JP6619946B2 - Multilayer bearing manufacturing method and multilayer bearing - Google Patents

Multilayer bearing manufacturing method and multilayer bearing Download PDF

Info

Publication number
JP6619946B2
JP6619946B2 JP2015068539A JP2015068539A JP6619946B2 JP 6619946 B2 JP6619946 B2 JP 6619946B2 JP 2015068539 A JP2015068539 A JP 2015068539A JP 2015068539 A JP2015068539 A JP 2015068539A JP 6619946 B2 JP6619946 B2 JP 6619946B2
Authority
JP
Japan
Prior art keywords
stainless steel
layer
steel plate
underlayer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015068539A
Other languages
Japanese (ja)
Other versions
JP2015200021A (en
Inventor
康広 白坂
康広 白坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2015068539A priority Critical patent/JP6619946B2/en
Publication of JP2015200021A publication Critical patent/JP2015200021A/en
Application granted granted Critical
Publication of JP6619946B2 publication Critical patent/JP6619946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、複層軸受用の下地層付き金属製基材、複層軸受の製造方法および複層軸受用の下地層付き金属製基材、複層軸受に関する。   The present invention relates to a metal substrate with an underlayer for a multi-layer bearing, a method for manufacturing the multi-layer bearing, a metal substrate with an underlayer for a multi-layer bearing, and a multi-layer bearing.

複層軸受では、金属製基材の表面に樹脂層を密着させて確実に取着させるため、金属製基材の表面に下地層を形成し、この下地層の上に樹脂層を形成している。この下地層は、従来、金属製基材に形成された銅めっき層と、この銅めっき層の上に形成された銅系焼結層とで構成されている。   In multi-layer bearings, a resin layer is adhered to the surface of a metal substrate to ensure attachment, so that a foundation layer is formed on the surface of the metal substrate, and a resin layer is formed on the foundation layer. Yes. This underlayer is conventionally composed of a copper plating layer formed on a metal base material and a copper-based sintered layer formed on the copper plating layer.

より詳細に説明すると、従来、複層軸受の金属製基材として、SPCCなどの圧延鋼板が用いられており、まず、多数の複層軸受が得られる大きさの一枚の鋼板を用意する。
次に、下地層を形成する。すなわち、一枚の鋼板にメッキ処理を施し、一枚の鋼板の全面に銅めっき層を形成する。この銅めっき層は、鋼板と銅系焼結層との密着性を確保するためのものである。
次に、一枚の鋼板の一方の面の銅めっき層の上に銅系焼結層を形成する。これにより、一枚の鋼板の一方の面に、銅めっき層と銅系焼結層とで構成された下地層が形成される。
そして、この下地層の上に樹脂層を形成する。
次に、一方の面に下地層、樹脂層が形成された一枚の鋼板を、製造すべき複層軸受の大きさに切断(シャーリング)することが行なわれ、下地層、樹脂層が形成された鋼板が多数得られる。
最後に、例えば、複層軸受が円筒状の滑り軸受である場合には、樹脂層が内側にくるように切断された鋼板を円筒曲げ成形する。
したがって、出来上がった複層軸受は、切断された箇所で金属製基材である鋼板と、銅めっき層と銅系焼結層とで構成された下地層がむき出しとなる。
More specifically, conventionally, a rolled steel plate such as SPCC is used as a metal base material of a multi-layer bearing. First, a single steel plate having a size capable of obtaining a large number of multi-layer bearings is prepared.
Next, a base layer is formed. That is, a single steel plate is plated, and a copper plating layer is formed on the entire surface of the single steel plate. This copper plating layer is for ensuring adhesion between the steel sheet and the copper-based sintered layer.
Next, a copper-based sintered layer is formed on the copper plating layer on one surface of one steel plate. Thereby, the base layer comprised by the copper plating layer and the copper-type sintered layer is formed in one side of one steel plate.
Then, a resin layer is formed on the base layer.
Next, a single steel sheet having a base layer and a resin layer formed on one surface is cut (sheared) into the size of a multilayer bearing to be manufactured, thereby forming the base layer and the resin layer. Many steel plates can be obtained.
Finally, for example, when the multi-layer bearing is a cylindrical sliding bearing, the steel plate cut so that the resin layer is inside is subjected to cylindrical bending.
Therefore, in the completed multilayer bearing, the base layer composed of the steel plate that is a metal base, the copper plating layer, and the copper-based sintered layer is exposed at the cut portion.

特開2013−2517JP2013-2517

そのため、従来の複層軸受では、複層軸受の端面に鋼板と、下地層がむき出しとなる。すなわち、鋼板と、下地層を構成する銅めっき層と銅系焼結層とがむき出しとなる。そのため、例えば、硫黄成分を含む油中での使用、塩水中での使用など、腐食性環境下での使用には耐久性の点で限界があった。
そこで、金属製基材としてステンレス鋼を用いることが考えられるが、下地層を銅めっき層と銅系焼結層とで構成した場合には、やはり、下地層、樹脂層が形成された一枚の鋼板を、製造すべき複層軸受の大きさに切断した際に、切断された箇所で下地層を構成する銅めっき層と銅系焼結層がむき出しとなり、腐食性環境下での使用には耐久性の点で限界がある。
また、金属製基材としてステンレス鋼を用い、下地層としてステンレス焼結層を用いることが考えられる。この場合には、下地層、樹脂層が形成された一枚の鋼板を、製造すべき複層軸受の大きさに切断した際に、切断された箇所で金属製基材と下地層がむき出しとなっても、金属製基材と下地層がともにステンレス製であるため、腐食性環境下での使用に問題がないものの、ステンレス焼結層を作るには1200℃以上の温度で処理する必要があるため、放電プラズマ焼結法や真空焼結法など、特殊な焼結法にて焼結する必要があり、汎用的な連続炉を用いてステンレス焼結層を作ることは困難である。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、連続炉を用いて製造でき、腐食性環境下での耐久性を向上する上で有利な複層軸受用の下地層付き金属製基材、複層軸受の製造方法および複層軸受用の下地層付き金属製基材、複層軸受を提供することにある。
Therefore, in the conventional multi-layer bearing, a steel plate and an underlayer are exposed on the end surface of the multi-layer bearing. That is, the steel plate, the copper plating layer constituting the underlayer, and the copper-based sintered layer are exposed. Therefore, for example, use in a corrosive environment such as use in oil containing a sulfur component and use in salt water has a limit in terms of durability.
Therefore, it is conceivable to use stainless steel as the metal base material. However, when the base layer is composed of a copper plating layer and a copper-based sintered layer, it is also a sheet on which the base layer and the resin layer are formed. When the steel plate is cut to the size of the multilayer bearing to be manufactured, the copper plating layer and the copper-based sintered layer that make up the base layer are exposed at the cut location, making it suitable for use in corrosive environments. Is limited in terms of durability.
It is also conceivable to use stainless steel as the metal substrate and a stainless sintered layer as the underlayer. In this case, when a single steel sheet on which the base layer and the resin layer are formed is cut into the size of the multilayer bearing to be manufactured, the metal base material and the base layer are exposed at the cut portions. However, since both the metal base material and the base layer are made of stainless steel, there is no problem in use in a corrosive environment, but it is necessary to process at a temperature of 1200 ° C. or higher in order to make a stainless sintered layer. Therefore, it is necessary to sinter by a special sintering method such as a discharge plasma sintering method or a vacuum sintering method, and it is difficult to produce a stainless sintered layer using a general-purpose continuous furnace.
The present invention has been devised in view of the above circumstances, and an object of the present invention is for a multilayer bearing which can be manufactured using a continuous furnace and is advantageous in improving durability in a corrosive environment. An object of the present invention is to provide a metal substrate with an underlayer, a method for producing a multilayer bearing, a metal substrate with an underlayer for a multilayer bearing, and a multilayer bearing.

