は、半導体素子を露出させたパッケージを比較的簡便に生産できる利点を有する。しかし、当該方法は、封止材が液状であることから、これを注入及び成型するための型が必要でありパッケージの小型化を実現させる手法としては不十分であった。また、今後多段積層型のパッケージを実現するためにはパッケージの上下両面に半導体素子の配線を引出すための再配線層を形成する必要がある。したがって、半導体素子の上面は封止材と均一になる形で露出していることが望ましいが、半導体素子の上面を封止材の厚さと均一にして露出させるためには、液状封止材を用いた従来の手法では、研削が必要であったり、封止のための特別な型が必要など、工程の煩雑化につながるという問題があった(例えば非特許文献4)。   The method described in Patent Document 2 has an advantage that a package in which a semiconductor element is exposed can be relatively easily produced. However, since the sealing material is in a liquid state, this method requires a mold for injecting and molding the sealing material, and is insufficient as a technique for realizing a reduction in the size of the package. In order to realize a multi-stage stacked package in the future, it is necessary to form a rewiring layer for drawing the wiring of the semiconductor element on the upper and lower surfaces of the package. Therefore, it is desirable that the upper surface of the semiconductor element is exposed in a form that is uniform with the encapsulant, but in order to expose the upper surface of the semiconductor element with the same thickness as the encapsulant, a liquid encapsulant is used. In the conventional method used, there is a problem that the process is complicated, for example, grinding is necessary or a special mold for sealing is required (for example, Non-Patent Document 4).

半導体パッケージの製造方法においては、上段パッケージ及び下段パッケージの少なくとも一方に開口部を形成し、これに導電材料を充填することで両者の電気的接続を確保することができる。従来、炭酸ガスレーザーによって上記開口部を形成するのが一般的である。しかし、レーザーによる開口部の形成は以下の点において改善の余地があった。
・複数の開口部をレーザーで形成するには多大な時間がかかる点。
・例えば厚さ100μmの封止材層に対して開口可能な開口の直径は100μm程度(アスペクト比1程度)が限界であり、これよりも小さい径の開口を形成することが困難である点。
・開口の形成に伴って残渣が生じやすい点。
・封止材層に開口を形成するための装置(少なくともレーザー装置)の導入の必要があり、製造コストが抑えにくい点。
In the method for manufacturing a semiconductor package, an opening is formed in at least one of the upper package and the lower package, and an electrical connection between them is ensured by filling the opening with a conductive material. Conventionally, the opening is generally formed by a carbon dioxide gas laser. However, the formation of the opening by laser has room for improvement in the following points.
-It takes a lot of time to form a plurality of openings with a laser.
For example, the limit of the diameter of the opening that can be opened with respect to the sealing material layer having a thickness of 100 μm is about 100 μm (the aspect ratio is about 1), and it is difficult to form an opening having a smaller diameter.
-Residues are likely to occur with the formation of openings.
-It is necessary to introduce a device (at least a laser device) for forming an opening in the sealing material layer, and the manufacturing cost is difficult to suppress.

本発明は、上記課題に鑑みてなされたものであり、微細化、薄型化及び低反化の要求が高い半導体装置を十分に効率よく且つ低コストで製造できる方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method capable of sufficiently efficiently and inexpensively manufacturing a semiconductor device that is highly demanded for miniaturization, thinning, and low reaction. .

本発明に係る半導体装置の製造方法は、(A)半導体素子が配置されている基材の表面に、半導体素子を覆うように感光性樹脂組成物からなる封止用樹脂層を形成する工程と、(B)半導体素子が封止用樹脂層の上面に露出した状態になるまで封止用樹脂層を薬液で除去することによって封止用樹脂層の厚さを減じる工程と、(C)(B)工程における処理によって厚さが減じられた封止用樹脂層の所定の領域に活性光線を照射することによって封止用樹脂層に感光性樹脂組成物が硬化した露光部と未露光部とを形成する工程と、(D)封止用樹脂層における未露光部の少なくとも一部を、薬液で除去することによって封止用樹脂層の前記露光部に開口部を形成する工程とを含み、上記(B)工程において、以下の不等式(1)で示される条件を満たすように封止用樹脂層の厚さを減じる。
−H<10μm・・・(1)
[Hは基材の表面から半導体素子の上面までの高さを示し、Hは半導体素子が配置されていない領域における基材の表面から封止用樹脂層の最も薄い部分の封止用樹脂層の上面までの高さを示す。]
The method for manufacturing a semiconductor device according to the present invention includes (A) a step of forming a sealing resin layer made of a photosensitive resin composition on a surface of a base material on which a semiconductor element is disposed so as to cover the semiconductor element; (B) reducing the thickness of the sealing resin layer by removing the sealing resin layer with a chemical solution until the semiconductor element is exposed on the upper surface of the sealing resin layer; and (C) ( B) An exposed portion and an unexposed portion in which the photosensitive resin composition is cured on the sealing resin layer by irradiating an actinic ray to a predetermined region of the sealing resin layer whose thickness is reduced by the treatment in the step; And (D) forming an opening in the exposed portion of the sealing resin layer by removing at least a part of the unexposed portion in the sealing resin layer with a chemical solution, In the above step (B), the condition shown by the following inequality (1) Reducing the thickness of the sealing resin layer so as to satisfy.
H 1 −H 2 <10 μm (1)
[H 1 indicates the height from the surface of the base material to the upper surface of the semiconductor element, and H 2 is for sealing the thinnest part of the sealing resin layer from the surface of the base material in the region where the semiconductor element is not disposed. The height to the upper surface of the resin layer is shown. ]

上記製造方法によれば、以下の効果が奏される。まず、封止用樹脂層の上面に半導体素子を薬液によって露出させるために、封止用樹脂層を研削する作業が不要であり且つ特別な型も不要である。また、封止用樹脂層における開口部の形成を微細配線形成に有利なフォトリソグラフィ(露光及び現像プロセス)を適用したため、封止用樹脂層に複数の開口部を一括して形成でき且つ複数の半導体素子の接続部の高密度化を実現可能である。更に、上記製造方法によれば、上記感光性樹脂組成物として必ずしも液状の封止材を使用しなくてもよいため、コンプレッション装置を必要とせず、また開口部形成のためのレーザー装置も必要としない。つまり、高価な装置を必ずしも使用しなくてもよいため、十分に低コストで半導体装置を製造することができる。   According to the manufacturing method, the following effects can be obtained. First, in order to expose the semiconductor element on the upper surface of the sealing resin layer with a chemical solution, an operation of grinding the sealing resin layer is unnecessary and a special mold is not required. In addition, since the formation of the openings in the sealing resin layer is performed by photolithography (exposure and development process), which is advantageous for forming fine wiring, a plurality of openings can be formed in the sealing resin layer at once and a plurality of openings can be formed. It is possible to increase the density of the connection part of the semiconductor element. Furthermore, according to the manufacturing method, a liquid sealing material does not necessarily have to be used as the photosensitive resin composition, so a compression device is not required, and a laser device for forming an opening is also required. do not do. That is, an expensive device is not necessarily used, so that a semiconductor device can be manufactured at a sufficiently low cost.

封止用樹脂層の上面の高い平坦性を確保し且つこれによりアスペクト比の大きい開口部を形成する観点から、露光前における感光性樹脂組成物の最低溶融粘度は10〜500Pa・sであることが好ましい。ここでいう「最低溶融粘度」は昇温速度10℃/分及び周波数1Hzで25〜200℃の条件で測定される値を意味する。   From the viewpoint of ensuring high flatness of the upper surface of the sealing resin layer and thereby forming an opening having a large aspect ratio, the minimum melt viscosity of the photosensitive resin composition before exposure is 10 to 500 Pa · s. Is preferred. The “minimum melt viscosity” here means a value measured under conditions of a temperature rising rate of 10 ° C./min and a frequency of 1 Hz at 25 to 200 ° C.

上記(A)工程において、感光性樹脂組成物として、予めフィルム状に形成されたものを使用することができる。例えばフィルム状の感光性樹脂組成物を基材の表面にラミネートすることにより厚さが十分に均一の封止用樹脂層を容易に形成することができる。   In the step (A), a photosensitive resin composition previously formed in a film shape can be used. For example, a sealing resin layer having a sufficiently uniform thickness can be easily formed by laminating a film-like photosensitive resin composition on the surface of a substrate.

上記製造方法は、開口部に導電材料を充填する工程を更に含んでもよく、また、封止用樹脂層の露光部によって封止された状態の半導体素子と基材とを分離する工程と、基材から分離された半導体素子に、開口部に充填された導電材料と電気的に接続された配線パターンを形成する工程とを更に含んでもよい。   The manufacturing method may further include a step of filling the opening with a conductive material, and a step of separating the semiconductor element and the substrate that are sealed by the exposed portion of the sealing resin layer; The semiconductor element separated from the material may further include a step of forming a wiring pattern electrically connected to the conductive material filled in the opening.

複数の半導体素子が配置された一つの基材から複数の半導体装置を一括して製造するのに本発明の製造方法を適用してもよい。すなわち、本発明の製造方法は、基材の表面に複数の半導体素子が配置されており、当該複数の半導体素子を対象として上記(A)工程及び上記(B)工程を実施するとともに、上記(C)工程よりも後に、隣り合う二つの半導体素子の間の露光部を切断することによって複数の半導体素子を個片化する工程を更に含んでもよい。ここでいう「(C)工程よりも後」とは、(C)工程後であって(D)工程を実施するまでの間又は(D)工程後を意味する。   The manufacturing method of the present invention may be applied to collectively manufacture a plurality of semiconductor devices from a single substrate on which a plurality of semiconductor elements are arranged. That is, in the manufacturing method of the present invention, a plurality of semiconductor elements are arranged on the surface of a base material, and the above-described (A) process and (B) process are performed on the plurality of semiconductor elements. After the step C), the method may further include a step of separating the plurality of semiconductor elements by cutting an exposed portion between two adjacent semiconductor elements. Here, “after the step (C)” means after the step (C) until the step (D) is performed or after the step (D).

本発明によれば、微細化、薄型化及び低反化の要求が高い半導体装置を十分に効率よく且つ低コストで製造できる。   According to the present invention, a semiconductor device that is highly demanded for miniaturization, thinning, and low reaction can be manufactured sufficiently efficiently and at low cost.

図1は基材の表面に複数の半導体素子が固定部材を介して配置された状態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a state in which a plurality of semiconductor elements are arranged on a surface of a substrate via a fixing member. 図2(a)は上面が平坦な封止用樹脂層で複数の半導体素子が封止された状態を模式的に示す断面図であり、図2(b)は上面に段差がある封止用樹脂層で複数の半導体素子が封止された状態を模式的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing a state in which a plurality of semiconductor elements are sealed with a sealing resin layer having a flat upper surface, and FIG. It is sectional drawing which shows typically the state by which the several semiconductor element was sealed with the resin layer. 図3(a)及び図3(b)は図2(a)及び図2(b)にそれぞれ示す封止用樹脂層の厚さを減ずる操作を実施している様子を模式的に示す断面図である。3 (a) and 3 (b) are cross-sectional views schematically showing a state where an operation for reducing the thickness of the sealing resin layer shown in FIGS. 2 (a) and 2 (b) is performed. It is. 図4(a)及び図4(b)は半導体素子を封止用樹脂層から露出させた状態を模式的に示す断面図である。4A and 4B are cross-sectional views schematically showing a state where the semiconductor element is exposed from the sealing resin layer. 図5は露光処理及び現像処理を施して封止用樹脂層に複数の開口部を設けた状態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a state in which a plurality of openings are provided in the sealing resin layer by performing exposure processing and development processing. 図6は複数の開口部に導電材料を充填した状態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a state in which a plurality of openings are filled with a conductive material. 図7は半導体素子と封止用樹脂層基材とを含む構造体であって固定部材及び固定部材から分離された構造体を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a structure including a semiconductor element and a sealing resin layer base material and separated from the fixing member and the fixing member. 図8は図7に示す構造体に再配線絶縁層を形成した状態を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a state where a rewiring insulating layer is formed on the structure shown in FIG. 図9は図8に示す構造体に配線パターンを更に形成した状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state where a wiring pattern is further formed on the structure shown in FIG. 図10は図9に示す構造体に再配線絶縁層を更に形成し且つハンダボールを搭載した状態を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a state in which a rewiring insulating layer is further formed on the structure shown in FIG. 9 and solder balls are mounted. 図11は図10に示す構造体を個片化する操作を実施している様子を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a state in which an operation for separating the structure shown in FIG. 10 is performed. 本発明に係る半導体装置の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the semiconductor device which concerns on this invention.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本実施形態に係る半導体パッケージ(半導体装置)100の製造方法について説明する。本実施形態は、微細化及び多ピン化が必要とされる形態において好適であり、FO−WLP(Fan−out Wafer Level Package)を三次元化する形態において特に好適である。   A method for manufacturing the semiconductor package (semiconductor device) 100 according to the present embodiment will be described. This embodiment is suitable in a form in which miniaturization and increase in the number of pins are required, and is particularly suitable in a form in which FO-WLP (Fan-out Wafer Level Package) is made three-dimensional.

