JP6527430B2 - Method of manufacturing silicon carbide - Google Patents

Method of manufacturing silicon carbide Download PDF

Info

Publication number
JP6527430B2
JP6527430B2 JP2015177373A JP2015177373A JP6527430B2 JP 6527430 B2 JP6527430 B2 JP 6527430B2 JP 2015177373 A JP2015177373 A JP 2015177373A JP 2015177373 A JP2015177373 A JP 2015177373A JP 6527430 B2 JP6527430 B2 JP 6527430B2
Authority
JP
Japan
Prior art keywords
silicon carbide
raw material
producing silicon
furnace
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015177373A
Other languages
Japanese (ja)
Other versions
JP2017052665A (en
Inventor
増田 賢太
賢太 増田
石田 弘徳
弘徳 石田
潔 野中
潔 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015177373A priority Critical patent/JP6527430B2/en
Publication of JP2017052665A publication Critical patent/JP2017052665A/en
Application granted granted Critical
Publication of JP6527430B2 publication Critical patent/JP6527430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素の製造方法に関する。   The present invention relates to a method of manufacturing silicon carbide.

炭化珪素(SiC)は、研磨・研削材、セラミックス焼結体及び導電性材料等の工業用材料として、従来から幅広く使用されている。特に、最近では、省エネルギー志向の強まりや、脱原発による自然再生エネルギーの活用への期待等の社会的背景により、パワー半導体等に用いられる単結晶材料として、より高い純度を有する炭化珪素が求められている。
また、炭化珪素を工業的に量産する技術としては、アチソン法が知られている。
アチソン法は、上方に開口した箱型の間接抵抗炉(以下、「アチソン炉」という。)の炉内空間に、珪素(Si)を含む珪酸質原料(例えば硅石粉)と炭素(C)を含む炭素質原料(例えばコークス)を混合してなる炭化珪素製造用原料を収容し、該原料の中に配設された発熱体に電流を流して、該原料を加熱することで、炭化珪素の塊状物を製造する方法である。
Silicon carbide (SiC) is conventionally and widely used as industrial materials such as polishing and grinding materials, ceramic sintered bodies, and conductive materials. In particular, recently, silicon carbide having higher purity is required as a single crystal material used for power semiconductors and the like because of the social background such as increasing energy saving and expectation for utilization of natural regenerated energy by denuclearization. ing.
Further, the Atchison method is known as a technology for industrially mass-producing silicon carbide.
The Acheson method is a siliceous raw material (for example, vermiculite powder) containing silicon (Si) and carbon (C) in the inner space of a box-shaped indirect resistance furnace (hereinafter referred to as "Achison furnace") opened upward The raw material for silicon carbide production formed by mixing the carbonaceous raw material (for example, coke) containing is contained, and an electric current is supplied to the heating element disposed in the raw material to heat the raw material. It is a method of producing a lump.

アチソン法を用いて炭化珪素を製造する方法として、例えば、特許文献1には、アチソン炉を用いて、珪酸質原料と炭素質原料とシリコン質原料を混合してなる炭化珪素製造用原料を加熱して、炭化珪素を得る炭化珪素の製造方法であって、上記炭化珪素製造用原料中のCとSiのモル比(C/Si)が、1.5以上、3.0未満であることを特徴とする炭化珪素の製造方法が記載されている。
また、特許文献2には、アチソン炉を用いて、粒子内にシリカとカーボンの各々が全体的に分布しており、かつ、B及びPの各々の含有率が1ppm以下である、シリカとカーボンからなる粒子を加熱して、高純度炭化珪素粉末を得る、高純度炭化珪素粉末の製造方法が記載されている。
As a method for producing silicon carbide by using the Atchison method, for example, Patent Document 1 heats a raw material for producing silicon carbide formed by mixing a siliceous raw material, a carbonaceous raw material, and a siliconic raw material using an Achison furnace. A method for producing silicon carbide, wherein the molar ratio of C to Si (C / Si) in the raw material for producing silicon carbide is 1.5 or more and less than 3.0. A method of manufacturing the featured silicon carbide is described.
Further, in Patent Document 2, silica and carbon in which each of silica and carbon is entirely distributed in particles using an Acheson furnace, and each of B and P has a content of 1 ppm or less A method of producing high purity silicon carbide powder is described, wherein the high purity silicon carbide powder is obtained by heating the particles consisting of

特開2015−86101号公報JP, 2015-86101, A 特開2013−95635号公報JP, 2013-95635, A

従来、アチソン炉を用いて炭化珪素を製造すると、アチソン炉の炉内の位置の違いによって、炭化珪素に含まれる不純物の含有率が異なるという問題があった。
そこで、本発明の目的は、アチソン炉を用いて、不純物(B、P、Al、Fe、Ti)の含有率が小さく、かつ、不純物の含有率のばらつきが少なく均質な炭化珪素を得るための方法を提供することである。
Conventionally, when silicon carbide is manufactured using an Acheson furnace, there has been a problem that the content of impurities contained in silicon carbide varies depending on the difference in the position in the furnace of the Acheson furnace.
Therefore, an object of the present invention is to obtain homogeneous silicon carbide in which the content of impurities (B, P, Al, Fe, Ti) is small and the variation in the content of impurities is small using an Acheson furnace. It is to provide a method.

本発明者は、上記課題を解決するために鋭意検討した結果、炭化珪素製造用原料として、軽装かさ密度の差が0.05〜0.4g/cmである2種の炭化珪素製造用原料A、B(ただし、炭化珪素製造用原料Aの軽装かさ密度は、炭化珪素製造用原料Bの軽装かさ密度よりも小さい。)を準備する原料準備工程と、アチソン炉の炉内空間の下部に、炭化珪素製造用原料Aを収容する第一の原料収容工程と、アチソン炉の炉内空間において、収容済みの炭化珪素製造用原料Aの上方に、炭化珪素製造用原料Bを収容する第二の原料収容工程、を含む炭化珪素の製造方法によれば、上記目的を達成できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the inventors of the present invention have found that, as raw materials for producing silicon carbide, two kinds of raw materials for producing silicon carbide having a difference in light bulk density of 0.05 to 0.4 g / cm 3. A, B (wherein the light bulk density of the raw material A for silicon carbide production is smaller than the light bulk density of the raw material B for silicon carbide production) A first raw material storage step for containing the raw material A for silicon carbide production, and a second raw material B for producing silicon carbide above the stored raw material A for silicon carbide production in the furnace internal space of the Acheson furnace According to the method for producing silicon carbide including the raw material accommodation step, it has been found that the above object can be achieved, and the present invention has been completed.

すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1] アチソン炉を用いて、炭化珪素製造用原料を加熱して、炭化珪素を得る炭化珪素の製造方法であって、上記炭化珪素製造用原料として、軽装かさ密度の差が0.05〜0.4g/cmである2種の炭化珪素製造用原料A、B(ただし、炭化珪素製造用原料Aの軽装かさ密度は、炭化珪素製造用原料Bの軽装かさ密度よりも小さい。)を準備する原料準備工程と、上記アチソン炉の炉内空間の下部に、炭化珪素製造用原料Aを収容する第一の原料収容工程と、上記アチソン炉の炉内空間において、収容済みの炭化珪素製造用原料Aの上方に、炭化珪素製造用原料Bを収容する第二の原料収容工程、を含むことを特徴とする炭化珪素の製造方法。
[2] 上記第一の原料収容工程と、上記第二の原料収容工程の間に、上記アチソン炉の炉内空間において、上記炭化珪素製造用原料を加熱するための発熱用コア体を形成させる発熱用コア体形成工程、を含む前記[1]に記載の炭化珪素の製造方法。
[3] 炭化珪素製造用原料Aおよび炭化珪素製造用原料Bの少なくともいずれか一方が、接着剤を用いて炭化珪素製造用粉体を造粒してなる造粒物を含む前記[1]又は[2]に記載の炭化珪素の製造方法。
[4] 炭化珪素製造用原料Aが加熱されて生成した炭化珪素と、炭化珪素製造用原料Bが加熱されて生成した炭化珪素とで、不純物であるアルミニウム、鉄およびチタンの各元素毎の含有率の差が、いずれも、4ppm以下である前記[1]〜[3]のいずれかに記載の炭化珪素の製造方法。
That is, the present invention provides the following [1] to [4].
[1] A method for producing silicon carbide by heating a raw material for producing silicon carbide using an atchison furnace, wherein a difference in light bulk density is 0.05 to 45 as the raw material for producing silicon carbide. Two types of raw materials A and B for producing silicon carbide having 0.4 g / cm 3 (however, the light bulk density of the raw material A for producing silicon carbide is smaller than the light bulk density of the raw material B for producing silicon carbide) The raw material preparation step to be prepared, the first raw material accommodation step for accommodating the raw material A for silicon carbide production in the lower part of the furnace inner space of the above-mentioned Acheson furnace, A second raw material accommodation step of accommodating the raw material B for producing silicon carbide above the raw material A, and a method for producing silicon carbide.
[2] Between the first raw material storage step and the second raw material storage step, a heating core for heating the raw material for producing silicon carbide is formed in the furnace internal space of the Acheson furnace The method for producing silicon carbide according to the above [1], including the step of forming a heating core body.
[3] The above-mentioned [1] or [1], wherein at least one of the raw material A for producing silicon carbide and the raw material B for producing silicon carbide contains a granulated product obtained by granulating a powder for producing silicon carbide using an adhesive. The manufacturing method of the silicon carbide as described in [2].
[4] The silicon carbide produced by heating the raw material A for producing silicon carbide and the silicon carbide produced by heating the raw material B for producing silicon carbide, each element containing aluminum, iron and titanium as impurities The manufacturing method of the silicon carbide in any one of said [1]-[3] whose difference of a rate is 4 ppm or less all.

本発明の炭化珪素の製造方法によれば、不純物(B、P、Al、Fe、Ti)の含有率が小さく、かつ、不純物の含有率のばらつきが少なく均質な炭化珪素を得ることができる。   According to the method for producing silicon carbide of the present invention, it is possible to obtain homogeneous silicon carbide in which the content of impurities (B, P, Al, Fe, Ti) is small, and the variation in the content of impurities is small.

アチソン炉を電極芯の延びる方向に沿って鉛直に切断した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which cut | disconnected the Achison furnace perpendicularly | vertically along the extension direction of an electrode core. 図1に示すアチソン炉を電極芯の延びる方向に対して垂直な方向に切断した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which cut | disconnected the Achison furnace shown in FIG. 1 in the direction perpendicular | vertical with respect to the extension direction of an electrode core.

本発明の炭化珪素の製造方法は、アチソン炉を用いて、炭化珪素製造用原料を加熱して、炭化珪素を得る炭化珪素の製造方法であって、炭化珪素製造用原料として、軽装かさ密度の差が0.05〜0.4g/cmである2種の炭化珪素製造用原料A、B(ただし、炭化珪素製造用原料Aの軽装かさ密度は、炭化珪素製造用原料Bの軽装かさ密度よりも小さい。)を準備する原料準備工程と、アチソン炉の炉内空間の下部に、炭化珪素製造用原料Aを収容する第一の原料収容工程と、アチソン炉の炉内空間において、収容済みの炭化珪素製造用原料Aの上方に、炭化珪素製造用原料Bを収容する第二の原料収容工程、を含むものである。以下、本発明の炭化珪素の製造方法の一例について、図1及び図2を参照しながら説明する。 The method for producing silicon carbide according to the present invention is a method for producing silicon carbide by heating a raw material for producing silicon carbide by using an Acheson furnace to obtain silicon carbide, which has a light bulk density as a raw material for producing silicon carbide. Two types of raw materials A and B for producing silicon carbide having a difference of 0.05 to 0.4 g / cm 3 (however, the light bulk density of the raw material A for silicon carbide is the light bulk density of the raw material B for silicon carbide production Smaller), the first raw material accommodation process for accommodating the raw material A for silicon carbide production in the lower part of the furnace space of the Acheson furnace, and the accommodation process in the furnace space of the Acheson furnace And a second raw material accommodation step of accommodating the raw material B for manufacturing silicon carbide above the raw material A for manufacturing silicon carbide. Hereinafter, an example of the method for producing silicon carbide of the present invention will be described with reference to FIGS. 1 and 2.

[原料準備工程]
本工程は、炭化珪素製造用原料として、軽装かさ密度の差が0.05〜0.4g/cmである2種の炭化珪素製造用原料A、B(ただし、炭化珪素製造用原料Aの軽装かさ密度は、炭化珪素製造用原料Bの軽装かさ密度よりも小さい。)を準備する工程である。
本発明で用いられる炭化珪素製造用原料は、珪酸質原料と炭素質原料を混合してなる原料である。この際、原料の混合方法は、任意であり、湿式混合と乾式混合のいずれも採用することができる。
Raw material preparation process
In this step, two types of raw materials A and B for producing silicon carbide (however, the raw material A for producing silicon carbide) have a difference in light bulk density of 0.05 to 0.4 g / cm 3 as a raw material for producing silicon carbide. The light bulk density is smaller than the light bulk density of the raw material B for producing silicon carbide.
The raw material for silicon carbide production used in the present invention is a raw material formed by mixing a siliceous raw material and a carbonaceous raw material. Under the present circumstances, the mixing method of a raw material is arbitrary, and both wet mixing and dry mixing can be employ | adopted.

