JP6549298B1 - Pulverizable copper powder and method for producing the same - Google Patents

Pulverizable copper powder and method for producing the same Download PDF

Info

Publication number
JP6549298B1
JP6549298B1 JP2018177901A JP2018177901A JP6549298B1 JP 6549298 B1 JP6549298 B1 JP 6549298B1 JP 2018177901 A JP2018177901 A JP 2018177901A JP 2018177901 A JP2018177901 A JP 2018177901A JP 6549298 B1 JP6549298 B1 JP 6549298B1
Authority
JP
Japan
Prior art keywords
copper powder
paste
preferred
cake
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018177901A
Other languages
Japanese (ja)
Other versions
JP2020050888A (en
Inventor
秀樹 古澤
秀樹 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018177901A priority Critical patent/JP6549298B1/en
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to EP19863336.4A priority patent/EP3854500A4/en
Priority to KR1020217011008A priority patent/KR102413398B1/en
Priority to US17/278,096 priority patent/US11920215B2/en
Priority to CN201980061341.0A priority patent/CN112739478B/en
Application granted granted Critical
Priority to PCT/JP2019/029088 priority patent/WO2020059291A1/en
Publication of JP6549298B1 publication Critical patent/JP6549298B1/en
Priority to TW108126720A priority patent/TWI719560B/en
Publication of JP2020050888A publication Critical patent/JP2020050888A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • B22F1/147Making a dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

【課題】乾燥ケーキからの解砕と分級の工程の負担を低減して製造可能な銅粉であって、二次粒子の残存が十分に低減された銅粉を提供する。【解決手段】湿式法によって製造された銅粉であって、ゼータ電位の絶対値が20mV以上である、銅粉。【選択図】なしThe present invention provides a copper powder that can be produced by reducing the burden of the crushing and classification process from a dried cake, and in which the remaining secondary particles are sufficiently reduced. A copper powder produced by a wet method, wherein the absolute value of the zeta potential is 20 mV or more. [Selection figure] None

Description

本発明は、易解砕性銅粉及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to an easily crushed copper powder and a method for producing the same.

電子材料として、銅粉ペーストが広く使用されてきている。銅粉ペーストは、例えば、塗布した後に焼結して、積層型セラミックコンデンサの電極の形成等に使用される。使用される電極層の薄膜化、及び配線の狭ピッチ化等に伴って、ペースト材料の銅粉には微粉化が求められている。サブミクロンサイズの銅粉の製造のために、化学還元や不均化法を利用した湿式法で銅粉を合成する方法が用いられる。特許文献1は銅粉を用いたペーストの製造方法を開示している。特許文献2は不均化法による銅粉の製造方法を開示している。特許文献3は化学還元法による銅粉の製造方法を開示している。   Copper powder paste has been widely used as an electronic material. The copper powder paste is, for example, applied and then sintered to be used for forming an electrode of a laminated ceramic capacitor and the like. With the thinning of the electrode layer used and the narrowing of the wiring, etc., the copper powder of the paste material is required to be pulverized. For the production of submicron-sized copper powder, a method of synthesizing copper powder by a wet method using chemical reduction or disproportionation is used. Patent Document 1 discloses a method of producing a paste using copper powder. Patent Document 2 discloses a method of producing copper powder by the disproportionation method. Patent Document 3 discloses a method of producing copper powder by a chemical reduction method.

国際公開第2013/125659号International Publication No. 2013/125659 特許第6297018号公報Patent No. 6297018 特許第4164009号公報Patent No. 4164 009

湿式法で得られた銅粉は、固液分離工程を経て、いったん乾燥ケーキの形態となる。この乾燥ケーキにおいては、銅粉のサイズが小さいと銅粉同士が凝集を引き起こすという現象を、本発明者は見いだしている。そして、もし、この凝集を放置すると、銅粉(一次粒子)の凝集によって形成された粒子(二次粒子)が、ペースト中に残存して、銅粉ペーストとしての特性を悪化させてしまう。そのため、微細な銅粉同士が凝集してしまった乾燥ケーキでは、これを解砕して分級するという複雑な工程が、必要となっていた。この場合に要する粗解砕から、ジェットミルによる解砕とそれに続く分級の工程は、複雑であると同時に損失も多く、製造上大変に負担が重い。   The copper powder obtained by the wet method passes through a solid-liquid separation step and once becomes a dry cake form. The inventor has found that in this dried cake, if the size of the copper powder is small, the copper powder causes aggregation. And, if this aggregation is left to stand, particles (secondary particles) formed by the aggregation of copper powder (primary particles) remain in the paste and the characteristics as a copper powder paste are deteriorated. Therefore, in the case of a dried cake in which fine copper powders are aggregated, a complicated process of crushing and classifying this has been required. From the coarse disintegration required in this case, the disintegration by a jet mill and the subsequent steps of classification are both complicated and lossy, and the production is very burdensome.

したがって、本発明の目的は、乾燥ケーキからの解砕と分級の工程の負担を低減して製造可能な銅粉であって、二次粒子の残存が十分に低減された銅粉を提供することにある。   Therefore, an object of the present invention is to provide a copper powder which can be manufactured by reducing burdens of crushing and classification steps from a dried cake, wherein residual of secondary particles is sufficiently reduced. It is in.

本発明者は、鋭意研究の結果、湿式法によって製造された銅粉を、特定のpH条件下で処理することによって、上記目的を達成できることを見いだして、本発明に到達した。   As a result of intensive studies, the inventor has found that the above object can be achieved by treating copper powder produced by a wet process under specific pH conditions, and reached the present invention.

したがって、本発明は、次の(1)を含む。
(1)
湿式法によって製造された銅粉であって、ゼータ電位の絶対値が20mV以上である、銅粉。
Therefore, the present invention includes the following (1).
(1)
Copper powder manufactured by a wet method, wherein the absolute value of zeta potential is 20 mV or more.

本発明によれば、乾燥ケーキからの解砕と分級の工程の負担を低減しつつ、二次粒子の残存が十分に低減された、易解砕性の銅粉を得ることができる。   According to the present invention, it is possible to obtain easily disintegratable copper powder in which the residual of secondary particles is sufficiently reduced while reducing the burden of the process of crushing from dry cake and classification.

図1は、粘度測定試験の結果を示すグラフである。FIG. 1 is a graph showing the results of the viscosity measurement test.

以下に本発明を実施の態様をあげて詳細に説明する。本発明は以下にあげる具体的な実施の態様に限定されるものではない。   Hereinafter, the present invention will be described in detail by way of embodiments. The present invention is not limited to the specific embodiments described below.

[易解砕性の銅粉]
本発明に係る銅粉は、湿式法によって製造された銅粉であって、ゼータ電位の絶対値が20mV以上である。
[Crushable copper powder]
The copper powder according to the present invention is a copper powder produced by a wet method, and the absolute value of the zeta potential is 20 mV or more.

このような銅粉とすることによって、銅粉(一次粒子)同士が反発することに起因して、銅粉の分散性が向上する。換言すれば、このような銅粉は、銅粉の凝集体(二次粒子)の発生を抑制できる。その結果、乾燥ケーキからの解砕と分級の工程の負担を低減しつつ、二次粒子の残存が十分に低減された、易解砕性の銅粉とすることができる。   By using such copper powder, the dispersibility of the copper powder is improved due to repulsion between the copper powders (primary particles). In other words, such copper powder can suppress the generation of copper powder aggregates (secondary particles). As a result, it is possible to provide an easily disintegrated copper powder in which the residual of secondary particles is sufficiently reduced while reducing the burden of the process of crushing from dry cake and classification.

このような銅粉は、 積層造形(AM:Additive Manufacturing)用の金属粉体 として好適に用いられる。積層造形の一態様として、金属粉体を敷き詰めてパウダーベッドを形成した後に、バインダーとして機能する有機物を含むインクをインクジェットでパウダーベッドに吹き付けて成形し、それを焼結させることによって造形物を作る技術が知られている。このような積層造形では、金属粉末(パウダーベッド)に対しインク(バインダ)ぬれ性が求められる。インクぬれ性が悪いと、金属粉末がインクをはじいてしまい、造形精度が低くなるためである。この点において、上述の易解砕性の銅粉を用いた積層造形は、銅粉(一次粒子)同士が反発することに起因して優れた分散性を発揮するため、銅粉間にインクが流れ込みやすく、換言すれば、インクぬれ性が高く、高い造形精度を実現できる。   Such copper powder is suitably used as metal powder for additive manufacturing (AM). As one aspect of additive manufacturing, after a metal powder is spread to form a powder bed, an ink containing an organic substance that functions as a binder is sprayed and formed on the powder bed by an inkjet, and a shaped article is formed by sintering it. Technology is known. In such layered manufacturing, ink (binder) wettability is required for metal powder (powder bed). If the ink wettability is poor, the metal powder repels the ink and the forming accuracy is lowered. In this respect, in the lamination molding using the above-mentioned easily crushed copper powder, since the copper powder (primary particles) exhibits excellent dispersibility due to repulsion, the ink is used between the copper powder. It is easy to flow, in other words, ink wettability is high, and high shaping accuracy can be realized.

