JPS6057509B2 - Method for manufacturing composite materials based on stainless steel plates, etc. - Google Patents

Method for manufacturing composite materials based on stainless steel plates, etc.

Info

Publication number
JPS6057509B2
JPS6057509B2 JP18210881A JP18210881A JPS6057509B2 JP S6057509 B2 JPS6057509 B2 JP S6057509B2 JP 18210881 A JP18210881 A JP 18210881A JP 18210881 A JP18210881 A JP 18210881A JP S6057509 B2 JPS6057509 B2 JP S6057509B2
Authority
JP
Japan
Prior art keywords
powder
stainless steel
base
base material
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18210881A
Other languages
Japanese (ja)
Other versions
JPS5884973A (en
Inventor
正仁 藤田
徹 森本
俊久 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU DEE SHII KK
Original Assignee
ENU DEE SHII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU DEE SHII KK filed Critical ENU DEE SHII KK
Priority to JP18210881A priority Critical patent/JPS6057509B2/en
Publication of JPS5884973A publication Critical patent/JPS5884973A/en
Publication of JPS6057509B2 publication Critical patent/JPS6057509B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明はステンレス鋼板等を基材とする複合材料の製造
方法に係り、詳しくは、ステンレス鋼板等の基材の表面
にオーステナイト系若しくはフェライト系のステンレス
鋼粉の多孔質焼結層を一体に被着形成し、例えば、熱放
射材料、熱伝達材料等に好適な複合材料を製造する方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite material using a stainless steel plate or the like as a base material. The present invention relates to a method of manufacturing a composite material suitable for example as a heat radiation material, a heat transfer material, etc. by integrally depositing a sintered layer.

一般に、クーラ−、冷臓庫、冷凍機、その他の冷凍機器
や、ボイラ、温水器、その他の加熱機等においては、あ
る種の伝熱面を介して熱伝達が行なわれ、所定の冷却加
熱等が行なわれている。例えば、冷凍機は圧縮式冷凍機
と、吸収式冷凍機とに大別されるが、最も多く使用され
ている圧縮式冷凍機では、周知の通りフレオン等の如く
、比較的低い温度で蒸発する冷媒を低圧低温状態で蒸発
機において被冷却材、例えば、空気、水等の被冷却材に
対し、伝熱面を介して接触させ、その間の熱移動によつ
て冷媒は蒸発させる一方、被冷却材を冷却させている。
In general, in coolers, refrigerators, refrigerators, other refrigeration equipment, boilers, water heaters, and other heating equipment, heat transfer occurs through some kind of heat transfer surface, and the specified cooling and heating etc. are being carried out. For example, refrigerators are broadly divided into compression refrigerators and absorption refrigerators, but in the compression refrigerator, which is the most commonly used type, as is well known, materials such as Freon evaporate at relatively low temperatures. The refrigerant is brought into contact with a material to be cooled, such as air or water, through a heat transfer surface in an evaporator under low pressure and low temperature, and the refrigerant is evaporated by heat transfer during that time. The material is cooled.

従つて、蒸発器は被冷却材と冷媒の間の熱交換が熱損失
が少なく行なわれるよう構成され、通常、被冷却材側の
伝熱面には、多数のフィンが形成されて、接触面積を大
きくしている。
Therefore, the evaporator is constructed so that heat exchange between the material to be cooled and the refrigerant is carried out with little heat loss, and usually a large number of fins are formed on the heat transfer surface on the side of the material to be cooled to increase the contact area. is increasing.