前記目的を達成するため、本発明の第1は、金属製基材と、前記金属製基材の上に設けられた下地層とを有する複層軸受用の下地層付き金属製基材の製造方法であって、前記金属製基材としてステンレス鋼板を用い、前記下地層を、ステンレス鋼の粉体と接合用ろう材とを混合した混合物を前記ステンレス鋼板の上に散布し、散布後、非酸化性雰囲気下で加熱して前記接合用ろう材を溶融させ、加熱後、徐冷することで、前記ステンレス鋼の粉体を前記ステンレス鋼板の表面に前記接合用ろう材を介して積み重ねて形成するようにしたことを特徴とする。
本発明の第2は、複層軸受の製造方法であって、ステンレス鋼の粉体と接合用ろう材とを混合した混合物を生成する混合物生成工程と、ステンレス鋼板の上に前記混合物を散布する散布工程と、前記混合物が散布されたステンレス鋼板を非酸化性雰囲気下で加熱して前記接合用ろう材を溶融させ、加熱後、徐冷することで、前記ステンレス鋼板の表面に、前記ステンレス鋼の粉体が前記接合用ろう材を介して積み重ねられて形成された下地層を形成する下地層形成工程と、前記下地層の上に、滑り性を有する樹脂材料を配置して加熱し、ローラにより押圧して平坦な軸受面を有する樹脂層を形成する樹脂層形成工程とを備えることを特徴とする。
本発明の第3は、前記混合物生成工程において前記混合物を、前記ステンレス鋼の粉体100質量部に対して前記接合用ろう材を90質量部〜300質量部の割合で混合して生成することを特徴とする。
本発明の第4は、金属製基材と、前記金属製基材の上に形成された下地層とを有する複層軸受用の下地層付き金属製基材であって、前記金属製基材はステンレス鋼板からなり、前記下地層は、前記ステンレス鋼板の表面にステンレス鋼の粉体が接合用ろう材を介して積み重ねられて形成されていることを特徴とする。
本発明の第5は、前記ステンレス鋼の粉体と前記接合用ろう材とは、前記ステンレス鋼の粉体100質量部に対して前記接合用ろう材が90質量部〜300質量部の割合で混合されていることを特徴とする。
本発明の第6は、前記下地層の上に樹脂層が形成されていることを特徴とする複層軸受である。
本発明の第7は、前記接合用ろう材は、Niろう材であることを特徴とする。
本発明の第8は、前記Niろう材は、融点が950℃以下であることを特徴とする。
本発明の第9は、前記Niろう材は、リンを10〜11質量%含むことを特徴とする。
In order to achieve the above object, the first aspect of the present invention is the production of a metal substrate with an underlayer for a multi-layer bearing having a metal substrate and an underlayer provided on the metal substrate. In this method, a stainless steel plate is used as the metal substrate, and the base layer is a mixture of a stainless steel powder and a brazing filler material spread on the stainless steel plate. Heated in an oxidizing atmosphere to melt the joining brazing material, and after heating, slowly cools, forming the stainless steel powder on the surface of the stainless steel plate via the joining brazing material It was made to do.
2nd of this invention is a manufacturing method of a multilayer bearing , Comprising: The mixture production | generation process which produces | generates the mixture which mixed the powder of stainless steel and the brazing filler metal, and the said mixture is spread on a stainless steel plate. The stainless steel plate to which the mixture has been dispersed is heated in a non-oxidizing atmosphere to melt the joining brazing material, and after heating, the stainless steel plate is placed on the surface of the stainless steel plate by gradually cooling. A base layer forming step of forming a base layer formed by stacking the powders of the powder through the bonding brazing material, and a resin material having slipperiness is disposed on the base layer and heated, and a roller And a resin layer forming step of forming a resin layer having a flat bearing surface by pressing.
3rd of this invention produces | generates the said mixture in the said mixture production | generation process by mixing the said brazing filler material in the ratio of 90 mass parts-300 mass parts with respect to 100 mass parts of said stainless steel powder. It is characterized by.
4th of this invention is a metal base material with a base layer for multilayer bearings which has a metal base material and a base layer formed on the said metal base material, Comprising: The said metal base material Is made of a stainless steel plate, and the underlayer is formed by stacking stainless steel powder on the surface of the stainless steel plate via a brazing filler metal.
According to a fifth aspect of the present invention, the stainless steel powder and the joining brazing material are 90 parts by mass to 300 parts by mass of the joining brazing material with respect to 100 parts by mass of the stainless steel powder. It is characterized by being mixed.
According to a sixth aspect of the present invention, there is provided a multilayer bearing characterized in that a resin layer is formed on the base layer.
A seventh aspect of the present invention is characterized in that the joining brazing material is a Ni brazing material.
An eighth aspect of the present invention is characterized in that the Ni brazing material has a melting point of 950 ° C. or lower.
According to a ninth aspect of the present invention, the Ni brazing material contains 10 to 11% by mass of phosphorus.