[易解砕性]
易解砕性とは、乾燥ケーキからの解砕が容易であって、分級の工程を行わなくても、二次粒子の残存が十分に低減されたものとなっていることをいい、具体的には、後述する実施例に記載の条件で作成したペーストについて、スライドガラス上にペーストの乾燥塗膜を形成した場合、Raが0.2μm以下、Rzが2μm以下となっていることをいう。
[Easy cracking ability]
Sagability means that crushing from dried cake is easy and residual of secondary particles is sufficiently reduced without performing classification process, specifically In the case of the paste prepared under the conditions described in the examples described later, when a dry coating film of the paste is formed on a slide glass, it means that Ra is 0.2 μm or less and Rz is 2 μm or less.

[ゼータ電位]
好適な実施の態様において、本発明に係る銅粉は、pH7の条件下で測定されたゼータ電位の絶対値を、例えば20mV以上、好ましくは20から100mVの範囲とすることができる。ゼータ電位は、公知の手段によって測定することができ、具体的には、実施例において後述する手段と条件によって、測定することができる。
[Zeta potential]
In a preferred embodiment, the copper powder according to the present invention can have an absolute value of zeta potential measured under conditions of pH 7 for example in the range of 20 mV or more, preferably in the range of 20 to 100 mV. The zeta potential can be measured by a known means, and specifically can be measured by the means and conditions described later in the Examples.

[BET比表面積]
好適な実施の態様において、本発明に係る銅粉は、BET比表面積を、例えば2m2-1以上、好ましくは2m2-1以上100m2-1以下、さらに好ましくは2.5m2-1以上20m2-1以下、さらに好ましくは3m2-1以上15m2-1以下とすることができる。BET比表面積は、公知の手段によって測定することができ、具体的には、実施例において後述する手段と条件によって、測定することができる。
[BET specific surface area]
In a preferred embodiment, the copper powder according to the present invention has a BET specific surface area of, for example, 2 m 2 g -1 or more, preferably 2 m 2 g -1 or more and 100 m 2 g -1 or less, more preferably 2.5 m 2 g -1 or more 20 m 2 g -1 or less, more preferably to a 3m 2 g -1 or more 15 m 2 g -1 or less. The BET specific surface area can be measured by a known means, and specifically, can be measured by the means and conditions described later in the Examples.

[炭素付着量]
好適な実施の態様において、本発明に係る銅粉は、燃焼法によって測定される炭素付着量として、銅粉に対する炭素付着量を、例えば0.1〜0.6質量%の範囲、好ましくは0.1〜0.5質量%の範囲、さらに好ましくは0.2〜0.5質量%の範囲、さらに好ましくは0.2〜0.4質量%の範囲とすることができる。燃焼法による炭素付着量は、公知の手段によって測定することができ、具体的には、実施例において後述する手段と条件によって、測定することができる。銅粉から測定される炭素付着量は、湿式法による銅粉の製造の工程に由来する。炭素を含む添加材の添加量が同じであれば、小さい銅粉(比表面積の大きい銅粉)ほど、炭素付着量が多くなる。また、炭素付着量が多い銅粉ほど、後述するpH処理によりゼータ電位変動の影響を受けやすくなる。好適な実施の態様において、この特定の炭素付着量とゼータ電位の組みあわせを備えた銅粉とすることによって、優れた易解砕性を実現できると、本発明者は考えている。
[Carbon adhesion amount]
In a preferred embodiment, the copper powder according to the present invention has a carbon adhesion amount to the copper powder as a carbon adhesion amount measured by a combustion method, for example, in the range of 0.1 to 0.6 mass%, It can be in the range of 0.1 to 0.5% by mass, more preferably in the range of 0.2 to 0.5% by mass, and further preferably in the range of 0.2 to 0.4% by mass. The carbon deposition amount by the combustion method can be measured by a known means, and specifically, can be measured by the means and conditions described later in the examples. The carbon adhesion amount measured from copper powder originates in the process of manufacture of copper powder by a wet method. If the addition amount of the additive containing carbon is the same, the smaller the copper powder (the copper powder having a large specific surface area), the larger the carbon adhesion amount. Further, the copper powder having a large amount of carbon adhesion is more susceptible to the influence of the zeta potential fluctuation by the pH treatment described later. In the preferred embodiment, the present inventors believe that excellent ease of crushability can be realized by providing a copper powder having a combination of this specific carbon deposition amount and zeta potential.

[TMA1%収縮温度]
好適な実施の態様において、本発明に係る銅粉は、TMA1%収縮温度を、例えば500℃以下、好ましくは200〜500℃、さらに好ましくは200〜400℃の範囲とすることができる。TMA1%収縮温度は、公知の手段によって測定することができ、具体的には、実施例において後述する手段と条件によって、測定することができる。すなわち、ネッチ・ジャパン(株)製のTMA4000を使って測定することができ、その条件は、以下とすることができる:圧粉体密度:4.7g/cm3、測定雰囲気:窒素、昇温速度:5℃/min、荷重:10mN。
[TMA 1% contraction temperature]
In a preferred embodiment, the copper powder according to the present invention can have a TMA 1% shrinkage temperature in the range of, for example, 500 ° C. or less, preferably 200 to 500 ° C., more preferably 200 to 400 ° C. The TMA 1% shrinkage temperature can be measured by a known means, and specifically can be measured by the means and conditions described later in the Examples. That is, it can be measured using TMA4000 manufactured by Netti Japan Co., Ltd., and the conditions can be set as follows: green density: 4.7 g / cm 3 , measurement atmosphere: nitrogen, temperature rise Speed: 5 ° C / min, Load: 10 mN.

[タップ密度]
好適な実施の態様において、本発明に係る銅粉は、タップ密度(固めかさ密度)を、例えば3g/cm3以下、好ましくは3.0g/cm3未満、好ましくは2.9g/cm3以下、好ましくは2.5g/cm3以下とすることができる。上記の上限よりもタップ密度(固めかさ密度)を小さくすることによって、ペースト中における銅粉の分散性を良好なものとすることができる。タップ密度は、公知の手段によって測定することができ、具体的には、実施例において後述する手段と条件によって、測定することができる。すなわち、ホソカワミクロン(株)製のパウダテスタPT−Xを使って測定することができる。具体的には10ccのカップにガイドを取り付けて粉体を入れ、1000回タップさせて、ガイドを外して、10ccの容積を上回っている部分を摺り切り、容器に入っている粉体の重量を測定し、固めかさ密度を求めることができる。
Tap density
In a preferred embodiment, the copper powder according to the present invention has a tap density (solidified bulk density) of, for example, 3 g / cm 3 or less, preferably less than 3.0 g / cm 3 , preferably 2.9 g / cm 3 or less. And preferably 2.5 g / cm 3 or less. By making the tap density (solidified bulk density) smaller than the above upper limit, the dispersibility of the copper powder in the paste can be made favorable. The tap density can be measured by known means, and specifically can be measured by the means and conditions described later in the examples. That is, it can be measured using Powder Tester PT-X manufactured by Hosokawa Micron Corporation. Specifically, attach a guide to a 10 cc cup, add powder, tap 1000 times, remove the guide, slide off the part exceeding the 10 cc volume, and weigh the powder contained in the container It can be measured to determine the bulk density.

好適な実施の態様において、本発明による銅粉はペースト中での分散性が良好である。これはタップ密度(固めかさ密度)が低いことが関係していると本発明者は推定している。理由は明らかではないが、乾燥粉の状態でタップ密度が低いと、乾燥粉間に生じている隙間が多く、ここに、溶剤、樹脂が入りやすいことが要因の一つであるのではないかと本発明者は考えている。   In a preferred embodiment, the copper powder according to the invention has good dispersibility in the paste. The present inventor estimates that this is related to the low tap density (solid density). Although the reason is not clear, when the tap density is low in the dry powder state, there are many gaps between the dry powders, and it may be one of the factors that the solvent and resin easily enter here. The inventor is thinking.

好適な実施の態様において、本発明による銅粉は解砕が十分に行われているため、表面積が大きい。このため、ペースト中では溶剤、ビークルとの相互作用が強まり、本件で得られる銅粉はペースト中で増粘剤としてふるまうのではないかと、本発明者は考えている。後述するように、好適な実施の態様において、本発明による銅粉を使用したペーストは低せん断速度領域では粘度が高く、高せん断速度領域では粘度が低下する。低せん断速度領域では銅粉と溶剤、樹脂等との相互作用が強いため粘度が高くなっていると本発明者は推定している。一方、高せん断速度領域では銅粉自身が十分に解砕されているので、せん断速度の上昇とともにペーストが変形しやすく低粘度になっていると本発明者は推定している。このようなペーストは低せん断速度領域の挙動から印刷パターンの形状保持、高せん断速度領域の挙動から印刷性に優れていると期待される。好適な実施の態様において、本発明による銅粉を単独でペースト材料として使用してもよいし、より大きなミクロンサイズ銅粉と混ぜ合わせることでペーストの粘度を高めて印刷性を調整してもよい。また、後者の場合、本発明による銅粉自体が低温焼結性を有するので、ペースト全体としては焼結が進行し、高密度な焼結体が得られる。   In a preferred embodiment, the copper powder according to the present invention has a large surface area because it is fully crushed. For this reason, the inventors believe that the interaction between the paste and the solvent and the vehicle is intensified, and the copper powder obtained in this case may act as a thickener in the paste. As will be described later, in a preferred embodiment, the paste using the copper powder according to the present invention has a high viscosity in the low shear rate region and a reduced viscosity in the high shear rate region. The inventors estimate that the viscosity is high because the interaction between the copper powder and the solvent, resin, etc. is strong in the low shear rate region. On the other hand, since the copper powder itself is sufficiently crushed in the high shear rate region, the present inventors estimate that the paste is easily deformed as the shear rate increases and the viscosity is low. Such pastes are expected to be excellent in printability from the behavior of the low shear rate region, the shape retention of the printed pattern, and the behavior of the high shear rate region. In a preferred embodiment, the copper powder according to the present invention may be used alone as paste material, or it may be mixed with larger micron size copper powder to increase paste viscosity and adjust printability . In the latter case, since the copper powder according to the present invention has low-temperature sinterability, sintering proceeds as a whole of the paste, and a high-density sintered body can be obtained.