珪酸質原料としては、例えば、天然の珪砂、天然の珪石粉、人造珪石粉等の結晶質シリカや、シリカフューム、シリカゲル等のアモルファスシリカ(非晶質シリカ)等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。   Examples of siliceous raw materials include crystalline silica such as natural silica sand, natural silica stone powder, artificial silica stone powder, and amorphous silica (amorphous silica) such as silica fume and silica gel. These can be used individually by 1 type or in combination of 2 or more types.

炭素質原料としては、例えば、天然黒鉛、人工黒鉛等の結晶質カーボンや、カーボンブラック、コークス、活性炭等のアモルファスカーボン(非晶質カーボン)が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。   Examples of the carbonaceous material include crystalline carbon such as natural graphite and artificial graphite, and amorphous carbon (amorphous carbon) such as carbon black, coke, and activated carbon. These can be used individually by 1 type or in combination of 2 or more types.

炭化珪素製造用原料Aと炭化珪素製造用原料Bの軽装かさ密度の差は、0.05〜0.4g/cm、好ましくは0.06〜0.3g/cm、より好ましくは0.07〜0.2g/cm、特に好ましくは0.07〜0.15g/cmである。該差が0.05g/cm未満であると、得られる炭化珪素の塊状物の上部における不純物の含有率が大きくなり、均質な炭化珪素を得ることができなくなる。該差が0.4g/cmを超えると、得られる炭化珪素の塊状物の下部における不純物の含有率が大きくなり、均質な炭化珪素を得ることができなくなる。
なお、本明細書中、軽装かさ密度とは、「JIS R 9301−2−3(アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度)」に準拠して得られる数値である。
The difference in light bulk density between the raw material A for producing silicon carbide and the raw material B for producing silicon carbide is 0.05 to 0.4 g / cm 3 , preferably 0.06 to 0.3 g / cm 3 , more preferably 0. It is preferably 07 to 0.2 g / cm 3 , particularly preferably 0.07 to 0.15 g / cm 3 . If the difference is less than 0.05 g / cm 3 , the content of impurities in the upper portion of the resulting mass of silicon carbide becomes large, making it impossible to obtain homogeneous silicon carbide. If the difference exceeds 0.4 g / cm 3 , the content of impurities in the lower part of the obtained mass of silicon carbide becomes large, and it becomes impossible to obtain homogeneous silicon carbide.
In the present specification, the light bulk density is obtained according to "JIS R 9301-2-3 (Alumina powder-Part 2: Physical property measurement method 3: light bulk density and heavy bulk density)". It is a numerical value.

炭化珪素製造用原料Aと炭化珪素製造用原料Bの各々の軽装かさ密度を特定の値にするために、炭化珪素製造用原料Aおよび炭化珪素製造用原料Bの少なくともいずれか一方の炭化珪素製造用原料を構成する炭化珪素製造用粉体(珪酸質原料、炭素質原料、または珪酸質原料と炭素質原料を混合してなる混合物)を粉砕または造粒してもよい。
中でも、作業の容易性の観点から、炭化珪素製造用粉体を造粒することが好ましい。
Silicon carbide production of at least one of silicon carbide production raw material A and silicon carbide production raw material B in order to make the light bulk density of raw material A for silicon carbide production and raw material B for silicon carbide production to a specific value The powder for producing silicon carbide (the siliceous material, the carbonaceous material, or the mixture obtained by mixing the siliceous material and the carbonaceous material) constituting the raw material may be pulverized or granulated.
Among them, it is preferable to granulate the powder for producing silicon carbide from the viewpoint of the ease of operation.

軽装かさ密度を特定の値にするための方法としては、例えば、以下の(1)〜(5)の方法が挙げられる。
(1)接着剤を用いて造粒してなる珪酸質原料の造粒物と、炭素質原料(粉体)を混合する方法
(2)珪酸質原料(粉体)と、接着剤を用いて造粒してなる炭素質原料の造粒物を混合する方法
(3)接着剤を用いて造粒してなる珪酸質原料の造粒物と、接着剤を用いて造粒してなる炭素質原料の造粒物を混合する方法
(4)珪酸質原料(粉体)と炭素質原料(粉体)を混合してなる混合物を、接着剤を用いて造粒する方法
(5)炭化珪素製造用粉体として、シリカとカーボンからなる粒子(特開2013−95635号公報参照)を使用し、該粒子を、接着剤を用いて造粒する方法
Examples of the method for setting the light bulk density to a specific value include the following methods (1) to (5).
(1) Method of mixing granulated material of siliceous raw material formed by granulation using adhesive and carbonaceous raw material (powder) (2) using siliceous raw material (powder) and adhesive Method of mixing granulated material of carbonaceous raw material formed by granulation (3) Granulated product of siliceous raw material formed by granulation using an adhesive and carbonaceous matter formed by granulation using an adhesive Method of mixing granulated material of raw material (4) Method of granulating mixture made of siliceous raw material (powder) and carbonaceous raw material (powder) using adhesive agent (5) silicon carbide production Method of granulating the particles using an adhesive using particles (see JP 2013-95635 A) composed of silica and carbon as powder for use

造粒に用いられる接着剤としては、水、ポリビニルアルコール、でんぷん、メチルセルロース等が挙げられる。中でも、入手の容易性及び造粒の容易性の観点から、ポリビニルアルコールが好適である。
造粒するための製造装置は特に限定されるものではなく、通常用いられる造粒機でよい。また、装置本体からの不純物の混入を抑えるため、原料と接触する部分については、金属製のものではなく、樹脂製、または樹脂で被覆された装置を用いることが好ましい。
炭化珪素製造用粉体を粉砕または造粒させてなるものの粒度は、特に限定されるものではないが、通常、5mm以下である。
As an adhesive used for granulation, water, polyvinyl alcohol, starch, methylcellulose and the like can be mentioned. Among them, polyvinyl alcohol is preferable from the viewpoint of easy availability and easy granulation.
The manufacturing apparatus for granulation is not particularly limited, and may be a commonly used granulator. Further, in order to suppress the mixing of impurities from the apparatus main body, it is preferable to use a resin-made or resin-coated apparatus instead of a metal part for the part in contact with the raw material.
The particle size of the material obtained by grinding or granulating the powder for producing silicon carbide is not particularly limited, but is usually 5 mm or less.