まず、複数の半導体素子1を固定するための基材3を準備する(図1参照)。基材3は、特に限定されるものではないが、ガラスクロスに樹脂を含浸させたガラスクロス入り基材、シリコンウェハ、ガラス、SUS(ステンレス)板等の高剛性材料が好適である。基材3の厚さは例えば0.2〜0.8mmである。基材3の厚さが0.2mm以上である場合、組立てプロセスにおける反りを抑制することができ、ハンドリングが容易になる傾向がある。基材3の厚さ0.8mm以下である場合、基材3の取り外しが工業的に容易になるうえ、経済的恩恵を得やすくなる傾向にある。なお、ここでは複数の半導体素子1を基材3上に固定する場合を例示するが、一つの半導体素子1を基材上に固定してもよい。   First, a base material 3 for fixing a plurality of semiconductor elements 1 is prepared (see FIG. 1). The base material 3 is not particularly limited, but a high-rigidity material such as a glass cloth base material in which a glass cloth is impregnated with a resin, a silicon wafer, glass, or a SUS (stainless steel) plate is suitable. The thickness of the base material 3 is 0.2-0.8 mm, for example. When the thickness of the base material 3 is 0.2 mm or more, warpage in the assembly process can be suppressed, and handling tends to be facilitated. When the thickness of the base material 3 is 0.8 mm or less, the removal of the base material 3 is industrially easy and the economic benefits tend to be easily obtained. In addition, although the case where the several semiconductor element 1 is fixed on the base material 3 here is illustrated, you may fix one semiconductor element 1 on a base material.

基材3の室温(25℃)から150℃までの平均熱膨張係数は1×10−6/℃から15×10−6/℃の範囲であることが好ましい。この値が1×10−6/℃以上であることで、経済的恩恵を得やすくなる傾向があり、他方、15×10−6/℃以下である場合はチップ実装後に発生し得る反りを充分に抑制できる傾向にある。基材3の室温(25℃)における弾性率は20GPaから40GPaの範囲であることが好ましい。この値が20GPa以上である場合、チップ実装後に発生し得る反りを充分に抑制できる傾向があり、他方、40GPa以下であることで工業的に作製が容易になる傾向がある。 The average thermal expansion coefficient of the substrate 3 from room temperature (25 ° C.) to 150 ° C. is preferably in the range of 1 × 10 −6 / ° C. to 15 × 10 −6 / ° C. When this value is 1 × 10 −6 / ° C. or more, there is a tendency that it is easy to obtain an economic benefit. On the other hand, when it is 15 × 10 −6 / ° C. or less, sufficient warpage may occur after chip mounting. It tends to be suppressed. The elastic modulus of the substrate 3 at room temperature (25 ° C.) is preferably in the range of 20 GPa to 40 GPa. When this value is 20 GPa or more, there is a tendency that warp that can occur after chip mounting can be sufficiently suppressed, and on the other hand, when it is 40 GPa or less, production tends to be easy industrially.

図1に示すように、基材3の一方の表面に固定部材4を介して半導体素子1を固定する。半導体素子1の基材3への搭載はダイボンダ等の搭載機を用いて実施すればよい。固定部材4としてフィルム状のものが好適である。フィルム状の固定部材4は、基材3に対する半導体素子1の貼り付けと、固定部材4からの半導体素子1の剥離とを良好に行うことができるという利点がある。なお、ウェハの裏面にラミネート等で固定部材を設け、その後、半導体素子1を個片化することで各半導体素子1の裏面にそれぞれ固定部材4が設けられた状態としてもよい。   As shown in FIG. 1, the semiconductor element 1 is fixed to one surface of the substrate 3 through a fixing member 4. The semiconductor element 1 may be mounted on the base material 3 using a mounting machine such as a die bonder. The fixing member 4 is preferably a film. The film-like fixing member 4 has an advantage that the semiconductor element 1 can be adhered to the base material 3 and the semiconductor element 1 can be peeled off from the fixing member 4 satisfactorily. The fixing member 4 may be provided on the back surface of the wafer by lamination or the like, and then the semiconductor element 1 may be separated into individual pieces so that the fixing member 4 is provided on the back surface of each semiconductor element 1.

図2(a)及び図2(b)に示すように、半導体素子1が配置されている基材3の表面3f側に、半導体素子1を覆うように感光性樹脂組成物からなる封止用樹脂層5を形成する((A)工程)。感光性樹脂組成物による封止はラミネート方式でもコンプレッション方式でも構わない。   As shown in FIG. 2A and FIG. 2B, for sealing made of a photosensitive resin composition so as to cover the semiconductor element 1 on the surface 3 f side of the substrate 3 on which the semiconductor element 1 is arranged. Resin layer 5 is formed (step (A)). Sealing with the photosensitive resin composition may be a laminate method or a compression method.

半導体素子1を封止するための感光性樹脂組成物の最低溶融粘度は、好ましくは10〜500Pa・sであり、より好ましくは10〜300Pa・sである。最低溶融粘度が10Pa・s以上であれば、半導体素子1を封止する際に感光性樹脂組成物の流出等を抑制しやすい。他方、最低溶融粘度が300Pa・s以下であれば、十分に上面が平らな封止用樹脂層5を形成することができるという利点がある。すなわち、図2(a)に示すように、基材3の表面3f側の半導体素子1がある領域と、半導体素子1がない領域とにおける封止用樹脂層5の高さの差(段差)を十分に小さくできる。これに対し、図2(b)は両領域に高さの差がある程度生じた状態を模式的に示している。この高さの差を十分に小さくすることで、半導体素子1の上面1aを露出させる後述の工程において、封止用樹脂層5の上面5aの平坦性をより向上させた状態での露出が可能となり、アスペクトが大きい開口部を形成しやすくなる。   The minimum melt viscosity of the photosensitive resin composition for sealing the semiconductor element 1 is preferably 10 to 500 Pa · s, more preferably 10 to 300 Pa · s. When the minimum melt viscosity is 10 Pa · s or more, it is easy to suppress the outflow of the photosensitive resin composition when the semiconductor element 1 is sealed. On the other hand, if the minimum melt viscosity is 300 Pa · s or less, there is an advantage that the sealing resin layer 5 having a sufficiently flat upper surface can be formed. That is, as shown in FIG. 2A, the difference (step) in the height of the sealing resin layer 5 between the region where the semiconductor element 1 on the surface 3f side of the substrate 3 is present and the region where the semiconductor element 1 is absent. Can be made sufficiently small. On the other hand, FIG. 2B schematically shows a state in which a difference in height occurs between the two areas to some extent. By sufficiently reducing the difference in height, it is possible to expose the upper surface 5a of the sealing resin layer 5 in a state in which the flatness of the upper surface 5a is further improved in a later-described process of exposing the upper surface 1a of the semiconductor element 1. Thus, an opening having a large aspect can be easily formed.

次いで、図3(a)及び図3(b)に示すように薬液吐出部60から薬液60aを封止用樹脂層5の上方からその上面5aに供給する。この薬液により、封止用樹脂層5の上側を溶解させ、図4(a)及び図4(b)に示すように半導体素子1の上面1aが封止用樹脂層5の上面5aに露出した状態になるまで封止用樹脂層5の厚さを減じる((B)工程)。ここでいう「露出」とは半導体素子1の上面1a(半導体素子1の基材3側の面と反対側の面)が大気中に現れている状態を意味する。   Next, as shown in FIGS. 3A and 3B, the chemical solution 60 a is supplied from above the sealing resin layer 5 to the upper surface 5 a from the chemical solution discharge section 60. With this chemical solution, the upper side of the sealing resin layer 5 is dissolved, and the upper surface 1a of the semiconductor element 1 is exposed on the upper surface 5a of the sealing resin layer 5 as shown in FIGS. 4 (a) and 4 (b). The thickness of the sealing resin layer 5 is reduced until the state is reached (step (B)). The term “exposed” as used herein means a state in which the upper surface 1a of the semiconductor element 1 (the surface opposite to the surface on the base material 3 side of the semiconductor element 1) appears in the atmosphere.

上記薬液としては、例えば、20〜50℃のテトラメチルアンモニウムヒドロキシド水溶液(1〜5質量%水溶液)等のアルカリ現像液が用いられ、スプレー、揺動浸漬、ブラッシング及びスクラッビング等の公知の方法により処理することで、封止用樹脂層5を溶解し、その厚さを減じることができる。   As said chemical | medical solution, alkaline developing solutions, such as 20-50 degreeC tetramethylammonium hydroxide aqueous solution (1-5 mass% aqueous solution), are used, for example by well-known methods, such as spray, rocking immersion, brushing, and scrubbing. By processing, the resin layer 5 for sealing can be melt | dissolved and the thickness can be reduced.

上記(B)工程において、以下の不等式(1)で示される条件を満たすように封止用樹脂層5を除去する。
−H<10μm・・・(1)
式(1)において、Hは基材3の表面3fから半導体素子1の上面1aまでの高さ(図4(b)における高さH)を示し、Hは基材3の表面3fのうち半導体素子1が配置されていない領域における封止用樹脂層5の最も薄い部分の上面5aまでの高さ(図4(b)における高さH)を示す。不等式(1)で示される条件を満たすように(B)工程を実施することで、後述する開口部6を形成するために、封止用樹脂層5の上面5aにマスクをコンタクトさせて露光した場合であっても、より高いアスペクトの開口部6を形成することができる。上記(B)工程において満たすべき条件は、より好ましくは不等式(2)であり、更に好ましくは不等式(3)である。なお、図4(a)は高さHと高さHが等しい場合(H=H)を図示したものである。
−H<7μm・・・(2)
−H<5μm・・・(3)
In the step (B), the sealing resin layer 5 is removed so as to satisfy the condition represented by the following inequality (1).
H 1 −H 2 <10 μm (1)
In the formula (1), H 1 represents the height from the surface 3 f of the substrate 3 to the upper surface 1 a of the semiconductor element 1 (height H 1 in FIG. 4B), and H 2 represents the surface 3 f of the substrate 3. shown thinnest partial top up 5a height of the sealing resin layer 5 in the region where the semiconductor element 1 is not disposed (FIG. 4 (b) height of of H 2) of the. By carrying out step (B) so as to satisfy the condition represented by inequality (1), a mask is brought into contact with the upper surface 5a of the sealing resin layer 5 and exposed in order to form an opening 6 described later. Even in this case, the opening 6 having a higher aspect can be formed. The condition to be satisfied in the step (B) is more preferably the inequality (2), and still more preferably the inequality (3). FIG. 4A illustrates a case where the height H 1 is equal to the height H 2 (H 1 = H 2 ).
H 1 −H 2 <7 μm (2)
H 1 −H 2 <5 μm (3)

次いで、封止用樹脂層5の所定の領域に活性光線を照射することによって封止用樹脂層5に露光部及び未露光部を形成する((C)工程)。露光処理については、マスクパターンを通して活性光線を照射することにより、封止用樹脂層5の所定部分を露光し、光硬化させる。活性光線の光源としては、公知の光源を用いることができ、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射するものを使用できる。また、 LDI(Laser Direct Imaging)露光法及びDLP(Digital Light Processing)露光法等の直接描画露光法により活性光線を画像状に照射する方法を採用してもよい。露光量は使用する装置及び感光性樹脂組成物の組成によって異なるが、好ましくは100〜1000mJ/cm2であり、より好ましくは600〜800mJ/cm2である。露光量が100mJ/cm2以上であれば光硬化が充分となり成型しやすくなる傾向にあり、他方、1000mJ/cm2以下であれば開口部6を封止用樹脂層5の上面5aから固定部材4上まで貫通させた状態で形成させることに有利となる。 Next, an exposed portion and an unexposed portion are formed in the sealing resin layer 5 by irradiating a predetermined region of the sealing resin layer 5 with an actinic ray (step (C)). About an exposure process, the predetermined part of the resin layer 5 for sealing is exposed by irradiating actinic light through a mask pattern, and is photocured. A known light source can be used as the actinic light source. For example, a light source that effectively emits ultraviolet rays, such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp can be used. Alternatively, a method of irradiating actinic rays in an image form by a direct drawing exposure method such as an LDI (Laser Direct Imaging) exposure method or a DLP (Digital Light Processing) exposure method may be employed. Although exposure amount varies depending on the composition of the device and the photosensitive resin composition used, preferably 100~1000mJ / cm 2, more preferably 600~800mJ / cm 2. If the exposure amount is 100 mJ / cm 2 or more, photocuring tends to be sufficient and the molding tends to be easy. On the other hand, if it is 1000 mJ / cm 2 or less, the opening 6 is fixed from the upper surface 5a of the sealing resin layer 5 to the fixing member. It is advantageous to form it in a state of being penetrated up to four.