[易解砕性銅粉の製造]
好適な実施の態様において、本発明の易解砕性銅粉は、湿式法によって製造された銅粉を、pH8〜14のアルカリ水溶液、又はpH0〜4の酸水溶液と接触させる、pH処理工程、を含む方法によって製造することができる。
[Production of easily disintegratable copper powder]
In a preferred embodiment, the easily crushable copper powder of the present invention is prepared by contacting the copper powder produced by the wet process with an aqueous alkali solution of pH 8 to 14 or an aqueous acid solution of pH 0 to 4; Can be manufactured by a method including:

[pH処理工程]
好適な実施の態様において、pH処理工程は、上記pHのアルカリ水溶液又は酸水溶液と接触させることによって行われる。好適な実施の態様において、接触としては、例えば、湿式法によって製造された銅粉を、上記水溶液中で撹拌することによって行うことができる。撹拌は、例えば、公知の手段によって行うことができ、例えば回転羽根、ミキサー、及び撹拌子を用いて撹拌することができる撹拌の時間は、例えば5分以上48時間以内、好ましくは10分以上、24時間以内とすることができる。好適な実施の態様において、接触としては、例えば、湿式法によって製造された銅粉に対して、上記水溶液を通液することによって行うことができる。アルカリ水溶液又は酸水溶液との接触は、例えばバッチ式で1回行ってもよく、あるいは複数回行うこともできる。アルカリ水溶液又は酸水溶液と接触させた後の銅粉は、公知の手段によって固液分離して、ケーキとして得ることができる。好適な実施の態様において、アルカリ水溶液又は酸水溶液と接触させた後の銅粉を、純水で洗浄することができる。
[PH treatment process]
In a preferred embodiment, the pH treatment step is carried out by contacting with an aqueous alkali solution or an aqueous acid solution of the above pH. In a preferred embodiment, the contacting can be performed, for example, by stirring copper powder produced by a wet method in the above aqueous solution. Stirring can be performed, for example, by known means, and for example, the stirring time which can be stirred using a rotary blade, a mixer, and a stirring bar is, for example, 5 minutes or more and 48 hours or less, preferably 10 minutes or more. It can be done within 24 hours. In a preferred embodiment, the contacting can be performed, for example, by passing the aqueous solution through copper powder produced by a wet method. The contact with the aqueous alkali solution or the aqueous acid solution may be performed, for example, once in a batch system, or may be performed multiple times. The copper powder after contacting with the aqueous alkali solution or the aqueous acid solution can be obtained as cake by solid-liquid separation by a known means. In a preferred embodiment, the copper powder after contact with the aqueous alkali solution or the aqueous acid solution can be washed with pure water.

好適な実施の態様において、純水による洗浄は、公知の手段によって行うことができるが、例えば、固液分離して得られたケーキに対して純水を通液することによって行うことができる。   In a preferred embodiment, washing with pure water can be carried out by a known means, for example, by passing pure water through a cake obtained by solid-liquid separation.

[アルカリ水溶液]
好適な実施の態様において、湿式法によって製造された銅粉と接触させるアルカリ水溶液のpHは、例えばpH8〜14、好ましくはpH8〜13、好ましくはpH9〜13とすることができる。上記pHへと調整されたアルカリ水溶液としては、例えばアンモニア水、水酸化ナトリウム水溶液、水酸化カリウム水溶液、分子末端にアミノ基を含む有機物の水溶液、あるいはこれらの混合水溶液を使用することができる。
[Alkaline aqueous solution]
In a preferred embodiment, the pH of the aqueous alkaline solution contacted with the copper powder produced by the wet method can be, for example, pH 8-14, preferably pH 8-13, preferably pH 9-13. As the aqueous alkali solution adjusted to the above pH, for example, aqueous ammonia, aqueous sodium hydroxide solution, aqueous potassium hydroxide solution, an aqueous solution of an organic substance containing an amino group at the molecular end, or a mixed aqueous solution thereof can be used.

[酸水溶液]
好適な実施の態様において、湿式法によって製造された銅粉と接触させる酸水溶液のpHは、例えばpH0〜4、好ましくはpH1〜4好ましくはpH1〜3とすることができる。上記pHへと調整された酸水溶液としては、例えば希硫酸、メタンスルホン酸等の有機酸の水溶液、あるいはこれらの混合水溶液を使用することができる。
[Acid solution]
In a preferred embodiment, the pH of the aqueous acid solution to be brought into contact with the copper powder produced by the wet method can be, for example, pH 0 to 4, preferably pH 1 to 4, and preferably pH 1 to 3. As the aqueous acid solution adjusted to the above pH, for example, an aqueous solution of an organic acid such as dilute sulfuric acid or methanesulfonic acid or a mixed aqueous solution thereof can be used.

[乾燥]
好適な実施の態様において、pH処理された銅粉は、その後に乾燥される。乾燥は、公知の手段によって行うことができ、例えば60〜300℃、好ましくは60〜150℃で、窒素雰囲気あるいは真空雰囲気で乾燥することができる。このようにして得られた銅粉は、しばしば乾燥ケーキの形態として得られる。
[Drying]
In a preferred embodiment, the pH-treated copper powder is then dried. Drying can be carried out by a known means, for example, at 60 to 300 ° C., preferably 60 to 150 ° C., in a nitrogen atmosphere or a vacuum atmosphere. The copper powder thus obtained is often obtained in the form of a dry cake.

[解砕]
好適な実施の態様において、pH処理されて次に乾燥された銅粉は、その後に解砕される。解砕は、公知の手段で行うことができ、例えば乳棒、乳鉢、ミキサーを使用することができる。本発明によれば、このような簡易な手段による粗解砕によって十分に解砕されて、二次粒子が十分に低減されたものとなっているので、従来は必要であるとされていたその後の強力な解砕手段による解砕の工程と、分級の工程が必要ではない。また、セラミックビーズを用いるビーズミル解砕のような強力な解砕手段を必要としないことから、湿式法によって製造された銅粉の自然な形状を保持することができ、機械的に変形した形状となること回避できる。本発明によれば、このように簡易な手段による粗解砕によって十分に解砕されるのであるが、所望により、その後に、ヘンシェルミキサーのような機械的な解砕や、ジェットミル解砕を行うことを排除するものではなく、所望により、その後に、分級の工程を行うことを排除するものではない。本発明による銅粉は、pH処理によって易解砕性を実現しており、容易に解砕することができ、例えば乳棒、乳鉢、ミキサーによって、十分な解砕を達成することができる。ただし、易解砕性の銅粉の解砕手段としては、さらに強力な解砕手段を採用することを除外するものではなく、例えばヘンシェルミキサーのような機械的な解砕や、ジェットミル解砕を行ってもよい。
[Crushing]
In a preferred embodiment, the pH-treated and then dried copper powder is subsequently crushed. Crushing can be carried out by known means, for example using a pestle, mortar, mixer. According to the present invention, since the secondary particles are sufficiently reduced by the coarse crushing by such simple means and the secondary particles have been sufficiently reduced, it has been considered that it is conventionally necessary. There is no need for the step of crushing by means of strong crushing means and the step of classification. In addition, since it does not require a strong crushing means such as bead milling using ceramic beads, it is possible to maintain the natural shape of copper powder produced by the wet method, resulting in a mechanically deformed shape and the like. Can be avoided. According to the present invention, although it is sufficiently crushed by such coarse crushing by a simple means, if desired, mechanical crushing such as a Henschel mixer or jet mill crushing may be carried out. It does not exclude what is to be performed, and if desired, does not exclude that the classification step is performed thereafter. The copper powder according to the present invention achieves ease of crushability by pH treatment and can be easily crushed, and sufficient crushing can be achieved by, for example, a pestle, a mortar and a mixer. However, as means for crushing easily disintegrating copper powder, it is not excluded to adopt stronger crushing means, for example, mechanical crushing such as Henschel mixer, jet mill crushing You may

