JPH0625870A - Corrosion resistant steel plate for dry bearing - Google Patents

Corrosion resistant steel plate for dry bearing

Info

Publication number
JPH0625870A
JPH0625870A JP18385192A JP18385192A JPH0625870A JP H0625870 A JPH0625870 A JP H0625870A JP 18385192 A JP18385192 A JP 18385192A JP 18385192 A JP18385192 A JP 18385192A JP H0625870 A JPH0625870 A JP H0625870A
Authority
JP
Japan
Prior art keywords
powder
sintered
stainless steel
plate
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18385192A
Other languages
Japanese (ja)
Inventor
Yuichi Higo
裕一 肥後
Koji Omosako
浩次 面迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP18385192A priority Critical patent/JPH0625870A/en
Publication of JPH0625870A publication Critical patent/JPH0625870A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve dimensional accuracy and corrosion resistance by cladding a stainless steel sheet with a sintered sheet consisting of stainless steel powder and prepared under prescribed conditions. CONSTITUTION:An irregularly shaped powder 1 consisting of stainless steel and having 30-60mesh grain size is prepared, e.g. by a water atomizing method. This powder 1 is supplied from a hopper 3 of a powder metallurgy rolling mill 2 and formed into a sheet-like strip 6 and sintered, by which a sintered sheet 6A of 25-50% porosity is formed. Then this sintered sheet 6A and a stainless steel sheet are laminated, and further, ethylene tetrafluoride is impregnated into the porous sintered layer of the sintered sheet 6A, by which a corrosion resistant steel plate for dry bearing can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食ドライベアリング
用鋼板に関し、特に、医療関連機器や食品関連機器等の
軸受部品として使用される無給油型のドライベアリング
に使用される鋼板の耐食性を向上させるための新規な改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant steel sheet for dry bearings, and more particularly to improving the corrosion resistance of steel sheets used for oil-free dry bearings used as bearing parts for medical equipment, food-related equipment and the like. The present invention relates to a new improvement for achieving the above.

【0002】[0002]

【従来の技術】従来、用いられていた摺動軸受の中には
種々のものがあるが、最近は裏金に多孔質の焼結金属を
ライニングし、ここに潤滑性のあるプラスチック系材料
等を含浸させたものが、ブッシュ等として用いられるよ
うになっている。このような軸受は給油の必要のない無
潤滑軸受であり、一般に枯渇潤滑軸受やドライベアリン
グ等と呼ばれて使用されている。
2. Description of the Related Art There are various types of sliding bearings that have been conventionally used, but recently, a back metal is lined with a porous sintered metal, and a lubricous plastic material or the like is lined here. The impregnated material is used as a bush or the like. Such bearings are unlubricated bearings that do not require lubrication and are generally called depleted lubricated bearings or dry bearings.

【0003】これらの枯渇潤滑軸受の裏金は一般に、普
通鋼が用いられており、焼結金属としては青銅やホワイ
トメタルの銅系材料が用いられている。この焼結金属と
して前述のような材料が選ばれる理由としては、これら
の金属材料自体が潤滑性を有していることや、焼結加工
が容易であることなどによる。また潤滑性プラスチック
材料としては、4フッ化エチレン(ポリテトラフルオロ
エチレン−PTFE)や、このPTFEにスズや鉛系の
化合物を添加したものなどが使用されている。
In general, ordinary steel is used for the back metal of these depleted lubrication bearings, and bronze or white metal copper-based materials are used as the sintered metal. The reason why the above-mentioned materials are selected as the sintered metal is that these metal materials themselves have lubricity and that the sintering process is easy. Further, as the lubricious plastic material, tetrafluoroethylene (polytetrafluoroethylene-PTFE), a material obtained by adding a tin- or lead-based compound to this PTFE, or the like is used.