次いで、図5に示すように、封止用樹脂層5の未露光部を現像によって除去することで、固定部材4を露出させる。現像処理に用いる現像液としては、例えば、20〜50℃のテトラメチルアンモニウムヒドロキシド水溶液(1〜5質量%水溶液)等のアルカリ現像液が用いられ、スプレー、揺動浸漬、ブラッシング及びスクラッビング等の公知の方法により現像する。これにより所定のパターンが形成される。現像液に対する封止用樹脂層5の未露光部の溶解速度は好ましくは3.0μm/s以下であり、より好ましくは1.0μm/s〜2.0μm/sである。この値が3.0μm/s以下であれば露光操作によって形成したパターン形状を比較的良好に保持することができ、他方、3.0μm/sよりも大きい場合は、未露光部のみならず露光部5Aにおいての溶解度も大きくなり、開口部6の形成不良を起こすという不具合が生じる傾向にある。   Next, as shown in FIG. 5, the fixing member 4 is exposed by removing the unexposed portion of the sealing resin layer 5 by development. As the developer used in the development process, for example, an alkali developer such as a 20 to 50 ° C. tetramethylammonium hydroxide aqueous solution (1 to 5% by mass aqueous solution) is used, and spraying, rocking immersion, brushing, scrubbing, and the like are used. Development is performed by a known method. Thereby, a predetermined pattern is formed. The dissolution rate of the unexposed portion of the sealing resin layer 5 with respect to the developer is preferably 3.0 μm / s or less, and more preferably 1.0 μm / s to 2.0 μm / s. If this value is 3.0 μm / s or less, the pattern shape formed by the exposure operation can be kept relatively good. On the other hand, if it is larger than 3.0 μm / s, not only the unexposed area but also the exposure The solubility in the portion 5A also increases, and there is a tendency that a defect such as poor formation of the opening 6 occurs.

封止用樹脂層5の露光部5Aに開口部6を設けた後、150℃前後で1時間程度にわたって封止用樹脂層5(露光部5A)を加熱し、露光部5Aを熱硬化処理してもよい。なお、硬化後の封止用樹脂層5の厚さは例えば50〜200μmの範囲であることが好ましく、より好ましくは100〜150μmである。この値が50μm以上であれば半導体素子1を封止した状態を十分に維持でき、他方、200μm以下であれば封止後の反り発生を抑制し且つアスペクト比が2.5以上の開口部6を形成できる傾向にある。なお、開口部6のアスペクト比は、開口部6の長さ(封止用樹脂層5の厚さ)を開口部6の開口径で除すことによって算出される値を意味する。   After the opening 6 is provided in the exposed portion 5A of the sealing resin layer 5, the sealing resin layer 5 (exposed portion 5A) is heated at about 150 ° C. for about 1 hour, and the exposed portion 5A is thermoset. May be. In addition, it is preferable that the thickness of the resin layer 5 for sealing after hardening is the range of 50-200 micrometers, for example, More preferably, it is 100-150 micrometers. If this value is 50 μm or more, the state where the semiconductor element 1 is sealed can be sufficiently maintained. On the other hand, if it is 200 μm or less, the occurrence of warpage after sealing is suppressed and the opening 6 having an aspect ratio of 2.5 or more. Tend to form. The aspect ratio of the opening 6 means a value calculated by dividing the length of the opening 6 (the thickness of the sealing resin layer 5) by the opening diameter of the opening 6.

硬化後の封止用樹脂層5のガラス転移温度以下での平均熱膨張係は、10×10−6/℃から100×10−6/℃の範囲であることが好ましい。この値が10×10−6/℃以上の場合はフィラーを増量する必要があまりなく封止用樹脂層5の解像性を低下させる懸念が少ない傾向があり、他方、100×10−6/℃以下の場合はパッケージの反りを抑制しやすくなる傾向となる。同様の理由から、硬化後の封止用樹脂層5の室温(25℃)における貯蔵弾性率は10MPa以上であることが好ましい。 It is preferable that the average thermal expansion coefficient below the glass transition temperature of the encapsulating resin layer 5 after curing is in the range of 10 × 10 −6 / ° C. to 100 × 10 −6 / ° C. When this value is 10 × 10 −6 / ° C. or more, it is not necessary to increase the amount of filler, and there is a tendency that there is little concern that the resolution of the sealing resin layer 5 is lowered, while 100 × 10 −6 / When the temperature is lower than or equal to ° C., the warpage of the package tends to be suppressed. For the same reason, the storage elastic modulus at room temperature (25 ° C.) of the encapsulating resin layer 5 after curing is preferably 10 MPa or more.

次いで、図6に示すように、硬化後の封止用樹脂層5の開口部6に導電材料7を充填する。導電材料7としては、導電性を有し且つ開口部6に充填可能なものであればよく、例えば、Al、Cu、Sn、Ni、Au、Ag及びこれらの合金等の金属などが挙げられる。充填方法としてはスパッタリング、PVD、CVD,電解めっき、無電解めっき等が挙げられる。特に電解めっきを施す場合、予めスパッタリングなどによって金属のシード層を形成することで、その後、電解めっきによって開口部6に金属を充填することができる。開口部6に導電材料7を充填する前に(例えば金属めっきを形成する前に)固定部材4上の残渣を除去する目的で、酸洗処理又はプラズマ処理を施しても構わない。   Next, as shown in FIG. 6, the conductive material 7 is filled into the opening 6 of the cured resin layer 5 for sealing. The conductive material 7 may be any material that is conductive and can fill the opening 6, and examples thereof include metals such as Al, Cu, Sn, Ni, Au, Ag, and alloys thereof. Examples of the filling method include sputtering, PVD, CVD, electrolytic plating, and electroless plating. In particular, when electrolytic plating is performed, a metal seed layer is formed in advance by sputtering or the like, and then the opening 6 can be filled with metal by electrolytic plating. Before filling the opening 6 with the conductive material 7 (for example, before forming metal plating), pickling treatment or plasma treatment may be performed for the purpose of removing the residue on the fixing member 4.

次いで、図7に示すように、基材3及び固定部材4を除去する。除去方法については特に制限するものではないが、例えば固定部材4として熱剥離性のものを使用すれば、加熱によって基材3及び固定部材4を除去することができる。   Subsequently, as shown in FIG. 7, the base material 3 and the fixing member 4 are removed. The removal method is not particularly limited. For example, if a heat-peelable member is used as the fixing member 4, the base material 3 and the fixing member 4 can be removed by heating.

図8に示すように、封止用樹脂層5に再配線絶縁層8aを形成する。再配線絶縁層8aの形成は、感光性及び/又は熱硬化性を有する材料を使用すればよく、その材料は液状でもフィルム状でもよい。液状の感光性材料を用いる場合、スピンコーターで所定の厚さの層を形成し、その後、露光及び現像処理により所定のパターンを形成し、窒素雰囲気で熱硬化させる。その後、必要に応じて、無電解めっき又はスパッタ処理等によりシード層を形成する(図示省略)。その後、配線形成用レジストを形成し、露光、現像処理によりパターンを形成する。   As shown in FIG. 8, a rewiring insulating layer 8 a is formed on the sealing resin layer 5. The rewiring insulating layer 8a may be formed using a photosensitive and / or thermosetting material, and the material may be liquid or film-like. In the case of using a liquid photosensitive material, a layer having a predetermined thickness is formed by a spin coater, and then a predetermined pattern is formed by exposure and development processing, followed by thermal curing in a nitrogen atmosphere. Thereafter, if necessary, a seed layer is formed by electroless plating or sputtering (not shown). Thereafter, a wiring forming resist is formed, and a pattern is formed by exposure and development processing.

次いで、図9に示すように、電解めっき等により配線パターン9を形成する。次いで、レジストをはく離し、シード層を除去する(図示省略)。その後、感光性材料で再配線絶縁層8bを形成する(図10参照)。多層化が必要な場合は、これらサイクルを再度繰り返せばよい。無電解銅めっき法によりシード層を形成する場合、シード層の厚さは特に制限はないが、通常0.1〜1.0μmが好ましい。配線パターン9を形成する前にシード層を形成することにより、電解銅めっき法が可能となり、選択的に配線パターン9を形成することができる。シード層の形成は無電解銅めっき法の他に、スパッタ法によっても形成できる。ターゲットは適宜選択できるが、Ti/Cuが一般的である。Ti又はCuの層の厚さは特に制限はないが、Tiで20〜100nm、Cuで100〜500nm程度が好適である。最外層の電極には市販の無電解ニッケル/金めっき液等を用いてめっき処理を施すこともできる。   Next, as shown in FIG. 9, a wiring pattern 9 is formed by electrolytic plating or the like. Next, the resist is peeled off and the seed layer is removed (not shown). Thereafter, the rewiring insulating layer 8b is formed of a photosensitive material (see FIG. 10). If multiple layers are required, these cycles may be repeated again. When the seed layer is formed by an electroless copper plating method, the thickness of the seed layer is not particularly limited, but is preferably 0.1 to 1.0 μm. By forming the seed layer before forming the wiring pattern 9, an electrolytic copper plating method can be performed, and the wiring pattern 9 can be selectively formed. The seed layer can be formed not only by electroless copper plating but also by sputtering. The target can be appropriately selected, but Ti / Cu is generally used. The thickness of the Ti or Cu layer is not particularly limited, but is preferably about 20 to 100 nm for Ti and about 100 to 500 nm for Cu. The outermost electrode can be plated using a commercially available electroless nickel / gold plating solution or the like.

次いで、図10に示すように、電極にはんだボール10を搭載する。はんだボール10の搭載は市販のNリフロー装置等を用いて容易に行うことができる。はんだボール10の搭載のタイミングは特に限定するものではなく、必要に応じて個片化後でもかまわない。最後に、図11に示すように、例えばダイシングソー70を用いて個片化することで、図12に示す半導体パッケージ100を得ることができる。半導体パッケージ100は、微細化及び多ピン化が必要とされる形態において好適であり、FO−WLP(Fan−out Wafer Level Package)を三次元化する形態において特に好適である。 Next, as shown in FIG. 10, solder balls 10 are mounted on the electrodes. Mounting of the solder ball 10 can be easily performed using a commercially available N 2 reflow apparatus or the like. The mounting timing of the solder ball 10 is not particularly limited, and may be after separation as needed. Finally, as shown in FIG. 11, the semiconductor package 100 shown in FIG. 12 can be obtained by dividing into pieces using a dicing saw 70, for example. The semiconductor package 100 is suitable in a form that requires miniaturization and multi-pinning, and is particularly suitable in a form in which a FO-WLP (Fan-out Wafer Level Package) is three-dimensionalized.

以上、本発明の実施形態について詳細に説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。   As mentioned above, although embodiment of this invention was described in detail, this invention is not necessarily limited to embodiment mentioned above, You may change suitably in the range which does not deviate from the meaning.

