JP6536752B2 - 光送信器および光キャリア周波数の制御方法 - Google Patents

光送信器および光キャリア周波数の制御方法 Download PDF

Info

Publication number
JP6536752B2
JP6536752B2 JP2018536525A JP2018536525A JP6536752B2 JP 6536752 B2 JP6536752 B2 JP 6536752B2 JP 2018536525 A JP2018536525 A JP 2018536525A JP 2018536525 A JP2018536525 A JP 2018536525A JP 6536752 B2 JP6536752 B2 JP 6536752B2
Authority
JP
Japan
Prior art keywords
frequency
optical
carrier
light
data stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018536525A
Other languages
English (en)
Other versions
JP2019506069A (ja
Inventor
タヤンディエ ドゥ ガボリ エマニュエル ル
タヤンディエ ドゥ ガボリ エマニュエル ル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JP2019506069A publication Critical patent/JP2019506069A/ja
Application granted granted Critical
Publication of JP6536752B2 publication Critical patent/JP6536752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光送信器および光キャリア周波数の制御方法に関し、特に、デジタル信号処理技術および多重光信号を用いた光送信器および光キャリア周波数の制御方法に関する。
デジタルシグナルプロセッサ(DSP)だけでなくアナログデジタル変換器およびデジタルアナログ変換器の帯域幅制限にもかかわらずチャネルレートを増加させるために、数個のサブキャリアを1チャネルに多重化することが行われている。例えば、最近、それぞれ200Gb/sレートの2つのサブキャリアを使って400Gb/sの信号が実現されている。ここで、これらの2つのサブキャリアは周波数的に多重化された光信号であり、1チャネルの一部とみなされる。
数個のチャネルまたはサブキャリア間の変調されていないスペクトル間隔は、情報の送信には使用されない。したがって、チャネルを圧縮しサブキャリアまたはキャリア間の間隔を縮小することは、光システムで伝送されるデータを増大させるための効率的な方法であり、したがってCAPEX(設備投資)を削減するための効率的な方法である。例えば、ナイキスト・スペクトル整形サブキャリアを用いるとスペクトル効率を向上させることができ、その結果、チャネル容量を増大させることができる。原理的には、これによりサブキャリアによって占有される帯域幅をチャネルのシンボルレートまで縮小することが可能である。したがって、より多くのサブキャリアを同じ帯域幅で多重化すれば、スペクトル効率、すなわち光システムの容量を増大させることができる。ナイキスト・スペクトル整形サブキャリアは、出典によりナイキストチャネル、ナイキストWDM(波長分割多重)、ナイキスト整形、またはナイキストパルスチャネルと呼ばれる。
さらに、サブキャリアに対する整形技術がサブナイキストとして知られており、これは出典によりファスターザンナイキスト、スーパーナイキスト、または光時間周波数パッキングと呼ばれる。これにより、サブキャリアまたはチャネルによって占有される帯域幅を、そのシンボルレート以下に縮小することができる。このような技術により、サブキャリアまたはチャネル間の間隔が非常に狭くなり、サブキャリア間で未使用のままの間隔は非常に小さく、現行の光システムでは典型的には数ギガヘルツである。
光通信システムは長期間にわたり使用されるが、典型的には、変化する環境において10年を超えて使用される。このような制約は、光源を含むシステムの構成部品の特性に影響を与える。例えば、波長可変レーザは光ネットワークにおいてサブキャリアまたはチャネルを生成するために用いられるが、製品寿命末期における周波数安定度は状態に応じて±1.25GHzから±2.5GHzとされている。このような場合における相対的変動の影響を2個のレーザは受けやすいが、その場合の周波数はそれぞれ2.5GHzおよび5GHzである。この各周波数は、超高密度システムにおけるチャネルまたはサブキャリア間の間隔より大きい。このような場合、サブキャリアの隣接チャネルが重なり合い、その結果、サブキャリア間の線形クロストークが生じて受信信号の品質を低下させ、最終的にはシステム性能または伝送距離を悪化させることになる。しかしながら、光キャリアの周波数が非常に高いので、チャネル周波数の偏差およびチャネル間の相対的な偏差を直接モニタすることは困難である。
特許文献1には、サブキャリア間の周波数間隔を制御可能なマルチキャリア光送信器の一例が記載されている。特許文献1に記載されたマルチキャリア光送信器は、送信CW(continuous wave:連続波)光源、モニタ光取り出し手段、光ベクトル変調手段、光合波手段、周波数間隔モニタ手段、および駆動信号生成手段を備える。
送信CW光源は、各サブチャネルに対応する光周波数のCW光を出力する。モニタ光取り出し手段は、送信CW光源の出力光の一部をタップし、モニタ光として周波数間隔モニタ手段に送る。周波数間隔モニタ手段は、モニタ光から送信CW光源の出力光間の周波数間隔を検出し、検出した周波数間隔からビート信号を含む周波数間隔情報を生成して駆動信号生成手段に送る。駆動信号生成手段は、周波数間隔情報と外部から入力される送信データ信号に基づいて、光ベクトル変調手段に対する駆動信号を生成する。光ベクトル変調手段は、入力した駆動信号および送信CW光源の出力光に基づいて、サブチャネル信号が所定の周波数間隔を有するようにサブチャネル信号を生成する。光合波手段は、光ベクトル変調手段から出力されるサブチャネル信号を多重化する。多重化されたサブチャネル信号は、マルチキャリア光信号として出力ポートから出力される。
特許文献1に記載されたマルチキャリア光送信器は、サブキャリア間の周波数間隔の所望値からのズレをフィードフォワード補償することが可能であるとしている。
特開2014−209685号公報
特許文献1に記載されたマルチキャリア光送信器は、送信CW光源から出力される各光ビームを周波数多重化する前にモニタする。したがって、複数のモニタ光取り出し手段、光ビームスプリッタ、光カプラおよびバランス型光受信器などの多数のモニタ構成部品を使う必要がある。すなわち、特許文献1に記載されたマルチキャリア光送信器は高コストのデバイスであり、大きな設置面積を必要とする。
さらに、特許文献1に記載されたマルチキャリア光送信器は、サブキャリア間の周波数間隔に相当する大きな周波数差で光ビームをモニタする。したがって、サブキャリア間の周波数間隔に相当する広帯域幅を有するバランス型光受信器などの高性能なモニタ構成部品を使う必要がある。すなわち、特許文献1に記載されたマルチキャリア光送信器は高コストのデバイスである。
上述したように、光キャリア周波数を高精度で制御するためには、多重光信号を用いる光送信器のコストおよびサイズが増大するという問題があった。
本発明の典型的な目的の一つは、光キャリア周波数を高精度で制御するためには、多重光信号を用いる光送信器のコストおよびサイズが増大するという上述した問題を解決する光送信器および光キャリア周波数の制御方法を提供することである。
本発明の好適な一の側面による光キャリア周波数の制御方法は、第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加え、第1の光キャリアと第2の光キャリアを多重して多重光信号を生成し、多重光信号をモニタして第1の光成分と第2の光成分の間の差周波数を有するモニタ信号を検出し、モニタ信号に従って、第1の光キャリアと第2の光キャリアの少なくとも一つのキャリア周波数を制御する。
本発明の好適な一の側面による光送信器は、第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加える光信号生成手段と、第1の光キャリアと第2の光キャリアを多重して多重光信号を生成する多重手段と、多重光信号をモニタして第1の光成分と第2の光成分の間の差周波数を有するモニタ信号を検出するモニタ手段と、モニタ信号に従って、第1の光キャリアと第2の光キャリアの少なくとも一つのキャリア周波数を制御する制御手段、とを有する。
本発明による好適な一の効果は、光キャリア周波数を高精度で制御することができる、多重光信号を用いる光送信器のコストおよびサイズが小さくなることである。
図1は、本発明の第1の実施形態に係る光送信器の構成を示すブロック図である。 図2は、多重光信号を用いる光伝送のシミュレーション結果を示す図である。 図3は、本発明の第2の実施形態に係る伝送システムの構成を示すブロック図である。 図4Aは、光信号に周波数成分を刻印するための、デジタル領域におけるデジタル信号処理の設定パラメータを示す模式図である。 図4Bは、光信号の周波数を調整するための、デジタル領域におけるデジタル信号処理の設定パラメータを示す模式図である。 図5Aは、2つのサブキャリアの場合に対して、刻印された周波数成分を有する光信号の光スペクトルを示す図である。 図5Bは、5つのサブキャリアの場合に対して、刻印された周波数成分を有する光信号の光スペクトルを示す図である。 図6は、本発明の第2の実施形態による、異なる周波数変動に対するモニタ信号のシミュレーション結果を示す図である。 図7は、本発明の第2の実施形態に係る伝送システムが備えるDSPの構成を示すブロック図である。 図8は、本発明の第3の実施形態に係る光ノード装置の構成を示すブロック図である。