【0004】また製造方法としては、次のような方法が
一般的である。まず帯状の裏金鋼板の上に、焼結金属粉
末をホッパーから散布し周知のドクターブレード法によ
って一定の厚みにすり切りし、これを連続的に加熱炉に
て焼結して、多孔質の焼結金属がライニングされた鋼帯
を得る。その後ローラー等によって多孔質の焼結金属層
にプラスチックを含浸させ、焼成する。その後冷間圧延
等を行って形状等を仕上げる。このような軸受用材は、
その後種々の成形加工を施されて、各種エンジン、電動
機、コンプレッサー、ポンプ、タービン等の機器の軸受
として現在使用されている。また、裏金の耐食性を改善
するためにステンレス鋼板とし、焼結金属の材料とし
て、ステンレス鋼粉にCu−Mn系粉末やNi−Mn系
粉を混合させたものが、特開昭61−35241号公報で提案
されている。
Further, as a manufacturing method, the following method is generally used. First of all, sintered metal powder is sprinkled from a hopper on a strip-shaped backing steel plate and ground into a certain thickness by the well-known doctor blade method, which is continuously sintered in a heating furnace to form a porous sintered body. A steel strip lined with metal is obtained. After that, the porous sintered metal layer is impregnated with plastic by a roller or the like and fired. After that, cold rolling or the like is performed to finish the shape and the like. Such bearing materials are
After that, it is subjected to various molding processes and is currently used as a bearing for various engines, electric motors, compressors, pumps, turbines and other devices. Also, a stainless steel plate is used to improve the corrosion resistance of the backing metal, and a mixture of stainless steel powder and Cu-Mn-based powder or Ni-Mn-based powder is used as the material of the sintered metal, which is disclosed in JP-A-61-35241. Proposed in the gazette.

【0005】[0005]

【発明が解決しようとする課題】従来の耐食ドライベア
リング用鋼板は、以上のように構成されていたため、次
のような課題が存在していた。すなわち、このようなド
ライベアリングは、油脂等を用いる通常の軸受に比べ
て、一般に清浄なものである。しかし、医療関連機器や
食品関連機器では、各種薬品や食用材料等による湿潤雰
囲気等にさらされることがしばしばあり、有害物質の混
合や腐食の生成を極端に嫌うこのような用途では、軸受
に対し完全な耐食性が要求される。従来のドライベアリ
ングでは、普通鋼を用いた裏金は勿論のこと、多孔質焼
結金属層も腐食を免れ得ないため、厳格な耐食性を必要
とする用途には使いにくいという課題があった。
Since the conventional corrosion-resistant steel sheet for dry bearing is constituted as described above, the following problems exist. That is, such a dry bearing is generally cleaner than a normal bearing using oil or the like. However, medical equipment and food-related equipment are often exposed to a moist atmosphere with various chemicals and edible materials, etc. Complete corrosion resistance is required. The conventional dry bearing has a problem that it is difficult to use in applications requiring strict corrosion resistance because not only the back metal using ordinary steel but also the porous sintered metal layer cannot escape corrosion.

【0006】さらに、前述の特開昭61−35241号公報で
提案された材料の場合、耐食性の点で前述の用途には難
があり、軸受全体が耐食性のあるステンレス鋼を素材と
するものが要望されるようになっている。
Further, in the case of the material proposed in the above-mentioned Japanese Patent Laid-Open No. 61-35241, the above-mentioned application is difficult in terms of corrosion resistance, and there is one in which the entire bearing is made of corrosion-resistant stainless steel. It has been requested.

【0007】さらに、前述の裏金上の金属粉末の散布利
用(層高さ)をドクターブレードにて設定し、これを焼
結する方法については、多孔質焼結金属層の厚みに変動
が生じ易いという課題もあり、最終的には切削加工等で
仕上げられるとはいえ、このような厚み変動は好ましい
ものではない。また多孔質層の強度は空隙の割り合いに
依存するところが大きいが、自然落下で裏金上に金属粉
末を散布する方法では、これを制御する方法がないに等
しいため、空隙の割り合いを変化させることは粉末の形
状や大きさを変えることに頼らざるを得ないという課題
もあった。
Further, regarding the method of spraying the metal powder on the backing metal (layer height) with a doctor blade and sintering this, the thickness of the porous sintered metal layer tends to vary. However, such a thickness variation is not preferable, although it may be finally finished by cutting or the like. Also, the strength of the porous layer largely depends on the proportion of the voids, but the method of spraying the metal powder on the backing metal by free fall is almost equal to the method of controlling this, so the proportion of the voids is changed. There was also a problem in that it had to rely on changing the shape and size of the powder.