[銅粉ペースト]
好適な実施の態様において、本発明の易解砕性の銅粉は、この銅粉を含む銅粉ペーストの態様として好適に使用することができる。銅粉ペーストは、例えば易解砕性の銅粉を、バインダー樹脂、有機溶剤と混練して調製することができ、所望によりさらにガラスフリットを添加してもよく、所望によりさらに分散剤、チキソ剤及び/又は消泡剤を添加してもよい。本発明の易解砕性の銅粉は、簡易な手段によっても十分に解砕されていて、一次粒子同士が互いに反発し合うため、その後の再凝集のリスクが低減されたものとなっており、ペースト中に高度に分散されたものとなる。そのため、本発明による銅粉ペーストは、これを印刷し焼成して得られた電極は、表面が滑らかなものとなり、配線の断線のリスクが低減されたものとなっている。
このような銅粉ペーストは、インクジェット印刷用の金属インクとして好適に用いられる。その理由は、インクジェット印刷用の金属インクには、ノズルでつまらない特性が要求されるところ、上述の易解砕性の銅粉は、ノズルで詰まりにくいためである。これは、易解砕性の銅粉が分散性に優れ、二次粒子を形成しづらいことに起因する。
[Copper powder paste]
In a preferred embodiment, the easily crushable copper powder of the present invention can be suitably used as an embodiment of a copper powder paste containing the copper powder. The copper powder paste can be prepared, for example, by kneading easily crushable copper powder with a binder resin and an organic solvent, and if desired, a glass frit may be further added, and if desired, a dispersing agent, thixo agent, if desired. And / or a defoamer may be added. The easily crushable copper powder of the present invention is sufficiently crushed even by simple means, and the primary particles repel each other, so that the risk of subsequent reaggregation is reduced. , Become highly dispersed in the paste. Therefore, the electrode obtained by printing and baking the copper powder paste according to the present invention has a smooth surface, and the risk of disconnection of the wiring is reduced.
Such copper powder paste is suitably used as a metal ink for inkjet printing. The reason is that although the metal ink for inkjet printing is required to have a boring property at the nozzle, the above-mentioned easily crushable copper powder is unlikely to be clogged at the nozzle. This is attributed to the fact that the easily crushed copper powder is excellent in dispersibility and is hard to form secondary particles.

好適な実施の態様において、ペーストに使用されるバインダー樹脂としては、例えばセルロース系樹脂、アクリル樹脂、アルキッド樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール、ケトン樹脂、尿素樹脂、メラミン樹脂、ポリエステル、ポリアミド、ポリウレタンをあげることができる。銅粉ペースト中のバインダー樹脂は、銅粉の質量に対して例えば0.1〜10%の比率となるように含有させることができる。好適な実施の態様において、有機溶剤としては、アルコール溶剤(例えばテルピネオール、ジヒドロテルピネオール、イソプロピルアルコール、ブチルカルビトール、テルピネルオキシエタノール、ジヒドロテルピネルオキシエタノールからなる群から選択された1種以上)、グリコールエーテル溶剤(例えばブチルカルビトール)、アセテート溶剤(例えばブチルカルビトールアセテート、ジヒドロターピネオールアセテート、ジヒドロカルビトールアセテート、カルビトールアセテート、リナリールアセテート、ターピニルアセテートからなる群から選択された1種以上)、ケトン溶剤(例えばメチルエチルケトン)、炭化水素溶剤(例えばトルエン、シクロヘキサンからなる群から選択された1種以上)、セロソルブ類(例えばエチルセロソルブ、ブチルセロソルブからなる群から選択された1種以上)、ジエチルフタレート、またはプロピネオート系溶剤(例えばジヒドロターピニルプロピネオート、ジヒドロカルビルプロピネオート、イソボニルプロピネオートからなる群から選択された1種以上)をあげることができる。好適な実施の態様において、ガラスフリットとしては、例えば直径が0.1〜10μm、好ましくは0.1〜5.0μmの範囲のガラスフリットを使用することができる。好適な実施の態様において、分散剤としては、例えばオレイン酸、ステアリン酸及びオレイルアミンをあげることができる。好適な実施の態様において、消泡剤としては、例えば有機変性ポリシロキサン、ポリアクリレートをあげることができる。好適な実施の態様において、銅粉ペースト中には、銅粉ペーストの質量に対して、銅粉の質量比率を30〜90%とし、ガラスフリットの質量比率を0〜5%とし、バインダー樹脂の質量比率を上記の通りにし、残部を有機溶剤、分散剤等として含有させることができる。混練は公知の手段を使用して行うことができる。好適な実施の態様において、易解砕性の銅粉からの銅粉ペーストの調製は、例えば特許文献1(WO2013/125659号)に開示されたペーストの調製にしたがって行うことができる。   In a preferred embodiment, as the binder resin used for the paste, for example, cellulose resin, acrylic resin, alkyd resin, polyvinyl alcohol resin, polyvinyl acetal, ketone resin, urea resin, melamine resin, polyester, polyamide, polyurethane You can raise The binder resin in the copper powder paste can be contained, for example, in a ratio of 0.1 to 10% with respect to the mass of the copper powder. In a preferred embodiment, the organic solvent is an alcohol solvent (for example, one or more selected from the group consisting of terpineol, dihydroterpineol, isopropyl alcohol, butyl carbitol, terpineryloxyethanol, dihydroterpineryloxyethanol), Glycol ether solvent (eg butyl carbitol), acetate solvent (eg butyl carbitol acetate, dihydroterpineol acetate, dihydro carbitol acetate, carbitol acetate, linalyl acetate, terpinyl acetate) ), Ketone solvents (eg methyl ethyl ketone), hydrocarbon solvents (eg one or more selected from the group consisting of toluene, cyclohexane), cellosolves (eg ethyl) Rosolve, one or more selected from the group consisting of butyl cellosolve), diethyl phthalate, or propyneato solvents (eg, dihydroterpinyl propionate, dihydrocarbyl propionate, and isobonyl propionate) One or more can be mentioned. In a preferred embodiment, a glass frit having a diameter of, for example, 0.1 to 10 μm, preferably 0.1 to 5.0 μm can be used. In a preferred embodiment, the dispersant can include, for example, oleic acid, stearic acid and oleylamine. In a preferred embodiment, the antifoaming agent may include, for example, organically modified polysiloxane and polyacrylate. In a preferred embodiment, in the copper powder paste, the mass ratio of the copper powder is 30 to 90% and the mass ratio of the glass frit is 0 to 5% with respect to the mass of the copper powder paste. The mass ratio can be as described above, and the balance can be contained as an organic solvent, a dispersant and the like. Kneading can be carried out using known means. In a preferred embodiment, preparation of a copper powder paste from easily disintegratable copper powder can be performed, for example, according to the preparation of a paste disclosed in Patent Document 1 (WO2013 / 125659).

[焼結体]
好適な実施に態様において、本発明の易解砕性の銅粉を含む銅粉ペーストは、所望によりこれを印刷あるいは塗工した後に、焼結して、焼結体とすることができる。好適な実施に態様において、得られた焼結体は、その表面が滑らかなものとなっている。
[Sintered body]
In a preferred embodiment, the copper powder paste containing the easily crushable copper powder of the present invention can be sintered into a sintered body after optionally printing or coating it. In a preferred embodiment, the obtained sintered body has a smooth surface.

好適な実施の態様において、本発明の易解砕性の銅粉を含む銅粉ペーストを印刷した後に、乾燥した塗膜の表面粗さRaは、例えば0.01〜0.4μmの範囲、好ましくは0.01〜0.3μmの範囲とすることができる。焼結体の粗さは、実際にはペースト中の銅粉の分散性に加えて印刷条件も影響してくるので、本法では分散性を評価するという意味で乾燥塗膜の粗さを測定した。乾燥塗膜の表面粗さRaは、公知の手段によって測定することができ、具体的には、実施例において後述する手段と条件によって、測定することができる。このような塗膜を焼結して形成された焼結体は、電子回路や電子部品において、電極層、及び導電層等として、好適に使用できるものとなっている。好適な実施に態様において、本発明の易解砕性の銅粉を、焼結して、焼結体とすることができる。   In a preferred embodiment, after printing the copper powder paste containing the easily disintegratable copper powder of the present invention, the surface roughness Ra of the dried coating is, for example, in the range of 0.01 to 0.4 μm, preferably Can be in the range of 0.01 to 0.3 μm. Since the roughness of the sintered body actually affects the dispersibility of the copper powder in the paste as well as the printing conditions, this method measures the roughness of the dried coating in the sense of evaluating the dispersibility. did. The surface roughness Ra of the dried coating can be measured by a known means, and specifically, can be measured by the means and conditions described later in the examples. A sintered body formed by sintering such a coating film can be suitably used as an electrode layer, a conductive layer or the like in an electronic circuit or an electronic component. In a preferred embodiment, the easily crushable copper powder of the present invention can be sintered into a sintered body.

好適な実施に態様において、焼結は、公知の条件によって行うことができ、例えば200〜1000℃の範囲の温度で、非酸化性雰囲気下において、0.1〜10時間の加熱によって、焼結することができる。   In a preferred embodiment, the sintering can be carried out according to known conditions, for example by heating at a temperature in the range of 200-1000 ° C., under a non-oxidizing atmosphere, for a period of 0.1-10 hours can do.

[湿式法によって製造された銅粉]
好適な実施の態様において、pH処理工程に供される銅粉は、湿式法によって製造された銅粉である。湿式法には、いわゆる不均化法といわゆる化学還元法が含まれる。
[Copper powder manufactured by wet process]
In a preferred embodiment, the copper powder subjected to the pH treatment step is a copper powder produced by a wet process. Wet methods include so-called disproportionation methods and so-called chemical reduction methods.