前記本発明の第1の発明によれば、加熱は、接合用ろう材の融点近傍の範囲の温度をかけることで足りるため、放電プラズマ焼結法や真空焼結法など、特殊な焼結法にて焼結することなく汎用的な連続炉の使用が可能となる。
また、下地層は、ステンレス鋼の粉体が積み重ねられて形成され、下地層の表面は微細な凹凸を有しているため、樹脂層を含む軸受層との密着性に優れる。
また、製造時に切断された箇所で金属製基材及び下地層がむき出しになっていても、金属製基材及び下地層はステンレス鋼であることから、本発明の下地層付き金属製基材を用いた複層軸受の腐食性環境下での使用の耐久性を向上する上で有利となる。
また、従来のように、下地層を形成するためのめっき層が不要となることから、時間を要するメッキ処理を省略でき、複層軸受用の下地層付き金属製基材を短時間で製造する上で有利となる。
前記本発明の第2の発明によれば、加熱は、接合用ろう材の融点近傍の範囲の温度をかけることで足りるため、放電プラズマ焼結法や真空焼結法など、特殊な焼結法にて焼結することなく汎用的な連続炉の使用が可能となる。
また、樹脂層と下地層とが確実に密着して取着され、したがって、下地層を介して樹脂層がステンレス鋼板に確実に取着されている。
また、製造時に切断された箇所で金属製基材及び下地層がむき出しになっていても、金属製基材及び下地層はステンレス鋼であることから、複層軸受の腐食性環境下での使用の耐久性を向上する上で有利となる。
また、従来のように、下地層を形成するためのめっき層が不要となることから、時間を要するメッキ処理を省略でき、複層軸受を短時間で製造する上で有利となる。
前記本発明の第3の発明によれば、ステンレス鋼板とステンレス鋼の粉体との接合強度、及び下地層と樹脂層との密着性の点で有利となる。
前記本発明の第4の発明によれば、下地層の製造時、接合用ろう材の融点近傍の範囲の温度をかけることで足りるため、放電プラズマ焼結法や真空焼結法など、特殊な焼結法にて焼結することなく汎用的な連続炉を用いた製造が可能となる。
また、下地層は、ステンレス鋼の粉体が積み重ねられて形成され、下地層の表面は微細な凹凸を有しているため、樹脂層を含む軸受層との密着性に優れる。
また、製造時に切断された箇所で金属製基材及び下地層がむき出しになっていても、金属製基材及び下地層はステンレス鋼であることから、本発明の下地層付き金属製基材を用いた複層軸受の腐食性環境下での使用の耐久性を向上する上で有利となる。
また、従来のように、下地層を形成するためのめっき層が不要となることから、時間を要するメッキ処理を省略でき、複層軸受用の下地層付き金属製基材を短時間で製造する上で有利となる。
前記本発明の第5の発明によれば、ステンレス鋼板とステンレス鋼の粉体との接合強度、及び下地層と樹脂層との密着性の点で有利となる。
前記本発明の第6の発明によれば、樹脂層と下地層とが確実に密着して取着され、したがって、下地層を介して樹脂層がステンレス鋼板に確実に取着されている。
また、製造時に切断された箇所で金属製基材及び下地層がむき出しになっていても、金属製基材及び下地層はステンレス鋼であることから、腐食性環境下での使用の耐食性に優れる複層軸受を得る上で有利となる。
前記本発明の第7の発明によれば、Niろう材は、ステンレス鋼に対して濡れ性に優れ、耐食性に優れるため、ステンレス鋼の粉体が相互に確実に接合された下地層を得る上で有利となる。
前記本発明の第8の発明によれば、融点が950℃以下のNiろう材を使用することで、汎用的な連続炉においても安定して製造可能となる。
前記本発明の第9の発明によれば、リンを10〜11質量%含むNiろう材は、共晶点に近く固相温度と液相温度の差が少ないため、汎用的な連続炉においてもより安定して製造可能であるとともに、ステンレス鋼との濡れ性に非常に優れることにより、ステンレス鋼の紛体が相互に確実に接合された下地層を得るとともに、ステンレス鋼板と下地層との充分な接合強度を得る上で有利である。
According to the first invention of the present invention, since heating is sufficient by applying a temperature in the vicinity of the melting point of the joining brazing material, a special sintering method such as a discharge plasma sintering method or a vacuum sintering method is used. It is possible to use a general-purpose continuous furnace without sintering.
Further, the underlayer is formed by stacking stainless steel powders, and the surface of the underlayer has fine irregularities, so that the adhesion to the bearing layer including the resin layer is excellent.
In addition, even if the metal base material and the base layer are exposed at a location cut at the time of manufacture, the metal base material and the base layer are made of stainless steel. This is advantageous in improving the durability of the multi-layer bearing used in a corrosive environment.
In addition, since a plating layer for forming an underlayer is not required as in the prior art, a time-consuming plating process can be omitted, and a metal substrate with an underlayer for a multi-layer bearing can be manufactured in a short time. This is advantageous.
According to the second aspect of the present invention, since the heating may be performed by applying a temperature in the vicinity of the melting point of the joining brazing material, a special sintering method such as a discharge plasma sintering method or a vacuum sintering method is used. It is possible to use a general-purpose continuous furnace without sintering.
Further, the resin layer and the underlayer are securely attached and attached, and therefore the resin layer is reliably attached to the stainless steel plate via the underlayer.
In addition, even if the metal base material and the underlayer are exposed at the location cut at the time of manufacture, the metal base material and the underlayer are made of stainless steel. This is advantageous in improving the durability of the.
In addition, since a plating layer for forming a base layer is not required as in the prior art, a time-consuming plating process can be omitted, which is advantageous in manufacturing a multilayer bearing in a short time.
The third aspect of the present invention is advantageous in terms of the bonding strength between the stainless steel plate and the stainless steel powder and the adhesion between the underlayer and the resin layer.
According to the fourth aspect of the present invention, since it is sufficient to apply a temperature in the vicinity of the melting point of the bonding brazing material during the production of the underlayer, a special method such as discharge plasma sintering or vacuum sintering is used. Manufacturing using a general-purpose continuous furnace is possible without sintering by a sintering method.
Further, the underlayer is formed by stacking stainless steel powders, and the surface of the underlayer has fine irregularities, so that the adhesion to the bearing layer including the resin layer is excellent.
In addition, even if the metal base material and the base layer are exposed at a location cut at the time of manufacture, the metal base material and the base layer are made of stainless steel. This is advantageous in improving the durability of the multi-layer bearing used in a corrosive environment.
In addition, since a plating layer for forming an underlayer is not required as in the prior art, a time-consuming plating process can be omitted, and a metal substrate with an underlayer for a multi-layer bearing can be manufactured in a short time. This is advantageous.
The fifth aspect of the present invention is advantageous in terms of the bonding strength between the stainless steel plate and the stainless steel powder and the adhesion between the underlayer and the resin layer.
According to the sixth aspect of the present invention, the resin layer and the underlayer are securely attached and attached, and therefore the resin layer is reliably attached to the stainless steel plate via the underlayer.
In addition, even if the metal base material and the underlayer are exposed at the location cut at the time of manufacture, since the metal base material and the underlayer are stainless steel, the corrosion resistance of the use in a corrosive environment is excellent. This is advantageous in obtaining a multi-layer bearing.
According to the seventh aspect of the present invention, since the Ni brazing material is excellent in wettability and corrosion resistance with respect to stainless steel, it is possible to obtain an underlayer in which stainless steel powders are reliably bonded to each other. Is advantageous.
According to the eighth aspect of the present invention, by using a Ni brazing material having a melting point of 950 ° C. or lower, it can be stably manufactured even in a general-purpose continuous furnace.
According to the ninth aspect of the present invention, the Ni brazing material containing 10 to 11% by mass of phosphorus is close to the eutectic point and has a small difference between the solid phase temperature and the liquid phase temperature. It can be manufactured more stably, and it has excellent wettability with stainless steel, so that it is possible to obtain an underlayer in which stainless steel powders are reliably bonded to each other, and a sufficient amount of stainless steel plate and underlayer is sufficient. This is advantageous in obtaining bonding strength.