まず、半導体素子を固定するための基材としてSUS板(SUS304を直径220mm、厚さ1.5mmに加工したもの)を準備した。SUS板の表面には厚さ18μmの固定部材(日東電工株式会社製、商品名:リバアルファ;熱はく離シート)をロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)を用いて貼付した。その際、固定部材(リバアルファ)フィルムの加熱によって発泡する面(発泡面)とは反対側を、上記SUS板と貼り合わせた。   First, a SUS plate (SUS304 processed into a diameter of 220 mm and a thickness of 1.5 mm) was prepared as a base material for fixing a semiconductor element. On the surface of the SUS plate, a fixing member having a thickness of 18 μm (manufactured by Nitto Denko Corporation, trade name: Riva Alpha; heat release sheet) is a roll laminator (made by Lamy Corporation, trade name: HOTDOG 12DX, temperature 60 ° C., wire Affixing was performed using a pressure of 4 kgf / cm (39.2 N / cm) and a feed rate of 0.5 m / min). At that time, the side opposite to the surface (foaming surface) foamed by heating of the fixing member (Riva Alpha) film was bonded to the SUS plate.

<半導体素子用シリコンウェハの準備>
8inchウェハの半導体素子(株式会社ウォルツ製、商品名:WALTS−TEG CC80−0101JY_(PI)_ModelI)を準備した。ウェハに対してバックグラインド加工を行い、その厚さを40μmとした。
<Preparation of silicon wafer for semiconductor device>
An 8-inch wafer semiconductor element (product name: WALTS-TEG CC80-0101JY_ (PI) _ModelI) manufactured by Waltz Co., Ltd. was prepared. Backgrinding was performed on the wafer to a thickness of 40 μm.

<ダイシングテープの半導体素子用シリコンウェハへの貼付>
ダイシングテープ(日立化成株式会社製、商品名:HAE−1504)を準備した。上記半導体素子用ウェハの能動面とは反対側の面にダイシングテープを、保護フィルムのポリエチレンフィルムをはく離して、プレス式真空ラミネータ(株式会社名機製作所製、商品名:MVLP−500)を用いて貼付した。プレス条件は、プレス熱板温度40℃、真空引き時間30秒、ラミネートプレス時間60秒、気圧4kPa以下、圧着圧力0.5MPaの下で行った。
<Attaching dicing tape to silicon wafer for semiconductor devices>
A dicing tape (manufactured by Hitachi Chemical Co., Ltd., trade name: HAE-1504) was prepared. Using a press-type vacuum laminator (trade name: MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) with a dicing tape peeled off from the surface opposite to the active surface of the semiconductor element wafer and the polyethylene film as a protective film. Affixed. The pressing conditions were a press hot plate temperature of 40 ° C., a vacuuming time of 30 seconds, a laminating press time of 60 seconds, an atmospheric pressure of 4 kPa or less, and a pressing pressure of 0.5 MPa.

<半導体素子の準備>
上記のダイシングテープ貼付済み半導体素子用シリコンウェハを縦10mm、横10mmのサイズに個片化した。個片化にはシリコンウェハ用ダイシングソー(株式会社ディスコ製、商品名:DAD−3350)を用いた。ダイシングブレードには27HEFFを用い、一分間あたりの回転数は30000回転/分、切削速度は20mm/秒で行なった。
<Preparation of semiconductor element>
The silicon wafer for a semiconductor element to which the dicing tape was applied was separated into a size of 10 mm in length and 10 mm in width. For dicing, a silicon wafer dicing saw (manufactured by DISCO Corporation, trade name: DAD-3350) was used. 27HEFF was used for the dicing blade, the number of rotations per minute was 30000 rotations / minute, and the cutting speed was 20 mm / second.

<半導体素子の実装>
個片化した上記半導体素子を能動面が上記固定部材に貼り合わさるように実装した(図2参照)。実装にはフリップチップボンダー(パナソニック株式会社製、商品名:FCB3 NM−SB50A)を用いた。ステージ上に固定部材を貼付したSUS板を、吸引によって固定した。ステージ設定温度を50℃、フリップチップボンダーのヘッド温度が50℃、圧着時間1秒間の設定で実装した。圧着時の荷重は10Nで行った。
<Mounting of semiconductor elements>
The separated semiconductor element was mounted so that the active surface was bonded to the fixing member (see FIG. 2). A flip chip bonder (manufactured by Panasonic Corporation, trade name: FCB3 NM-SB50A) was used for mounting. A SUS plate with a fixing member attached on the stage was fixed by suction. Mounting was performed at a stage setting temperature of 50 ° C., a flip chip bonder head temperature of 50 ° C., and a pressure bonding time of 1 second. The load at the time of crimping was 10N.

<封止用感光性樹脂組成物の合成:アルカリ可溶性樹脂PI−1>
撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366)を39g(0.11mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を46g(0.11mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive resin composition for sealing: alkali-soluble resin PI-1>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen displacement device (nitrogen inlet tube) and a reflux condenser equipped with a moisture acceptor, 2,2-bis (3-amino-4-hydroxyphenyl) as a diamine ) 39 g (0.11 mol) of hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylenediamine, manufactured by BASF, trade name: D- 400, molecular weight: 433) 46 g (0.11 mol), BY16-871EG (siloxane diamine, manufactured by Toray Dow Corning Co., Ltd., trade name: BY16-871EG, molecular weight: 248.5) 6.6 g (0.027 mol) ), M-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade), 13.1 g (0.12 mol), and The solvent is a NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−1を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ、75質量%であった。   While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4′-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After completion of the addition, the solution was heated to 180 ° C. while blowing nitrogen gas, and kept for 3 hours to obtain polyimide resin PI-1, which is an alkali-soluble resin. From the weight loss after thinly applying the obtained polyimide resin on an aluminum cup and drying at 180 ° C. for 3 hours using a hot air convection dryer (manufactured by Futaba Kagaku Co., Ltd., trade name: MSO-80TPS), It was 75 mass% when the heating residue of the polyimide was measured.

<封止用感光性樹脂組成物溶液(S−1)の調製>
上記で得られたアルカリ可溶性樹脂、及び、以下に示すその他の化合物を用いて、下記に示す組成比(単位:質量部)にて各成分を配合し、封止用感光性樹脂組成物溶液(S−1)を得た。
(I)イソシアヌル酸EO変性ジ及びトリアクリレート(東亜合成株式会社製、商品名:M−313):29.8質量%
(II)ビスフェノールF型ビスグリシジルエーテル(東都化成工業株式会社製、商品名:YDF−870GS):18.24質量%
(III)トリスフェノール化合物(α,α,α’−トリス(4−ヒドロキシフェノル)−1−エチル−4−イソプロピルベンゼン)(本州化学工業株式会社製、商品名:TrisP−PA):4.3質量%
(IV)疎水性フュームドシリカ(平均粒径:約16nm)(日本アエロジル株式会社製、商品名:R−972)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に20質量%分散):4.3質量%
(V)上記アルカリ可溶性樹脂(ポリイミド樹脂PI−1):42.5質量%
(VI)光重合開始剤(ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製、商品名:I−819)):1.24質量%
(VII)ジクミルパーオキサイド(日油株式会社製、商品名:パークミルD)0.43質量%
(VIII)硬化促進剤(四国化成工業株式会社製、商品名:2P4MHZ)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に10質量%溶解):0.43質量%
(IX)溶媒(N−メチル−2−ピロリドン)(関東化学株式会社製、特級):10mL
<Preparation of photosensitive resin composition solution for sealing (S-1)>
Using the alkali-soluble resin obtained above and the other compounds shown below, each component was blended at the composition ratio (unit: parts by mass) shown below, and a photosensitive resin composition solution for sealing ( S-1) was obtained.
(I) Isocyanuric acid EO-modified di- and triacrylate (manufactured by Toa Gosei Co., Ltd., trade name: M-313): 29.8% by mass
(II) Bisphenol F-type bisglycidyl ether (manufactured by Toto Kasei Kogyo Co., Ltd., trade name: YDF-870GS): 18.24% by mass
(III) Trisphenol compound (α, α, α′-tris (4-hydroxyphenol) -1-ethyl-4-isopropylbenzene) (manufactured by Honshu Chemical Industry Co., Ltd., trade name: TrisP-PA): 4. 3% by mass
(IV) 20 in hydrophobic fumed silica (average particle size: about 16 nm) (Nippon Aerosil Co., Ltd., trade name: R-972) (N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd., special grade)) (Mass% dispersion): 4.3 mass%
(V) Alkali-soluble resin (polyimide resin PI-1): 42.5% by mass
(VI) Photopolymerization initiator (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, trade name: I-819)): 1.24% by mass
(VII) Dicumyl peroxide (manufactured by NOF Corporation, trade name: Park Mill D) 0.43% by mass
(VIII) Curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MHZ) (10% by mass dissolved in N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Ltd., special grade)): 0.43% by mass
(IX) Solvent (N-methyl-2-pyrrolidone) (Kanto Chemical Co., Ltd., special grade): 10 mL

<封止用感光性樹脂組成物の合成:アルカリ可溶性樹脂PI−2>
撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366)を54g(0.15mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を22g(0.051mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive resin composition for sealing: alkali-soluble resin PI-2>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen displacement device (nitrogen inlet tube) and a reflux condenser equipped with a moisture acceptor, 2,2-bis (3-amino-4-hydroxyphenyl) as a diamine ) 54 g (0.15 mol) of hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylenediamine, manufactured by BASF, trade name: D- 400, molecular weight: 433) 22 g (0.051 mol), BY16-871EG (siloxane diamine, manufactured by Toray Dow Corning Co., Ltd., trade name: BY16-871EG, molecular weight: 248.5) 6.6 g (0.027 mol) ), M-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade), 13.1 g (0.12 mol), A fine solvent NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−2を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4′-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After completion of the addition, the solution was heated to 180 ° C. while blowing nitrogen gas, and kept for 3 hours to obtain polyimide resin PI-2, which is an alkali-soluble resin. From the weight loss after thinly applying the obtained polyimide resin on an aluminum cup and drying at 180 ° C. for 3 hours using a hot air convection dryer (manufactured by Futaba Kagaku Co., Ltd., trade name: MSO-80TPS), It was 75 mass% when the heating residue of the polyimide was measured.

<封止用感光性樹脂組成物溶液(S−2)の調製>
アルカリ可溶性樹脂(PI−1)の代わりに、アルカリ可溶性樹脂(PI−2)を用いた以外は、封止用感光性樹脂組成物溶液(S−1)と同様の方法で、封止用感光性樹脂組成物溶液(S−2)を得た。
<Preparation of photosensitive resin composition solution for sealing (S-2)>
Except for using alkali-soluble resin (PI-2) instead of alkali-soluble resin (PI-1), the same method as that for sealing photosensitive resin composition solution (S-1) was used. Resin composition solution (S-2) was obtained.

<封止用感光性樹脂組成物の合成:アルカリ可溶性樹脂PI−3>
撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366)を39g(0.11mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を46g(0.11mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を6.6g(0.027mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を13.1g(0.12mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive resin composition for sealing: alkali-soluble resin PI-3>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen displacement device (nitrogen inlet tube) and a reflux condenser equipped with a moisture acceptor, 2,2-bis (3-amino-4-hydroxyphenyl) as a diamine ) 39 g (0.11 mol) of hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366), D-400 (polyoxyalkylenediamine, manufactured by BASF, trade name: D- 400, molecular weight: 433) 46 g (0.11 mol), BY16-871EG (siloxane diamine, manufactured by Toray Dow Corning Co., Ltd., trade name: BY16-871EG, molecular weight: 248.5) 6.6 g (0.027 mol) ), M-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade), 13.1 g (0.12 mol), and The solvent is a NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−3を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4′-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After completion of the addition, the solution was heated to 180 ° C. while blowing nitrogen gas and kept for 3 hours to obtain polyimide resin PI-3, which is an alkali-soluble resin. From the weight loss after thinly applying the obtained polyimide resin on an aluminum cup and drying at 180 ° C. for 3 hours using a hot air convection dryer (manufactured by Futaba Kagaku Co., Ltd., trade name: MSO-80TPS), It was 75 mass% when the heating residue of the polyimide was measured.