好適な実施の態様において、不均化法による銅粉の製造方法として、例えば特許文献2(特許第6297018号)に開示された方法を使用することができる。好適な実施の態様において、不均化法による銅粉の製造方法として、例えば、アラビアゴムの添加剤を含む水性溶媒中に亜酸化銅を添加してスラリーを作製する工程、スラリーに希硫酸を5秒以内に一度に添加して不均化反応を行う工程、を含む製造方法をあげることができる。好適な実施の態様において、上記スラリーは、室温(20〜25℃)以下に保持するとともに、同様に室温以下に保持した希硫酸を添加して、不均化反応を行うことができる。好適な実施の態様において、上記スラリーは、7℃以下に保持するとともに、同様に7℃以下に保持した希硫酸を添加して、不均化反応を行うことができる。好適な実施の態様において、希硫酸の添加は、pH2.5以下、好ましくはpH2.0以下、さらに好ましくはpH1.5以下となるように、添加することができる。好適な実施の態様において、スラリーへの希硫酸の添加は、5分以内、好ましくは1分以内、さらに好ましくは30秒以内、さらに好ましくは10秒以内、さらに好ましくは5秒以内となるように、添加することができる。好適な実施の態様において、上記不均化反応は10分間で終了するものとすることができる。好適な実施の態様において、上記スラリー中のアラビアゴムの濃度は、0.229〜1.143g/Lとすることができる。上記亜酸化銅としては、公知の方法で使用された亜酸化銅、好ましくは亜酸化銅粒子を使用することができ、この亜酸化銅粒子の粒径等は不均化反応によって生成する銅粉の粒子の粒径等とは直接に関係がないので、粗粒の亜酸化銅粒子を使用することができる。この不均化反応の原理は次のようなものである:
Cu2O+H2SO4 → Cu↓+CuSO4+H2
In a preferred embodiment, for example, the method disclosed in Patent Document 2 (Japanese Patent No. 6297018) can be used as a method for producing a copper powder by the disproportionation method. In a preferred embodiment, as a method of producing a copper powder by the disproportionation method, for example, a step of preparing a slurry by adding copper suboxide in an aqueous solvent containing an additive of gum arabic, preparing a slurry with diluted sulfuric acid The production method can be mentioned, which includes the steps of performing disproportionation reaction at once within 5 seconds. In a preferred embodiment, the above slurry can be maintained at room temperature (20 to 25 ° C.) or less, and diluted sulfuric acid similarly maintained at room temperature or less can be added to carry out the disproportionation reaction. In a preferred embodiment, the above slurry can be maintained at 7 ° C. or less and dilute sulfuric acid similarly kept at 7 ° C. or less to perform disproportionation reaction. In a preferred embodiment, the addition of dilute sulfuric acid can be added so that the pH is 2.5 or less, preferably pH 2.0 or less, more preferably pH 1.5 or less. In a preferred embodiment, the addition of dilute sulfuric acid to the slurry is within 5 minutes, preferably within 1 minute, more preferably within 30 seconds, more preferably within 10 seconds, more preferably within 5 seconds. , Can be added. In a preferred embodiment, the disproportionation reaction can be completed in 10 minutes. In a preferred embodiment, the concentration of gum arabic in the slurry can be 0.229 to 1.143 g / L. As the above-mentioned cuprous oxide, it is possible to use cuprous oxide used in a known method, preferably cuprous oxide particles, and the particle size of this cuprous oxide particle is a copper powder formed by disproportionation reaction. Coarse-grained cuprous oxide particles can be used because they are not directly related to the particle size of the particles of. The principle of this disproportionation reaction is as follows:
Cu 2 O + H 2 SO 4 → Cu + + CuSO 4 + H 2 O

このようにして得られた銅粉は、洗浄した後に、スラリーの形態で、上記pH処理工程に供してもよく、いったん乾燥した銅粉の形態とした後に、上記pH処理工程に供してもよい。   The copper powder thus obtained may be washed and then subjected to the above pH treatment step in the form of a slurry, or may be subjected to the above pH treatment step after being once dried in the form of a copper powder. .

好適な実施の態様において、化学還元法による銅粉の製造方法として、例えば特許文献3(特許第4164009号)に開示された方法を使用することができる。好適な実施の態様において、化学還元法による銅粉の製造方法として、例えば、アラビアゴム2gを2900mLの純水に添加した後、硫酸銅125gを添加し撹拌しながら、80%ヒドラジン一水和物を360mL添加して、ヒドラジン一水和物の添加後〜3時間かけて室温から60℃に昇温し、更に3時間かけて酸化銅を反応させて、反応終了後、得られたスラリーをヌッチェでろ過し、次いで純水及びメタノールで洗浄し、更に乾燥させて銅粉を得ることができる。このように得られた乾燥した銅粉を、上記pH処理工程に供してもよく、スラリーの形態のままで、上記pH処理工程に供してもよい。   In a preferred embodiment, for example, the method disclosed in Patent Document 3 (Japanese Patent No. 4164009) can be used as a method for producing a copper powder by a chemical reduction method. In a preferred embodiment, as a method for producing a copper powder by a chemical reduction method, for example, after adding 2 g of gum arabic to 2900 mL of pure water, 80 g of hydrazine monohydrate while adding and stirring 125 g of copper sulfate The temperature is raised from room temperature to 60 ° C. over 3 hours after addition of hydrazine monohydrate, copper oxide is allowed to react for 3 hours more, and after completion of the reaction, the resulting slurry is , And then washed with pure water and methanol, and then dried to obtain a copper powder. The dried copper powder thus obtained may be subjected to the above pH treatment step, or may be subjected to the above pH treatment step in the form of a slurry.

[好適な実施の態様]
本発明は次の(1)以下の実施態様を含む。
(1)
湿式法によって製造された銅粉であって、ゼータ電位の絶対値が20mV以上である、銅粉。
(2)
BET比表面積が2m2-1以上である、(1)に記載の銅粉。
(3)
炭素付着量が0.1〜0.6%の範囲にある、(1)〜(2)のいずれかに記載の銅粉。
(4)
TMA1%収縮温度が200〜500℃の範囲にある、(1)〜(3)のいずれかに記載の銅粉。
(5)
タップ密度が3gcm-3未満である、(1)〜(4)のいずれかに記載の銅粉。
(6)
銅粉が易解砕性銅粉である、(1)〜(5)のいずれかに記載の銅粉。
(7)
銅粉が積層造形用銅粉である、(1)〜(6)のいずれかに記載の銅粉。
(8)
(1)〜(7)のいずれかに記載の銅粉を含む、銅粉ペースト。
(9)
銅粉ペーストがインクジェット印刷用インクである、(8)に記載の銅粉ペースト。
(10)
(1)〜(7)のいずれかに記載の銅粉、又は(8)〜(9)のいずれかに記載の銅粉ペーストが焼結されてなる、焼結体。
(11)
湿式法によって製造された銅粉を、pH8〜14のアルカリ水溶液、又はpH0〜4の酸水溶液と接触させる、pH処理工程、
を含む、銅粉に易解砕性を付与する方法。
(12)
湿式法によって製造された銅粉を、pH8〜14のアルカリ水溶液、又はpH0〜4の酸水溶液と接触させる、pH処理工程、
を含む、易解砕性銅粉の製造方法。
Preferred Embodiment
The present invention includes the following (1) embodiments below.
(1)
Copper powder manufactured by a wet method, wherein the absolute value of zeta potential is 20 mV or more.
(2)
The copper powder according to (1), having a BET specific surface area of 2 m 2 g −1 or more.
(3)
The copper powder in any one of (1)-(2) whose carbon adhesion amount is in the range of 0.1 to 0.6%.
(4)
The copper powder in any one of (1)-(3) whose TMA1 shrinkage | contraction temperature is in the range of 200-500 degreeC.
(5)
The copper powder in any one of (1)-(4) whose tap density is less than 3 gcm < -3 >.
(6)
The copper powder in any one of (1)-(5) whose copper powder is an easily disintegrated copper powder.
(7)
The copper powder in any one of (1)-(6) whose copper powder is a copper powder for layered modeling.
(8)
The copper-powder paste containing the copper powder in any one of (1)-(7).
(9)
The copper powder paste according to (8), wherein the copper powder paste is an ink for inkjet printing.
(10)
The sintered compact formed by sintering the copper powder in any one of (1)-(7), or the copper powder paste in any one of (8)-(9).
(11)
A pH treatment step of bringing a copper powder produced by a wet method into contact with an aqueous alkali solution of pH 8 to 14 or an aqueous acid solution of pH 0 to 4,
A method of imparting easy disintegration to copper powder, including
(12)
A pH treatment step of bringing a copper powder produced by a wet method into contact with an aqueous alkali solution of pH 8 to 14 or an aqueous acid solution of pH 0 to 4,
A method of producing easily disintegratable copper powder, including

したがって、本発明は、セラミック積層体に設けられた外部電極、セラミック積層体に外部電極が設けられてなる積層セラミック製品を含み、積層セラミックコンデンサ、及び積層セラミックインダクタを含む。   Therefore, the present invention includes an external electrode provided on a ceramic laminate, a laminated ceramic product in which the external electrode is provided on the ceramic laminate, and a laminated ceramic capacitor and a laminated ceramic inductor.

以下に実施例をあげて、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されるものではない。   The present invention will be described in more detail by way of the following examples. The present invention is not limited to the following examples.