以下に、図面を参照しながら、本発明の実施形態について説明する。図中の矢印の方向は方向の一例を示すものであり、ブロック間の信号の方向を限定するものではない。
<第1の実施形態>
図1は、本発明の第1の実施形態に係る光送信器の構成を示すブロック図である。光送信器10は、光信号生成手段としての光信号生成部20、多重手段としてのマルチプレクサ30、モニタ手段としてのモニタ部40、および制御手段としての制御部50を備える。
光信号生成部20は第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加える。マルチプレクサ30は、第1の光キャリアと第2の光キャリアを多重し、多重光信号を生成する。モニタ部40は、多重光信号をモニタし、第1の光成分と第2の光成分の間の差周波数を有するモニタ信号を検出する。そして制御部50は、モニタ信号に従って、第1の光キャリアと第2の光キャリアの少なくとも一つのキャリア周波数を制御する。
光送信器10は、わずかな追加リソースと小さな設置面積で実装可能であり、多重光信号の中心周波数を精密に制御することができる。すなわち、本実施形態に係る、多重光信号を用いる光送信器10は、コストおよび大きさが減少し、光キャリア周波数を高精度で制御することができる。その結果、隣接する光信号間の線形クロストークを回避することが可能になり、したがって、通信システムの全寿命期間で、受信信号の品質を向上させることが可能となる。
光信号生成部20は、第1の周波数を有する第1の周波数成分をバイナリデータストリームに加えることによって第1のデータストリームを生成し、第1のデータストリームに基づいて第1の光キャリアを変調することとしてもよい。光信号生成部20は、第2の周波数を有する第2の周波数成分をバイナリデータストリームに加えることによって第2のデータストリームを生成し、第2のデータストリームに基づいて第2の光キャリアを変調することとしてもよい。
制御部50は、モニタ信号を最大にするようにキャリア周波数を制御することとしてもよい。
第1の光成分は、第1の周波数を第1の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分を含むが、第1の光キャリアの中心周波数から第1の周波数を減じることによって得られる光周波数を有する光成分は含まないこととしてもよい。また、第2の光成分は、第1の光キャリアの中心周波数より大きい第2の光キャリアの中心周波数から第2の周波数を減じることによって得られる光周波数を有する光成分を含むが、第2の周波数を第2の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分は含まないこととしてもよい。
次に、本実施形態に係る光キャリア周波数の制御方法について説明する。
光キャリア周波数の制御方法において、第1の光成分が第1の光キャリアに加えられ、第2の光成分が第2の光キャリアに加えられる。その後、第1の光キャリアと第2の光キャリアは多重化されて多重光信号を生成する。そして、多重光信号がモニタされ、第1の光成分と第2の光成分の間の差周波数を有するモニタ信号を検出する。第1の光キャリアと第2の光キャリアの少なくとも一つのキャリア周波数はモニタ信号に従って制御される。
上述した光キャリア周波数の制御方法によれば、多重光信号を用いる光送信器のコストおよび大きさを小さくすることが可能になり、光キャリア周波数を高精度に制御することが可能になる。
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。
まず、多重光信号を用いる光伝送のシミュレーション結果を示す。図2に、隣接する光信号間に線形クロストークが生じている多重光信号を用いる光伝送のシミュレーション結果を示す。
シミュレーションした光チャネルは2つのサブキャリアから構成されている。各サブキャリアは、34Gbaud PM−16QAM(polarization−multiplexed 16 quadrature amplitude modulation)で変調されているが、トレーニングシンボルとFEC(forward error correction)符号とともにペイロードが200Gb/sを占めている。したがって、チャネルペイロードは400Gb/sである。各サブキャリアは、送信器でルート・レイズド・コサイン・フィルタリングし、受信器でルート・レイズド・コサイン・アダプティッド・フィルタリングしたナイキスト・スペクトル整形サブキャリアである。
曲線1はサブキャリア間の間隔が37.5GHzの場合を表し、曲線2はサブキャリア間の間隔が36GHzの場合を表す。各曲線は、高周波サブキャリアに対して25dB/0.1nmのOSNR(optical signal−to−noise ratio)で伝送した後の受信信号品質を表す。各曲線は、サブキャリアを生成するレーザの周波数偏差に対してプロットされている。
周波数偏差が−2.5GHzである場合、受信品質のペナルティは曲線1では既に0.4dBである。このことは、400Gb/s用の現行のレーザであっても、上述した仕様によって認められている最大のレーザ偏差が既に無視できないことを明らかにしている。曲線2で示されたさらに狭い36GHz間隔のサブキャリアに対しては、同等の劣化が僅か−1GHzの偏差で生じるが、この−1GHzの偏差は現行のレーザ光源のより厳しい仕様をかなり下回っている。
図2は、通信システムの寿命期間にわたって狭間隔の光信号に対しては、したがって、スペクトル整形された多重信号とともに周波数多重サブキャリアを用いるより大容量のシステムに対しては、従来技術では最適なチャネル性能が得られないことを示している。
図3は、本発明の第2の実施形態に係る伝送システム100の構成を示すブロック図である。
伝送システム100はN個の同一のトランシーバを含むが、第1トランシーバは101、第2トランシーバは102、第3トランシーバは103、そしてN番目のトランシーバは10(N)で示される。第1トランシーバ101は、バイナリデータストリーム111に従って光信号を出射し、受信した光信号に従ってバイナリデータストリーム121を生成する。同様に、第2トランシーバ102は、バイナリデータストリーム112に従って光信号を出射し、受信した光信号に従ってバイナリデータストリーム122を生成する。第3トランシーバ103は、バイナリデータストリーム113に従って光信号を出射し、受信した光信号に従ってバイナリデータストリーム123を生成する。最後に、N番目のトランシーバ10(N)は、バイナリデータストリーム11(N)に従って光信号を出射し、受信した光信号に従ってバイナリデータストリーム12(N)を生成する。
トランシーバ101〜10(N)によって生成された光信号はマルチプレクサ150によって多重される。マルチプレクサ150はアレイ導波路回折格子(arrayed waveguide grating:AWG)とすることができる。その代わりに、マルチプレクサ150は、波長選択スイッチ(wavelength selective switch:WSS)または光カプラを用いて実装することができる。マルチプレクサ150の出力は光カプラ152でタップされ、その出力191は伝送媒体を通って伝送される。この伝送媒体は光ファイバとすることができる。
一方、光信号192は伝送媒体から受信される。この伝送媒体は光ファイバとすることができる。光信号192はデマルチプレクサ151で多重分離される。デマルチプレクサ151はAWGとすることができる。その代わりに、デマルチプレクサ151はWSSまたは光カプラとすることができる。各多重分離光信号は、デマルチプレクサ151によりトランシーバ101〜10(N)のうちの1つに供給される。
トランシーバ101はDSP部130を備える。DSP部130はバイナリデータストリーム111を4つのアナログ信号へ変換し、これらの信号は偏波多重IQ(同位相および直交位相)変調器145でレーザ146から出射された光キャリアにおいて変調される。4個の線形ドライバ141、142、143、および144は、DSP130によって生成された4つのアナログ信号が偏波多重IQ変調器145での最適な変調のために十分な電気振幅を確実に有するようにする。
他方、トランシーバ101が受信した光信号はコヒーレント受信器148に供給され、コヒーレント受信器148において、この光信号はレーザ147から供給される局部発振光と混合される。コヒーレント受信器148の4本の増幅された電気出力は受信器DSP149により復調され、受信器DSP149はそれによりバイナリデータストリーム121を生成する。DSP部130と受信器DSP149は単一のDSPに集積することが可能である。
DSP部130はシリアライザ/デシリアライザ131を含み、シリアライザ/デシリアライザ131は、バイナリデータストリーム111をDSP部130によって処理される並列トリビュタリへ変換する。符号器132は、受信器における誤り訂正のために、論理データに対してFECコード符号化を行う。DSP部133は時間領域で様々な等化操作を行う。周波数領域部134は周波数領域で等化処理を行う。周波数領域部134は、高速フーリエ変換部135、周波数領域等化用のタップフィルタ136、特別加算部137、および逆高速フーリエ変換部138を備える。DSP部139は生成されたデジタルデータに対して時間領域で等化を行い、ルックアップテーブルによって信号の線形化を行う。デジタルアナログ変換器(DAC)140は、処理後のデジタル信号をDSP部130の4つのアナログ出力に変換する。