第1の実施の形態の複層軸受の斜視図である。It is a perspective view of the multilayer bearing of a 1st embodiment. 下地層の拡大図である。It is an enlarged view of a foundation layer. (A)〜(E)は一枚のステンレス鋼板から多数の第1の実施の形態の複層軸受を製造する場合の説明図である。(A)-(E) is explanatory drawing in the case of manufacturing the multilayer bearing of many 1st Embodiment from one stainless steel plate.

以下に添付図面を参照して、本発明の製造方法を複層軸受と共に説明する。
まず、複層軸受が、円筒状の滑り軸受である第1の実施の形態について図1〜図3を参照して説明する。
図1、図2に示すように、複層軸受10Aは、金属製基材をなす円筒状のステンレス鋼板12と、ステンレス鋼板12の内周面の全域に形成された下地層14と、下地層14の上に形成された樹脂層16とを備えている。
このような複層軸受10Aを製造するに際して、図3(A)〜(E)に示すように、所定の大きさの一枚の平板状のステンレス鋼板18の一方の面の全域に、下地層14を介して樹脂層16を形成しておき、このステンレス鋼板18を切断して適宜大きさの矩形体26を得、この矩形体26を円筒曲げ成形することで製造され、図1において符号1002は合せ目を示している。
なお、製品である複層軸受10Aを構成するステンレス鋼板を符号12で示し、複層軸受10Aを構成する前の段階のステンレス鋼板を符号18で示す。
With reference to the accompanying drawings, the manufacturing method of the present invention will be described below together with a multilayer bearing.
First, a first embodiment in which the multi-layer bearing is a cylindrical slide bearing will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the multi-layer bearing 10 </ b> A includes a cylindrical stainless steel plate 12 that forms a metal base, a base layer 14 that is formed on the entire inner peripheral surface of the stainless steel plate 12, and a base layer. 14 and a resin layer 16 formed on the upper surface.
When manufacturing such a multi-layer bearing 10A, as shown in FIGS. 3A to 3E, a base layer is formed over the entire area of one surface of a single plate-like stainless steel plate 18 having a predetermined size. 14, the resin layer 16 is formed, and the stainless steel plate 18 is cut to obtain a rectangular body 26 having an appropriate size. The rectangular body 26 is manufactured by cylindrical bending. Indicates a seam.
In addition, the stainless steel plate which comprises the multilayer bearing 10A which is a product is shown with the code | symbol 12, and the stainless steel plate of the stage before comprising the multilayer bearing 10A is shown with the code | symbol 18. In FIG.