また、この伝熱面は通常、熱伝導性ならびに耐食性に優
れるところから、銅若しくはその合金から構成されてい
るが、銅自体が高価であり、また、上記構造の伝熱面で
は性能が低いため、伝熱面積を大きくとる必要があり、
構造が大型化し、重量も大きくなつている。このため、
最近では伝熱面を銅粒子から成る焼結層として形成する
ものや、機械的加工により凹凸面を形成して伝熱面とす
るものも提I案されている。この伝熱面は、従来例より
は伝熱性能が向上していても不十分であり、加工工程が
はん雑で高価な銅から成るため、きわめて高価であるほ
か、高温高圧のボイラ等の伝熱面には耐熱性が劣り用い
ることができない。本発明は上記のところに沿つて成立
したものであつて、詳しくは、ステンレス鋼等の基材の
表面にステンレス鋼の多孔質焼結層を一体に形成して成
る複合材料であつて、効果的に冷媒との伝熱効果が高め
られ、例えば、400℃以上の高温にも使用できる複合
材料の製造方法を提案する。
In addition, this heat transfer surface is usually made of copper or its alloy because it has excellent thermal conductivity and corrosion resistance, but copper itself is expensive and the heat transfer surface of the above structure has low performance. , it is necessary to have a large heat transfer area,
The structure has become larger and the weight has also increased. For this reason,
Recently, proposals have been made in which the heat transfer surface is formed as a sintered layer made of copper particles, and in which the heat transfer surface is formed by forming an uneven surface by mechanical processing. Although this heat transfer surface has better heat transfer performance than conventional examples, it is not sufficient, and since the processing process is complicated and it is made of expensive copper, it is extremely expensive, and it is also used in high-temperature, high-pressure boilers, etc. It cannot be used as a heat transfer surface due to poor heat resistance. The present invention has been established in line with the above-mentioned points, and specifically, it is a composite material made by integrally forming a porous sintered layer of stainless steel on the surface of a base material such as stainless steel, and which has an effect. We propose a method for manufacturing a composite material that has an enhanced heat transfer effect with a refrigerant and can be used at high temperatures of, for example, 400°C or higher.

すなわち、本発明はステンレス鋼板等の表面にオーステ
ナイト系ステンレス鋼粉若しくはフェライト系ステンレ
ス鋼粉のうち、一種若しくは二種類以上のベース粉と、
このベース粉の融点より低い融点を持つてベース粉と合
金化するNi基合金粉との混合を散布し、その後、真空
若しくは非酸化性雰囲気中で前記ベース粉の融点より低
く、かつ前記Ni基合金粉の融点より高い温度で焼結す
ることを特徴とする。
That is, the present invention provides base powder of one or more types of austenitic stainless steel powder or ferritic stainless steel powder on the surface of a stainless steel plate, etc.
A mixture of a Ni-based alloy powder having a melting point lower than the melting point of the base powder and to be alloyed with the base powder is sprinkled, and then a mixture of Ni-based alloy powder having a melting point lower than the melting point of the base powder and the Ni-based alloy powder is sprinkled in a vacuum or a non-oxidizing atmosphere. It is characterized by sintering at a temperature higher than the melting point of the alloy powder.

以下、本発明方法について詳しく説明する。The method of the present invention will be explained in detail below.

まず、第1図に示す如く、ステンレス鋼板を基材1とし
て、その基材1の表面に所望の厚さに混合粉2を散布す
る。この混合粉はオーステナイト系ステンレス鋼粉若し
くは、フェライト系鋼粉のうちの一種若しくは二種以上
をベース粉として、このベース粉にNi基合金粉を配合
したものであつて、ベース粉の粒径に対してNi基合金
の配合粉は粒径が小さいものが好ましい。従つて、ステ
ンレス鋼板上に混合粉が散布された状態では、第2図に
示す如く、大径のベース粉2aの周囲に小径の配合粉2
bが附着した状態にあつて、これら配合粉2bを介して
ベース粉2aが接触している。なお、基材はオーステナ
イト系、フェライト系、を問わずステンレス鋼であれば
良いが、ステンレス鋼以外でも耐熱性ならびに耐食性を
有すれば、何れの鋼板でも使用でき、更に基材の表面は
所要に応じて散布前に機械的若しくは化学的に表!面を
研削等の前処理することもできる。
First, as shown in FIG. 1, a stainless steel plate is used as a base material 1, and mixed powder 2 is sprinkled on the surface of the base material 1 to a desired thickness. This mixed powder is a base powder of one or more of austenitic stainless steel powder or ferritic steel powder, and Ni-based alloy powder is blended with this base powder, and the particle size of the base powder is On the other hand, it is preferable that the Ni-based alloy powder has a small particle size. Therefore, when the mixed powder is spread on the stainless steel plate, as shown in FIG. 2, the small diameter mixed powder 2 is placed around the large diameter base powder 2a.
The base powder 2a is in contact with the mixed powder 2b through the blended powder 2b. The base material may be stainless steel, whether austenitic or ferritic, but any steel plate other than stainless steel can be used as long as it has heat resistance and corrosion resistance. Mechanically or chemically before spraying as appropriate! The surface can also be pretreated, such as by grinding.