特別加算部137は生成されたデジタル信号に周波数成分を加える。この周波数成分は最終的には偏波多重IQ変調器145によって変調された光信号に加えられる。特別加算部137は、DSP部130から出力される信号における周波数FC1に周波数成分を生成するために用いられる。その結果、光周波数がF1+FC1である光成分が、トランシーバ101によって出射される光信号上に生成される。ここで、F1はレーザ146によって生成されるキャリアの周波数である。特別加算部137と同一のモジュールがトランシーバ102〜10(n)に実装されている。これらのモジュールは特定の周波数FC2〜FC(N)を加えるが、それに応じて、それぞれの光周波数がF2+FC2〜F(N)+FC(N)である光成分を生成する。ここで、F2〜F(N)はトランシーバ102〜10(N)によって使用される光キャリアの周波数である。
光カプラ152によってタップされた多重光信号はモニタ部160によってモニタされる。モニタ部160は狭帯域幅のフォトダイオード161およびフィルタ162を備える。フォトダイオード161はタップされた光信号を電気信号に変換する。フィルタ162はこの電気信号をフィルタする。フィルタ162は、低クロック速度のASIC(application specific integrated circuit)またはFPGA(field−programmable gate array)を用いてデジタル領域で実現することができる。それに代えて、アナログ方式でフィルタ162を実現することができる。
制御部163はトランシーバ101〜10(N)の周波数を制御する。制御部163は、周波数FC1を刻印する特別加算部137およびトランシーバ102〜10(N)内のそれぞれの特別加算部に命令する。モニタ部160と制御部163は、トランシーバ101〜10(N)を備える一台のトランスポンダに集積化することができる。それに代えて、モニタ部160と制御部163は、一台のノード装置またはトランシーバ101〜10(N)のそれぞれに集積化することができる。
図4Aおよび4Bは、デジタル領域におけるデジタル信号処理の設定パラメータを示す模式図である。具体的には、図4Aは、光信号に周波数成分を刻印するためのデジタル信号処理の設定パラメータを示す模式図である。図4Aは、特別加算部137によって付加される周波数領域における係数を示す。DSP部130内のデジタル信号はXI、XQ、YI、およびYQで表される4つのトリビュタリを有するが、これらはX偏波の同位相トリビュタリ、X偏波の直交位相、Y偏波の同位相トリビュタリ、およびY偏波の直交位相にそれぞれ対応している。付加される成分はそれぞれ、aXI(f(k))、aXQ(f(k))、aYI(f(k))、およびaYQ(f(k))で表される。ここで、f(k)は信号のk番目の符号付き周波数成分である。したがって、周波数領域等化用のタップフィルタ136の周波数分解能は、Fres=f(k+1)−f(k)である。図4AはX偏波の係数、すなわち、aXI(f(k))およびaXQ(f(k))を示す。Y偏波に対する図はX偏波に対するものと同様である。
例えば、aXIの係数はaXI(FC)を除きすべてゼロであり、aXQ係数は係数aXIとそれぞれ等しい。これにより、トランシーバ101によって出射される光信号にFCおよび−FCの2つの周波数を生成することができる。
それに代えて、図4Aに示したように、より高い受信信号品質のために、aXIの係数はaXI(FC)=aおよびaXI(−FC)=aを除きすべてゼロである。直交位相のトリビュタリでは、aXQ(FC)=aおよびaXQ(−FC)=−aを除きすべての係数はゼロである。これにより、トランシーバ101によって生成される光信号の一方の側にのみに周波数成分FCを生成することができる。
図4Bは、光信号の周波数を調整するためのデジタル信号処理の設定パラメータを示す模式図である。ここで示した係数は、トリビュタリXIに対する周波数領域等化用のタップフィルタ136の係数である。係数aXI(f(k))は、トランシーバ101によって生成される光信号を等化するために設定される。特別加算部137は、ある時間の経過後に、タップフィルタ136の係数を、新しい係数の組、bXI(f(k))=aXI(f(k−kb))に変更する。同じ操作がトリビュタリXQ、YI、およびYQの係数に対して同時に行われる。この結果、光信号上でのシフト量はDFb=b*Fresとなる。このようなデジタル領域における周波数シフトは、温度や経年などの環境条件の変化に対する構成部品の耐性に依存することなく、高速かつ高精密な調整が行えるという利点をもたらす。したがって、このような方式は、狭間隔の光信号に対する高精度な周波数調整に適合させることができる。
図5Aおよび5Bは、本実施形態に従って周波数成分を刻印された光信号の光スペクトルを示す図である。具体的には、図5Aは、サブキャリアが2本である場合に対する、周波数成分が刻印された光信号の光スペクトルである。この場合、曲線201は34Gbaud PM−16QAMのトランシーバ101の光出力を表わし、この信号はルート・レイズド・コサイン・フィルタリングすることによって得られたナイキスト・スペクトル整形光信号である。同様のフィルタ処理が受信器における適応フィルタ処理に対しても用いられる。同様に、曲線202はトランシーバ102の出力を表わしており、トランシーバ102はトランシーバ101のものと同じフォーマットおよびボーレートであるサブキャリアを出射する。これらのチャネル間の間隔は、公称値として37.5GHzに設定される。周波数成分203は、トランシーバ101内のDSP部130によってチャネルの中心周波数から周波数17.5GHzの位置に刻印されている。同様に、トランシーバ102内のDSP部は、トランシーバ102の光出力202の近傍であって、トランシーバ102から出射されるサブキャリアの中心から周波数−17.5GHzの位置に周波数成分204を刻印する。ここで、刻印される周波数は、サブキャリアのシンボルレートの半分とサブキャリアの間隔の半分との間で選択される。
図5Bは、サブキャリアが5本である場合に対する、刻印された周波数成分を有する光信号の光学スペクトルである。この場合、曲線241は34Gbaud PM−16QAMのトランシーバ101の光出力を表わし、この信号は送信器においてロールオフ率が0.1でルート・レイズド・コサイン・フィルタリングすることによって得られたナイキスト・スペクトル整形光信号である。同様のフィルタ処理が受信器における適応フィルタ処理に対しても用いられる。同様に、曲線242、245、246、および247はそれぞれ、トランシーバ102、103、104、および105の出力を表わしており、これらのトランシーバは、トランシーバ101のものと同じフォーマットおよびボーレートであるサブキャリアを出射する。これらのチャネル間の間隔は、公称値として37.5GHzに設定される。周波数成分243は、トランシーバ101内のDSP部130によってチャネルの中心周波数から周波数17.5GHzの位置に刻印されている。同様に、トランシーバ102内のDSP部は、トランシーバ102の光出力242の近傍であって、トランシーバ102から出射されるサブキャリアの中心から周波数−17.5GHzの位置に周波数成分244を刻印する。
図6は、種々の周波数変動に対するモニタ信号のシミュレーション結果を示す。シミュレーションのパラメータは、図5Aに示した光サブキャリアの場合に対して設定されている。図示したモニタ信号は図3に示したフィルタ162の出力であり、フィルタ162は、図5Aに示した刻印された周波数成分203と204の間の周波数差、すなわち2.5GHzを中心とした100MHzの帯域を通過させるために用いられる。モニタ信号は、曲線202でプロットされたサブキャリアの周波数の変動に対してプロットされている。モニタ信号は、ゼロ周波数偏差である理想的な場合に対して、非常に大きな傾きかつ高コントラストで最大となることが明らかである。モニタ信号によって、多重されたサブキャリアの相対的な周波数を高精度で制御することができるのは明らかである。さらに、モニタ部160は帯域幅の小さい電子装置を用いて実装できるので、低コストで小さなスペースでよい。
このように、刻印される周波数はDSPによって非常に正確に選択され、関連するサブキャリアの中心周波数と関連しているので、キャリアの実際の周波数をディザリングすることなく周波数偏差を見出すことができる。したがって、本実施形態に係る伝送システム100によって、刻印された周波数成分のみを正確に調整することができるので、モニタされるサブキャリアの周波数をディザリングすることなく、周波数偏差をモニタして補償することが可能となる。これにより、サブキャリアの周波数ディザリングによる劣化を回避することができるので、モニタを行う際に、より良好な特性を得ることができる。
図7は、DSP303の構成を示すブロック図であり、DSP303は図3に示した受信器DSP149向けに実装される。
DSP303は、光受信器から供給されるアナログ電気信号301に従ってバイナリデータフロー302を生成する。連続しているDSP部がデジタル化し、復調し、そして復号化する。まず、アナログデジタル変換器(ADC)310が、受信後のアナログ電気信号301をデジタル化し、トリビュタリXI、XQ、YI、およびYQを連続するDSPに供給する。そして、補償部311が光フロントエンドの欠陥を補償するが、この欠陥にはトリビュタリ間のスキューやDC(direct current)オフセットが含まれる。その後、周波数領域部304が、高速フーリエ変換部312、波長分散を含む劣化を補償する周波数領域の等化器313、特別部314、および逆高速フーリエ変換部315を使って、周波数領域等化を行う。適応等化器316は、時間領域で、偏波分離および偏波モード分散を含む劣化の動的等化を行う。そして、キャリア位相推定(carrier phase estimation:CPE)部317がキャリアおよび位相の復元を行う。復号部318はFEC復号プロセスを行う。最後に、シリアライザ/デシリアライザ319が復号されたトリビュタリに対してシリアル化/逆シリアル化を行い、バイナリデータフロー302を供給する。