(混合物生成工程)
より詳細に説明すると、複層軸受10Aを製造するに際して、ステンレス鋼の粉体20(図2参照)と接合用ろう材とを混合した混合物22(図3(B)参照)を生成する。
ここで、ステンレス鋼の粉体20として、粒径37〜62μmを用いたが、複層軸受の製造において、樹脂層を取着するに充分なアンカー効果を有する下地層を形成できるものであれば、いずれの粒径も使用可能である。なお、ステンレス鋼の粉体20及びステンレス鋼板18は、オーステナイト系、フェライト系、マルテンサイト系のいずれの組み合わせでも良い。なお、ステンレス鋼の粉体20は製造方法の違いにより、水アトマイズ粉末、ガスアトマイズ粉末、遠心アトマイズ粉末等があり、いずれも使用可能である。粉末形状が球形であるガスアトマイズ粉末や、遠心アトマイズ粉末に対し、粉末表面に凹凸を有する水アトマイズ粉末を使用した方が、下地層と樹脂層をより確実に密着させることが可能である。
また、接合用ろう材としては、Niろう材や銀ろうなど従来公知の様々な接合用ろう材が使用可能であるが、中でもステンレス鋼に対して濡れ性に優れ、より耐食性に優れるNiろう材が好適であり、リン(P)を10〜11質量%含むNiろう材はより好適である。
ステンレス鋼の粉体20と接合用ろう材の混合比において、ステンレス鋼の粉体100質量部に対して接合用ろう材を90質量部以上の割合で、ステンレス鋼板18へのステンレス鋼の粉体20の接合強度が十分となり、接合用ろう材の割合がさらに増えるほど接合強度は大きくなる。しかしながら、ステンレス鋼の粉体20に対して接合用ろう材の割合が増えるほど、ステンレス鋼の粉体同士の間の隙間(下地層表面の微細な凹凸)が小さくなり、下地層と樹脂層の密着性が低下する。よって、ステンレス鋼の粉体100質量部に対して接合用ろう材を90質量部〜300質量部の割合で混合することが、ステンレス鋼板18とステンレス鋼の粉体20との接合強度、及び下地層14と樹脂層16との密着性の点で好ましく、140質量部〜240質量部の割合で混合するとより好ましい。
(Mixture generation process)
More specifically, when the multi-layer bearing 10A is manufactured, a mixture 22 (see FIG. 3B) in which the stainless steel powder 20 (see FIG. 2) and the joining brazing material are mixed is generated.
Here, although the particle size of 37 to 62 μm was used as the stainless steel powder 20, any material can be used as long as it can form a base layer having an anchor effect sufficient to attach a resin layer in the production of a multi-layer bearing. Any particle size can be used. The stainless steel powder 20 and the stainless steel plate 18 may be any combination of austenite, ferrite, and martensite. The stainless steel powder 20 includes water atomized powder, gas atomized powder, centrifugal atomized powder, and the like depending on the manufacturing method, and any of them can be used. The use of a water atomized powder having irregularities on the surface of the powder with respect to a gas atomized powder having a spherical powder shape or a centrifugal atomized powder enables the base layer and the resin layer to be adhered more reliably.
As the brazing filler metal, various conventionally known brazing filler metals such as Ni brazing filler metal and silver brazing filler metal can be used. Among them, Ni brazing filler metal having excellent wettability and superior corrosion resistance to stainless steel. Ni brazing filler metal containing 10 to 11% by mass of phosphorus (P) is more preferable.
In the mixing ratio of the stainless steel powder 20 and the joining brazing material, the joining brazing material is 90 parts by mass or more with respect to 100 parts by mass of the stainless steel powder, and the stainless steel powder to the stainless steel plate 18 is mixed. As the bonding strength of 20 becomes sufficient and the proportion of the brazing filler material increases further, the bonding strength increases. However, as the proportion of the brazing filler metal increases with respect to the stainless steel powder 20, the gap between the stainless steel powders (fine irregularities on the surface of the underlayer) decreases, and the underlayer and the resin layer Adhesion decreases. Therefore, mixing the brazing filler metal at a ratio of 90 parts by mass to 300 parts by mass with respect to 100 parts by mass of the stainless steel powder results in the bonding strength between the stainless steel plate 18 and the stainless steel powder 20 and below. It is preferable in terms of adhesion between the base layer 14 and the resin layer 16, and more preferably mixed in a proportion of 140 to 240 parts by mass.

(散布工程)
次に、図3(A)に示すように、多数の複層軸受10Aが得られるように所定の大きさの一枚の平板状のステンレス鋼板18を用意する。
そして、図3(B)に示すように、ステンレス鋼板18の表面の全域に混合物22を散布する。
混合物22は、ステンレス鋼板18の上に均一の厚さで散布することが望ましい。
例えば、散布後、ステンレス鋼板18の表面と平行にステンレス鋼板18の表面から所定の高さ(例えば、0.1〜0.2mm)に位置するようにロッドを延在させ、このロッドをその長手方向または長手方向と直交する方向に移動させるなどのことを行なうと、散布された混合物22の厚さを均一にする上で好ましい。
(Spraying process)
Next, as shown in FIG. 3A, a single plate-like stainless steel plate 18 having a predetermined size is prepared so that a large number of multilayer bearings 10A can be obtained.
Then, as shown in FIG. 3B, the mixture 22 is dispersed over the entire surface of the stainless steel plate 18.
It is desirable that the mixture 22 is spread on the stainless steel plate 18 with a uniform thickness.
For example, after spreading, a rod is extended from the surface of the stainless steel plate 18 to a predetermined height (for example, 0.1 to 0.2 mm) in parallel with the surface of the stainless steel plate 18, and the rod It is preferable to make the thickness of the dispersed mixture 22 uniform by moving in the direction perpendicular to the direction or the longitudinal direction.

(下地層形成工程)
つぎに、混合物22が散布されたステンレス鋼板18を非酸化性雰囲気下で接合用ろう材の融点近傍の範囲の温度、例えば、875℃〜950℃の範囲で加熱する。
この場合、非酸化性雰囲気とは還元性雰囲気や不活性雰囲気、真空状態を含み、還元性雰囲気には水素ガスや水素窒素混合ガスなどが用いられ、不活性雰囲気にはアルゴンガスやヘリウムガスなどが用いられる。このような非酸化性雰囲気のなかでも、接合部表面に付着した酸化物等の影響を受けにくい還元性雰囲気下がより好ましい。なお、本実施の形態では、汎用的な連続炉を用いるため真空状態を使用できない。
加熱時、ステンレス鋼の融点は1400℃〜1530℃の範囲であるため、ステンレス鋼の粉体20は溶融しない。
これに対して接合用ろう材は、融点が950℃以下であるため、接合用ろう材は、加熱時溶融してステンレス鋼板18の表面に速やかに拡がると共に、ステンレス鋼の粉体20間に速やかに拡がる。
加熱後、非酸化性雰囲気下で徐冷する。
これによりステンレス鋼板18の表面に、図2に示すように、接合用ろう材によりステンレス鋼の粉体20が接合されると共に、ステンレス鋼の粉体20どうしが接合され、ステンレス鋼板18の表面にステンレス鋼の粉体20が積み重ねられて形成され表面に微細な凹凸を有する下地層14が形成される。
(Underlayer forming process)
Next, the stainless steel plate 18 on which the mixture 22 is dispersed is heated in a non-oxidizing atmosphere at a temperature in the vicinity of the melting point of the brazing filler metal, for example, in the range of 875 ° C to 950 ° C.
In this case, the non-oxidizing atmosphere includes a reducing atmosphere, an inert atmosphere, and a vacuum state. The reducing atmosphere is a hydrogen gas or a hydrogen-nitrogen mixed gas, and the inert atmosphere is an argon gas or a helium gas. Is used. Among such non-oxidizing atmospheres, a reducing atmosphere that is less susceptible to the influence of oxides and the like attached to the surface of the joint is more preferable. In this embodiment, since a general-purpose continuous furnace is used, a vacuum state cannot be used.
During heating, the melting point of stainless steel is in the range of 1400 ° C. to 1530 ° C., so the stainless steel powder 20 does not melt.
On the other hand, since the melting point of the joining brazing material is 950 ° C. or less, the joining brazing material melts when heated and spreads rapidly on the surface of the stainless steel plate 18, and quickly between the stainless steel powders 20. To spread.
After heating, it is gradually cooled in a non-oxidizing atmosphere.
As a result, as shown in FIG. 2, the stainless steel powder 20 is joined to the surface of the stainless steel plate 18 by the joining brazing material, and the stainless steel powder 20 is joined to the surface of the stainless steel plate 18. The underlayer 14 is formed by stacking stainless steel powders 20 and having fine irregularities on the surface.