<封止用感光性樹脂組成物溶液(S−3)の調製>
上記で得られたアルカリ可溶性樹脂、及び、以下に示すその他の化合物を用いて、下記に示す組成比(単位:質量部)にて各成分を配合し、封止用感光性樹脂組成物溶液(S−3)を得た。
(I)イソシアヌル酸EO変性ジ及びトリアクリレート(東亜合成株式会社製、商品名:M−313):33.4質量%
(II)ビスフェノールF型ビスグリシジルエーテル(東都化成工業株式会社製、商品名:YDF−870GS):9.5質量%
(III)トリスフェノール化合物(α,α,α’−トリス(4−ヒドロキシフェノル)−1−エチル−4−イソプロピルベンゼン)(本州化学工業株式会社製、商品名:TrisP−PA):2.39質量%
(IV)疎水性フュームドシリカ(平均粒径:約16nm)(日本アエロジル株式会社製、商品名:R−972)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に20質量%分散):4.77質量%
(V)上記アルカリ可溶性樹脂(ポリイミド樹脂PI−3):47.7質量%
(VI)光重合開始剤(ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製、商品名:I−819)):1.43質量%
(VII)ジクミルパーオキサイド(日油株式会社製、商品名:パークミルD)0.48質量%
(VIII)硬化促進剤(四国化成工業株式会社製、商品名:2P4MHZ)(N−メチル−2−ピロリドン(関東化学株式会社製、特級)中に10質量%溶解):0.24質量%
(IX)溶媒(N−メチル−2−ピロリドン)(関東化学株式会社製、特級):10mL
<Preparation of photosensitive resin composition solution for sealing (S-3)>
Using the alkali-soluble resin obtained above and the other compounds shown below, each component was blended at the composition ratio (unit: parts by mass) shown below, and a photosensitive resin composition solution for sealing ( S-3) was obtained.
(I) Isocyanuric acid EO-modified di- and triacrylate (manufactured by Toa Gosei Co., Ltd., trade name: M-313): 33.4% by mass
(II) Bisphenol F type bisglycidyl ether (manufactured by Toto Kasei Kogyo Co., Ltd., trade name: YDF-870GS): 9.5% by mass
(III) Trisphenol compound (α, α, α′-tris (4-hydroxyphenol) -1-ethyl-4-isopropylbenzene) (manufactured by Honshu Chemical Industry Co., Ltd., trade name: TrisP-PA): 2. 39% by mass
(IV) 20 in hydrophobic fumed silica (average particle size: about 16 nm) (Nippon Aerosil Co., Ltd., trade name: R-972) (N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd., special grade)) (Mass% dispersion): 4.77 mass%
(V) Alkali-soluble resin (polyimide resin PI-3): 47.7% by mass
(VI) Photopolymerization initiator (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF, trade name: I-819)): 1.43% by mass
(VII) Dicumyl peroxide (manufactured by NOF Corporation, trade name: Park Mill D) 0.48% by mass
(VIII) Curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MHZ) (10 mass% dissolved in N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Ltd., special grade)): 0.24 mass%
(IX) Solvent (N-methyl-2-pyrrolidone) (Kanto Chemical Co., Ltd., special grade): 10 mL

<封止用感光性脂組成物の合成:アルカリ可溶性樹脂PI−4>
撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた300mL丸底フラスコ内に、ジアミンである2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子株式会社製、商品名:BIS−AP−AF、分子量:366)を43.8g(0.12mol)、D−400(ポリオキシアルキレンジアミン、BASF社製、商品名:D−400、分子量:433)を51.9g(0.12mol)、BY16−871EG(シロキサンジアミン、東レ・ダウコーニング株式会社製、商品名:BY16−871EG、分子量:248.5)を7.47g(0.030mol)、m−AP(メタアミノフェノール、和光純薬工業株式会社製、特級)を6.54g(0.060mol)、及び溶媒であるNMP(N−メチルピロリドン、和光純薬株式会社製、脱水)200gを仕込み、撹拌してジアミンを溶媒に溶解させた。
<Synthesis of photosensitive fat composition for sealing: alkali-soluble resin PI-4>
In a 300 mL round bottom flask equipped with a stirrer, a thermometer, a nitrogen displacement device (nitrogen inlet tube) and a reflux condenser equipped with a moisture acceptor, 2,2-bis (3-amino-4-hydroxyphenyl) as a diamine ) Hexafluoropropane (manufactured by Central Glass Co., Ltd., trade name: BIS-AP-AF, molecular weight: 366) 43.8 g (0.12 mol), D-400 (polyoxyalkylenediamine, manufactured by BASF Corporation, trade name: D-400, molecular weight: 433) 51.9 g (0.12 mol), BY16-887EG (siloxane diamine, manufactured by Toray Dow Corning Co., Ltd., trade name: BY16-871EG, molecular weight: 248.5) 7.47 g (0.030 mol), 6.54 g (0.060 mol) of m-AP (metaaminophenol, manufactured by Wako Pure Chemical Industries, Ltd., special grade). ol), and the solvent is a NMP (N-methylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) were charged 200 g, was stirred to a diamine is dissolved in a solvent.

上記フラスコを氷浴中で冷却しながら、ODPA(4,4´−オキシジフタル酸二無水物、東京化成工業株式会社製)を93g(0.30mol)、フラスコ内の溶液に少量ずつ添加した。添加終了後、窒素ガスを吹き込みながら溶液を180℃に昇温させて3時間保温して、アルカリ可溶性樹脂である、ポリイミド樹脂PI−4を得た。得られたポリイミド樹脂をアルミカップ上に薄く塗布し、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて180℃で3時間乾燥させた後の質量減少から、ポリイミドの加熱残分を測定したところ75質量%であった。   While cooling the flask in an ice bath, 93 g (0.30 mol) of ODPA (4,4′-oxydiphthalic dianhydride, manufactured by Tokyo Chemical Industry Co., Ltd.) was added little by little to the solution in the flask. After completion of the addition, the solution was heated to 180 ° C. while blowing nitrogen gas, and kept for 3 hours to obtain polyimide resin PI-4, which is an alkali-soluble resin. From the weight loss after thinly applying the obtained polyimide resin on an aluminum cup and drying at 180 ° C. for 3 hours using a hot air convection dryer (manufactured by Futaba Kagaku Co., Ltd., trade name: MSO-80TPS), It was 75 mass% when the heating residue of the polyimide was measured.

<封止用感光性樹脂組成物溶液(S−4)の調製>
アルカリ可溶性樹脂(PI−1)の代わりに、アルカリ可溶性樹脂(PI−4)を用いた以外は、封止用感光性樹脂組成物溶液(S−1)と同様の方法で、封止用感光性樹脂組成物溶液(S−4)を得た。
<Preparation of photosensitive resin composition solution for sealing (S-4)>
Except for using alkali-soluble resin (PI-4) instead of alkali-soluble resin (PI-1), sealing photosensitivity is the same as that for photopolymer resin composition solution for sealing (S-1). Resin composition solution (S-4) was obtained.

<封止用感光性樹脂組成物溶液(SE−1)の調製>
下記に示す組成比(単位:質量部)にて各成分を配合し、封止用感光性樹脂組成物溶液(SE−1)を得た。
(I)酸変性クレゾールノボラック型エポキシアクリレート(DIC株式会社製、商品名:EXP−2810):48.4質量%。
(II)光反応性化合物(ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレート混合物、日本化薬株式会社製、商品名:KAYARAD DPHA):8.5質量%。
(III)光重合開始剤として、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド、BASF社製、商品名:DAROCURE−TPO):1.7質量%、及び2,4−ジエチルチオキサントン(日本化薬株式会社製、商品名:カヤキュアDETX−S):0.2質量%。
(IV)熱硬化樹脂(ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000H):5.7質量%、ビスフェノールF型エポキシ樹脂である(新日鉄住金化学株式会社製、商品名:YSLV−80):11質量%。
(V)無機フィラー成分:硫酸バリウム(堺化学工業株式会社製、商品名:B30):8.5質量%、シリカ(株式会社アドマテックス社製、サンプル名:MEKスラリー(1)):14質量%。無機充填材の感光性樹脂組成物中に分散した状態における平均粒径及び最大粒径は、レーザー回折散乱式マイクロトラック粒度分布計(日機装株式会社製、商品名:MT−3100)を用いて測定した。B30の平均粒径が0.3μm、MEKスラリー(1)の平均粒径が0.5μmであった。また、B30及びMEKスラリーを含む無機充填材の最大粒径は3μm以下であった。また、フィルム化後の無機充填材の粒径はフィルムを硬化後に断面を電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:SU−1510)で観察して確認した。フィルム中に分散されている無機充填材の最大粒径が5μm以下であることを確認した。
(VI) その他成分としては以下のものを用いた。ブタジエン系エラストマ(株式会社ダイセル製、商品名:エポリードPB3600):1.7質量%、重合禁止剤(川口化学工業株式会社製、商品名:アンテージ500):0.3質量%
<Preparation of photosensitive resin composition solution for sealing (SE-1)>
Each component was mix | blended with the composition ratio (unit: mass part) shown below, and the photosensitive resin composition solution for sealing (SE-1) was obtained.
(I) Acid-modified cresol novolac epoxy acrylate (manufactured by DIC Corporation, trade name: EXP-2810): 48.4% by mass.
(II) Photoreactive compound (mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA): 8.5% by mass.
(III) As a photopolymerization initiator, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF, trade name: DAROCURE-TPO): 1.7% by mass, and 2,4-diethylthioxanthone (Japan) Made by Kayaku Co., Ltd., trade name: Kayacure DETX-S): 0.2% by mass.
(IV) Thermosetting resin (biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000H): 5.7% by mass, bisphenol F type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product) Name: YSLV-80): 11% by mass.
(V) Inorganic filler component: barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., trade name: B30): 8.5% by mass, silica (manufactured by Admatechs Co., Ltd., sample name: MEK slurry (1)): 14 masses %. The average particle size and the maximum particle size in a state where the inorganic filler is dispersed in the photosensitive resin composition are measured using a laser diffraction scattering type microtrack particle size distribution meter (trade name: MT-3100, manufactured by Nikkiso Co., Ltd.). did. The average particle size of B30 was 0.3 μm, and the average particle size of MEK slurry (1) was 0.5 μm. The maximum particle size of the inorganic filler containing B30 and MEK slurry was 3 μm or less. The particle size of the inorganic filler after film formation was confirmed by observing the cross section with an electron microscope (trade name: SU-1510, manufactured by Hitachi High-Technologies Corporation) after the film was cured. It was confirmed that the maximum particle size of the inorganic filler dispersed in the film was 5 μm or less.
(VI) The following were used as other components. Butadiene elastomer (manufactured by Daicel Corporation, trade name: Epolide PB3600): 1.7% by mass, polymerization inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., trade name: Antage 500): 0.3% by mass