特別部314は特定の周波数成分FC(1)を除去する。この周波数成分FC(1)は、チャネルおよびFFTブロック、またはフレームに対して規定される。特別部314は、より高品質な信号復調を実現するため、送信器側で刻印された周波数成分を除去する。周波数成分についての情報および刻印のタイミングは、高位ネットワーク層によって供給されるか、または送信データのフレームオーバーヘッドに含まれるようにすることができる。それに代えて、等化器313に実装された周波数領域モニタが、より高振幅の周波数成分を検索し、それをFCとして特定することができる。
CPE部317は、キャリアおよび位相が補償されたコンスタレーションをモニタする。CPE部317は、コンスタレーション点の分布に関連し、復調信号品質のモニタとして使用されるモニタ信号320を供給する。
復号部318は、FECによって訂正されたエラーの数をモニタする。復号部318は、受信信号品質に関するモニタ信号321を供給する。
次に、本実施形態に係る伝送システム100の動作の一例を説明する。
図3に示した伝送システム100は、図5Aに示した光信号を出射する。トランシーバ101によって出射されるサブキャリアの中心周波数はF1で表わされる。トランシーバ102によって出射されるサブキャリアの中心周波数はF2で表わされる。ここで、F2はF1より大きく、公称サブキャリア間隔(F2−F1)はFSで表わされる。刻印された周波数成分FC1は、トランシーバ101内のDSP部130によって周波数F1+FC1に刻印される。刻印された周波数成分FC2は、トランシーバ102内のDSP部によって周波数F2−FC2に刻印される。
トランシーバ101によって出射されたサブキャリアに対する受信器内の受信器DSP149は、図7に示した特別部314を用いて周波数成分FC1を除去する。図6に示したモニタ信号に応じて、フィルタ162の出力におけるモニタ信号を最大化するために、図3に示した制御部163によってレーザ周波数を設定することにより、周波数F2が調整される。フィルタ162の中心周波数は(FS−FC1−FC2)に設定される。これにより、光サブキャリア間の周波数偏差を補償し、より高いシステム性能を達成することができる。
さらに、刻印される周波数成分のオーダーはシンボルレートのオーダーと等しいので、刻印された周波数成分が、偏波多重IQ変調器145に対する自動バイアス制御のような低周波ディザトーンに基づいたトランシーバ制御の可能性を妨げることはない。周波数FC1を刻印した場合、受信Q値は9.8dBから9.7dBに減少したが、これは多重サブキャリアの周波数を制御していない場合の線形クロストークによる劣化と比べて無視できるペナルティである。
より良好なシステム性能のために、図3に示した特別加算部137によって周波数成分FC1がF1+FC1に刻印された場合、F1−FC1には周波数成分は刻印されない。すなわち、第1の光成分には第1の周波数を第1の光キャリアの中心周波数に加えることによって得られる光周波数(F1+FC1)を有する光成分は含まれるが、第1の光キャリアの中心周波数から第1の周波数を引くことによって得られる光周波数(F1−FC1)を有する光成分は除外される。
同様に、F2+FC2には周波数成分は刻印されない。すなわち、第2の光成分には、第1の光キャリアの中心周波数より大きい第2の光キャリアの中心周波数から第2の周波数を引くことによって得られる光周波数(F2−FC2)を有する光成分は含まれるが、第2の周波数を第2の光キャリアの中心周波数に加えることによって得られる光周波数(F2+FC2)を有する光成分は除外される。
このような条件は、図4Aに示したように、特別加算部137の係数をaXI1=aXI2=aXQ2およびaXQ1=−aXQ2となる値に従って設定することにより実現される。トランシーバ101により出射されるサブキャリアのY偏波に対して、またトランシーバ102により出射されるサブキャリアの両方の偏波に対しても、同様の設定がなされる。これにより、モニタには使用されない負側の周波数成分を抑制することができ、モニタの効率を改善することができる。
より早く調整するため、フィルタ162の帯域幅を1GHzから100MHzまで100MHzステップで調整する。フィルタ162により出力されたモニタ信号を最大化するために、ステップ毎に周波数偏差を補償する。いったんフィルタ設定が最適化されると、フィルタ162の帯域幅が狭められて、より良い精度が得られる。その後、周波数が再度調整される。これにより、調整ステップの時間を縮小することが可能となり、周波数偏差の補償における全体的な精度の改善を図ることができる。
本実施形態の一の実装形態では、モニタおよび調整が連続的に行われる。その代わりに、モニタおよび調整は離散的なタイミングで行われ、タイミングの期間は出射スペクトルにおけるモニタの影響を減少させるように決定される。
より良いシステム性能のため、刻印される周波数成分FC1はBR1/2<FC1<FS/2となるように選択され、周波数成分FC2はBR2/2<FC2<FS/2となるように選択される。ここで、BR1およびBR2はそれぞれのトランシーバ101および102によってそれぞれ出射されるサブキャリアのボーレートである。すなわち、第1の周波数(FC1)は、第1の光キャリアの第1シンボルレートの半分(BR1/2)より大きく、第1の光キャリアと第2の光キャリアの間の差分キャリア周波数の半分(FS/2)より小さい。第2の周波数(FC2)は、第2の光キャリアの第2シンボルレートの半分(BR/2)より大きく、第1の光キャリアと第2の光キャリアの間の差分キャリア周波数の半分(FS/2)より小さい。このように、刻印された周波数成分は、受信器における適応フィルタによってフィルタされ、減衰させられる。したがって、刻印された周波数成分が復調信号に及ぼす影響は無視できる。
システム性能をさらに向上させるために、周波数偏差がDF1としてモニタされる場合、図4Bに示されるように、周波数領域部134の係数設定に従って、DSP部130により周波数領域において周波数調整が行われる。すなわち、第1のデータストリームと第2のデータストリームの少なくとも一つに対する周波数領域等化の係数を変更することによってキャリア周波数が制御される。このプロセスによって、実に細かいデジタル精度で非常に精密な周波数シフトが可能になる。さらに、このプロセスは温度や電流によってレーザを調整するプロセスよりも高速であり、制御時にオーバーシュートがなく、より精度が高い。
長期間動作の間に、周波数領域部134によって補償され、サブキャリアのボーレートに加えられた周波数偏差の合計値が、トランシーバ101内の電子装置の帯域幅を上回る場合、補償されたDF1の総計の一部がDSPの設定によって低減され、周波数偏差はレーザ146の周波数を補償することにより同期して変更される。
システム性能をさらに向上させるために、周波数成分FC2は開始時にFC2(0)に設定される。周波数成分FC2は時間と共に変動する。値FC2(max)でモニタ信号の値は最大になる。トランシーバ102により出射されるサブキャリアの周波数は、FC2(0)−FC2(max)によって補償される。すなわち、第2の周波数成分FC2(0)の初期値が設定され、第2の周波数成分FC2は初期値FC2(0)からモニタ信号を最大にするスキャンした値FC2(max)まで変動する。第2の光キャリアF2のキャリア周波数は、初期値FC2(0)とスキャンした値FC2(max)の間の差分に従って制御される。これによって、周波数偏差をモニタするためのディザにより引き起こされる過渡的な周波数偏差を回避することができる。このよう方法では、モニタするステップの間に、さらなるクロストークが引き起こされることはない。
システム容量をさらに増大させるために、多数のサブキャリアが多重化される。例えば、1Tb/sペイロードが、図5Bに示したようなPM−16QAM変調で200Gb/sペイロードを送出する5本のサブキャリアにより実現される。サブキャリア間の周波数偏差の補償は、2つの隣接するサブキャリア間で行われる。このプロセスは隣接するサブキャリアの各ペアに対して繰り返される。一対のサブキャリアがモニタされており、周波数成分がこのペアに刻印されている場合、他のペアはモニタされず、必要な周波数成分は他のペアには刻印されない。
動作期間をさらに長くするために、隣接するサブキャリアの各ペアに対してモニタが行われる。低サブキャリア周波数を基準として用い、最も低い周波数の第1サブキャリアに対してモニタされた周波数偏差を0に設定し、i番目のサブキャリアに対してはDF(i)に設定する。補償周波数は、i>1に対してDF(i)=CF(i)−CF(i−1)となるように、各サブキャリアに対してCF(i)に設定される。係数CF(0)は、CF(i)の値の二乗和を最小にするように選択される。すなわち、多重光信号に含まれる複数の光キャリアのうち、第1の光キャリアと第2の光キャリアは周波数領域で互いに隣接している。隣接した光キャリア間の相対的な周波数はそれぞれ、モニタ信号に従って設定され、各キャリア周波数は補償された周波数の値の二乗和が最小となるように決定される。サブキャリアの周波数偏差は相関していないため、この操作により、関連付けられる周波数の総量を低減させることができる。