炭化珪素製造用原料(AおよびB)の軽装かさ密度の下限は、アチソン炉を安定的に運転することができ、生産量を向上させる観点から、好ましくは0.3g/cm以上、より好ましくは0.4g/cm以上である。また、軽装かさ密度の上限は、加熱によって発生する一酸化炭素等のガスを抜け易くする観点から、好ましくは1.0g/cm以下、より好ましくは0.9g/cm以下である。 The lower limit of the light bulk density of the raw material for silicon carbide production (A and B) is preferably at least 0.3 g / cm 3 , more preferably from the viewpoint of stably operating the Acheson furnace and improving the production amount. Is 0.4 g / cm 3 or more. The upper limit of the light bulk density is preferably 1.0 g / cm 3 or less, more preferably 0.9 g / cm 3 or less, from the viewpoint of facilitating the removal of the gas such as carbon monoxide generated by heating.

炭化珪素製造用原料(AおよびB)の、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)は、好ましくは2.5〜4.0、より好ましくは2.7〜3.5、特に好ましくは2.9〜3.1である。
該比が2.5以上であれば、得られる炭化珪素の塊状物中に残存する未反応の珪酸の量が少なくなる。該比が4.0以下であれば、得られる炭化珪素の塊状物中に残存する未反応の炭素の量が少なくなる。
The mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) of the raw materials (A and B) for producing silicon carbide is preferably 2.5 to 4.0, more preferably 2.7 -3.5, particularly preferably 2.9-3.1.
If the ratio is 2.5 or more, the amount of unreacted silicic acid remaining in the mass of silicon carbide obtained is reduced. If the ratio is 4.0 or less, the amount of unreacted carbon remaining in the resulting silicon carbide mass is reduced.

[第一の原料収容工程]
本工程は、アチソン炉6の炉内空間の下部(炉の内寸による高さの略中央部分より下部)に、「炭化珪素製造用原料A」1を収容する工程である。
アチソン炉6は、炉本体5の断面が略U字状である大気開放型の炉であり、両端の側壁に、向かい合うように固定された電極芯4,4を有している。
[First material storage process]
This step is a step of housing the “raw material A for silicon carbide production” 1 in the lower portion (lower than the substantially central portion of the height according to the inner dimension of the furnace) of the furnace internal space of the Acheson furnace 6.
The Acheson furnace 6 is an open-air type furnace in which the cross section of the furnace main body 5 is substantially U-shaped, and has electrode cores 4 4 fixed so as to face each other on side walls at both ends.

[発熱用コア体形成工程]
本工程は、第一の原料収容工程と第二の原料収容工程の間に設けられる工程であって、アチソン炉6の炉内空間において、炭化珪素製造用原料(A及びB)を加熱するための発熱用コア体3を形成させる工程である。
発熱用コア体3としては、電気を通すことができるものである限りにおいて、特に限定されるものではなく、例えば、黒鉛粉、カーボンロッド等が挙げられる。また、発熱用コア体3を構成する物質の形態は、特に限定されず、例えば、粉状、塊状等が挙げられる。
発熱用コア体3は、アチソン炉6の通電方向の両端に設けられた電極芯4,4を結ぶように全体として棒状の形状になるように設けられる。ここでの棒状の形状とは、例えば、円柱状、角柱状等が挙げられる。
[Heating core forming process]
This step is a step provided between the first raw material storage step and the second raw material storage step, and is for heating the raw materials for silicon carbide production (A and B) in the inner space of Acheson furnace 6. It is the process of forming the core body 3 for heat_generation of this.
The heat generating core body 3 is not particularly limited as long as it can pass electricity, and examples thereof include graphite powder, a carbon rod, and the like. Moreover, the form of the substance which comprises the heating core body 3 is not specifically limited, For example, powdery form, lump form, etc. are mentioned.
The heating core body 3 is provided in a bar-like shape as a whole so as to connect the electrode cores 4 and 4 provided at both ends of the Acheson furnace 6 in the current supply direction. Examples of the rod-like shape here include a cylindrical shape, a prismatic shape, and the like.

発熱用コア体3は、炭化珪素製造用原料内に形成されていればよい。例えば、アチソン炉6内に収容された「炭化珪素製造用原料A」1の上面に形成されてもよく、アチソン炉6内において、炭化珪素製造用原料AとBとの間に他の炭化珪素製造用原料(後述)を収容する場合においては、他の炭化珪素製造用原料内に形成されてもよい。   The heating core body 3 may be formed in the raw material for silicon carbide production. For example, it may be formed on the upper surface of “Raw material for producing silicon carbide A” 1 housed in Acheson furnace 6, and another silicon carbide may be formed between materials A and B for silicon carbide production in Acheson furnace 6. In the case of containing a manufacturing material (described later), it may be formed in another silicon carbide manufacturing material.

[第二の原料収容工程]
本工程は、アチソン炉6の炉内空間において、収容済みの「炭化珪素製造用原料A」1の上方に、「炭化珪素製造用原料B」2を収容する工程である。「炭化珪素製造用原料B」2はアチソン炉6の炉内空間であって、「炭化珪素製造用原料A」1の上方に収容される。
炭化珪素製造用原料(AおよびB)を収容後、電極芯4,4間に電流を流し、発熱用コア体3を通電加熱することで、発熱用コア体3の周囲において、下記式(1)で示される還元反応が起こり、炭化珪素(SiC)の塊状物が生成される。
SiO+3C→2SiC+2CO (1)
式(1)で示される還元反応が行われる温度は、好ましくは1,600〜3,000℃、より好ましくは1,600〜2,500℃である。
上記温度が1,600℃以上であると、上記反応が十分に行われ、高純度の炭化珪素を多量に得ることができる。
[Second raw material storage process]
This step is a step of housing the “raw material B for silicon carbide production” 2 above the housed “raw material A for silicon carbide production” 1 in the in-furnace space of the Acheson furnace 6. The “raw material B for silicon carbide production” 2 is a space in the furnace of the Acheson furnace 6 and is accommodated above the “raw material A for silicon carbide production” 1.
After the raw materials for silicon carbide production (A and B) are accommodated, an electric current is applied between the electrode cores 4 and 4 to electrically heat the heating core body 3 so that the following formula (1) is generated around the heating core body 3 The reduction reaction shown by) takes place, and a lump of silicon carbide (SiC) is formed.
SiO 2 + 3C → 2SiC + 2CO (1)
The temperature at which the reduction reaction represented by the formula (1) is carried out is preferably 1,600 to 3,000 ° C., more preferably 1,600 to 2,500 ° C.
The said reaction is fully performed as the said temperature is 1600 degreeC or more, and high-purity silicon carbide can be obtained abundantly.