<封止用感光性樹脂組成物溶液(SE−2)の調製>
下記に示す組成比(単位:質量部)にて各成分を配合し、封止用感光性樹脂組成物溶液(SE−2)を得た。
(I)酸変性クレゾールノボラック型エポキシアクリレート(DIC株式会社製、商品名:EXP−2810):39.2質量%。
(II)光反応性化合物(ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレート混合物、日本化薬株式会社製、商品名:KAYARAD DPHA):6.9質量%。
(III)光重合開始剤として、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド、BASF社製、商品名:DAROCURE−TPO):1.4質量%、及び2,4−ジエチルチオキサントン(日本化薬株式会社製、商品名:カヤキュアDETX−S):0.1質量%。
(IV)熱硬化樹脂(ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000H):4.6質量%、ビスフェノールF型エポキシ樹脂である(新日鉄住金化学株式会社製、商品名:YSLV−80):9.2質量%。
(V)無機フィラー成分:硫酸バリウム(堺化学工業株式会社製、商品名:B30):14質量%、シリカ(株式会社アドマテックス社製、サンプル名:MEKスラリー(1)):23質量%。無機充填材の感光性樹脂組成物中に分散した状態における平均粒径及び最大粒径は、レーザー回折散乱式マイクロトラック粒度分布計(日機装株式会社製、商品名:MT−3100)を用いて測定した。B30の平均粒径が0.3μm、MEKスラリー(1)の平均粒径が0.5μmであった。また、B30及びMEKスラリーを含む無機充填材の最大粒径は3μm以下であった。また、フィルム化後の無機充填材の粒径はフィルムを硬化後に断面を電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名:SU−1510)で観察して確認した。フィルム中に分散されている無機充填材の最大粒径が5μm以下であることを確認した。
(VI) その他成分としては以下のものを用いた。ブタジエン系エラストマ(株式会社ダイセル製、商品名:エポリードPB3600):1.4質量%、重合禁止剤(川口化学工業株式会社製、商品名:アンテージ500):0.2質量%
<Preparation of photosensitive resin composition solution for sealing (SE-2)>
Each component was mix | blended with the composition ratio (unit: mass part) shown below, and the photosensitive resin composition solution for sealing (SE-2) was obtained.
(I) Acid-modified cresol novolac epoxy acrylate (manufactured by DIC Corporation, trade name: EXP-2810): 39.2% by mass.
(II) Photoreactive compound (mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA): 6.9% by mass.
(III) As a photopolymerization initiator, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF, trade name: DAROCURE-TPO: 1.4% by mass, and 2,4-diethylthioxanthone (Japan) Made by Kayaku Co., Ltd., trade name: Kayacure DETX-S): 0.1% by mass.
(IV) Thermosetting resin (biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000H): 4.6% by mass, bisphenol F type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., product) Name: YSLV-80): 9.2% by mass.
(V) Inorganic filler component: Barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., trade name: B30): 14% by mass, silica (manufactured by Admatechs Co., Ltd., sample name: MEK slurry (1)): 23% by mass. The average particle size and the maximum particle size in a state where the inorganic filler is dispersed in the photosensitive resin composition are measured using a laser diffraction scattering type microtrack particle size distribution meter (trade name: MT-3100, manufactured by Nikkiso Co., Ltd.). did. The average particle size of B30 was 0.3 μm, and the average particle size of MEK slurry (1) was 0.5 μm. The maximum particle size of the inorganic filler containing B30 and MEK slurry was 3 μm or less. The particle size of the inorganic filler after film formation was confirmed by observing the cross section with an electron microscope (trade name: SU-1510, manufactured by Hitachi High-Technologies Corporation) after the film was cured. It was confirmed that the maximum particle size of the inorganic filler dispersed in the film was 5 μm or less.
(VI) The following were used as other components. Butadiene elastomer (manufactured by Daicel Corporation, trade name: Epolide PB3600): 1.4% by mass, polymerization inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., trade name: Antage 500): 0.2% by mass

<封止用感光性樹脂フィルムの作製>
上記で得られた封止用感光性樹脂組成物溶液を用いて下記に示す操作により、実施例1〜9及び比較例1〜3でそれぞれ使用する封止用感光性樹脂フィルムを作製した。すなわち、支持フィルムとしての厚さ50μmのポリエチレンテレフタレートフィルム(帝人株式会社製、商品名:G2−16)上に、上記で得られた封止用感光性樹脂組成物溶液をコーター(株式会社康井精機製、商品名:βコーターSNC280)を使用して塗布することにより封止用感光性樹脂組成物層を形成した。塗布速度は3.0mm/minとした。続いて、熱風対流式乾燥機(株式会社二葉科学製、商品名:MSO−80TPS)を用いて80℃で20分間乾燥したのち、更に120℃で20分間乾燥した。塗布時の厚さについては、下記の手順で半導体素子を封止した後に、下記の測定方法にて測定した際に所定の厚さが得られるよう、コーターのナイフと塗布面との間隔を設定することで調整した。
<Preparation of photosensitive resin film for sealing>
The sealing photosensitive resin films used in Examples 1 to 9 and Comparative Examples 1 to 3 were prepared by the operations described below using the sealing photosensitive resin composition solution obtained above. That is, on a polyethylene terephthalate film (trade name: G2-16, manufactured by Teijin Limited) having a thickness of 50 μm as a support film, the above-obtained photosensitive resin composition solution for sealing was applied to a coater (Yasui Corporation). A photosensitive resin composition layer for sealing was formed by coating using a Seiki made product name: β coater SNC280). The coating speed was 3.0 mm / min. Then, after drying for 20 minutes at 80 degreeC using the hot-air convection-type dryer (The Futaba Kagaku make, brand name: MSO-80TPS), it dried further at 120 degreeC for 20 minutes. About the thickness at the time of coating, after sealing the semiconductor element by the following procedure, set the gap between the coater knife and the coating surface so that the predetermined thickness can be obtained when measured by the following measurement method It was adjusted by doing.

続いて、封止用感光性樹脂フィルムの支持フィルムと接している側とは反対側の表面上に、ポリエチレンフィルム(タマポリ株式会社製、商品名:NF−15)を保護フィルムとしてロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)貼り合わせた。   Subsequently, a roll laminator (stock) with a polyethylene film (trade name: NF-15, manufactured by Tamapoly Co., Ltd.) as a protective film on the surface of the sealing photosensitive resin film opposite to the side in contact with the support film. Product name: HOTDOG 12DX, temperature 60 ° C., linear pressure 4 kgf / cm (39.2 N / cm), feed rate 0.5 m / min) were bonded together.

<封止用感光性樹脂フィルムによる半導体素子の封止>
上記のようにして得た封止用感光性樹脂フィルムを用いて、固定部材を介して基材に配置されている半導体素子を以下のようにして封止した。すなわち、半導体素子上に封止用感光性樹脂フィルムを、保護フィルムのポリエチレンフィルムをはく離して、プレス式真空ラミネータ(ニッコー・マテリアルズ株式会社製、商品名:V130)を用いて貼付した。ラミネート条件は、プレス用熱板温度100℃、真空引き時間18秒、ラミネートプレス時間60秒、気圧4kPa以下、圧着圧力0.4MPで行なった。
<Sealing of semiconductor elements with a photosensitive resin film for sealing>
Using the photosensitive resin film for sealing obtained as described above, the semiconductor element arranged on the base material via the fixing member was sealed as follows. That is, the photosensitive resin film for sealing was affixed on the semiconductor element using a press-type vacuum laminator (trade name: V130, manufactured by Nikko Materials Co., Ltd.) after peeling off the polyethylene film as the protective film. The laminating conditions were as follows: hot plate temperature for pressing 100 ° C., evacuation time 18 seconds, laminating press time 60 seconds, atmospheric pressure 4 kPa or less, and pressing pressure 0.4 MP.

<封止用感光性樹脂フィルムによる半導体素子封止後の平坦性評価方法>
半導体素子封止後の封止用感光性樹脂フィルムの上面の平坦性を、半導体素子上部と半導体素子のない部分の封止後の段差で評価した。段差は膜厚計(株式会社ミツトヨ製、商品名:デジマチックインジケータID−H)にて測定した(図2(a)及び図2(b)参照)。
<Flatness evaluation method after sealing semiconductor element with photosensitive resin film for sealing>
The flatness of the upper surface of the encapsulating photosensitive resin film after sealing the semiconductor element was evaluated by the level difference after sealing between the upper part of the semiconductor element and the part without the semiconductor element. The level difference was measured with a film thickness meter (trade name: Digimatic Indicator ID-H, manufactured by Mitutoyo Corporation) (see FIGS. 2A and 2B).

<アルカリ現像液を用いた封止用感光性樹脂フィルムの溶解による半導体素子の露出及び段差測定>
スピン現像機(ミカサ株式会社製、商品名:AD−3000、スプレー圧力0.2MPa、スキャン幅4.0cm、スキャン速度5.0cm/秒)を用いて26℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)をスプレーし、次いで30秒間純水で洗浄、更に10秒間の風乾を行ない、半導体素子が露出するまで上記操作を続けた。
<Measurement of exposure and level difference of semiconductor element by dissolution of photosensitive resin film for sealing with alkali developer>
2.38 mass% tetramethylammonium at 26 ° C. using a spin developing machine (trade name: AD-3000, manufactured by Mikasa Co., Ltd., spray pressure 0.2 MPa, scan width 4.0 cm, scan speed 5.0 cm / sec) An aqueous hydroxide solution (manufactured by Tama Chemical Co., Ltd.) was sprayed, then washed with pure water for 30 seconds and then air-dried for 10 seconds, and the above operation was continued until the semiconductor element was exposed.

半導体素子の基材と接する面(下面)から基材とは反対側の面(上面)までの高さ(H)と、半導体素子が配置されていない領域における基材の表面から封止用感光性層の最も薄い部分の当該層の上面までの高さ(H)との差を、膜厚計(株式会社ミツトヨ製、商品名:デジマチックインジケータID−H)にて測定した(図4(a)及び図4(b)参照)。この差の値(段差の大きさ)が目的の段差になるように上記の溶解操作を継続した。 For sealing from the height (H 1 ) from the surface (lower surface) in contact with the substrate of the semiconductor element to the surface (upper surface) opposite to the substrate, and from the surface of the substrate in the region where the semiconductor element is not disposed The difference between the thinnest part of the photosensitive layer and the height (H 2 ) to the upper surface of the layer was measured with a film thickness meter (trade name: Digimatic Indicator ID-H, manufactured by Mitutoyo Corporation). 4 (a) and FIG. 4 (b)). The above melting operation was continued so that the difference value (step size) became the target step.

封止用感光性樹脂フィルムの厚さの減少速度は、樹脂の組成によって一義的に決定され、上記処理時間によって調整することができる。従って、上記封止後に生じた段差は、上記半導体素子の露出後も保たれることになり、小さくなることはない。また、半導体素子露出後は、上記処理時間を長くするにつれて半導体素子の無い部分の封止用感光性樹脂組成物が除去され、露出した半導体素子との段差が大きくなる。封止後に段差が生じていない場合でも、上記処理時間が長くなることで、半導体素子の露出後に段差がより大きくなる。   The rate of decrease in the thickness of the encapsulating photosensitive resin film is uniquely determined by the resin composition, and can be adjusted by the processing time. Therefore, the step generated after the sealing is maintained even after the semiconductor element is exposed, and does not become small. In addition, after the semiconductor element is exposed, as the processing time is increased, the sealing photosensitive resin composition in a portion where there is no semiconductor element is removed, and a step difference from the exposed semiconductor element is increased. Even when there is no step after the sealing, the step becomes longer after the semiconductor element is exposed by increasing the processing time.

<封止用感光性樹脂フィルムの溶融粘度測定方法>
溶融粘度は低粘度粘弾性測定装置(株式会社アントンパール・ジャパン(AntonPaar社)製、商品名:MCR−301)を用いて測定した。直径4cm、深さ5mmのアルミニウム製円形プレート(株式会社アントンパール・ジャパン製、商品名:ディスポーザブルプレートEMS/CTD600)の底部中央に、縦30mm、横30mm、厚さ300μmの封止用感光性樹脂フィルムを貼付し、円形プレートを装置のステージに固定した。測定セル(株式会社アントンパール・ジャパン製、商品名:Messkorperachse D−CP/PP7)を装置に取り付けた後、セルの先端には治具(株式会社アントンパール・ジャパン製、商品名:SPPYU08−07)を装着した。治具の先端が上記円形プレートの底面から200μmの高さに来るように、上記測定セルを下降し、上記治具の先端を上記封止用感光性樹脂フィルム内に埋没させた。測定条件は昇温10℃/min、周波数1Hzに設定し、25〜200℃の範囲で溶融粘度の測定を行なった。当該温度範囲での溶融粘度の最低値を、最低溶融粘度とした。
<Measuring method of melt viscosity of photosensitive resin film for sealing>
The melt viscosity was measured using a low-viscosity viscoelasticity measuring apparatus (trade name: MCR-301, manufactured by Anton Paar Japan Co., Ltd.). Photosensitive resin for sealing 30 mm in length, 30 mm in width, and 300 μm in thickness at the center of the bottom of an aluminum circular plate (made by Anton Pearl Japan Co., Ltd., trade name: disposable plate EMS / CTD600) with a diameter of 4 cm and a depth of 5 mm A film was affixed and the circular plate was fixed to the stage of the apparatus. After attaching the measuring cell (trade name: Messkorperachse D-CP / PP7, manufactured by Anton Pearl Japan Co., Ltd.) to the apparatus, a jig (trade name: SPPYU08-07, manufactured by Anton Pearl Japan Co., Ltd.) is attached to the tip of the cell. ). The measurement cell was lowered so that the tip of the jig reached a height of 200 μm from the bottom surface of the circular plate, and the tip of the jig was buried in the sealing photosensitive resin film. The measurement conditions were set at a temperature increase of 10 ° C./min and a frequency of 1 Hz, and the melt viscosity was measured in the range of 25 to 200 ° C. The lowest melt viscosity in the temperature range was defined as the lowest melt viscosity.