周波数補償をより精密にするために、最も低い周波数を有するサブキャリアの信号品質についての情報を、高位のネットワーク層を介して図7に示したモニタ信号320により取得するとすることができる。このサブキャリアの周波数は、受信品質を最適化するように設定される。周波数偏差は、多重サブキャリアに刻印された周波数成分を用いて、図3に示したモニタ部160によって、最も低い周波数のサブキャリアに関連する他のサブキャリアのすべてに対して補償される。その代わりに、サブキャリアの周波数は、最も高い周波数のサブキャリアの受信品質を最適化するように設定される。また、品質についての情報は、図7に示したモニタ信号321から得ることができる。
システム容量をさらに増大させるために、スーパーナイキストフィルタ処理が用いられる。スーパーナイキストフィルタ処理はDSP部130によって行われる。これにより、サブキャリア間隔を低減し、周波数偏差を図3に示したモニタ部160によって補償することが可能になる。
精度を向上させ、モニタ範囲を拡大するために、FC1=BR1*(0.5+FS/(BR1+BR2))およびFC2=BR2*(0.5+FS/(BR1+BR2))となるように、FC1が選択される。これらは、シンボルレートの半分の値と、サブキャリアのシンボルレートによって重み付けられたサブキャリアの公称中心周波数の重心値との平均に相当している。すなわち、第1の周波数FC1は、第1シンボルレートBR1と第2シンボルレートBR2で重み付けされた差分キャリア周波数FSを第1シンボルレートの半分BR1/2に加算することによって得られる周波数と等しい。第2の周波数FC2は、第1シンボルレートBR1と第2シンボルレートBR2で重み付けされた差分キャリア周波数FSを第2シンボルレートの半分BR2/2に加算することによって得られる周波数と等しい。図3に示したモニタ部160および制御部163によって、サブキャリアの周波数偏差はモニタされ、補償される。刻印された周波数はボーレートの半分より高いため、受信器の受信器DSP149が備える適応フィルタは、復調信号に対する刻印された周波数の影響を縮小することができる。さらに、最適な性能となる許容変動範囲が最も広くなる。
最適な性能で連続的にモニタするため、FC1=BR1*FS/(BR1+BR2)−FresおよびFC2=BR2*FS/(BR1+BR2)−Fresとなるように周波数FC1が設定される。これらは、対応するサブキャリアのシンボルレートによって重み付けられたサブキャリアの公称周波数の重心値からトランシーバの送信DSPの周波数分解能が減算されたものに相当する。すなわち、第1の周波数FC1は、第1シンボルレートBR1と第2シンボルレートBR2で重み付けされた差分キャリア周波数FSから、第1のデータストリームを生成するときの周波数分解能Fresに相当する周波数値を減算することによって得られる周波数に等しい。第2の周波数FC2は、第1シンボルレートBR1と第2シンボルレートBR2で重み付けされた差分キャリア周波数FSから、第2のデータストリームを生成するときの周波数分解能Fresに相当する周波数値を減算することによって得られる周波数に等しい。連続的にモニタすることで最も低い周波数偏差が発生し得るとすると、刻印された周波数成分は受信器の適応フィルタによって最も減衰させられるので、信号の復調に与える影響は少ない。
上述したように、本実施形態によれば、光キャリア周波数を高精度で制御することのできる、多重光信号を用いる光送信器のコストおよび大きさが減少する。
<第3の実施形態>
次に、本発明の第3の実施形態について説明する。図8は、本発明の第3の実施形態に係る光ノード装置400の構成を示すブロック図である。
光ノード装置400は、再構成可能な光アドドロップマルチプレクサ(reconfigurable optical add−drop multiplexer:ROADM)として動作する。多重サブキャリアがファイバ401を通って光ノード装置400に到達し、結果として生じる信号がファイバ402を通って出射される。光ノード装置400は、波長選択スイッチ(wavelength selective switch:WSS)410およびトランスポンダプール420を備える。光ノード装置400は、図3に示した光カプラ152に相当する信号タップ430およびモニタ部160と制御部163に相当するモニタ/制御部440に特徴がある。
例えば、5本のサブキャリアが多重され、そのスペクトルが図5Bにおけるプロット結果と同一である光キャリアが、ファイバ401を通って到達する。図5Bに示された曲線242で表されるサブキャリアは、WSS410によりドロップされる。その代わりに、曲線242と同一の中心周波数を有する別のサブキャリアが、トランスポンダプール420からWSS410によって加えられる。ファイバ401の他方の送信器側で、243で表わされる周波数成分FC1が、曲線241により表わされるサブキャリアのスペクトルに加えられている。
トランスポンダプール420において、244で表わされる周波数成分FC2が242により表わされるサブキャリアに加えられる。モニタ/制御部440によって、トランスポンダプール420における242により表わされるサブキャリアの周波数を制御することが可能になる。
本実施形態に係る光ノード装置400によって、ROADMで加えられたサブキャリアの周波数を制御し、高い周波数精度でサブキャリアを多重することが可能になる。
実施形態を参照して本発明を詳細に示し説明したが、本発明はこれらの実施形態に限定されるものではない。特許請求の範囲で規定される本発明の特質および範囲から逸脱することなく、構成や詳細には様々な変更がなされうることは当業者に理解されるものである。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加え、前記第1の光キャリアと前記第2の光キャリアを多重して多重光信号を生成し、前記多重光信号をモニタして前記第1の光成分と前記第2の光成分の間の差周波数を有するモニタ信号を検出し、前記モニタ信号に従って、前記第1の光キャリアと前記第2の光キャリアの少なくとも一つのキャリア周波数を制御する光キャリア周波数の制御方法。
(付記2)付記1に記載した光キャリア周波数の制御方法において、前記第1の光成分を加えることは、第1の周波数を有する第1の周波数成分をバイナリデータストリームに加えることによって第1のデータストリームを生成し、前記第1のデータストリームに基づいて前記第1の光キャリアを変調することを含み、前記第2の光成分を加えることは、第2の周波数を有する第2の周波数成分をバイナリデータストリームに加えることによって第2のデータストリームを生成し、前記第2のデータストリームに基づいて前記第2の光キャリアを変調することを含み、前記キャリア周波数を制御することは、前記モニタ信号を最大にするように前記キャリア周波数を制御することを含み、前記第1の光成分は、前記第1の周波数を前記第1の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分を含むが、前記第1の光キャリアの前記中心周波数から前記第1の周波数を減じることによって得られる光周波数を有する光成分は含まず、前記第2の光成分は、前記第1の光キャリアの前記中心周波数より大きい前記第2の光キャリアの中心周波数から前記第2の周波数を減じることによって得られる光周波数を有する光成分を含むが、前記第2の周波数を前記第2の光キャリアの前記中心周波数に加えることによって得られる光周波数を有する光成分は含まない。
(付記3)付記2に記載した光キャリア周波数の制御方法において、前記第1の周波数は、前記第1の光キャリアの第1シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さく、前記第2の周波数は、前記第2の光キャリアの第2シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さい。
(付記4)付記3に記載した光キャリア周波数の制御方法において、前記第1の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第1シンボルレートの半分に加えることによって得られる周波数に等しく、前記第2の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第2シンボルレートの半分に加えることによって得られる周波数に等しい。
(付記5)付記3に記載した光キャリア周波数の制御方法において、前記第1の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数から、前記第1のデータストリームを生成するときの周波数分解能に相当する周波数値を減算することによって得られる周波数に等しく、前記第2の周波数は、前記第1シンボルレートおよび前記第2シンボルレートで重み付けされた前記差分キャリア周波数から、前記第2のデータストリームを生成するときの周波数分解能に相当する周波数値を減算することによって得られる周波数に等しい。
(付記6)付記2、3、4、および5のいずれか一項に記載した光キャリア周波数の制御方法において、前記第2の光成分を加えることは、前記第2の周波数成分の初期値を設定すること、および前記第2の周波数成分を前記初期値から前記モニタ信号を最大にするスキャンした値まで変動させることを含み、前記キャリア周波数を制御することは、前記初期値と前記スキャンした値の間の差分に従って前記第2の光キャリアの前記キャリア周波数を制御することを含む。
(付記7)付記、3、4、5、および6のいずれか一項に記載した光キャリア周波数の制御方法において、前記キャリア周波数を制御することは、前記第1のデータストリームと前記第2のデータストリームの少なくとも一つに対する周波数領域等化の係数を変更することを含む。