なお、本発明において、炭化珪素製造用原料AおよびB以外に、軽装かさ密度が、炭化珪素製造用原料Aの軽装かさ密度よりも大きく、かつ、炭化珪素製造用原料Bの軽装かさ密度よりも小さい他の炭化珪素製造用原料を使用してもよい。該原料を使用する場合、該原料は、アチソン炉6の炉内空間において、炭化珪素製造用原料AとBとの間に収容される。   In the present invention, the light bulk density is larger than the light bulk density of silicon carbide manufacturing raw material A and is lower than the light bulk density of silicon carbide manufacturing raw material B in addition to silicon carbide manufacturing raw materials A and B. Other small raw materials for silicon carbide production may be used. When the raw material is used, the raw material is accommodated between the raw materials A and B for producing silicon carbide in the inner space of the Acheson furnace 6.

アチソン炉を用いて炭化珪素を製造する際に、シリカフュームや一酸化炭素ガス等の、固体または気体の副生成物(B、P、Al、Fe、Ti等の不純物元素を含むもの)が発生する。
仮に、本発明と異なり、軽装かさ密度の差がない1種のみの原料を用いた場合、これらの副生成物は、炭化珪素の生成に伴って、発熱体の周辺からアチソン炉の炉内の側面、底面、及び上方(開口部分)の各方向に向かって移動した後、炉外へと飛散する。なお、側面及び底面に到達したガスの一部は、炉内の壁面に沿って上方にさらに移動した後、炉内の上方(開口部)から炉外へと排出する。
この際、アチソン炉の炉内における副生成物の各方向への移動量のうち、上方への移動量が最も多い。その理由は、ガスがアチソン炉の発熱体の下方よりも上方に向かって抜ける傾向が強いからと考えられる。また、一酸化炭素ガス等は、移動の際に、生成途中の炭化珪素内を通過するため、ガスに含まれている不純物が炭化珪素の塊状物内に取り込まれる。
このため、得られた炭化珪素の塊状物において、発熱体の上方で生成された部位には、発熱体の下方で生成された部位と比較してより多くの不純物が含まれることとなり、アチソン法において、不純物の含有率のばらつきが少なく均質な炭化珪素を製造することが困難である。
この点、本発明の製造方法によれば、炉内の側面、底面、及び上方の各方向に向かう副生成物の移動量が均一となるため、不純物(B、P、Al、Fe、Ti)の含有率が小さく、かつ、不純物の含有率のばらつきが少なく均質な炭化珪素を得ることができる。
When silicon carbide is produced using Acheson furnace, solid or gaseous by-products such as silica fume and carbon monoxide gas (containing impurity elements such as B, P, Al, Fe, and Ti) are generated. .
Assuming that, unlike the present invention, only one kind of raw material having no difference in light bulk density is used, these by-products are generated from the periphery of the heating element and in the furnace of the Atisson furnace along with the formation of silicon carbide. After moving in the directions of the side surface, the bottom surface, and the upper side (opening portion), it scatters out of the furnace. In addition, a part of the gas that has reached the side surface and the bottom surface is further moved upward along the wall surface in the furnace, and then discharged from the upper portion (opening) in the furnace to the outside of the furnace.
At this time, the amount of upward movement is the largest among the amounts of movement of by-products in the furnace of the Acheson furnace in each direction. The reason is considered that the gas is more likely to escape upward than below the heating element of the Acheson furnace. In addition, since carbon monoxide gas and the like pass through the silicon carbide in the process of generation when moving, the impurities contained in the gas are taken into the lump of silicon carbide.
For this reason, in the obtained lump of silicon carbide, the portion generated above the heating element contains more impurities than the portion generated below the heating element. It is difficult to produce homogeneous silicon carbide with little variation in the content of impurities.
In this respect, according to the manufacturing method of the present invention, the amount of movement of the by-products toward the side, bottom, and upper directions in the furnace becomes uniform, so that the impurities (B, P, Al, Fe, Ti) It is possible to obtain homogeneous silicon carbide with a small content of and a small variation in the content of impurities.

本発明の製造方法で得られた炭化珪素は、不純物(ホウ素(B)、リン(P)、アルミニウム(Al)、鉄(Fe)およびチタン(Ti))の含有率が小さいものである。また、該炭化珪素は、アチソン炉内において生成された炭化珪素の塊状物の部位によって、不純物の含有率のばらつきが起こりにくく、均質なものである。
具体的には、炭化珪素製造用原料Aが加熱されて生成した炭化珪素(得られた炭化珪素塊状物の下部に位置する炭化珪素)と、炭化珪素製造用原料Bが加熱されて生成した炭化珪素(得られた炭化珪素塊状物の上部に位置する炭化珪素)とで、不純物であるアルミニウム(Al)、鉄(Fe)およびチタン(Ti)の元素毎の含有率の差は、いずれも、好ましくは4ppm以下、より好ましくは3ppm以下、特に好ましくは2ppm以下である。
なお、本明細書中、「ppm」は質量基準である。
The silicon carbide obtained by the production method of the present invention has a small content of impurities (boron (B), phosphorus (P), aluminum (Al), iron (Fe) and titanium (Ti)). In addition, the silicon carbide is homogeneous because the variation in the content of impurities is unlikely to occur depending on the portion of the lump of silicon carbide generated in the Acheson furnace.
Specifically, silicon carbide produced by heating raw material A for producing silicon carbide (silicon carbide located in the lower part of the obtained mass of silicon carbide) and carbonized material produced by heating raw material B for silicon carbide production With silicon (silicon carbide located in the upper part of the obtained silicon carbide lump), the difference in content of the impurities aluminum (Al), iron (Fe) and titanium (Ti) in each element is all Preferably it is 4 ppm or less, more preferably 3 ppm or less, particularly preferably 2 ppm or less.
In the present specification, "ppm" is based on mass.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)珪酸質原料A:アモルファスシリカ(太平洋セメント社試製品、シリカの含有率:99.9質量%以上、粒径1.0〜2.0mmの粒子の割合:50質量%以上)
(2)珪酸質原料B:珪石粉末(共立マテリアル社製、商品名「KCLA−1」、シリカの含有率:99.9質量%以上、最大粒径:1.0mm未満)
(3)炭素質原料:カーボンブラック(東海カーボン社製、商品名「シーストV」、炭素の含有率:99.9質量%以上)
(4)接着剤:ポリビニルアルコール(関東化学社製、特級)
(5)電極用黒鉛粉:太平洋セメント社製の試製品
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[Material used]
(1) Silicate raw material A: amorphous silica (Pacific Cement Co., Ltd. trial product, content of silica: 99.9% by mass or more, ratio of particles with a particle diameter of 1.0 to 2.0 mm: 50% by mass or more)
(2) Silicate raw material B: Silicate powder (trade name "KCLA-1" manufactured by Kyoritsu Materials Co., Ltd., content of silica: at least 99.9 mass%, maximum particle size: less than 1.0 mm)
(3) Carbonaceous raw material: carbon black (made by Tokai Carbon Co., Ltd., trade name "Seat V", carbon content: 99.9% by mass or more)
(4) Adhesive: Polyvinyl alcohol (Kanto Chemical Co., special grade)
(5) Graphite powder for electrodes: Trial product made by Pacific Cement Co., Ltd.