【0008】本発明は以上のような課題を解決するため
になされたもので、時に、ドライベアリングに使用され
る鋼板の耐食性を向上させるようにした耐食ドライベア
リング用鋼板を提供することを目的とする。
The present invention has been made to solve the above problems, and it is an object of the present invention to provide a corrosion-resistant dry-bearing steel sheet which is improved in corrosion resistance of a steel sheet used for a dry bearing. To do.

【0009】[0009]

【課題を解決するための手段】本発明による耐食ドライ
ベアリング用鋼板は、ステンレス鋼板を裏金とし、ステ
ンレス鋼粉末を粉末圧延法により板状に成形し焼結して
得られた焼結板を前記ステンレス鋼板に張り合わせた構
成である。
The corrosion-resistant dry bearing steel plate according to the present invention is a sintered plate obtained by forming a stainless steel plate into a plate shape by a powder rolling method and sintering the stainless steel plate as a back metal. It is constructed by laminating it to a stainless steel plate.

【0010】さらに詳細には、前記ステンレス鋼粉末の
粒度が30〜60メッシュの不定形粉末とした構成であ
る。
More specifically, the stainless steel powder has an amorphous powder having a particle size of 30 to 60 mesh.

【0011】さらに詳細には、前記焼結板の空隙率が2
5〜50%とした構成である。
More specifically, the porosity of the sintered plate is 2
The composition is 5 to 50%.

【0012】さらに詳細には、前記焼結板の多孔質焼結
層内に4フッ化エチレンを含浸させた構成である。
More specifically, the porous sintered layer of the sintered plate is impregnated with tetrafluoroethylene.

【0013】[0013]

【作用】本発明による耐食ドライベアリング用鋼板にお
いては、水アトマイズ法で製造されたステンレス鋼粉末
を粉末圧延機で粉末圧延帯に圧延し、この粉末成形帯を
焼結炉で焼結した後に巻取機で巻取る。この帯状焼結体
から幅100mm、長さ300mmの焼結板を切り出し、こ
の焼結板を裏金としてのステンレス鋼板上に重ねたもの
を焼鈍し、この焼鈍後、焼結板を張り合わせたステンレ
ス鋼板からなるドライベアリング用鋼板にPTFEを塗
り、この焼結板の多孔質焼結層内にこのPTFEを含浸
させて加熱焼成することにより得ることができる。
In the corrosion-resistant dry bearing steel sheet according to the present invention, the stainless steel powder produced by the water atomizing method is rolled into a powder rolling strip by a powder rolling machine, and the powder compacting strip is sintered in a sintering furnace and then rolled. Take up with a take-up machine. From this band-shaped sintered body, a sintered plate having a width of 100 mm and a length of 300 mm was cut out, which was annealed by stacking the sintered plate on a stainless steel plate serving as a backing metal, and after the annealing, the sintered steel plate was laminated with the sintered plate. It can be obtained by applying PTFE to a steel sheet for dry bearing made of, and impregnating this PTFE into the porous sintered layer of this sintered plate and heating and firing.

【0014】[0014]

【実施例】以下、図面と共に本発明による耐食ドライベ
アリング用鋼板の好適な実施例について詳細に説明す
る。まず、次の表1の第1表に示す成分組成と粒度を有
し、水アトマイズ法で製造されたステンレス鋼粉末1
を、粉末圧延機2のホッパ3から供給し、一対の粉末圧
延ロール4,5で粉末成分帯6に圧延した。この時の粉
末成形帯6の厚さは0.5mm、幅は200mmであり、空
隙率は10〜50%で変化させた。この粉末成形帯6を
連続炉7に挿入し、さらに焼結炉8で焼結した後、冷却
して焼結炉8の出側の巻取機9にて帯状焼結体6Aとし
て巻き取った。この時の焼結条件としては、加熱温度が
1200℃であり、連続炉7内での加熱温度保持時間を6分
とした。また焼結炉8内の雰囲気は75%窒素−25%
水素の混合ガスとした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the corrosion-resistant dry bearing steel sheet according to the present invention will be described in detail below with reference to the drawings. First, a stainless steel powder 1 having the composition and particle size shown in Table 1 of the following Table 1 and manufactured by a water atomizing method.
Was supplied from the hopper 3 of the powder rolling machine 2 and was rolled into a powder component band 6 by a pair of powder rolling rolls 4 and 5. At this time, the powder molding strip 6 had a thickness of 0.5 mm, a width of 200 mm, and a porosity of 10 to 50%. The powder molding strip 6 was inserted into the continuous furnace 7, further sintered in the sintering furnace 8, cooled, and wound into a band-shaped sintered body 6A by the winding machine 9 on the exit side of the sintering furnace 8. . The sintering condition at this time is that the heating temperature is
The temperature was 1200 ° C., and the heating temperature holding time in the continuous furnace 7 was 6 minutes. The atmosphere in the sintering furnace 8 is 75% nitrogen-25%.
A mixed gas of hydrogen was used.