次に、上記の状態で真空若しくは非酸化性雰囲気、好ま
しくは、例えば鴇の如き還元性雰囲気中で焼結する。
Next, sintering is carried out under the above conditions in a vacuum or a non-oxidizing atmosphere, preferably in a reducing atmosphere such as ash.

この際の焼結温度は配合粉の少なくとも一部が溶融し、
ベース粉や基材が未溶融で・固相の状態を保つている温
度で、この条件で焼結すると、発生する液相が基材表面
やベース粉を濡らし、第3図に示す如く表面に多孔質焼
結層3を有する複合材料が得られる。すなわち、ステン
レス鋼粉はオーステナイト系、フェライト系の何れでも
表面は不活性な酸化皮膜(Cr2O3)におおわれてお
り、基材のステンレス鋼板の表面も同様である。
The sintering temperature at this time is such that at least a part of the blended powder melts,
When sintered under these conditions at a temperature where the base powder and base material remain unmolten and in a solid state, the liquid phase generated wets the base material surface and base powder, and forms a surface as shown in Figure 3. A composite material with a porous sintered layer 3 is obtained. That is, the surface of stainless steel powder, whether austenitic or ferritic, is covered with an inert oxide film (Cr2O3), and the same applies to the surface of the base stainless steel plate.

従つて、これを焼結して基材を一体化するには、通常表
面のステンレス鋼粉を加圧することによつて、表面の酸
化皮膜を機械的に破壊する一方、金属接触状態を形成す
る必要がある。しかし、この方法では、表面に多孔質の
焼結層を形成することが困難であり、加・圧時に基材に
加工歪が発生したり、応力の残り、強度的に問題が発生
する。このため、混合粉は基材の表面に散布したままの
状態としてベース粉間には空隙を残し、この間はステン
レス鋼と合金化する組成の配合粉で結合連結する。しか
し、この場合でも多孔質焼結層では骨格となるベース自
体は溶融せずに固相状態としてそれや基材に対し、配合
粉は少なくともある程度合金化させる必要がある。
Therefore, in order to sinter this and integrate the base materials, the stainless steel powder on the surface is usually pressurized to mechanically destroy the oxide film on the surface while forming a metal contact state. There is a need. However, with this method, it is difficult to form a porous sintered layer on the surface, and processing distortion occurs in the base material during pressurization, residual stress, and strength problems occur. For this reason, the mixed powder is left scattered on the surface of the base material, leaving voids between the base powders, and these spaces are bonded and connected by the mixed powder having a composition that alloys with stainless steel. However, even in this case, the base itself, which forms the framework of the porous sintered layer, is not melted but remains in a solid state, and the blended powder needs to be alloyed to at least some extent with it and the base material.

この点から配合粉の組成や焼結条件は基材やベース粉の
組成と関連して定める必要がある。そこで、まず、配合
粉の組成はベース粉や基材より融点が低く、かつベース
粉や基材と組成的に近似し、適度に合金化することが必
要となる。
From this point of view, the composition of the blended powder and sintering conditions must be determined in relation to the composition of the base material and base powder. Therefore, first, it is necessary that the composition of the blended powder has a melting point lower than that of the base powder or the base material, is similar in composition to the base powder or the base material, and is suitably alloyed.

ま,た、焼結条件は配合粉が溶融して発生する液相がベ
ースや基材の表面を濡らすのに防げないことが必要で、
雰囲気としては真空若しくは非酸化性であることが必要
である。更に、焼結温度は配合粉のみが少なくともその
一部が溶融する温度となり、焼結時間は液相が発生して
、それが十分にベース粉、基材と反応し、強固な骨格が
形成されるのに必要な時間となる。
Also, the sintering conditions must be such that the liquid phase generated by the melting of the blended powder cannot be prevented from wetting the surface of the base or substrate.
The atmosphere needs to be vacuum or non-oxidizing. Furthermore, the sintering temperature is such that at least a part of only the blended powder melts, and during the sintering time, a liquid phase is generated, which sufficiently reacts with the base powder and substrate to form a strong skeleton. This is the time needed to complete the process.