[実施例1]
炭素質原料100質量部に対して、ポリビニルアルコール(2質量%)水溶液を5質量部添加して、造粒機を用いて粒径が1mm程度になるように造粒した。造粒した炭素質原料と、珪酸質原料Aを、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が、3.0となるように混合して、炭化珪素製造用原料Aを調製した。
また、炭素質原料と珪酸質原料Aを、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が、3.0となるように混合して、炭化珪素製造用原料Bを調製した。
炭化珪素製造用原料A及びBの軽装かさ密度を、下記分析方法によって測定した。
Example 1
5 parts by mass of a polyvinyl alcohol (2% by mass) aqueous solution was added to 100 parts by mass of the carbonaceous raw material, and the mixture was granulated using a granulator to have a particle diameter of about 1 mm. A granulated carbonaceous material, the siliceous raw material A, the mixing molar ratio of carbon (C) and silicate (SiO 2) is (C / SiO 2), were mixed so that the 3.0, silicon carbide manufacturing The raw material A was prepared.
In addition, the carbonaceous material and the siliceous material A are mixed so that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) becomes 3.0, and the raw material for producing silicon carbide B was prepared.
The light bulk density of the raw materials A and B for producing silicon carbide was measured by the following analysis method.

図1及び図2に示されたアチソン炉6の炉内空間の下部(炉の内寸による高さの略中央部分より下部)へ、「炭化珪素製造用原料A」1を収容した。次いで、電極用黒鉛粉を、「炭化珪素製造用原料A」1の上面に、炉本体5の両端の略中央部分に固定された電極芯4,4を結ぶように収容して、発熱用コア体3を形成した。さらに、収容済みの「炭化珪素製造用原料A」1及び発熱用コア体3の上方に、「炭化珪素製造用原料B」2を収容した。
その後、2,500℃以上で12時間加熱することで、炭化珪素の塊状物を得た。得られた炭化珪素の塊状物を、金属切断用のこぎりを用いて、発熱用コア体3より上方の部位(炭化珪素製造用原料Bが加熱されて生成した炭化珪素からなる部位:表2中、「上部」と示す。)と、下方の部位(炭化珪素製造用原料Aが加熱されて生成した炭化珪素からなる部位:表2中、「下部」と示す。)に切断した。
切断した各部位について、ボールミルを用いて、粒径が2mm以下となるまで粉砕して炭化珪素粉末を得た。各部位(上方の部位、下方の部位)から得られた炭化珪素粉末中のB、P、Al、Fe、Tiの含有率を、下記分析方法によって、測定した。
The “raw material A for silicon carbide production” 1 was accommodated in the lower part (lower than the approximate center of the height of the inner size of the furnace) of the furnace space of the Acheson furnace 6 shown in FIGS. 1 and 2. Next, the graphite powder for electrode is accommodated on the upper surface of “Raw material A for silicon carbide production” 1 so as to connect the electrode cores 4 and 4 fixed to the approximate center of both ends of the furnace main body 5 Formed body 3 Furthermore, the “raw material B for silicon carbide production” 2 was housed above the housed “raw material A for silicon carbide production” 1 and the core body 3 for heat generation.
Then, the lump of silicon carbide was obtained by heating at 2,500 degreeC or more for 12 hours. The obtained lump of silicon carbide was subjected to a part above the heating core body 3 using a metal cutting saw (a part consisting of silicon carbide formed by heating the raw material B for silicon carbide production: in Table 2, It cut | disconnected to the site | part (The site | part which consists of silicon carbide which the raw material A for silicon carbide production was heated and produced | generated, and is shown as "lower part" in Table 2.) and lower part.
Each of the cut portions was ground using a ball mill until the particle size became 2 mm or less to obtain a silicon carbide powder. The contents of B, P, Al, Fe, and Ti in the silicon carbide powder obtained from each portion (upper portion, lower portion) were measured by the following analysis method.

[分析方法]
(1)炭化珪素製造用原料の軽装かさ密度の測定
「JIS R 9301−2−3(アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度)」に準拠して炭化珪素製造用原料の軽装かさ密度を測定した。
(2)炭化珪素粉末中のPの含有率の測定
試料(炭化珪素粉末)1gおよび炭酸ナトリウム4gを白金ルツボに入れた後、この白金ルツボを電気炉内に載置して700℃で1時間加熱した。次いで1時間ごとに、白金ルツボ内の混合物を撹拌しながら、800℃で4時間加熱し、さらに1,000℃で15分間加熱した。加熱後の混合物(融成物)に50質量%の塩酸l20mlを添加し、ホットプレートを用いて、140℃で10分間、融成物をくずしながら溶解した。溶解後、水を加えて100mlにメスアップした後、ろ過を行い、得られた固形分に対して、ICP−AES分析を行って、Pの含有率を測定した。
(3)炭化珪素粉末中のP以外の元素(B、Al、Fe、Ti)の含有率の測定
「JIS R 1616」に記載された加圧酸分解法によるICP−AES分析に基づいて、P以外の元素(B、Al、Fe、Ti)の含有率を測定した。
[Analytical method]
(1) Measurement of light bulk density of raw material for silicon carbide production: Based on "JIS R 9301-2-3 (Alumina powder-Part 2: Physical property measurement method 3: light bulk density and heavy bulk density)" The light bulk density of the raw material for silicon carbide production was measured.
(2) Measurement of P Content in Silicon Carbide Powder After placing 1 g of a sample (silicon carbide powder) and 4 g of sodium carbonate in a platinum crucible, the platinum crucible is placed in an electric furnace and placed at 700 ° C. for 1 hour Heated. Then, while stirring the mixture in the platinum crucible for 1 hour, it was heated at 800 ° C. for 4 hours and further heated at 1,000 ° C. for 15 minutes. To the mixture after heating (melt), 20 ml of 50% by mass hydrochloric acid was added, and the melt was melted at 140 ° C. for 10 minutes using a hot plate for breakage. After dissolution, water was added to make up to 100 ml, and filtration was performed, and the resulting solid content was subjected to ICP-AES analysis to measure the P content.
(3) Measurement of Content of Elements (B, Al, Fe, Ti) Other than P in Silicon Carbide Powder P based on ICP-AES analysis by the pressurized acid decomposition method described in “JIS R 1616” The contents of elements other than B (Al, Fe, Ti) were measured.