【0015】[0015]

【表1】 [Table 1]

【0016】前述のようにして得られた粉末成形体6か
ら形成された帯状焼結体6Aから、幅100mm、長さ3
00mmの焼結板10を切り出し、次の表2の第2表に示
す成分組成を有する厚さ1.0mm、幅100mm、長さ3
00mmの裏金としてのステンレス鋼板11の上に重ね
た。
From the band-shaped sintered body 6A formed from the powder compact 6 obtained as described above, a width of 100 mm and a length of 3
A sintered plate 10 of 00 mm was cut out and had a composition of 1.0 mm in thickness, 100 mm in width and 3 in length having the composition shown in Table 2 below.
It was overlaid on a stainless steel plate 11 as a 00 mm back metal.

【0017】[0017]

【表2】 [Table 2]

【0018】このステンレス鋼板11と焼結板10を重
ねたものを、雰囲気加熱炉13の炉床定盤(図示せず)
上に置き、さらにその上に、厚さ300mm、幅120m
m、長さ320mmの鋼製のスラブ(図示せず)を重錘と
して乗せた。その後、75%窒素−25%水素の混合ガ
ス中で焼鈍した。この時の焼鈍の温度は1000℃であり、
加熱時間は4時間である。
A stack of the stainless steel plate 11 and the sintered plate 10 is used as a hearth platen (not shown) of an atmosphere heating furnace 13.
Placed on top of it, and on top of it, thickness 300mm, width 120m
A steel slab (not shown) having a length of m and a length of 320 mm was placed as a weight. Then, it was annealed in a mixed gas of 75% nitrogen-25% hydrogen. The annealing temperature at this time is 1000 ° C,
The heating time is 4 hours.

【0019】前述の焼鈍後、前述の焼結板10を張り合
わされたステンレス鋼板11からなるドライベアリング
用鋼板12に、4フッ化エチレン−PTFEを塗り、2
本のローラー14間を通板することで、この焼結板10
の多孔質焼結層内に前記PTFEを含浸させ、その後3
50℃で大気焼成した。このようにして得られたドライ
ベアリング用鋼板12から板状試験片を切り出し、樹脂
(PTFE)の含浸深を測定した。また塩水噴霧試験を
行って耐食性を調査した。塩水噴霧試験はJIS−Z−
2371に準拠して行い、試験時間は24時間とした。
なお、耐食性の比較とし、従来の青銅粉末を普通鋼鋼板
の上で焼結した材料で製造されたブッシュも塩水噴霧試
験に供した。
After the above-mentioned annealing, a dry bearing steel plate 12 made of a stainless steel plate 11 laminated with the above-mentioned sintered plate 10 is coated with tetrafluoroethylene-PTFE, and 2
By passing between the rollers 14 of the book, the sintered plate 10
Of the above-mentioned PTFE was impregnated into the porous sintered layer of
It was baked in the air at 50 ° C. A plate-shaped test piece was cut from the thus-obtained dry bearing steel plate 12 and the impregnation depth of the resin (PTFE) was measured. A salt spray test was also conducted to investigate the corrosion resistance. The salt spray test is JIS-Z-
2371, and the test time was 24 hours.
As a comparison of corrosion resistance, a bush made of a material obtained by sintering conventional bronze powder on a plain steel plate was also subjected to a salt spray test.