(樹脂層形成工程)
次に、図3(C)に示すように、下地層14の上に、滑り性を有する樹脂材料を配置して加熱し、ローラにより押圧して平坦な軸受面を有する樹脂層16を形成する。
この場合、下地層14の上に樹脂材料を配置しとは、下地層14の上に樹脂材料を散布または塗布することや、下地層14の上に樹脂製の薄い帯板あるいは膜体を敷くことなどを広く含む概念であり、従来の銅めっきと銅系焼結層からなる下地層の上に樹脂層を形成する際に使用される従来公知の様々の手法が採用可能である。
また、滑り性を有する樹脂材料としては、複層軸受に使用される従来公知の様々な樹脂が採用可能であり、例えば、ポリテトラフルオロエチレン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂およびこれらの樹脂を主成分とし、これに潤滑油剤や強化材を配合したものなどが挙げられる。
(Resin layer forming process)
Next, as shown in FIG. 3C, a resin material having slipperiness is disposed on the base layer 14 and heated, and pressed by a roller to form a resin layer 16 having a flat bearing surface. .
In this case, the arrangement of the resin material on the underlayer 14 means that the resin material is dispersed or applied on the underlayer 14 or a thin strip or film made of resin is laid on the underlayer 14. This is a concept that includes a wide range of things, and various conventionally known techniques used when forming a resin layer on a base layer made of conventional copper plating and a copper-based sintered layer can be employed.
Also, as the resin material having slipperiness, various conventionally known resins used for multi-layer bearings can be used, for example, polytetrafluoroethylene resin, polyacetal resin, polyamide resin, polyphenylene sulfide resin, polyether Examples include ether ketone resins, polyamide-imide resins, and those containing these resins as a main component and blended with lubricants and reinforcing materials.

次に、図3(D)に示すように、樹脂層16が形成されたステンレス鋼板18を切断線24に沿って切断することで、図3(E)に示すように、一方の面の全域に樹脂層16が形成された矩形体26を得、次に、樹脂層16が内側となるように矩形体26を円筒曲げ成形し、図1に示すステンレス鋼板12と、下地層14と、樹脂層16とを備える円筒状の複層軸受10Aを得る。
なお、ステンレス鋼板12、下地層14、樹脂層16の各厚さは、従来と同様に、使用に応じて適宜設定される。
Next, as shown in FIG. 3D, by cutting the stainless steel plate 18 with the resin layer 16 formed along the cutting line 24, as shown in FIG. A rectangular body 26 having a resin layer 16 formed thereon is obtained, and then the rectangular body 26 is cylindrically bent so that the resin layer 16 is on the inner side. The stainless steel plate 12, the base layer 14, and the resin shown in FIG. A cylindrical multi-layer bearing 10 </ b> A including the layer 16 is obtained.
In addition, each thickness of the stainless steel plate 12, the base layer 14, and the resin layer 16 is set suitably according to use like the past.

本実施の形態によれば、ステンレス鋼板12に接合された下地層14の表面は、ステンレス鋼の粉体20が積み重ねられて形成され、表面に微細な凹凸を有しているため、樹脂層16と下地層14とが確実に密着して取着され、したがって、下地層14を介して樹脂層16がステンレス鋼板12に確実に取着されている。
また、下地層14、樹脂層16が形成されたステンレス鋼板18から所望の大きさに切断された矩形体26は、切断された箇所である4辺において金属製基材及び下地層がむき出しとなり、樹脂層16と反対の面も金属製基材がむき出しとなる。しかしながら、むき出しとなった金属製基材及び下地層はステンレス鋼及びNiろう材であることから、耐食性に優れる複層軸受10Aを得る上で有利となる。
したがって、例えば、硫黄成分を含む油中や、塩水中で使用する際の耐食性(耐硫化腐食性、耐塩水腐食性)に優れ、腐食性環境下での複層軸受10Aの耐久性を高める上で有利となる。
また、従来のように、下地層を形成するためのめっき層が不要となることから、メッキ処理を省略でき、詳細には、ステンレス基材への時間を要するめっき処理及びメッキ処理に必要なサンディングやショットブラスト工程が不要となり、複層軸受10Aを短時間で製造する上で有利となる。
According to the present embodiment, the surface of the foundation layer 14 bonded to the stainless steel plate 12 is formed by stacking the stainless steel powder 20 and has fine irregularities on the surface. And the base layer 14 are securely attached to each other, so that the resin layer 16 is securely attached to the stainless steel plate 12 via the base layer 14.
In addition, the rectangular body 26 cut to a desired size from the stainless steel plate 18 on which the base layer 14 and the resin layer 16 are formed, the metal base material and the base layer are exposed on the four sides that are the cut portions, The metal substrate is also exposed on the surface opposite to the resin layer 16. However, since the exposed metal substrate and underlayer are stainless steel and Ni brazing filler metal, it is advantageous in obtaining the multi-layer bearing 10A having excellent corrosion resistance.
Therefore, for example, it is excellent in corrosion resistance (sulfurization corrosion resistance, salt water corrosion resistance) when used in oil containing sulfur components or in salt water, and improves the durability of the multi-layer bearing 10A in a corrosive environment. Is advantageous.
In addition, since the plating layer for forming the base layer is not required as in the prior art, the plating process can be omitted. Specifically, the plating process that requires time for the stainless steel substrate and the sanding necessary for the plating process are required. This eliminates the need for a shot blasting process and is advantageous in manufacturing the multi-layer bearing 10A in a short time.