<開口部の形成>
封止用感光性樹脂フィルムを貼り付けることによって形成した封止用樹脂層に、パターンを形成したフォトマスクを密着させ、平行露光機(株式会社オーク製作所製、商品名:EXM−1201)を使用して、800mJ/cmのエネルギー量で露光を行った。次いで、ホットプレート(アズワン株式会社製、商品名:Triplet Hotplate TH−900)の上に置き、80℃で1分間加熱した。封止用感光性樹脂フィルム上のポリエチレンテレフタレートを剥離し、現像機(ミカサ株式会社製、商品名:AD−3000、スプレー圧力0.2MPa、スキャン幅4.0cm、スキャン速度5.0cm/秒)を用いて26℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)を180秒間スプレーし、次いで20秒間純水で洗浄、更に10秒間の風乾を行なうことで封止用樹脂層に開口部を設けた。続いて、平行露光機(株式会社オーク製作所製、商品名:EXM−1201)を使用して2000mJ/cm2のエネルギー量で紫外線照射を行い、オーブン(エスペック株式会社製、商品名:PVC−212)で175℃、2時間で熱硬化した(図5参照)。
<Formation of opening>
A photomask formed with a pattern is brought into close contact with a sealing resin layer formed by attaching a sealing photosensitive resin film, and a parallel exposure machine (trade name: EXM-1201, manufactured by Oak Manufacturing Co., Ltd.) is used. Then, exposure was performed with an energy amount of 800 mJ / cm 2 . Then, it placed on a hot plate (manufactured by AS ONE Co., Ltd., trade name: Triplet Hotplate TH-900) and heated at 80 ° C. for 1 minute. The polyethylene terephthalate on the photosensitive resin film for sealing is peeled off, and a developing machine (trade name: AD-3000, spray pressure 0.2 MPa, scan width 4.0 cm, scan speed 5.0 cm / sec, manufactured by Mikasa Co., Ltd.) Sealed by spraying a 2.38 mass% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Co., Ltd.) at 26 ° C. for 180 seconds using, followed by washing with pure water for 20 seconds and further air drying for 10 seconds. An opening was provided in the resin layer. Subsequently, UV irradiation was performed with an energy amount of 2000 mJ / cm 2 using a parallel exposure machine (trade name: EXM-1201, manufactured by Oak Manufacturing Co., Ltd.), and an oven (trade name: PVC-212, manufactured by ESPEC CORP.). ) At 175 ° C. for 2 hours (see FIG. 5).

<電解銅めっきの形成>
上記のようにして形成した開口部に、スパッタ装置(芝浦プレシジョン株式会社製、商品名:CFS−12P−100)によってシード層を形成した。スパッタは、まず接着層としてTiを100nm成膜し、次いでCuを300nm積層させた。スパッタ時の圧力は10−5Pa、電圧印加時間はそれぞれTiが10分、Cuが30分で行った。次いで上記開口部に、電解銅めっき法で、金属材料(銅)をめっきし付与(充填)した(図6参照)。以下に示す組成を純水中に溶解させ、全体を1Lとすることによって電解めっき液を得た。
(電解めっき液組成)
硫酸銅(和光純薬工業株式会社製、特級) 5.0g、
濃硫酸(和光純薬工業株式会社製、特級) 120g、
塩酸(和光純薬工業株式会社製、特級) 0.2g
<Formation of electrolytic copper plating>
A seed layer was formed in the opening formed as described above by a sputtering apparatus (trade name: CFS-12P-100, manufactured by Shibaura Precision Co., Ltd.). Sputtering was performed by first depositing Ti with a thickness of 100 nm as an adhesive layer and then laminating 300 nm with Cu. The sputtering pressure was 10 −5 Pa, and the voltage application time was 10 minutes for Ti and 30 minutes for Cu, respectively. Next, a metal material (copper) was plated and applied (filled) to the opening by an electrolytic copper plating method (see FIG. 6). An electrolytic plating solution was obtained by dissolving the following composition in pure water and making the whole 1 L.
(Electrolytic plating solution composition)
Copper sulfate (made by Wako Pure Chemical Industries, Ltd., special grade) 5.0 g,
120 g of concentrated sulfuric acid (made by Wako Pure Chemical Industries, Ltd., special grade)
Hydrochloric acid (Wako Pure Chemical Industries, special grade) 0.2g

電解銅めっきを以下のようにして形成した。まず陽極を銅板に接続し、陰極を上記封止用樹脂層上に形成したスパッタ銅に接続し、上記めっき液内に浸潤させた。電流密度を1.0A/dmとし、4時間処理することで開口部内にめっき銅を付与(充填)させた。 Electrolytic copper plating was formed as follows. First, the anode was connected to a copper plate, and the cathode was connected to sputtered copper formed on the sealing resin layer, and infiltrated into the plating solution. The current density was 1.0 A / dm 2, and plated copper was applied (filled) into the opening by treating for 4 hours.

<基材及び固定部材の分離>
次いで、基材の面をテープリムーバー(アズワン株式会社製、商品名:NEO HOTPLATE HI−1000)に真空吸着して150℃に加熱することで、固定部材を発泡させ、半導体素子及びめっき銅を含む封止用感光性樹脂層と、基材及び固定部材とを分離した(図7参照)。
<Separation of base material and fixing member>
Next, the surface of the base material is vacuum-adsorbed on a tape remover (manufactured by ASONE Corporation, trade name: NEO HOTPLATE HI-1000) and heated to 150 ° C., thereby foaming the fixing member and including the semiconductor element and the plated copper. The photosensitive resin layer for sealing, the base material, and the fixing member were separated (see FIG. 7).

<再配線絶縁層の形成>
封止用感光性樹脂層の上に再配線絶縁層を形成した(図8〜10参照)。具体的には、スピンコーターで感光性絶縁材料(日立化成株式会社製、商品名:AH−1170T)を塗布し、マスクを装着し露光(ミカサ株式会社製、商品名:マスクアライナー MA−200、300mJ/cm)した後、現像機(ミカサ株式会社製、商品名:AD−3000)を用い、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(多摩化学工業株式会社製)でディップ現像(35秒浸潤後、スピンで廃液)を行なった。
<Formation of rewiring insulation layer>
A rewiring insulating layer was formed on the sealing photosensitive resin layer (see FIGS. 8 to 10). Specifically, a photosensitive insulating material (manufactured by Hitachi Chemical Co., Ltd., trade name: AH-1170T) is applied with a spin coater, a mask is attached, and exposure is performed (Mikasa Co., Ltd., trade name: Mask Aligner MA-200). 300 mJ / cm 2 ), and then using a developing machine (trade name: AD-3000, manufactured by Mikasa Co., Ltd.), dip development (35) with a 2.38 mass% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Industry Co., Ltd.). After the second infiltration, the waste liquid was spun.

次いで、200℃で窒素雰囲気(酸素濃度50体積ppm以下)下、オーブン(エスペック株式会社製、商品名:PVC−212)で1時間の熱硬化を行った。その後、スパッタ装置(芝浦プレシジョン株式会社製、商品名:CFS−12P−100)により、Tiを100nmの厚さ蒸着し、連続してCuを300nmの厚さ蒸着し、シード層を形成した。次いで、ドライフィルムレジスト(日立化成株式会社製、商品名:Photec RY−3525)をロールラミネーター(株式会社ラミーコーポレーション製、商品名:HOTDOG 12DX、温度60℃、線圧4kgf/cm(39.2N/cm)、送り速度0.5m/分)で貼着し、パターンを形成したフォトマスクを密着させ、露光機(株式会社オーク製作所製、商品名:EXM−1201、100mJ/cm)で露光を行った。次いで、30℃の1質量%炭酸ナトリウム水溶液で、90秒間スプレー現像を行い、ドライフィルムレジストを開口させた。次いで、電解銅めっき法により、シード層上に、厚さ5μmの銅めっきを形成した。次いで、はく離液により、ドライフィルムレジストを剥離した。次いでシード層をエッチング液より除去した。次いで、スピンコーターで再度、感光性絶縁材料(日立化成株式会社製、商品名:AH−1170T)を塗布し、露光処理及び現像処理を行った。次いで、所定温度200℃で窒素雰囲気(酸素濃度50体積ppm以下)下、1時間の熱硬化を行った。 Next, thermosetting was performed at 200 ° C. for 1 hour in an oven (trade name: PVC-212, manufactured by ESPEC CORPORATION) under a nitrogen atmosphere (oxygen concentration of 50 ppm by volume or less). Thereafter, Ti was deposited to a thickness of 100 nm by a sputtering apparatus (trade name: CFS-12P-100, manufactured by Shibaura Precision Co., Ltd.), and Cu was continuously deposited to a thickness of 300 nm to form a seed layer. Next, a dry film resist (manufactured by Hitachi Chemical Co., Ltd., trade name: Photec RY-3525) is used as a roll laminator (Lamy Corporation, trade name: HOTDOG 12DX, temperature 60 ° C., linear pressure 4 kgf / cm (39.2 N / cm) and a feed rate of 0.5 m / min), a photomask having a pattern formed thereon is brought into close contact, and exposure is performed with an exposure machine (manufactured by Oak Manufacturing Co., Ltd., trade name: EXM-1201, 100 mJ / cm 2 ). went. Next, spray development was performed for 90 seconds with a 1% by mass aqueous sodium carbonate solution at 30 ° C. to open the dry film resist. Next, copper plating having a thickness of 5 μm was formed on the seed layer by electrolytic copper plating. Next, the dry film resist was peeled off with a peeling solution. Next, the seed layer was removed from the etching solution. Next, a photosensitive insulating material (manufactured by Hitachi Chemical Co., Ltd., trade name: AH-1170T) was applied again with a spin coater, and exposure processing and development processing were performed. Next, thermosetting was performed for 1 hour at a predetermined temperature of 200 ° C. in a nitrogen atmosphere (oxygen concentration of 50 volume ppm or less).

<はんだボール搭載及び個片化>
リフロー装置(株式会社タムラ製作所製、商品名:TNP25−337EM)を用いて、窒素雰囲気(酸素濃度100体積ppm以下)ではんだボールを搭載した(図9参照)。最後に、ダイサー(株式会社ディスコ製、商品名:DAD−3350)を用いて個片化することによって、パッケージサイズが縦15mm、横15mmの半導体装置を得た(図11,12参照)。ダイシングブレードとして27HEFF(株式会社ディスコ製)を用い、一分間あたりの回転数30000回転/分及び切削速度20mm/秒の条件で個片化を行った。
<Solder ball mounting and individualization>
Using a reflow device (trade name: TNP25-337EM, manufactured by Tamura Seisakusho Co., Ltd.), solder balls were mounted in a nitrogen atmosphere (oxygen concentration of 100 volume ppm or less) (see FIG. 9). Finally, by using a dicer (trade name: DAD-3350, manufactured by DISCO Corporation), a semiconductor device having a package size of 15 mm in length and 15 mm in width was obtained (see FIGS. 11 and 12). 27HEFF (manufactured by DISCO Corporation) was used as a dicing blade, and singulation was performed under the conditions of 30000 rotations / minute per minute and a cutting speed of 20 mm / second.

<開口部のアスペクト比の評価方法>
封止用感光性樹脂層の開口可能アスペクト比(膜厚/開口径)については以下の基準に基づいて評価した。
「A」:アスペクト比が2.5以上のもの
「B」:アスペクト比が1.0以上、2.5未満のもの
「C」:アスペクト比が1.0未満のもの
<Evaluation method of aspect ratio of opening>
The openable aspect ratio (film thickness / opening diameter) of the encapsulating photosensitive resin layer was evaluated based on the following criteria.
“A”: An aspect ratio of 2.5 or more “B”: An aspect ratio of 1.0 or more and less than 2.5 “C”: An aspect ratio of less than 1.0

表1に示す封止用感光性樹脂組成物をそれぞれ使用し、実施例1〜10に係る半導体装置を作製した。実施例1〜10に係る封止用感光性樹脂組成物の最低溶融粘度、封止後の平坦性及び露光処理開始時の段差(H−H)の評価結果を表1に示す。なお、実施例1〜5において同じ樹脂組成物S−1を使用しているにも関わらず、「段差H−H」の値が異なるのは溶解処理の時間が長くなると段差が大きくなることに起因するものである。 Each of the encapsulating photosensitive resin compositions shown in Table 1 was used to fabricate semiconductor devices according to Examples 1-10. Table 1 shows the evaluation results of the minimum melt viscosity, the flatness after sealing, and the level difference (H 1 -H 2 ) at the start of the exposure processing of the photosensitive resin compositions for sealing according to Examples 1 to 10. Incidentally, even though using the same resin composition S-1 in Example 1-5, the step when the longer time for dissolution treatment different values than the "step H 1 -H 2" increases This is due to that.