【0020】前述の試験結果を次の表3の第3表にまと
めて示す。空隙率が増加するほど含浸深さは増加した。
通常ドライベアリングでは含浸深さが大きいほど潤滑性
は増加することが分かる。一方、空隙率が53%のもの
では、含浸深さが大きいが、粉末圧延〜焼結〜張り合わ
せ工程のハンドリング中に微小なクラックが発生する部
分があり歩留が低下する状態にあった。
The above-mentioned test results are summarized in Table 3 of Table 3 below. The impregnation depth increased as the porosity increased.
It can be seen that the lubricity generally increases as the impregnation depth increases in dry bearings. On the other hand, when the porosity was 53%, the impregnation depth was large, but there was a portion where minute cracks were generated during handling of the powder rolling-sintering-laminating step, and the yield was in a state of being reduced.

【0021】[0021]

【表3】 [Table 3]

【0022】また用いたステンレス鋼粉末1の粒径が小
さいものでは、空隙粒径としては大きくても、PTFE
の含浸深さは、粒径が大きいものに比較して、小さな値
となっており、粉末粒度が30〜60メッシュ程度と比
較的粒径の大きなものが、含浸を容易にする上で好まし
いことが判明した。
If the stainless steel powder 1 used has a small particle size, even if the void size is large, the PTFE powder
The depth of impregnation is smaller than that of the one having a large particle diameter, and the one having a relatively large particle diameter of about 30 to 60 mesh is preferable for facilitating the impregnation. There was found.

【0023】また塩水噴霧の腐食テストでは、比較材の
通常のベアリングにおいて、裏金部には赤錆が、多孔質
焼結層には青錆の発生が顕著に認められたのに対して、
本発明による鋼板にはいずれも発錆は認められなかっ
た。
Further, in the salt spray corrosion test, in the ordinary bearing of the comparative material, red rust was remarkably observed in the back metal part and blue rust was remarkably observed in the porous sintered layer.
No rusting was observed in any of the steel sheets according to the present invention.

【0024】また、本発明鋼板における裏金用の材料は
耐食性を高める目的からステンレス鋼板とするが、その
種類はとくに限定されるものではない。腐食の環境やコ
スト等からとくに限定すべきものがなければ、SUS3
04等のオーステナイト系やSUS430等のフェライ
ト系のステンレス鋼板を用いるのが一般的である。粉末
圧延に供するステンレス鋼粉末1についても、裏金と同
様であり、その種類を特に問わないが、一般的にはSU
S304等が用いられる。
The material for the back metal of the steel sheet of the present invention is a stainless steel sheet for the purpose of enhancing corrosion resistance, but the type is not particularly limited. If there is no particular limitation due to corrosion environment and cost, SUS3
It is general to use an austenitic stainless steel plate such as 04 or a ferritic stainless steel plate such as SUS430. The stainless steel powder 1 to be subjected to powder rolling is the same as the backing metal, and its kind is not particularly limited, but it is generally SU.
S304 or the like is used.

【0025】また、前述のステンレス鋼粉末1の粒度
は、焼結板10の空隙の大きさに影響を与え、ひいては
含浸の難易にも影響するから、焼結板10の強度や含浸
させる程度によって適宜選択すればよいが、含浸を容易
にする観点からすれば30〜60メッシュの粉末が好ま
しい。すなわち、30メッシュ未満の粗大粉では粉末圧
延による成形が困難となり、60メッシュを越える粉末
では、空隙の大きさが十分でないため、含浸における深
さの減少等が生じる。
The particle size of the above-mentioned stainless steel powder 1 affects the size of voids in the sintered plate 10 and, in turn, the difficulty of impregnation. Therefore, depending on the strength of the sintered plate 10 and the degree of impregnation. It may be appropriately selected, but from the viewpoint of facilitating the impregnation, powder of 30 to 60 mesh is preferable. That is, if the coarse powder is less than 30 mesh, it is difficult to form the powder by powder rolling, and if the powder is more than 60 mesh, the size of the void is not sufficient, so that the depth of impregnation is reduced.