従つて、上記条件を満足する組成の配合粉としてはCr
,B,Si若しくはFeのうちの一種若しくは二種以上
を含んで残余が実質的にN1から成るNi基合金粉が好
ましい。更に、配合粉の粒径はベース粉の粒径より小さ
いことが必要で、ベース粉が100〜150メッシュの
場合は配合粉が200メッシュ以下が好ましい。なお、
この配合粉の好的組成を示すと、次の通りである。
Therefore, as a blended powder with a composition that satisfies the above conditions, Cr
, B, Si, or Fe, with the remainder being substantially N1. Furthermore, it is necessary that the particle size of the blended powder is smaller than that of the base powder, and when the base powder is 100 to 150 mesh, the blended powder is preferably 200 mesh or less. In addition,
The preferred composition of this mixed powder is as follows.

Cr・・・・・・・6〜20% B・・・・ ・・1.0〜4.0% Si・・・・ ・・3.0〜10.5% Fe・・・・・・・0〜5.0% C・・・・ ・・・・0.15%以下 Ni・・・・・・・Bal この組成であると、融点は925〜1215℃となり、
その配合量は重量%にして15〜25%程度で十分であ
り、ベース粉や基材と合金化し、とくに、Nl,Crは
合金化により耐食性や耐熱性を向上させ、Si,Fe等
は機械的強度を向上させ、Bは所定の硬度を与えるほか
、耐熱性も向上させる。
Cr...6-20% B...1.0-4.0% Si...3.0-10.5% Fe... 0 to 5.0% C... 0.15% or less Ni... Bal With this composition, the melting point is 925 to 1215°C,
The blending amount is about 15 to 25% by weight, and it is sufficient to alloy it with the base powder or base material. In particular, Nl and Cr improve corrosion resistance and heat resistance by alloying, and Si, Fe, etc. In addition to providing a certain hardness, B also improves heat resistance.

次に、実施例について説明する。実施例1 まず、オーステナイト系ステンレス鋼のストリップ(S
US3l湘当)上にオーステナイト系ステンレス鋼粉の
ベース粉(SUS3l晰当の成分、粒度−100メッシ
ュ)80部とNi基合金(組成→Crl3.O%、B3
.O%Fe4.O%、NiBal粒度−250メッシュ
)20部を混合!た混合粉を厚さ2.0m1こなるよう
散布した。
Next, examples will be described. Example 1 First, a strip of austenitic stainless steel (S
80 parts of base powder of austenitic stainless steel powder (composition of SUS3L, particle size -100 mesh) and Ni-based alloy (composition → Crl3.O%, B3
.. O%Fe4. O%, NiBal particle size - 250 mesh) 20 parts mixed! The mixed powder was spread to a thickness of 2.0 ml.

続いて、焼結炉中で1250℃×1.0時間の条件で水
素雰囲気中で焼結した。その結果、表面に強固なステン
レス鋼の多孔質焼結層が一体として形成された複合材料
が得られ、多孔質焼結層の各ベース粉は組成的にそのま
まで骨格を形成し、この間ならびに基材との間は全く強
固に結合され、孔隙も容積率て30%内外存在し、引張
り力20k9/Trli.程度かけても、全く剥離する
ことがなかつた。実施例2 まず、フェライト系ステンレス鋼のストリップの基材(
SUS4l湘当)の表面を研削ベルトにて研削し、その
上にステンレス鋼粉(SUS4lO相当、粒度−100
rT]ESh)のベース粉85部とNi基合金粉(Cr
l3.O%、B3.O%、Fe4.O%、NiBal粒
度一250メッシュ)15部とを混合した混合粉を厚さ
1.5?になるよう散布してから、1250℃刈.時間
の条件で真空(10−4c!NHg)炉で焼結させた。
Subsequently, it was sintered in a hydrogen atmosphere in a sintering furnace at 1250° C. for 1.0 hour. As a result, a composite material is obtained in which a porous sintered layer of strong stainless steel is integrally formed on the surface, and each base powder of the porous sintered layer remains compositionally intact to form a skeleton. The bond between the material and the material is completely strong, pores exist inside and outside with a volume ratio of 30%, and the tensile force is 20k9/Trli. No matter how much I applied it, it did not peel off at all. Example 2 First, a base material of a ferritic stainless steel strip (
Grind the surface of SUS4lO) with a grinding belt, and apply stainless steel powder (equivalent to SUS4lO, particle size -100) on top of it.
rT]ESh) base powder and Ni-based alloy powder (Cr
l3. O%, B3. O%, Fe4. 0%, NiBal particle size - 250 mesh) mixed powder with a thickness of 1.5? After spraying at 1250 degrees Celsius. It was sintered in a vacuum (10-4 c!NHg) furnace under conditions of hours.