Figure 2018067659
Figure 2018067659

表2に示す封止用感光性樹脂組成物をそれぞれ使用し、比較例1〜4に係る半導体装置を作製した。比較例1〜4に係る封止用感光性樹脂組成物の最低溶融粘度、封止後の平坦性及び露光処理開始時の段差(H−H)の評価結果を表2に示す。 Using the sealing photosensitive resin compositions shown in Table 2, semiconductor devices according to Comparative Examples 1 to 4 were produced. Table 2 shows the evaluation results of the minimum melt viscosity, the flatness after sealing, and the level difference (H 1 -H 2 ) at the start of exposure processing of the photosensitive resin compositions for sealing according to Comparative Examples 1 to 4.

Figure 2018067659
Figure 2018067659

表1に示す通り、実施例1〜10に係る半導体装置の製造方法によれば、アルカリ現像液で封止用感光性樹脂層の厚さを減じ、半導体素子を露出した後の段差を10μm以下に抑えることができる。また、アルカリ現像液で封止用感光性樹脂層の厚さを減じる工程を適用することで、従来の液状封止材の研削工程等を経て行うよりも簡便に半導体素子を露出させた構造を持つ半導体パッケージを製造可能である。露光処理開始時における封止用感光性樹脂層の上面の段差を10μm以下に抑えることで、露光及び現像による開口部形成において、アスペクト比1.0以上の開口部を感光性樹脂層に形成することができた。なお、例えば、感光性樹脂組成物として最低溶融粘度300Pa・s以下のものを使用することは、封止後におけるフィルム上面の高い平坦性を確保するのに有用であり、露光処理開始時における上記段差(H−H)を10μm以下とするのに有用である。 As shown in Table 1, according to the method for manufacturing a semiconductor device according to Examples 1 to 10, the step after exposing the semiconductor element by reducing the thickness of the sealing photosensitive resin layer with an alkali developer is 10 μm or less. Can be suppressed. In addition, by applying a process of reducing the thickness of the sealing photosensitive resin layer with an alkali developer, a structure in which the semiconductor element is exposed more easily than through a conventional liquid sealing material grinding process, etc. A semiconductor package can be manufactured. By suppressing the step on the upper surface of the sealing photosensitive resin layer at the start of the exposure process to 10 μm or less, an opening having an aspect ratio of 1.0 or more is formed in the photosensitive resin layer in opening formation by exposure and development. I was able to. For example, using a photosensitive resin composition having a minimum melt viscosity of 300 Pa · s or less is useful for ensuring high flatness of the upper surface of the film after sealing, and the above-mentioned at the start of exposure processing. This is useful for setting the step (H 1 -H 2 ) to 10 μm or less.

表2に示す通り、最低溶融粘度が300Pa・s以下であっても、封止用感光性樹脂層の厚さを減じる時間が過度に長いと、露光処理開始時における上記段差(H−H)が10μmよりも大きくなり、その結果、露光及び現像で形成される開口部のアスペクト比は1.0よりも小さくなった。 As shown in Table 2, even when the minimum melt viscosity is 300 Pa · s or less, if the time for reducing the thickness of the sealing photosensitive resin layer is excessively long, the step (H 1 -H at the start of exposure processing) 2 ) was larger than 10 μm, and as a result, the aspect ratio of the opening formed by exposure and development was smaller than 1.0.

1…半導体素子、1a…半導体素子の上面、3…基材、3f…基材の表面、5…封止用樹脂層、5a…封止用樹脂層の上面、5A…露光部、6…開口部、7…導電材料、8a,8b…再配線絶縁層、9…配線パターン、10…はんだボール、70…ダイシングソー、100…半導体パッケージ。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 1a ... Upper surface of semiconductor element, 3 ... Base material, 3f ... Surface of base material, 5 ... Resin layer for sealing, 5a ... Upper surface of resin layer for sealing, 5A ... Exposure part, 6 ... Opening 7, conductive material, 8 a, 8 b, rewiring insulating layer, 9, wiring pattern, 10 solder ball, 70 dicing saw, 100 semiconductor package.

Claims (6)

(A)半導体素子が配置されている基材の表面に、前記半導体素子を覆うように感光性樹脂組成物からなる封止用樹脂層を形成する工程と、
(B)前記半導体素子が前記封止用樹脂層の上面に露出した状態になるまで前記封止用樹脂層を薬液で除去することによって前記封止用樹脂層の厚さを減じる工程と、
(C)(B)工程における処理によって厚さが減じられた前記封止用樹脂層の所定の領域に活性光線を照射することによって前記封止用樹脂層に前記感光性樹脂組成物が硬化した露光部と未露光部とを形成する工程と、
(D)前記封止用樹脂層における前記未露光部の少なくとも一部を、薬液で除去することによって前記封止用樹脂層の前記露光部に開口部を形成する工程と、
を含み、
(B)工程において、以下の不等式(1)で示される条件を満たすように前記封止用樹脂層の厚さを減じる、半導体装置の製造方法。
−H<10μm・・・(1)
[Hは前記基材の表面から前記半導体素子の上面までの高さを示し、Hは前記半導体素子が配置されていない領域における前記基材の表面から前記封止用樹脂層の最も薄い部分の前記封止用樹脂層の上面までの高さを示す。]
(A) forming a sealing resin layer made of a photosensitive resin composition so as to cover the semiconductor element on the surface of the substrate on which the semiconductor element is disposed;
(B) reducing the thickness of the sealing resin layer by removing the sealing resin layer with a chemical solution until the semiconductor element is exposed on the upper surface of the sealing resin layer;
(C) The photosensitive resin composition is cured on the sealing resin layer by irradiating a predetermined region of the sealing resin layer whose thickness is reduced by the treatment in the step (B) with an actinic ray. Forming an exposed portion and an unexposed portion;
(D) forming an opening in the exposed portion of the sealing resin layer by removing at least a part of the unexposed portion in the sealing resin layer with a chemical solution;
Including
(B) The manufacturing method of the semiconductor device which reduces the thickness of the said resin layer for sealing so that the conditions shown by the following inequality (1) may be satisfy | filled in a process.
H 1 −H 2 <10 μm (1)
[H 1 indicates the height from the surface of the base material to the top surface of the semiconductor element, and H 2 is the thinnest of the sealing resin layer from the surface of the base material in a region where the semiconductor element is not disposed. The height to the upper surface of the said resin layer for sealing of a part is shown. ]
露光前における前記感光性樹脂組成物の最低溶融粘度は10〜500Pa・sであり、
前記最低溶融粘度は昇温速度10℃/分及び周波数1Hzで25〜200℃の条件で測定されるものである、請求項1に記載の製造方法。
The minimum melt viscosity of the photosensitive resin composition before exposure is 10 to 500 Pa · s,
The said minimum melt viscosity is a manufacturing method of Claim 1 measured on 25-200 degreeC conditions with a temperature increase rate of 10 degree-C / min and a frequency of 1 Hz.
(A)工程において、前記感光性樹脂組成物として、予めフィルム状に形成されたものを使用する、請求項1又は2に記載の製造方法。   (A) The manufacturing method of Claim 1 or 2 using what was previously formed in the film form as the said photosensitive resin composition in a process. 前記開口部に導電材料を充填する工程を更に含む、請求項1〜3のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, further comprising a step of filling the opening with a conductive material. 前記封止用樹脂層の前記露光部によって封止された状態の前記半導体素子と前記基材とを分離する工程と、
前記基材から分離された前記半導体素子に、前記開口部に充填された前記導電材料と電気的に接続された配線パターンを形成する工程と、
を更に含む、請求項4に記載の製造方法。
Separating the semiconductor element and the substrate in a state of being sealed by the exposed portion of the sealing resin layer;
Forming a wiring pattern electrically connected to the conductive material filled in the opening in the semiconductor element separated from the substrate;
The manufacturing method according to claim 4, further comprising:
前記基材の表面に複数の半導体素子が配置されており、当該複数の半導体素子を対象として(A)工程及び(B)工程を実施するとともに、
(C)工程よりも後に、隣り合う二つの前記半導体素子の間の露光部を切断することによって前記複数の半導体素子を個片化する工程を更に含む、請求項1〜5のいずれか一項に記載の製造方法。
A plurality of semiconductor elements are arranged on the surface of the substrate, and the (A) process and the (B) process are performed on the plurality of semiconductor elements,
6. The method according to claim 1, further comprising the step of separating the plurality of semiconductor elements by cutting an exposed portion between two adjacent semiconductor elements after the step (C). The manufacturing method as described in.
JP2016206032A 2016-10-20 2016-10-20 Method for manufacturing semiconductor device Pending JP2018067659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206032A JP2018067659A (en) 2016-10-20 2016-10-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206032A JP2018067659A (en) 2016-10-20 2016-10-20 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2018067659A true JP2018067659A (en) 2018-04-26

Family

ID=62086304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206032A Pending JP2018067659A (en) 2016-10-20 2016-10-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2018067659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183090A1 (en) * 2019-03-12 2020-09-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for coating chips

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183090A1 (en) * 2019-03-12 2020-09-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for coating chips
FR3093861A1 (en) * 2019-03-12 2020-09-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Chip coating process
US11955585B2 (en) 2019-03-12 2024-04-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for coating chips

Similar Documents

Publication Publication Date Title
TWI715734B (en) Manufacturing method of semiconductor device, manufacturing method of flip chip semiconductor device, semiconductor device, and flip chip semiconductor device
JP7258453B2 (en) Thermosetting resin composition, resin film with carrier, prepreg, printed wiring board and semiconductor device
TWI502659B (en) Method of producing electronic device, and method of producing electronic device package
JP6874350B2 (en) Resin sheet
TWI405309B (en) Heat dissipating substrate and method of manufacturing the same
JP2013251368A (en) Semiconductor device manufacturing method, thermosetting resin composition used therefor and semiconductor device obtained thereby
JP2014056924A (en) Semiconductor device manufacturing method and thermosetting resin composition used therefor, and semiconductor device obtained by those
WO2018139407A1 (en) Method for manufacturing semiconductor device, photosensitive resin composition for mold underfill, and semiconductor device
JP6468017B2 (en) Manufacturing method of semiconductor device
US11979990B2 (en) Wiring board and method for manufacturing the same
TW201812939A (en) Method of manufacturing semiconductor device capable of improving production efficiency with excellent reliability
JP2016213315A (en) Method of manufacturing semiconductor device, and semiconductor device
JP6627390B2 (en) Photosensitive sealing resin composition, method of manufacturing semiconductor device using the same, and semiconductor device
JP2018067659A (en) Method for manufacturing semiconductor device
WO2018088345A1 (en) Resin film with metal foil, structured body, method for producing wiring board, and method for producing semiconductor device
JP2022110943A (en) Resin composition, method for manufacturing laminate and cured film
JP2016139754A (en) Method for manufacturing semiconductor device
JP6739893B2 (en) Semiconductor sealing member, semiconductor device manufacturing method, and semiconductor device
JP2016025217A (en) Printed wiring board, method for manufacturing the same, thermosetting resin composition, and resin film
JP6511830B2 (en) Semiconductor device manufacturing method
JP2016139752A (en) Method for manufacturing semiconductor device
US20230253215A1 (en) Method for producing circuit board
Lau Redistribution-Layers (RDLS) for Fan-Out Panel-Level Packaging
JP2015090926A (en) Film for manufacturing semiconductor device, semiconductor device using the same, and manufacturing method of semiconductor device
JP2015216292A (en) Method for producing semiconductor device, semiconductor device and member for semiconductor device production