【0026】また、粉末圧延で得られた粉末成形帯6
は、その後還元雰囲気や不活性雰囲気の加熱炉にて、焼
結されて多孔質の焼結板10となるが、その時の空隙粒
径も含浸の難易に影響し、空隙率が大きいほど含浸深さ
は増加する。このため、実際には、空隙率として25%
以上が好ましいが、一方空隙率が50%を越えると、粉
末圧延時の成形帯の強度が過度に低下するため、50%
以下とすることが好ましい。
Further, the powder molding strip 6 obtained by powder rolling
Is then sintered in a heating furnace in a reducing atmosphere or an inert atmosphere to form a porous sintered plate 10. The void particle size at that time also affects the difficulty of impregnation, and the higher the porosity, the deeper the impregnation depth. Is increased. Therefore, in reality, the porosity is 25%.
The above is preferable, but if the porosity exceeds 50%, the strength of the molding strip during powder rolling becomes excessively low.
The following is preferable.

【0027】また、多孔質焼結層を有する焼結板10と
ステンレス鋼板11を張り合わせる方法については、前
述のように、耐食性に問題がなく、裏金との接合強度と
して要求される強度を満足するものであれば、とくに限
定されるものではなく、この張り合わせの方法として
は、スポット溶接で部分的に接合する方法、接合面に圧
力を加えながら加熱して固体間で拡散接合する方法、不
活性雰囲気内で加熱し比較的軽圧下で熱間圧延して圧延
クラッドとして接合する方法等がある。これらの接合に
おいては、過大な圧下を付与すると多孔質焼結層の空隙
が潰れてしまい、含浸が十分行えなくなるため、この点
を勘案しながら接合する必要がある。
As for the method of laminating the sintered plate 10 having the porous sintered layer and the stainless steel plate 11, as described above, there is no problem in corrosion resistance and the strength required as the bonding strength with the back metal is satisfied. It is not particularly limited as long as it can be applied, and as a method of this bonding, a method of partially joining by spot welding, a method of heating the joining surface while applying pressure and performing diffusion joining between solids, There is a method of heating in an active atmosphere and hot rolling under a comparatively light pressure to join as a rolled clad. In these joinings, if excessive reduction is applied, the voids in the porous sintered layer will be crushed and impregnation cannot be performed sufficiently. Therefore, it is necessary to take this point into consideration when joining.

【0028】[0028]

【発明の効果】以上に説明したように、本発明による耐
食ドライベアリング用鋼板は裏金から多孔質焼結層まで
すべてがステンレス鋼からなっているため、従来の普通
鋼や銅系合金を用いたものに比べて耐食性が優れるとと
もに、多孔質焼結層を粉末圧延による成形体とすること
により、寸法精度等に優れたものとなる。なお本発明は
プラスチック等の潤滑材を用いるドライベアリングを対
象としているが、多孔質焼結層を用いる含油軸受等にも
有効である。
As described above, since the corrosion-resistant dry bearing steel sheet according to the present invention is entirely made of stainless steel from the back metal to the porous sintered layer, conventional ordinary steel and copper alloys are used. In addition to being excellent in corrosion resistance as compared with the ones, by making the porous sintered layer into a molded body by powder rolling, it becomes excellent in dimensional accuracy and the like. The present invention is intended for dry bearings that use a lubricant such as plastic, but is also effective for oil-impregnated bearings that use a porous sintered layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による耐食ドライベアリング用鋼板の製
造状態を示す構成図である。
FIG. 1 is a configuration diagram showing a manufacturing state of a corrosion-resistant dry bearing steel plate according to the present invention.

【図2】図1の要部の製造状態を示す構成図である。FIG. 2 is a configuration diagram showing a manufacturing state of a main part of FIG.