なお、実施の形態では金属製基材として所定の大きさの平板状のステンレス鋼板を用いたが、これに限らず一定幅の連続した鋼帯(コイル)を用いてもよい。
また、実施の形態では、金属製基材としてめっき処理されていないステンレス鋼板を用いたが、例えば、Niめっきしたフェライト系のSUS430ステンレス鋼板など、Niめっき等のめっき処理したステンレス鋼板も用いることができる。
In the embodiment, a flat stainless steel plate having a predetermined size is used as the metal base material. However, the present invention is not limited to this, and a continuous steel strip (coil) having a constant width may be used.
Further, in the embodiment, a stainless steel plate not plated is used as the metal base material. However, a plated stainless steel plate such as Ni plating such as a Ni-plated ferritic SUS430 stainless steel plate may also be used. it can.

(実施例)
下地層と金属基材との密着力および耐食性試験を行うために、下記に示す下地層付き金属製基材の試験片を作製した。
金属基材として、オーステナイト系のSUS316Lステンレス鋼板を用いた。
下地層として、オーステナイト系のSUS316Lステンレス鋼の粉体とリン(P)を11質量%含むNiろう材を4:6の質量比率(ステンレス鋼の粉体100質量部に対してNiろう材150質量部)で混合した混合物を用いた。
ステンレス鋼板の上に混合物を散布後、水素窒素混合ガス(還元性雰囲気)中で、890〜920℃で5分間熱処理して、下地層付き金属製基材を作製した。
同様に、上記ステンレス鋼の粉体とNiろう材を3:7の質量比率(ステンレス鋼の粉体100質量部に対してNiろう材233質量部)で混合した混合物を生成し、上記と同様にして下地層付き金属製基材を作製した。
2つの試験片について、金属基材に接合した下地層に対してたがね打込み試験を実施し、いずれも接合状態が良好であることを確認した。
また、極圧添加剤として硫黄成分を含むギアオイル(150℃)、3.5%濃度の塩水(常温)、pH2の希硫酸水溶液(常温)への浸漬試験を実施し、充分な耐食性を有することを確認した。
次に、上記2種類の下地層付き金属製基材の下地層の上に、滑り性を有する樹脂材料としてポリテトラフルオロエチレン樹脂を主成分とする樹脂材料を散布し、加熱処理、ローラによる押圧処理を施して樹脂層を形成し、複層軸受試験片を作製した。
これらの試験片を用いて下地層と樹脂層との密着性の評価を実施した。
評価は垂直剥離試験により行った。垂直剥離試験とは、試験片の樹脂層表面を脱フッ素処理後、エポキシ系接着剤にて所定の径の鋼製ピンを接着し、試験片とピンとの引き剥がし力を測定する方法である。
評価の結果、いずれも充分な密着力を有することを確認した。
(Example)
In order to perform an adhesion strength and corrosion resistance test between the underlayer and the metal substrate, a test piece of a metal substrate with an underlayer shown below was prepared.
An austenitic SUS316L stainless steel plate was used as the metal substrate.
As a base layer, a Ni brazing material containing 11% by mass of austenitic SUS316L stainless steel powder and phosphorus (P) in a mass ratio of 4: 6 (150 parts by mass of Ni brazing material with respect to 100 parts by mass of the stainless steel powder). Part) was used.
After the mixture was sprayed on the stainless steel plate, it was heat-treated at 890 to 920 ° C. for 5 minutes in a hydrogen / nitrogen mixed gas (reducing atmosphere) to prepare a metal substrate with an underlayer.
Similarly, a mixture in which the stainless steel powder and the Ni brazing material are mixed in a mass ratio of 3: 7 (233 parts by mass of the Ni brazing material with respect to 100 parts by mass of the stainless steel powder) is generated. Thus, a metal substrate with an underlayer was produced.
About two test pieces, the chisel driving test was implemented with respect to the base layer joined to the metal base material, and it was confirmed that both have a favorable joining state.
Conduct an immersion test in gear oil (150 ° C) containing a sulfur component as an extreme pressure additive, 3.5% salt water (room temperature), and dilute sulfuric acid aqueous solution (room temperature) at pH 2, and have sufficient corrosion resistance. It was confirmed.
Next, a resin material mainly composed of polytetrafluoroethylene resin as a resin material having slipperiness is sprayed on the base layer of the metal substrate with the above two types of base layers, heat treatment, and pressing with a roller. The resin layer was formed by processing, and a multilayer bearing test piece was produced.
Using these test pieces, the adhesion between the underlayer and the resin layer was evaluated.
The evaluation was performed by a vertical peeling test. The vertical peel test is a method in which after the surface of the resin layer of the test piece is defluorinated, a steel pin having a predetermined diameter is bonded with an epoxy adhesive, and the peeling force between the test piece and the pin is measured.
As a result of the evaluation, it was confirmed that all had sufficient adhesion.

10A……複層軸受
12、18……ステンレス鋼板
14……下地層
16……樹脂層
20……ステンレス鋼の粉体
22……混合物
24……切断線
10A ... Multi-layer bearing 12, 18 ... Stainless steel plate 14 ... Underlayer 16 ... Resin layer 20 ... Stainless steel powder 22 ... Mixture 24 ... Cutting line

Claims (5)