(付記8)付記1、2、3、4、5、6、および7のいずれか一項に記載した光キャリア周波数の制御方法において、前記多重光信号に含まれる複数の光キャリアのうち、前記第1の光キャリアと前記第2の光キャリアは周波数領域で互いに隣接しており、前記キャリア周波数を制御することは、隣接した光キャリア間の相対的な周波数をそれぞれ前記モニタ信号に従って設定すること、および各キャリア周波数を補償された周波数の値の二乗和が最小となるように決定することを含む。
(付記9)第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加える光信号生成手段と、前記第1の光キャリアと前記第2の光キャリアを多重して多重光信号を生成する多重手段と、前記多重光信号をモニタして前記第1の光成分と前記第2の光成分の間の差周波数を有するモニタ信号を検出するモニタ手段と、前記モニタ信号に従って、前記第1の光キャリアと前記第2の光キャリアの少なくとも一つのキャリア周波数を制御する制御手段、とを有する光送信器。
(付記10)付記9に記載した光送信器において、前記光信号生成手段は、第1の周波数を有する第1の周波数成分をバイナリデータストリームに加えることによって第1のデータストリームを生成し、前記第1のデータストリームに基づいて前記第1の光キャリアを変調し、第2の周波数を有する第2の周波数成分をバイナリデータストリームに加えることによって第2のデータストリームを生成し、前記第2のデータストリームに基づいて前記第2の光キャリアを変調し、前記制御手段は、前記モニタ信号を最大にするように前記キャリア周波数を制御し、前記第1の光成分は、前記第1の周波数を前記第1の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分を含むが、前記第1の光キャリアの前記中心周波数から前記第1の周波数を減じることによって得られる光周波数を有する光成分は含まず、前記第2の光成分は、前記第1の光キャリアの前記中心周波数より大きい前記第2の光キャリアの中心周波数から前記第2の周波数を減じることによって得られる光周波数を有する光成分を含むが、前記第2の周波数を前記第2の光キャリアの前記中心周波数に加えることによって得られる光周波数を有する光成分は含まない。
(付記11)付記10に記載した光送信器において、前記第1の周波数は、第1の光キャリアの第1シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さく、前記第2の周波数は、前記第2の光キャリアの第2シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さい。
(付記12)付記11に記載した光送信器において、前記第1の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第1シンボルレートの半分に加えることによって得られる周波数に等しく、前記第2の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第2シンボルレートの半分に加えることによって得られる周波数に等しい。
(付記13)光信号を波長選択的にスイッチするスイッチ手段と、第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加え、前記第1の光キャリアと前記第2の光キャリアを多重して多重光信号を生成する光信号生成手段と、前記多重光信号をモニタして前記第1の光成分と前記第2の光成分の間の差周波数を有するモニタ信号を検出し、前記モニタ信号に従って、前記第1の光キャリアと前記第2の光キャリアの少なくとも一つのキャリア周波数を制御するモニタ/制御手段、とを有する光ノード装置。
(付記14)付記13に記載した光ノード装置において、前記光信号生成手段は、第1の周波数を有する第1の周波数成分をバイナリデータストリームに加えることによって第1のデータストリームを生成し、前記第1のデータストリームに基づいて前記第1の光キャリアを変調し、第2の周波数を有する第2の周波数成分をバイナリデータストリームに加えることによって第2のデータストリームを生成し、前記第2のデータストリームに基づいて前記第2の光キャリアを変調し、前記モニタ/制御手段は、前記モニタ信号を最大にするように前記キャリア周波数を制御し、前記第1の光成分は、前記第1の周波数を前記第1の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分を含むが、前記第1の光キャリアの前記中心周波数から前記第1の周波数を減じることによって得られる光周波数を有する光成分は含まず、前記第2の光成分は、前記第1の光キャリアの前記中心周波数より大きい前記第2の光キャリアの中心周波数から前記第2の周波数を減じることによって得られる光周波数を有する光成分を含むが、前記第2の周波数を前記第2の光キャリアの前記中心周波数に加えることによって得られる光周波数を有する光成分は含まない。
(付記15)付記14に記載した光ノード装置において、前記第1の周波数は、前記第1の光キャリアの第1シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さく、前記第2の周波数は、前記第2の光キャリアの第2シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さい。
(付記16)付記15に記載した光ノード装置において、前記第1の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第1シンボルレートの半分に加えることによって得られる周波数に等しく、前記第2の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第2シンボルレートの半分に加えることによって得られる周波数に等しい。
(付記17)付記9、10、11、および12のいずれか一項に記載した光送信器において、前記多重光信号に含まれるサブキャリアは、ナイキスト形状デジタルフィルタでスペクトル整形されている。
(付記18)付記9、10、11、および12のいずれか一項に記載した光送信器において、前記多重光信号に含まれるサブキャリアは、ナイキスト形状デジタルフィルタの帯域幅より狭い帯域幅を有するフィルタでスペクトル整形されている。
(付記19)付記1、2、3、4、5、6、7、および8のいずれか一項に記載した光キャリア周波数の制御方法において、前記多重光信号を受信することによって受信光信号を取得し、前記受信光信号をフィルタ処理し、前記受信光信号をデジタル領域で処理し前記第1の光成分および前記第2の光成分のいずれか一方を減衰させる、ことをさらに含む。
(付記20)付記1、2、3、4、5、6、7、8、および19のいずれか一項に記載した光キャリア周波数の制御方法において、前記多重光信号を受信することによって得られた受信光信号の信号品質をモニタし、前記受信光信号の中心周波数は前記多重光信号の高いグループと低いグループのうちの一方に含まれ、前記信号品質についての品質情報を生成することをさらに含み、前記キャリア周波数を制御することは、前記品質情報を用いて前記キャリア周波数を制御することを含む。
10 光送信器
20 光信号生成部
30 マルチプレクサ
40 モニタ部
50 制御部
100 伝送システム
101、102、103、10(N) トランシーバ
111、112、113、121、122、123、11(N)、12(N) バイナリデータストリーム
130、133、139 DSP部
131、319 シリアライザ/デシリアライザ
132 符号器
134 周波数領域部
135、312 高速フーリエ変換部
136 タップフィルタ
137 特別加算部
138、315 逆高速フーリエ変換部
140 DAC
141、142、143、144 線形ドライバ
145 偏波多重IQ変調器
146、147 レーザ
148 コヒーレント受信器
149 受信器DSP
150 マルチプレクサ
151 デマルチプレクサ
152 光カプラ
160 モニタ部
161 フォトダイオード
162 フィルタ
163 制御部
191 出力
192 光信号
301 アナログ電気信号
302 バイナリデータフロー
303 DSP
304 周波数領域部
310 ADC
311 補償部
313 等化器
314 特別部
316 適応等化器
317 CPE部
318 復号部
320、321 モニタ信号
400 光ノード装置
401、402 ファイバ
410 WSS
420 トランスポンダプール
430 信号タップ
440 モニタ/制御部

Claims (10)

  1. 第1の光成分を第1の光キャリアに加え、
    第2の光成分を第2の光キャリアに加え、
    前記第1の光キャリアと前記第2の光キャリアを多重して多重光信号を生成し、
    前記多重光信号をモニタして前記第1の光成分と前記第2の光成分の間の差周波数を有するモニタ信号を検出し、
    前記モニタ信号に従って、前記第1の光キャリアと前記第2の光キャリアの少なくとも一つのキャリア周波数を制御する
    光キャリア周波数の制御方法。
  2. 請求項1に記載した光キャリア周波数の制御方法において、
    前記第1の光成分を加えることは、第1の周波数を有する第1の周波数成分をバイナリデータストリームに加えることによって第1のデータストリームを生成し、前記第1のデータストリームに基づいて前記第1の光キャリアを変調することを含み、
    前記第2の光成分を加えることは、第2の周波数を有する第2の周波数成分をバイナリデータストリームに加えることによって第2のデータストリームを生成し、前記第2のデータストリームに基づいて前記第2の光キャリアを変調することを含み、
    前記キャリア周波数を制御することは、前記モニタ信号を最大にするように前記キャリア周波数を制御することを含み、