[実施例1]
[不均化法による銅粉の製造 (製粉法A)]
亜酸化銅1kg、アラビアゴム4g、純水7Lからなるスラリーに、25vol%の希硫酸2.5Lを瞬間的に添加し、500rpmで10分間撹拌した。この操作で得られた銅粉が十分に沈降した後に上澄み液を取り除き、純水を7L加え500rpm、10分間撹拌した。上澄み液中のCu2+由来のCu濃度が1g/Lを下回るまでこの操作を繰り返した。その後、デカンテーションして、不均化法による銅粉のスラリーを得た。不均化法による銅粉を表1の製法として「A」と記載する。
Example 1
[Production of copper powder by disproportionation method (Pulverizing method A)]
2.5 L of 25 vol% diluted sulfuric acid was instantaneously added to a slurry consisting of 1 kg of cuprous oxide, 4 g of gum arabic and 7 L of pure water, and stirred at 500 rpm for 10 minutes. After the copper powder obtained in this operation had sufficiently settled, the supernatant was removed, 7 L of pure water was added, and the mixture was stirred for 10 minutes at 500 rpm. This operation was repeated until the Cu concentration derived from Cu 2+ in the supernatant was less than 1 g / L. Then, it decanted and obtained the slurry of the copper powder by the disproportionation method. The copper powder by the disproportionation method is described as "A" as a manufacturing method of Table 1.

[pH処理]
デカンテーションして得られた上澄み液を取り除き、沈降していた銅粉のスラリー500g(湿質量)を、pH8へ調製したアンモニア水1L中に投入して、攪拌した。攪拌は、25℃で1時間行った。その後、吸引ろ過によって固液分離して、pH処理された銅粉のケーキを得た。得られたケーキを、ろ過後の純水のpHが8を下回ることを目安として純水によって洗浄した。
[PH treatment]
The supernatant liquid obtained by decantation was removed, and 500 g (wet mass) of the precipitated copper powder slurry was poured into 1 L of aqueous ammonia adjusted to pH 8 and stirred. Stirring was performed at 25 ° C. for 1 hour. Thereafter, solid-liquid separation was performed by suction filtration to obtain a pH-treated copper powder cake. The obtained cake was washed with pure water with the pH of the pure water after filtration being less than 8.

[乾燥と解砕]
洗浄後の銅粉のケーキを、100℃で窒素雰囲気下で乾燥して、pH処理された銅粉の乾燥ケーキを得た。
得られた乾燥ケーキを、乳棒と乳鉢によって粗解砕した。このようにして、実施例1による銅粉を得た。
[Drying and crushing]
The washed copper powder cake was dried at 100 ° C. under a nitrogen atmosphere to obtain a pH-treated dried copper powder cake.
The resulting dried cake was roughly crushed with a pestle and mortar. Thus, a copper powder according to Example 1 was obtained.

[タップ密度]
実施例1による銅粉に対して、次の条件でタップ密度を測定した。
ホソカワミクロン(株)パウダテスタPT−Xを使って測定した。10ccのカップにガイドを取り付けて粉体を入れ、1000回タップさせて、ガイドを外して、10ccの容積を上回っている部分を摺り切り、容器に入っている粉体の重量を測定し、タップ密度(固めかさ密度)を求めた。
Tap density
The tap density of the copper powder according to Example 1 was measured under the following conditions.
It measured using Hosokawa Micron Ltd. powder tester PT-X. Attach a guide to a 10cc cup, insert the powder, tap 1000 times, remove the guide, scrape the part exceeding the 10cc volume, measure the weight of the powder in the container, tap The density (solidified bulk density) was determined.

[BET比表面積]
実施例1による銅粉に対して、マイクロトラック・ベル社のBELSORP−miniIIを使い、真空中で200℃、5時間加熱する前処理後にBET比表面積を測定した。
[BET specific surface area]
The BET specific surface area of the copper powder according to Example 1 was measured after pretreatment using a Microtrac Bell BELSORP-miniII and heating in a vacuum at 200 ° C. for 5 hours.

[炭素付着量]
実施例1による銅粉に対して、LECO社のCS600を使って燃焼法による炭素付着量を測定した。
[Carbon adhesion amount]
For the copper powder according to Example 1, the carbon deposition amount by the combustion method was measured using CS600 manufactured by LECO.

[TMA1%収縮温度]
実施例1による銅粉に対して、次の条件でTMA1%収縮温度を測定した。
ネッチ・ジャパン(株)製のTMA4000を使って測定した。その条件は、以下とした:
圧粉体密度:4.7g/cm3
測定雰囲気:窒素
昇温速度:5℃/min
荷重:10mN
[TMA 1% contraction temperature]
For the copper powder according to Example 1, the TMA 1% shrinkage temperature was measured under the following conditions.
It measured using TMA4000 made from Netti Japan Co., Ltd. product. The condition is as follows:
Green density: 4.7 g / cm 3
Measurement atmosphere: Nitrogen Temperature rising rate: 5 ° C / min
Load: 10mN

[ゼータ電位]
実施例1による銅粉に対して、pH7の条件で、次のようにゼータ電位を測定した。
マルバーンパナリティカルのゼータサイザーナノZSを用いて、粉体のゼータ電位を測定した。より具体的には、50mLの試料瓶に約50mgのサンプルを採取し、全量が50gとなるように0.1wt%ヘキサメタリン酸ナトリウム水溶液を注入し、3分間超音波照射した。その際、超音波照射装置として、アズワン製のUS−4Rを用い、出力を180W、周波数を40kHzに設定した。その後、900μLの0.1%ヘキサメタリン酸ナトリウム水溶液で100μLの上記分散液を希釈し、マイクロピペットで900μLを測定セルに注入した。液温は25℃に調整した。
[Zeta potential]
The zeta potential of the copper powder according to Example 1 was measured as follows at a pH of 7 conditions.
The zeta potential of the powder was measured using Malvern Panalytical's Zetasizer Nano ZS. More specifically, about 50 mg of a sample was collected in a 50 mL sample bottle, and a 0.1 wt% aqueous sodium hexametaphosphate solution was injected to a total amount of 50 g, and sonicated for 3 minutes. At that time, an output was set to 180 W and a frequency was set to 40 kHz using a US-4R manufactured by As One as an ultrasonic wave irradiation device. Thereafter, 100 μL of the above dispersion was diluted with 900 μL of 0.1% aqueous sodium hexametaphosphate solution, and 900 μL was injected into the measurement cell with a micropipette. The liquid temperature was adjusted to 25 ° C.

[塗膜の表面粗さRa]
あらかじめターピネオールとエチルセルロースを自転公転ミキサー、および3本ロールに通して十分に混練したビークルと、オレイン酸、および実施例1の銅粉の比率が銅粉:エチルセルロース:オレイン酸:ターピネオール=80:2.3:1.6:16.1(重量比)となるように混合し、自転公転ミキサーで予備混練した後、3本ロールに通し(仕上げロールギャップ5μm)、自転公転ミキサーを使って脱泡した。得られたペーストを25μmギャップのアプリケーターを使ってスライドガラス上に塗膜し、120℃、10分で乾燥させた。得られた塗膜の塗工方向のRaをJIS B 0601−2001に従って触針式粗さ計で計測し、5点平均で算出した。
[Surface Roughness Ra of Coating]
A mixture of a terpineol and an ethylcellulose in a rotation and revolution mixer, and a vehicle fully kneaded with three rolls, a ratio of oleic acid and copper powder of Example 1 is copper powder: ethylcellulose: oleic acid: terpineol = 80: 2. The mixture was mixed so as to be 3: 1.6: 16.1 (weight ratio), pre-kneaded with a rotation revolution mixer, passed through three rolls (finish roll gap 5 μm), and defoamed using a rotation revolution mixer . The obtained paste was coated on a slide glass using a 25 μm gap applicator and dried at 120 ° C. for 10 minutes. Ra of the coating direction of the obtained coating film was measured with a stylus type roughness meter according to JIS B 0601-2001, and was calculated by 5-point average.

[結果]
実施例1の銅粉に対して上記測定した結果を、表1にまとめて示す。
[result]
The results of the above measurement for the copper powder of Example 1 are summarized in Table 1.

[実施例2〜6]
[不均化法による銅粉の製造 (製粉法A)]
実施例1と同様にして、不均化法による銅粉のスラリーを得た。
[Examples 2 to 6]
[Production of copper powder by disproportionation method (Pulverizing method A)]
In the same manner as in Example 1, a slurry of copper powder was obtained by the disproportionation method.

[pH処理]
処理に用いたアンモニア水のpHを、実施例1とは変更するか(実施例2〜4)、あるいはアンモニア水に代えてpH1へ調製した希硫酸(実施例5)又はpH13へ調製した水酸化カリウム水溶液で1時間撹拌後、吸引ろ過で固液分離を行い、pH1の希硫酸5Lで回収ケーキをろ過し、さらにろ液のpHが5を上回るまでケーキを純水で洗浄した(実施例6)ことを除いて、実施例1と同様にして、pH処理を行って、pH処理された銅粉のスラリーを得た。
その後、吸引ろ過によって固液分離して、pH処理された銅粉のケーキを得た。得られたケーキを、ろ過後の純水のpHが5を上回ることを目安として純水によって洗浄した。
ただし、実施例6については、得られたケーキの洗浄を純水に代えて、銅粉100gに対してpH1の希硫酸1250mLを使用して、吸引ろ過によってケーキ洗浄した。
実施例2〜6において用いたpHの値を、それぞれ表1にまとめて示す。なお、pH調製は、アンモニア及び希硫酸を適宜添加して行った。また、pH処理の処理方法について、さらに表2にまとめて示す。
[PH treatment]
The pH of the ammonia water used in the treatment is either changed from that of Example 1 (Examples 2 to 4), or diluted sulfuric acid adjusted to pH 1 instead of ammonia water (Example 5) or hydroxylated to pH 13 After stirring for 1 hour with a potassium aqueous solution, solid-liquid separation was performed by suction filtration, the recovered cake was filtered with 5 L of dilute sulfuric acid of pH 1, and the cake was further washed with pure water until the pH of the filtrate exceeded 5 (Example 6) PH treatment was carried out in the same manner as in Example 1 except for obtaining a slurry of pH-treated copper powder.
Thereafter, solid-liquid separation was performed by suction filtration to obtain a pH-treated copper powder cake. The obtained cake was washed with pure water as a standard that the pH of pure water after filtration exceeded 5.
However, for Example 6, the cake was washed with suction water using 1250 mL of dilute sulfuric acid of pH 1 per 100 g of copper powder, replacing the washing of the obtained cake with pure water.
The pH values used in Examples 2 to 6 are summarized in Table 1 respectively. The pH was adjusted by appropriately adding ammonia and dilute sulfuric acid. Further, Table 2 summarizes the treatment method of pH treatment.