ステンレス鋼の粉体と接合用ろう材とを混合した混合物を生成する混合物生成工程と、
ステンレス鋼板の上に前記混合物を散布する散布工程と、
前記混合物が散布されたステンレス鋼板を非酸化性雰囲気下で加熱して前記接合用ろう材を溶融させ、加熱後、徐冷することで、前記ステンレス鋼板の表面に、前記ステンレス鋼の粉体が前記接合用ろう材を介して積み重ねられて形成された下地層を形成する下地層形成工程と、
前記下地層の上に、滑り性を有する樹脂材料を配置して加熱し、ローラにより押圧して平坦な軸受面を有する樹脂層を形成する樹脂層形成工程と、
を備え、
前記接合用ろう材は、リンを10〜11質量%含むNiろう材である、
ことを特徴とする複層軸受の製造方法。
A mixture generating step for generating a mixture of the stainless steel powder and the brazing filler metal; and
A spreading step of spreading the mixture on a stainless steel plate;
The stainless steel plate on which the mixture is dispersed is heated in a non-oxidizing atmosphere to melt the brazing filler metal, and after heating, the stainless steel powder is formed on the surface of the stainless steel plate by gradually cooling. An underlayer forming step of forming an underlayer formed by being stacked via the bonding brazing material;
A resin layer forming step of forming a resin layer having a flat bearing surface by placing and heating a resin material having slipperiness on the underlayer and pressing with a roller;
With
The joining brazing material is a Ni brazing material containing 10 to 11% by mass of phosphorus.
A method for manufacturing a multi-layer bearing.
前記混合物生成工程において前記混合物を、前記ステンレス鋼の粉体100質量部に対して前記接合用ろう材を90質量部〜300質量部の割合で混合して生成する、
ことを特徴とする請求項記載の複層軸受の製造方法。
In the mixture production step, the mixture is produced by mixing the joining brazing material at a ratio of 90 parts by mass to 300 parts by mass with respect to 100 parts by mass of the stainless steel powder.
Method for producing a multi-layer bearing the Motomeko 1 wherein you characterized in that.
金属製基材と、前記金属製基材の上に形成された下地層と、前記下地層の上に樹脂層が形成されている複層軸受であって、
前記金属製基材はステンレス鋼板からなり、
前記下地層は、前記ステンレス鋼板の表面にステンレス鋼の粉体が接合用ろう材を介して積み重ねられて形成され、
前記接合用ろう材は、リンを10〜11質量%含むNiろう材である、
ことを特徴とする複層軸受
A metal substrate, a base layer formed on said metallic substrate, a multilayer bearings which resin layer on the undercoat layer is formed,
The metal substrate is made of a stainless steel plate,
The underlayer is formed by stacking stainless steel powder on the surface of the stainless steel plate via a brazing filler metal,
The joining brazing material is a Ni brazing material containing 10 to 11% by mass of phosphorus.
A multilayer bearing characterized by that.
前記ステンレス鋼の粉体と前記接合用ろう材とは、前記ステンレス鋼の粉体100質量部に対して前記接合用ろう材が90質量部〜300質量部の割合で混合されている、
ことを特徴とする請求項記載の複層軸受
The stainless steel powder and the brazing filler metal are mixed in a proportion of 90 to 300 parts by mass with respect to 100 parts by mass of the stainless steel powder.
The multilayer bearing according to claim 3 .
前記Niろう材は、融点が950℃以下である、
ことを特徴とする請求項3または4記載の複層軸受
The Ni brazing material has a melting point of 950 ° C. or lower.
The multi-layer bearing according to claim 3 or 4, wherein:
JP2015068539A 2014-03-31 2015-03-30 Multilayer bearing manufacturing method and multilayer bearing Active JP6619946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068539A JP6619946B2 (en) 2014-03-31 2015-03-30 Multilayer bearing manufacturing method and multilayer bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014070999 2014-03-31
JP2014070999 2014-03-31
JP2015068539A JP6619946B2 (en) 2014-03-31 2015-03-30 Multilayer bearing manufacturing method and multilayer bearing

Publications (2)

Publication Number Publication Date
JP2015200021A JP2015200021A (en) 2015-11-12
JP6619946B2 true JP6619946B2 (en) 2019-12-11

Family

ID=54551557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068539A Active JP6619946B2 (en) 2014-03-31 2015-03-30 Multilayer bearing manufacturing method and multilayer bearing

Country Status (1)

Country Link
JP (1) JP6619946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774729A (en) * 2018-06-29 2018-11-09 南京先进激光技术研究院 Duplex coating single pass forming method based on laser melting and coating technique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057509B2 (en) * 1981-11-13 1985-12-16 日本ダイアクレバイト株式会社 Method for manufacturing composite materials based on stainless steel plates, etc.
JPS61210186A (en) * 1985-03-15 1986-09-18 Nippon Light Metal Co Ltd Method for forming porous metallic layer on surface of metallic body
JPH044145A (en) * 1990-04-20 1992-01-08 Nippon Steel Corp Metal composite oscillation-damping steel plate with high welding properties and its manufacture
JPH0625870A (en) * 1992-07-10 1994-02-01 Nisshin Steel Co Ltd Corrosion resistant steel plate for dry bearing
JP2002225164A (en) * 2001-02-05 2002-08-14 Toshiba Corp Slide material and method for manufacturing the same
JP2016014474A (en) * 2014-06-11 2016-01-28 オイレス工業株式会社 Method of manufacturing metal base material with foundation layer for multilayer bearing, method of manufacturing multilayer bearing, metal base material with foundation layer for multilayer bearing, and multilayer bearing

Also Published As

Publication number Publication date
JP2015200021A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
US10166751B2 (en) Method for enhanced additive manufacturing
US10875116B2 (en) Additive manufacturing heating control systems and methods
CN106334797B (en) Additive manufacturing of joining preforms
JP6779600B2 (en) Multi-layer sliding member
US20170356494A1 (en) Plain Bearing And Method For Producing The Same
EP1952930A1 (en) Projection weld and method for creating the same
CN105643138B (en) The Transient liquid phase of different materials connects
JP6619946B2 (en) Multilayer bearing manufacturing method and multilayer bearing
WO2018021122A1 (en) Sintered multilayer plate, multilayer sliding member using same and method for producing sintered multilayer plate
JP6705631B2 (en) Multi-layer sliding member
US20190134755A1 (en) Interlayered structures for joining dissimilar materials and methods for joining dissimilar metals
CN103173711A (en) Arc sprayed cored wire suitable for re-melting
US2312039A (en) Duplex metal article
JP4789141B2 (en) Manufacturing method of iron parts
EP3285950A1 (en) Self brazing material and a method of making the material
JP2016014474A (en) Method of manufacturing metal base material with foundation layer for multilayer bearing, method of manufacturing multilayer bearing, metal base material with foundation layer for multilayer bearing, and multilayer bearing
JP4335702B2 (en) Clad material manufacturing method
JP6428272B2 (en) Resistance spot welding method
JP6258121B2 (en) Sliding member
JP2015183236A (en) Slide member
CN205996407U (en) A kind of lamellar composite pricker applies material
JP6873075B2 (en) Joint structure of metal parts
JP6817936B2 (en) Pre-sintered brazing
JP2009131904A (en) Method for liquid phase diffusion bonding of machinery parts
CN104952582A (en) Novel permanently-magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6619946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250