    前記第1の光成分は、前記第1の周波数を前記第1の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分を含むが、前記第1の光キャリアの前記中心周波数から前記第1の周波数を減じることによって得られる光周波数を有する光成分は含まず、
    前記第2の光成分は、前記第1の光キャリアの前記中心周波数より大きい前記第2の光キャリアの中心周波数から前記第2の周波数を減じることによって得られる光周波数を有する光成分を含むが、前記第2の周波数を前記第2の光キャリアの前記中心周波数に加えることによって得られる光周波数を有する光成分は含まない。
  3. 請求項2に記載した光キャリア周波数の制御方法において、
    前記第1の周波数は、前記第1の光キャリアの第1シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さく、
    前記第2の周波数は、前記第2の光キャリアの第2シンボルレートの半分より大きく、前記第1の光キャリアと前記第2の光キャリアの間の差分キャリア周波数の半分より小さい。
  4. 請求項3に記載した光キャリア周波数の制御方法において、
    前記第1の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第1シンボルレートの半分に加えることによって得られる周波数に等しく、
    前記第2の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数を前記第2シンボルレートの半分に加えることによって得られる周波数に等しい。
  5. 請求項3に記載した光キャリア周波数の制御方法において、
    前記第1の周波数は、前記第1シンボルレートと前記第2シンボルレートで重み付けされた前記差分キャリア周波数から、前記第1のデータストリームを生成するときの周波数分解能に相当する周波数値を減算することによって得られる周波数に等しく、
    前記第2の周波数は、前記第1シンボルレートおよび前記第2シンボルレートで重み付けされた前記差分キャリア周波数から、前記第2のデータストリームを生成するときの周波数分解能に相当する周波数値を減算することによって得られる周波数に等しい。
  6. 請求項2、3、4、および5のいずれか一項に記載した光キャリア周波数の制御方法において、
    前記第2の光成分を加えることは、前記第2の周波数成分の初期値を設定すること、および前記第2の周波数成分を前記初期値から前記モニタ信号を最大にするスキャンした値まで変動させることを含み、
    前記キャリア周波数を制御することは、前記初期値と前記スキャンした値の間の差分に従って前記第2の光キャリアの前記キャリア周波数を制御することを含む。
  7. 請求項2、3、4、5、および6のいずれか一項に記載した光キャリア周波数の制御方法において、
    前記キャリア周波数を制御することは、前記第1のデータストリームと前記第2のデータストリームの少なくとも一つに対する周波数領域等化の係数を変更することを含む。
  8. 請求項1、2、3、4、5、6、および7のいずれか一項に記載した光キャリア周波数の制御方法において、
    前記多重光信号に含まれる複数の光キャリアのうち、前記第1の光キャリアと前記第2の光キャリアは周波数領域で互いに隣接しており、
    前記キャリア周波数を制御することは、隣接した光キャリア間の相対的な周波数をそれぞれ前記モニタ信号に従って設定すること、および各キャリア周波数を補償された周波数の値の二乗和が最小となるように決定することを含む。
  9. 第1の光成分を第1の光キャリアに加え、第2の光成分を第2の光キャリアに加える光信号生成手段と、
    前記第1の光キャリアと前記第2の光キャリアを多重して多重光信号を生成する多重手段と、
    前記多重光信号をモニタして前記第1の光成分と前記第2の光成分の間の差周波数を有するモニタ信号を検出するモニタ手段と、
    前記モニタ信号に従って、前記第1の光キャリアと前記第2の光キャリアの少なくとも一つのキャリア周波数を制御する制御手段、とを有する光送信器。
  10. 請求項9に記載した光送信器において、
    前記光信号生成手段は、第1の周波数を有する第1の周波数成分をバイナリデータストリームに加えることによって第1のデータストリームを生成し、前記第1のデータストリームに基づいて前記第1の光キャリアを変調し、第2の周波数を有する第2の周波数成分をバイナリデータストリームに加えることによって第2のデータストリームを生成し、前記第2のデータストリームに基づいて前記第2の光キャリアを変調し、
    前記制御手段は、前記モニタ信号を最大にするように前記キャリア周波数を制御し、
    前記第1の光成分は、前記第1の周波数を前記第1の光キャリアの中心周波数に加えることによって得られる光周波数を有する光成分を含むが、前記第1の光キャリアの前記中心周波数から前記第1の周波数を減じることによって得られる光周波数を有する光成分は含まず、
    前記第2の光成分は、前記第1の光キャリアの前記中心周波数より大きい前記第2の光キャリアの中心周波数から前記第2の周波数を減じることによって得られる光周波数を有する光成分を含むが、前記第2の周波数を前記第2の光キャリアの前記中心周波数に加えることによって得られる光周波数を有する光成分は含まない。
JP2018536525A 2016-01-18 2016-01-18 光送信器および光キャリア周波数の制御方法 Active JP6536752B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/000224 WO2017125961A1 (en) 2016-01-18 2016-01-18 Optical transmitter and method for controlling optical carrier frequency

Publications (2)

Publication Number Publication Date
JP2019506069A JP2019506069A (ja) 2019-02-28
JP6536752B2 true JP6536752B2 (ja) 2019-07-03

Family

ID=59361996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018536525A Active JP6536752B2 (ja) 2016-01-18 2016-01-18 光送信器および光キャリア周波数の制御方法

Country Status (3)

Country Link
US (1) US10567078B2 (ja)
JP (1) JP6536752B2 (ja)
WO (1) WO2017125961A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601520B2 (en) 2018-02-07 2020-03-24 Infinera Corporation Clock recovery for digital subcarriers for optical networks
CN108600127B (zh) * 2018-02-28 2021-03-09 北京邮电大学 一种基于脉冲交叠的超奈奎斯特的通信***及方法
JP7120302B2 (ja) * 2018-04-12 2022-08-17 日本電気株式会社 光空間通信システム、光受信装置、光受信方法、及びプログラム
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11032020B2 (en) 2019-04-19 2021-06-08 Infiriera Corporation Synchronization for subcarrier communication
US11838105B2 (en) 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11239935B2 (en) * 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11177889B2 (en) * 2019-05-14 2021-11-16 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11470019B2 (en) 2019-09-05 2022-10-11 Infinera Corporation Dynamically switching queueing schemes for network switches
EP4042606A1 (en) 2019-10-10 2022-08-17 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
EP4042607A1 (en) 2019-10-10 2022-08-17 Infinera Corporation Network switches systems for optical communications networks
US20210111802A1 (en) 2019-10-10 2021-04-15 Infinera Corporation Hub-leaf laser synchronization
CN116114348A (zh) * 2020-10-14 2023-05-12 株式会社Ntt都科摩 非正交波形的频谱整形方法及电子设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589345B2 (ja) * 1988-06-24 1997-03-12 日本電信電話株式会社 光ファイバの特性評価方法および装置