その結果、ベース粉粒子は基材上に強固に焼結し、しつ
かりと一体に結合していた。その上、多孔質焼結層の表
面はNi分が含浸し、耐食性が著しく改善された。また
、基材の表面を研削することなく同条件で焼結し、一体
化し、この複合材料と上記の複合材料について引張り試
験をしたところ、引張り力30k9/Tlri程度てあ
つても、両材料から表面の多孔質焼結層が剥離せず、一
体化していた。
As a result, the base powder particles were firmly sintered onto the base material and were firmly bonded to the base material. Moreover, the surface of the porous sintered layer was impregnated with Ni, and the corrosion resistance was significantly improved. In addition, when the surface of the base material was sintered and integrated under the same conditions without grinding, and a tensile test was performed on this composite material and the above composite material, even with a tensile force of about 30k9/Tlri, both materials The porous sintered layer on the surface did not peel off and was integrated.

実施例3 まず、オーステナイト系ステンレス鋼の薄板の基材(S
US3O屯板厚0.5wi)上に、オーステナイト系ス
テンレス鋼粉のベース粉(SUS3l6相当、粒度−2
00メッシュ)80部とNI基合金粉(Crl3.O%
、B3.O%、Fe4.O%、NiBaIl粒度−25
0メッシュ)20mを混合した混合粉を厚さ0.5〜1
.0rfnの厚さに薄く敷き、1250℃×1.0時間
の条件で水素(露点−50℃)気流中で焼結した。
Example 3 First, a thin plate base material of austenitic stainless steel (S
A base powder of austenitic stainless steel powder (equivalent to SUS3l6, particle size -2
00 mesh) and 80 parts of NI-based alloy powder (Crl3.O%
,B3. O%, Fe4. O%, NiBaIl particle size -25
0 mesh) 20m mixed powder to a thickness of 0.5 to 1
.. It was spread thinly to a thickness of 0rfn and sintered in a hydrogen stream (dew point -50°C) at 1250°C for 1.0 hour.

その結果、ベース粉粒子は一層乃至2層程度に薄く焼結
して一体化され、ベース粉粒子と基材とは全く強固に結
合されていた。・図面の簡単な説明 第1図は本発明方法の混合粉散布過程を示す説明図、第
2図はその混合粉の散布状態を拡大して示す説明図、第
3図は本発明方法で得られる複合材料の一例の一部の拡
大図である。
As a result, the base powder particles were sintered into one or two thin layers and integrated, and the base powder particles and the base material were completely firmly bonded.・Brief explanation of the drawings Figure 1 is an explanatory diagram showing the process of spreading the mixed powder according to the method of the present invention, Figure 2 is an explanatory diagram showing the spread state of the mixed powder in an enlarged manner, and Figure 3 is an explanatory diagram showing the process of spreading the mixed powder according to the method of the present invention. 1 is an enlarged view of a portion of an example of a composite material.