[実施例2]
炭素質原料100質量部に対して、ポリビニルアルコール(2質量%)水溶液を5質量部添加して、造粒機を用いて粒径が2mm程度になるように造粒した。造粒した炭素質原料と、珪酸質原料Bを、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が、3.0となるように混合して、炭化珪素製造用原料Aを調製した。
また、炭素質原料と珪酸質原料Bを、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が、3.0となるように混合して、炭化珪素製造用原料Bを調製した。
実施例1と同様にして、炭化珪素の塊状物を製造し、該塊状物の上方の部位を粉砕してなる炭化珪素粉末と、該塊状物の下方の部位を粉砕してなる炭化珪素粉末を得た。
炭化珪素製造用原料A及びBの軽装かさ密度、及び、各炭化珪素粉末中のB、P、Al、Fe、Tiの含有率を、実施例1と同様にして測定した。
Example 2
5 parts by mass of a polyvinyl alcohol (2% by mass) aqueous solution was added to 100 parts by mass of the carbonaceous raw material, and the mixture was granulated using a granulator to have a particle diameter of about 2 mm. Silicon carbide is manufactured by mixing granulated carbonaceous raw material and siliceous raw material B so that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) becomes 3.0. The raw material A was prepared.
In addition, the carbonaceous material and the siliceous material B are mixed so that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) becomes 3.0, and the raw material for producing silicon carbide B was prepared.
In the same manner as in Example 1, a mass of silicon carbide is produced, and a silicon carbide powder obtained by grinding the upper portion of the mass and a silicon carbide powder obtained by grinding the lower portion of the mass. Obtained.
The light bulk density of the raw materials A and B for producing silicon carbide and the contents of B, P, Al, Fe, and Ti in each silicon carbide powder were measured in the same manner as in Example 1.

[実施例3]
珪酸質原料Bと炭素質原料を、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が3.0となるように混合した後、得られた混合物100質量部に対して、ポリビニルアルコール(2質量%)水溶液を7質量部添加して、造粒機を用いて粒径が1mm程度になるように造粒して、炭化珪素製造用原料Aを調製した。また、粒径が0.5mm程度になるように造粒する以外は、炭化珪素製造用原料Aの調製と同様にして炭化珪素製造用原料Bを調製した。
実施例1と同様にして、炭化珪素の塊状物を製造し、該塊状物の上方の部位を粉砕してなる炭化珪素粉末と、該塊状物の下方の部位を粉砕してなる炭化珪素粉末を得た。
炭化珪素製造用原料A及びBの軽装かさ密度、及び、各炭化珪素粉末中のB、P、Al、Fe、Tiの含有率を、実施例1と同様にして測定した。
[Example 3]
After mixing the siliceous raw material B and the carbonaceous raw material so that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) becomes 3.0, 100 parts by mass of the mixture obtained On the other hand, 7 mass parts of polyvinyl alcohol (2 mass%) aqueous solution was added, and it granulated so that a particle size might be set to about 1 mm using a granulator, and the raw material A for silicon carbide manufacture was prepared. Further, a raw material B for producing silicon carbide was prepared in the same manner as the preparation of the raw material A for producing silicon carbide except that granulation was performed so that the particle size was about 0.5 mm.
In the same manner as in Example 1, a mass of silicon carbide is produced, and a silicon carbide powder obtained by grinding the upper portion of the mass and a silicon carbide powder obtained by grinding the lower portion of the mass. Obtained.
The light bulk density of the raw materials A and B for producing silicon carbide and the contents of B, P, Al, Fe, and Ti in each silicon carbide powder were measured in the same manner as in Example 1.

[比較例1]
珪酸質原料Aと炭素質原料を、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が3.0となるように混合して、炭化珪素製造用原料を調製した。
炭化珪素製造用原料A及びBとして、得られた炭化珪素製造用原料を用いる以外は、実施例1と同様にして、炭化珪素の塊状物を製造し、該塊状物の上方の部位を粉砕してなる炭化珪素粉末と、該塊状物の下方の部位を粉砕してなる炭化珪素粉末を得た。
炭化珪素製造用原料の軽装かさ密度、及び、各炭化珪素粉末中のB、P、Al、Fe、Tiの含有率を、実施例1と同様にして測定した。
Comparative Example 1
A raw material for silicon carbide production was prepared by mixing siliceous raw material A and carbonaceous raw material such that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) would be 3.0. .
A lump of silicon carbide is produced in the same manner as in Example 1 except that the obtained raw material for producing silicon carbide is used as the raw materials A and B for producing silicon carbide, and the upper portion of the mass is crushed. The obtained silicon carbide powder and the silicon carbide powder obtained by grinding the lower part of the lump were obtained.
The light bulk density of the raw material for producing silicon carbide and the contents of B, P, Al, Fe, and Ti in each silicon carbide powder were measured in the same manner as in Example 1.

[比較例2]
珪酸質原料Bと炭素質原料を、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が2.9となるように混合して、炭化珪素製造用原料を調製した。
比較例1と同様にして、炭化珪素の塊状物を製造し、該塊状物の上方の部位を粉砕してなる炭化珪素粉末と、該塊状物の下方の部位を粉砕してなる炭化珪素粉末を得た。
炭化珪素製造用原料の軽装かさ密度、及び、各炭化珪素粉末中のB、P、Al、Fe、Tiの含有率を、実施例1と同様にして測定した。
Comparative Example 2
A raw material for silicon carbide production was prepared by mixing siliceous raw material B and carbonaceous raw material such that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) would be 2.9. .
Similar to Comparative Example 1, a mass of silicon carbide is produced, and a silicon carbide powder obtained by grinding the upper portion of the mass and a silicon carbide powder obtained by grinding the lower portion of the mass. Obtained.
The light bulk density of the raw material for producing silicon carbide and the contents of B, P, Al, Fe, and Ti in each silicon carbide powder were measured in the same manner as in Example 1.

[比較例3]
珪酸質原料Aと炭素質原料を、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が3.1となるように混合した後、得られた混合物100質量部に対して、ポリビニルアルコール(2質量%)水溶液を6質量部添加して、造粒機を用いて粒径が2mm程度になるように造粒して、炭化珪素製造用原料Aを調製した。
また、珪酸質原料Bと炭素質原料を、炭素(C)と珪酸(SiO)の混合モル比(C/SiO)が3.1となるように混合して、炭化珪素製造用原料Bを調製した。
実施例1と同様にして、炭化珪素の塊状物を製造し、該塊状物の上方の部位を粉砕してなる炭化珪素粉末と、該塊状物の下方の部位を粉砕してなる炭化珪素粉末を得た。
炭化珪素製造用原料A及びBの軽装かさ密度、及び、各炭化珪素粉末中のB、P、Al、Fe、Tiの含有率を、実施例1と同様にして測定した。
それぞれの結果を表1および表2に示す。
Comparative Example 3
After mixing the siliceous raw material A and the carbonaceous raw material so that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) becomes 3.1, 100 parts by mass of the mixture obtained On the other hand, 6 mass parts of polyvinyl alcohol (2 mass%) aqueous solution was added, and it granulated so that a particle size might be set to about 2 mm using a granulator, and the raw material A for silicon carbide manufacture was prepared.
Further, silicic raw material B and carbonaceous raw material are mixed so that the mixing molar ratio (C / SiO 2 ) of carbon (C) and silicic acid (SiO 2 ) becomes 3.1, and raw material B for producing silicon carbide Was prepared.
In the same manner as in Example 1, a mass of silicon carbide is produced, and a silicon carbide powder obtained by grinding the upper portion of the mass and a silicon carbide powder obtained by grinding the lower portion of the mass. Obtained.
The light bulk density of the raw materials A and B for producing silicon carbide and the contents of B, P, Al, Fe, and Ti in each silicon carbide powder were measured in the same manner as in Example 1.
The respective results are shown in Tables 1 and 2.