【符号の説明】[Explanation of symbols]

1 ステンレス鋼粉末 10 焼結板 11 ステンレス鋼板 1 Stainless steel powder 10 Sintered plate 11 Stainless steel plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼板(11)を裏金とし、ステン
レス鋼粉末(1)を粉末圧延法により板状に成形し焼結し
て得られた焼結板(10)を前記ステンレス鋼板(11)に張り
合わせた構成よりなることを特徴とする耐食ドライベア
リング用鋼板。
1. A sintered plate (10) obtained by forming a stainless steel powder (1) into a plate shape by a powder rolling method and sintering the plate using the stainless steel plate (11) as a backing metal. A steel plate for corrosion resistant dry bearings, which is characterized by being bonded to
【請求項2】 前記ステンレス鋼粉末(1)の粒度が30
〜60メッシュの不定形粉末であることを特徴とする請
求項1記載の耐食ドライベアリング用鋼板。
2. The particle size of the stainless steel powder (1) is 30.
The steel sheet for corrosion-resistant dry bearing according to claim 1, which is an irregularly shaped powder of -60 mesh.
【請求項3】 前記焼結板(10)の空隙率が25〜50%
である請求項1又は2記載の耐食ドライベアリング用鋼
板。
3. The sintered plate (10) has a porosity of 25 to 50%.
The corrosion-resistant dry bearing steel sheet according to claim 1 or 2.
【請求項4】 前記焼結板(10)の多孔質焼結層内に4フ
ッ化エチレンを含浸させた構成よりなることを特徴とす
る請求項1ないし3の何れかに記載の耐食ドライベアリ
ング用鋼板。
4. The corrosion-resistant dry bearing according to claim 1, wherein the porous sintered layer of the sintered plate (10) has a structure in which tetrafluoroethylene is impregnated. Steel plate.
JP18385192A 1992-07-10 1992-07-10 Corrosion resistant steel plate for dry bearing Withdrawn JPH0625870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18385192A JPH0625870A (en) 1992-07-10 1992-07-10 Corrosion resistant steel plate for dry bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18385192A JPH0625870A (en) 1992-07-10 1992-07-10 Corrosion resistant steel plate for dry bearing

Publications (1)

Publication Number Publication Date
JPH0625870A true JPH0625870A (en) 1994-02-01

Family

ID=16142945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18385192A Withdrawn JPH0625870A (en) 1992-07-10 1992-07-10 Corrosion resistant steel plate for dry bearing

Country Status (1)

Country Link
JP (1) JPH0625870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287120A (en) * 2002-08-28 2009-12-10 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing using the same
JP2015200021A (en) * 2014-03-31 2015-11-12 オイレス工業株式会社 Method for manufacturing metal base material having ground layer for double layer bearing, method for manufacturing double layer bearing, metal base material having ground layer for double layer bearing, and double layer bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287120A (en) * 2002-08-28 2009-12-10 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing using the same
JP2015200021A (en) * 2014-03-31 2015-11-12 オイレス工業株式会社 Method for manufacturing metal base material having ground layer for double layer bearing, method for manufacturing double layer bearing, metal base material having ground layer for double layer bearing, and double layer bearing

Similar Documents

Publication Publication Date Title
JP4160561B2 (en) Sintered gear
EP1270753B1 (en) Sintered material and composite sintered contact component
JP2008144253A (en) Copper-based slide material and its manufacturing method
US6322902B1 (en) Sliding contact material, sliding contact element and producing method
US3180008A (en) Method of manufacturing bearings
US4361629A (en) Bearing material and method of producing same
JP2019173060A (en) Sliding member
US4680161A (en) Method of producing sliding composite material
JPH06192774A (en) Copper alloy plain bearing having high strength back plate and its production
JP2614732B2 (en) Low friction structure and manufacturing method thereof
JP7389601B2 (en) sliding member
JPH0625870A (en) Corrosion resistant steel plate for dry bearing
JP2001335812A (en) Lead-free plain bearing and its production method
KR940007853B1 (en) Method of producing bimetal for use as material for plain bearing
US6696168B2 (en) Aluminum-base composite bearing material and method of producing the same
KR960007502B1 (en) Method of bearing materials
JP3521106B2 (en) Method for manufacturing electrode of lead storage battery
JP2002061653A (en) Sliding material for wet lubrication
JP2008050688A (en) Sliding material and method for its manufacture
CN108472700A (en) Titanium plate
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JP2003214433A (en) Manufacturing method of aluminum bronze bearing material
JPH04145225A (en) Multilayer bearing and manufacture thereof
JP2508862B2 (en) Hot seamless pipe manufacturing plug
KR101033869B1 (en) Method of manufaturing a sliding type oilless bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005