ノ 符号、1・・・基材、2・・・混合物、2a・・・
ベース粉、2b・・・配合粉、3・・・多孔質焼結層。
No code, 1... base material, 2... mixture, 2a...
Base powder, 2b...Blend powder, 3...Porous sintered layer.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス鋼板等の表面にオーステナイト系ステン
レス鋼粉若しくはフェライト系ステンレス鋼粉のうち、
一種若しくは二種類以上のベース粉と、このベース粉の
融点より低い融点を持つてベース粉と合金化するNi基
合金粉との混合粉を散布し、その後、真空若しくは非酸
化性雰囲気中で前記ベース粉の融点より低く、かつ前記
Ni基合金粉の融点より高い温度で焼結することを特徴
とするステンレス鋼板等を基材とする複合材料の製造方
法。
1. Among austenitic stainless steel powder or ferritic stainless steel powder, on the surface of stainless steel plate, etc.
A mixed powder of one or more types of base powder and a Ni-based alloy powder that has a melting point lower than that of the base powder and is alloyed with the base powder is sprinkled, and then the above-mentioned A method for producing a composite material using a stainless steel plate or the like as a base material, characterized by sintering at a temperature lower than the melting point of the base powder and higher than the melting point of the Ni-based alloy powder.
JP18210881A 1981-11-13 1981-11-13 Method for manufacturing composite materials based on stainless steel plates, etc. Expired JPS6057509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18210881A JPS6057509B2 (en) 1981-11-13 1981-11-13 Method for manufacturing composite materials based on stainless steel plates, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18210881A JPS6057509B2 (en) 1981-11-13 1981-11-13 Method for manufacturing composite materials based on stainless steel plates, etc.

Publications (2)

Publication Number Publication Date
JPS5884973A JPS5884973A (en) 1983-05-21
JPS6057509B2 true JPS6057509B2 (en) 1985-12-16

Family

ID=16112469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18210881A Expired JPS6057509B2 (en) 1981-11-13 1981-11-13 Method for manufacturing composite materials based on stainless steel plates, etc.

Country Status (1)

Country Link
JP (1) JPS6057509B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812926A (en) * 1991-09-03 1998-09-22 General Electric Company Process for hard facing a substrate
US7695808B2 (en) * 2005-11-07 2010-04-13 3M Innovative Properties Company Thermal transfer coating
JP6619946B2 (en) * 2014-03-31 2019-12-11 オイレス工業株式会社 Multilayer bearing manufacturing method and multilayer bearing
JP6381430B2 (en) * 2014-12-08 2018-08-29 大同メタル工業株式会社 Sliding member
JP6705631B2 (en) * 2015-08-20 2020-06-03 オイレス工業株式会社 Multi-layer sliding member

Also Published As

Publication number Publication date
JPS5884973A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
EP1756330B1 (en) Method for reducing metal oxide powder and attaching it to a heat transfer surface and the heat transfer surface
CN106906408B (en) LaFeSi base magnetic refrigeration composite materials and the preparation method and application thereof
CN105189030B (en) The nickel solder of corrosion resistance excellent
CN101251351B (en) Iron-based powder porous surface heat-exchanging tube and manufacture method thereof
JPH01310269A (en) Low-temperature heat accumulator
JP2009538984A (en) Cold compressed sputter target
CN113828906A (en) Diffusion welding method for connecting skutterudite and electrode by utilizing high-entropy alloy interlayer
JPS6057509B2 (en) Method for manufacturing composite materials based on stainless steel plates, etc.
CN101626865A (en) The method that is used for the refractory assembly of material with carbon element and copper alloy
CN102248168A (en) Manufacturing method of ceramic/copper composite material throat insert
JPS6355906A (en) Magnetic polycrystal and manufacture thereof
CN104353840B (en) A kind of LED inexpensive lead-free solder alloy powders and preparation method thereof
CN108774698A (en) A kind of Aludirome plate and preparation method thereof
JPS6148566B2 (en)
KR960007502B1 (en) Method of bearing materials
JP2828978B2 (en) Cold storage material and method for producing the same
JPS59141395A (en) Brazing filler material
CN110936680A (en) Intermediate alloy for titanium/carbon steel bimetal compounding and compounding process
JPH07249717A (en) Material head dissipation board
JPS6150121B2 (en)
JPS61273253A (en) Heat transmission part for heat exchanger and production
JPH03177083A (en) Low temperature accumulator
JP3195042B2 (en) Manufacturing method of plain bearing alloy
CN109321882A (en) Improve diamond/magnesium composite electron encapsulating material interface cohesion coating and method
JP2957294B2 (en) Cryogenic heat storage material and cryogenic heat storage