[乾燥と解砕]
銅粉のケーキを、実施例1と同様に処理して、乾燥ケーキを得て、これを粗粉砕して、実施例2〜6の銅粉を得た。
[Drying and crushing]
The copper powder cake was treated in the same manner as in Example 1 to obtain a dry cake, which was roughly crushed to obtain copper powders of Examples 2 to 6.

[測定と結果]
実施例2〜6の銅粉に対して、実施例1と同様にして、測定した結果を、表1にまとめて示す。
[Measurement and result]
The measurement results of the copper powders of Examples 2 to 6 in the same manner as in Example 1 are summarized in Table 1.

[実施例7]
[還元法による銅粉の製造 (製粉法B)]
特許文献3(特許第4164009号)に従い、化学還元法によって銅粉を得た。すなわち、アラビアゴム2gを2900mLの純水に添加した後、硫酸銅125gを添加し撹拌しながら、80%ヒドラジン一水和物を360mL添加した。ヒドラジン一水和物の添加後〜3時間かけて室温から60℃に昇温し、更に3時間かけて酸化銅を反応させた。反応終了後、得られたスラリーをヌッチェでろ過し、ろ液のpHが7台になるまで純水ろ過を繰り返し、銅粉スラリーを得た。このようにして、還元法による銅粉のスラリーを得た。還元法による銅粉を表1の製法として「B」と記載する。
[Example 7]
[Production of copper powder by reduction method (Pulverizing method B)]
In accordance with Patent Document 3 (Japanese Patent No. 4164 009), a copper powder was obtained by a chemical reduction method. That is, 2 g of gum arabic was added to 2900 mL of pure water, and then 125 g of copper sulfate was added and, while stirring, 360 mL of 80% hydrazine monohydrate was added. The temperature was raised from room temperature to 60 ° C. over 3 hours after addition of hydrazine monohydrate, and copper oxide was allowed to react for 3 hours more. After completion of the reaction, the obtained slurry was filtered with a Nutche, pure water filtration was repeated until the pH of the filtrate became 7 and a copper powder slurry was obtained. Thus, a slurry of copper powder was obtained by the reduction method. The copper powder by a reduction method is described as "B" as a manufacturing method of Table 1.

[pH処理]
得られた銅粉のスラリーに対して、処理に用いたアンモニア水のpHを、実施例1とは変更したことを除いて、実施例1と同様にして、pH処理を行って、pH処理された銅粉のケーキを得た。得られたケーキを、実施例1と同様にして、純水によって洗浄した。実施例7において用いたpHの値を、表1に示す。
[PH treatment]
The obtained slurry of copper powder was subjected to pH treatment in the same manner as in Example 1, except that the pH of the ammonia water used in the treatment was changed from that in Example 1, I got a cake of dried copper powder. The obtained cake was washed with pure water in the same manner as in Example 1. The pH values used in Example 7 are shown in Table 1.

[乾燥と解砕]
銅粉のケーキを、実施例1と同様に処理して、乾燥ケーキを得て、これを粗粉砕して、実施例7の銅粉を得た。
[Drying and crushing]
The copper powder cake was treated in the same manner as in Example 1 to obtain a dry cake, which was roughly crushed to obtain a copper powder of Example 7.

[測定と結果]
実施例7の銅粉に対して、実施例1と同様にして、測定した結果を、表1に示す。
[Measurement and result]
The measurement results of the copper powder of Example 7 in the same manner as in Example 1 are shown in Table 1.

[実施例8〜9]
[還元法による銅粉の製造 (製粉法B)]
実施例7と同様にして、還元法による銅粉のスラリーを得た。
[Examples 8 to 9]
[Production of copper powder by reduction method (Pulverizing method B)]
In the same manner as in Example 7, a slurry of copper powder was obtained by a reduction method.

[pH処理]
アンモニア水に代えてpH3又はpH1へ調製した希硫酸(実施例8〜9)を使用したことを除いて、実施例1と同様にして、pH処理を行って、pH処理された銅粉のケーキを得た。得られたケーキを、ろ液のpHが5を上回るまで純水で洗浄した。実施例8〜9において用いたpHの値を、それぞれ表1にまとめて示す。
[PH treatment]
The pH-treated copper powder cake was pH-treated in the same manner as in Example 1 except that dilute aqueous sulfuric acid (Examples 8 to 9) adjusted to pH 3 or pH 1 was used instead of aqueous ammonia. I got The obtained cake was washed with pure water until the pH of the filtrate exceeded 5. The pH values used in Examples 8 to 9 are summarized in Table 1 respectively.

[乾燥と解砕]
pH処理された銅粉のスラリーを、実施例1と同様にして、乾燥ケーキを得て、これを粗粉砕して、実施例8〜9の銅粉を得た。
[Drying and crushing]
A slurry of pH-treated copper powder was obtained in the same manner as in Example 1 to obtain a dried cake, which was roughly pulverized to obtain copper powders of Examples 8 to 9.

[測定と結果]
実施例8〜9の銅粉に対して、実施例1と同様にして、測定した結果を、表1にまとめて示す。
[Measurement and result]
The results of measurement of the copper powders of Examples 8 to 9 in the same manner as in Example 1 are summarized in Table 1.

[比較例1]
[不均化法による銅粉の製造 (製粉法A)]
実施例1と同様にして、不均化法による銅粉のスラリーを得た。
Comparative Example 1
[Production of copper powder by disproportionation method (Pulverizing method A)]
In the same manner as in Example 1, a slurry of copper powder was obtained by the disproportionation method.

[乾燥と解砕]
銅粉のスラリーに対して、pH処理を行うことなく、実施例1と同様にして、乾燥ケーキを得て、これを粗粉砕して、比較例1の銅粉を得た。
比較例1の銅粉に対して、実施例1と同様にして、測定した結果を、表1にまとめて示す。
[Drying and crushing]
A dried cake was obtained in the same manner as in Example 1 without conducting pH treatment on the slurry of the copper powder, and this was roughly crushed to obtain a copper powder of Comparative Example 1.
The measurement results of the copper powder of Comparative Example 1 in the same manner as Example 1 are summarized in Table 1.

[比較例2]
[還元法による銅粉の製造 (製粉法B)]
実施例7と同様にして、還元法による銅粉のスラリーを得た。
Comparative Example 2
[Production of copper powder by reduction method (Pulverizing method B)]
In the same manner as in Example 7, a slurry of copper powder was obtained by a reduction method.

[乾燥と解砕]
銅粉のスラリーに対して、pH処理を行うことなく、実施例1と同様にして、乾燥ケーキを得て、これを粗粉砕して、比較例2の銅粉を得た。
比較例2の銅粉に対して、実施例1と同様にして、測定した結果を、表1にまとめて示す。
[Drying and crushing]
A dried cake was obtained in the same manner as in Example 1 without conducting pH treatment on the slurry of the copper powder, and this was roughly crushed to obtain a copper powder of Comparative Example 2.
The measurement results of the copper powder of Comparative Example 2 in the same manner as Example 1 are summarized in Table 1.

Figure 0006549298
Figure 0006549298

Figure 0006549298
Figure 0006549298

[粘度測定試験]
実施例3と比較例1の銅粉を用いて、実施例1と同様にしてペーストを作製した。得られたペーストの粘度を、E型粘度計MCR102を使って測定した(2°のコーンプレート、25℃、せん断速度範囲0.01〜1000s-1)。この結果を図1に示す。図1に示すように、0.2s-1以下の低せん断速度領域では実施例3の銅粉を使ったペーストの粘度が高く、10s-1を超えるせん断速度領域では実施例3の銅粉を使ったペーストの方が粘度が低い。このように、本発明による銅粉のペーストは、低せん断速度領域の挙動から形状保持性、高せん断速度領域の挙動から印刷性に優れたものとなっていた。
[Viscosity test]
Using the copper powder of Example 3 and Comparative Example 1, a paste was prepared in the same manner as Example 1. The viscosity of the obtained paste was measured using an E-type viscometer MCR 102 (2 ° cone plate, 25 ° C., shear rate range 0.01 to 1000 s -1 ). The results are shown in FIG. As shown in FIG. 1, the viscosity of the paste using the copper powder of Example 3 is high in the low shear rate region of 0.2 s -1 or less, and in the shear rate region of more than 10 s -1 , the copper powder of Example 3 is used. The paste used has a lower viscosity. As described above, the copper powder paste according to the present invention is excellent in printability from the behavior of the low shear rate region, the shape retention, and the behavior of the high shear rate region.