JP2000155090A (ja) * 1998-11-20 2000-06-06 Fuji Photo Film Co Ltd 血管の画像化装置
JP3739987B2 (ja) * 2000-02-18 2006-01-25 財団法人神奈川科学技術アカデミー トモグラフィー装置
DE10346379B4 (de) * 2003-09-26 2010-09-02 Technische Universität Berlin Verfahren zum Bestimmen des Frequenzgangs eines elektrooptischen Bauelements
US7668411B2 (en) * 2008-06-06 2010-02-23 Schlumberger Technology Corporation Distributed vibration sensing system using multimode fiber
JP5501360B2 (ja) * 2009-06-03 2014-05-21 キヤノン株式会社 光学顕微鏡およびその制御方法
JP5560833B2 (ja) * 2010-03-29 2014-07-30 富士通株式会社 光インターフェイス装置および入力周波数偏差の異常監視方法
US9319141B2 (en) * 2010-04-06 2016-04-19 Nec Corporation Optical transmitting/receiving system and timing extracting method in optical transmitting/receiving system
US8660428B2 (en) * 2010-12-31 2014-02-25 Infinera Corporation Variable channel spacing in a coherent transmission system
WO2012177805A2 (en) * 2011-06-20 2012-12-27 Oewaves, Inc. Stabilizing rf oscillator based on optical resonator
EP2613460A1 (en) 2011-12-30 2013-07-10 Nokia Siemens Networks Oy Orthogonal frequency division multiplexing method with differential phase shift compensation
JP5906870B2 (ja) * 2012-03-23 2016-04-20 富士通株式会社 光パワーモニタ
JP6060608B2 (ja) * 2012-10-12 2017-01-18 富士通株式会社 光伝送システム、光伝送装置の検査方法、および光伝送装置の検査プログラム
JP5962455B2 (ja) * 2012-11-21 2016-08-03 富士通株式会社 光伝送装置、ノード装置、光伝送方法および光伝送システム
US8917988B2 (en) * 2012-12-07 2014-12-23 At&T Intellectual Property I, L.P. End-to-end carrier frequency control to improve bandwidth utilization in an optical network
JP6047056B2 (ja) 2013-04-16 2016-12-21 日本電信電話株式会社 マルチキャリア光送信器及びマルチキャリア光送信方法
JP2015106829A (ja) 2013-11-29 2015-06-08 富士通株式会社 光信号品質モニタ装置、光伝送装置、及び、光信号品質モニタ方法
JP6311443B2 (ja) * 2014-05-15 2018-04-18 富士通株式会社 測定装置、測定方法および伝送システム
JP6442901B2 (ja) * 2014-07-31 2018-12-26 富士通株式会社 光送信器および光変調器のバイアスを制御する方法
WO2016151615A1 (en) * 2015-03-20 2016-09-29 Nec Corporation Optical transmitter and optical communication method
WO2016152110A1 (ja) * 2015-03-25 2016-09-29 日本電気株式会社 光伝送システム、光受信装置、および光信号情報検出方法
JP7160680B2 (ja) * 2016-04-21 2022-10-25 日本電気株式会社 光増幅器、光ネットワーク、及び増幅方法
JP6733395B2 (ja) * 2016-07-25 2020-07-29 富士通株式会社 光送信器、光受信器、および光伝送方法

Also Published As

Publication number Publication date
US10567078B2 (en) 2020-02-18
WO2017125961A1 (en) 2017-07-27
US20190020409A1 (en) 2019-01-17
JP2019506069A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6536752B2 (ja) 光送信器および光キャリア周波数の制御方法
Sambo et al. Next generation sliceable bandwidth variable transponders
US9831947B2 (en) Margin determination systems and methods in optical networks
Cvijetic et al. Terabit optical access networks based on WDM-OFDMA-PON
EP3235146B1 (en) Method and system for discrete multi-tone transmission with multiple modulations
JP6331712B2 (ja) マルチキャリア/スーパーチャネル伝送における偏光依存損失の軽減
Chandrasekhar et al. OFDM based superchannel transmission technology
EP2312770B1 (en) Optical transmission method and apparatus using OFDM
JP7287087B2 (ja) 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大
US10735103B2 (en) Reception device, transmission device, optical communication system and optical communication method
US8989599B2 (en) Optical communication system with monitor functions and monitoring method therefor
US10601517B1 (en) Probabilistic shaping on eight-dimensional super-symbols
US20110222854A1 (en) Coherent optical hubbing
Liu et al. Superchannel for next-generation optical networks
JP2012120010A (ja) 光送信器および光送信装置
Huang et al. Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies
JP2012191452A (ja) 光送信器
WO2018162743A1 (en) Flexible modulation in pon networks
da Silva et al. Combined optical and electrical spectrum shaping for high-baud-rate nyquist-WDM transceivers
Chandrasekhar et al. Advances in Tb/s superchannels
Duthel et al. DSP design for coherent optical point-to-multipoint transmission
Kumari et al. Distance adaptive hybrid super-channels enabled by sliceable bandwidth variable transponder for spectrally efficient elastic optical networks
WO2015120894A1 (en) A method and apparatus for upgrading an optical node in an installed wdm network
Gonem et al. Experimental Demonstration of a Dual-Arm Drop Element-Based Soft-ROADM for Future Optical-Wireless Converged Access Networks
Napoli et al. Transmission in elastic optical networks

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150