本発明は、易解砕性の銅粉を提供する。本発明は産業上有用な発明である。   The present invention provides an easily crushed copper powder. The present invention is an industrially useful invention.

Claims (4)

湿式法によって製造された銅粉(ただし、銅粉は、湿式法によって製造された後に、乾燥ケーキの形態を経たことがない銅粉である)を、pH8〜14のアルカリ水溶液、又はpH0〜4の酸水溶液と接触させる、pH処理工程、
を含む、銅粉に易解砕性を付与する方法。
A copper powder produced by a wet method (however, the copper powder is a copper powder which has not been in the form of a dry cake after being produced by a wet method) , an alkaline aqueous solution of pH 8 to 14, or pH 0 to 4 Treatment with aqueous acid solution, pH treatment step,
A method of imparting easy disintegration to copper powder, including
湿式法によって製造された銅粉(ただし、銅粉は、湿式法によって製造された後に、乾燥ケーキの形態を経たことがない銅粉である)を、pH8〜14のアルカリ水溶液、又はpH0〜4の酸水溶液と接触させる、pH処理工程、
を含む、易解砕性銅粉の製造方法。
A copper powder produced by a wet method (however, the copper powder is a copper powder which has not been in the form of a dry cake after being produced by a wet method) , an alkaline aqueous solution of pH 8 to 14, or pH 0 to 4 Treatment with aqueous acid solution, pH treatment step,
A method of producing easily disintegratable copper powder, including
湿式法によって製造された銅粉が、銅粉スラリーの形態である、請求項1〜2のいずれかに記載の方法。The method according to any one of claims 1 to 2, wherein the copper powder produced by the wet method is in the form of a copper powder slurry. pH処理工程の後に、After the pH treatment step
pH処理された銅粉を、洗浄し、乾燥することによって乾燥ケーキを得る工程、obtaining a dry cake by washing and drying the pH-treated copper powder;
得られた乾燥ケーキを粗粉砕して、易解砕性銅粉を得る工程、Roughly crushing the resulting dried cake to obtain easily disintegratable copper powder,
を含む、請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, comprising
JP2018177901A 2018-09-21 2018-09-21 Pulverizable copper powder and method for producing the same Active JP6549298B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018177901A JP6549298B1 (en) 2018-09-21 2018-09-21 Pulverizable copper powder and method for producing the same
KR1020217011008A KR102413398B1 (en) 2018-09-21 2019-07-24 Easily disintegratable copper powder and manufacturing method thereof
US17/278,096 US11920215B2 (en) 2018-09-21 2019-07-24 Easily-crushable copper powder and manufacturing method therefor
CN201980061341.0A CN112739478B (en) 2018-09-21 2019-07-24 Easily-crushable copper powder and method for producing same
EP19863336.4A EP3854500A4 (en) 2018-09-21 2019-07-24 Easily-crushable copper powder and manufacturing method therefor
PCT/JP2019/029088 WO2020059291A1 (en) 2018-09-21 2019-07-24 Easily-crushable copper powder and manufacturing method therefor
TW108126720A TWI719560B (en) 2018-09-21 2019-07-29 Method for imparting easy pulverization to copper powder and manufacturing method of easy pulverization copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018177901A JP6549298B1 (en) 2018-09-21 2018-09-21 Pulverizable copper powder and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019059248A Division JP7208842B2 (en) 2019-03-26 2019-03-26 Easily crushable copper powder and its production method

Publications (2)

Publication Number Publication Date
JP6549298B1 true JP6549298B1 (en) 2019-07-24
JP2020050888A JP2020050888A (en) 2020-04-02

Family

ID=67390304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018177901A Active JP6549298B1 (en) 2018-09-21 2018-09-21 Pulverizable copper powder and method for producing the same

Country Status (7)

Country Link
US (1) US11920215B2 (en)
EP (1) EP3854500A4 (en)
JP (1) JP6549298B1 (en)
KR (1) KR102413398B1 (en)
CN (1) CN112739478B (en)
TW (1) TWI719560B (en)
WO (1) WO2020059291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920215B2 (en) 2018-09-21 2024-03-05 Jx Metals Corporation Easily-crushable copper powder and manufacturing method therefor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235193B2 (en) * 1972-12-29 1977-09-07
US3890182A (en) * 1973-04-04 1975-06-17 Johns Manville Method and apparatus for applying a cover to a conduit
JP2911429B2 (en) * 1997-06-04 1999-06-23 三井金属鉱業株式会社 Production method of copper fine powder
JP4164009B2 (en) * 2003-08-13 2008-10-08 石原産業株式会社 Copper powder, copper paste and paint using the same, electrode
JP5144022B2 (en) 2006-03-24 2013-02-13 三井金属鉱業株式会社 Copper powder manufacturing method and copper powder obtained by the manufacturing method
TW200806587A (en) * 2006-07-28 2008-02-01 Chang Alex Copper recovery method and system therefor
KR20100024431A (en) * 2007-06-28 2010-03-05 닛코 킨조쿠 가부시키가이샤 Spherical copper fine powder and process for production of the same
CN101513675B (en) * 2009-04-03 2010-12-01 中南大学 Preparation method of ultrafine copper powder for conductive paste
JP5439995B2 (en) * 2009-07-10 2014-03-12 旭硝子株式会社 Method for producing surface-modified copper particles, composition for forming conductor, method for producing conductor film and article
SG10201405421WA (en) * 2009-09-16 2014-10-30 Hitachi Chemical Co Ltd Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
WO2013118892A1 (en) 2012-02-08 2013-08-15 Jx日鉱日石金属株式会社 Surface treated metal powder, and manufacturing method for same
WO2013118893A1 (en) * 2012-02-08 2013-08-15 Jx日鉱日石金属株式会社 Surface-treated metal powder and manufacturing method therefor
CN104115237B (en) 2012-02-21 2018-09-07 Jx日矿日石金属株式会社 Metal paste mixing and its manufacturing method
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
WO2014104032A1 (en) * 2012-12-25 2014-07-03 戸田工業株式会社 Method for producing copper powder, copper powder, and copper paste
JP6234075B2 (en) * 2013-06-14 2017-11-22 日揮触媒化成株式会社 Multilayer ceramic capacitor internal electrode layer forming paste and multilayer ceramic capacitor
JP5843821B2 (en) * 2013-08-13 2016-01-13 Jx日鉱日石金属株式会社 Metal powder paste and method for producing the same
JP6389628B2 (en) * 2014-03-31 2018-09-12 三井金属鉱業株式会社 Copper powder, method for producing the same, and conductive composition containing the same
JP2017106088A (en) * 2015-12-11 2017-06-15 住友金属鉱山株式会社 Method for producing copper powder and method for producing conductive paste using the same
JP6549298B1 (en) 2018-09-21 2019-07-24 Jx金属株式会社 Pulverizable copper powder and method for producing the same
JP7208842B2 (en) 2019-03-26 2023-01-19 Jx金属株式会社 Easily crushable copper powder and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920215B2 (en) 2018-09-21 2024-03-05 Jx Metals Corporation Easily-crushable copper powder and manufacturing method therefor

Also Published As

Publication number Publication date
JP2020050888A (en) 2020-04-02
KR102413398B1 (en) 2022-06-27
EP3854500A4 (en) 2021-11-17
WO2020059291A1 (en) 2020-03-26
CN112739478A (en) 2021-04-30
US11920215B2 (en) 2024-03-05
US20210346950A1 (en) 2021-11-11
TW202012071A (en) 2020-04-01
TWI719560B (en) 2021-02-21
EP3854500A1 (en) 2021-07-28
CN112739478B (en) 2022-12-30
KR20210058910A (en) 2021-05-24

Similar Documents

Publication Publication Date Title
JP6274444B2 (en) Method for producing copper powder
JP4344001B2 (en) Composition containing fine silver particles, method for producing the same, method for producing fine silver particles, and paste having fine silver particles
JP5826435B1 (en) Copper powder
KR101236245B1 (en) Metal powder for electrically conductive paste and electrically conductive paste
KR20150088994A (en) Copper powder and method for producing same
JP5181434B2 (en) Fine copper powder and method for producing the same
CN113677458B (en) Mixed silver powder and conductive paste containing the same
TW201619400A (en) Silver powder, method for producing the same, and electrically conductive paste
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
JP5323461B2 (en) Fine metal powder for conductive paint and method for producing the same
JP6225783B2 (en) Copper fine particles, conductive paste composition, and production method thereof
JP7208842B2 (en) Easily crushable copper powder and its production method
JP6549298B1 (en) Pulverizable copper powder and method for producing the same
JP2009046708A (en) Silver powder
JPH1088207A (en) Silver powder and its manufacture
JP2013171745A (en) Copper powder paste and method of manufacturing the same
JP6975527B2 (en) Spherical silver powder and its manufacturing method, and conductive paste
TWI740290B (en) Surface-treated metal powder and its manufacturing method and conductive composition
WO2013136615A1 (en) Silver powder
WO2022190968A1 (en) Flaky silver powder and manufacturing method thereof, and electrically conductive paste
JP2022136985A (en) Flaky silver powder and method of producing the same, and conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181004

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6549298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250