Figure 0006527430
Figure 0006527430

Figure 0006527430
Figure 0006527430

表2から、本発明の製造方法(実施例1〜3)によれば、アチソン法によって得られた炭化珪素は、生成した炭化珪素の塊状物の部位によらず、不純物の含有率が小さく、均質であることがわかる。
一方、炭化珪素製造用原料A(炉内空間の下部に収容されたもの)と炭化珪素製造用原料B(炭化珪素製造用原料A及び発熱用コア体の上方に収容されたもの)との軽装かさ密度の差がない場合(比較例1〜2)、生成した炭化珪素の塊状物の上部から得られた炭化珪素粉末中の不純物の含有率は、生成した炭化珪素の塊状物の下部から得られた炭化珪素粉末中の不純物の含有率よりも大きいことがわかる。
また、炭化珪素製造用原料A(炉内空間の下部に収容されたもの)と炭化珪素製造用原料B(炭化珪素製造用原料A及び発熱用コア体の上方に収容されたもの)の軽装かさ密度の差が0.55g/cmである場合(比較例3)、生成した炭化珪素の塊状物の上部から得られた炭化珪素粉末中の不純物の含有率は、生成した炭化珪素の塊状物の下部から得られた炭化珪素粉末中の不純物の含有率よりも小さいことがわかる。
また、本発明の製造方法(実施例1〜3)で得られた炭化珪素粉末は、比較例1〜3で得られた炭化珪素粉末よりも、不純物(B、P、Al、Fe、Ti)の含有率が小さいことがわかる。
From Table 2, according to the manufacturing method of the present invention (Examples 1 to 3), the silicon carbide obtained by the Acheson method has a small content of impurities regardless of the portion of the block of silicon carbide formed. It turns out that it is homogeneous.
On the other hand, light packaging of the raw material A for silicon carbide production (the one housed in the lower part of the furnace space) and the raw material B for silicon carbide production (the one housed above the silicon carbide production raw material A and the heating core) In the case where there is no difference in bulk density (Comparative Examples 1 and 2), the content of impurities in the silicon carbide powder obtained from the top of the formed silicon carbide lump is obtained from the bottom of the formed silicon carbide lump It can be seen that the content of impurities in the obtained silicon carbide powder is larger.
In addition, the light load of the raw material A for silicon carbide production (the one housed in the lower part of the space in the furnace) and the raw material B for silicon carbide production (the one housed above the raw material A for silicon carbide production and the heating core) In the case where the difference in density is 0.55 g / cm 3 (Comparative Example 3), the content of impurities in the silicon carbide powder obtained from the top of the formed mass of silicon carbide is the formed mass of silicon carbide The content of impurities in the silicon carbide powder obtained from the lower part of
Moreover, the silicon carbide powder obtained by the manufacturing method (Examples 1 to 3) of the present invention has impurities (B, P, Al, Fe, Ti) more than the silicon carbide powders obtained in Comparative Examples 1 to 3. It can be seen that the content rate of is small.

1 炭化珪素製造用原料A
2 炭化珪素製造用原料B
3 発熱用コア体
4 電極芯
5 炉本体
6 アチソン炉
1 Raw material A for silicon carbide production
2 Raw material B for silicon carbide production
3 Core body for heat generation 4 Electrode core 5 Furnace main body 6 Acheson furnace

Claims (4)

アチソン炉を用いて、炭化珪素製造用原料を加熱して、炭化珪素を得る炭化珪素の製造方法であって、
上記炭化珪素製造用原料として、軽装かさ密度の差が0.05〜0.4g/cmである2種の炭化珪素製造用原料A、B(ただし、炭化珪素製造用原料Aの軽装かさ密度は、炭化珪素製造用原料Bの軽装かさ密度よりも小さい。)を準備する原料準備工程と、
上記アチソン炉の炉内空間の下部に、炭化珪素製造用原料Aを収容する第一の原料収容工程と、
上記アチソン炉の炉内空間において、収容済みの炭化珪素製造用原料Aの上方に、炭化珪素製造用原料Bを収容する第二の原料収容工程、
を含むことを特徴とする炭化珪素の製造方法。
A method for producing silicon carbide by heating a raw material for producing silicon carbide by using an atchison furnace to obtain silicon carbide,
Two raw materials A and B for producing silicon carbide having a difference in light bulk density of 0.05 to 0.4 g / cm 3 as the above-mentioned raw material for producing silicon carbide (however, the light bulk density of the raw material A for producing silicon carbide) A raw material preparation step of preparing the light load bulk density of the raw material B for silicon carbide production).
A first raw material accommodation step of accommodating the raw material A for silicon carbide production in the lower part of the furnace internal space of the Acheson furnace;
A second raw material accommodation step of accommodating the raw material B for producing silicon carbide above the accommodated raw material A for producing silicon carbide in the inner space of the Acheson furnace;
A manufacturing method of silicon carbide characterized by including.
上記第一の原料収容工程と、上記第二の原料収容工程の間に、
上記アチソン炉の炉内空間において、上記炭化珪素製造用原料を加熱するための発熱用コア体を形成させる発熱用コア体形成工程、
を含む請求項1に記載の炭化珪素の製造方法。
Between the first raw material accommodation step and the second raw material accommodation step,
A heat generating core body forming step of forming a heat generating core body for heating the raw material for producing silicon carbide in a furnace inner space of the Acheson furnace;
The method for producing silicon carbide according to claim 1, comprising
炭化珪素製造用原料Aおよび炭化珪素製造用原料Bの少なくともいずれか一方が、接着剤を用いて炭化珪素製造用粉体を造粒してなる造粒物を含む請求項1又は2に記載の炭化珪素の製造方法。   3. The method according to claim 1, wherein at least one of the raw material A for producing silicon carbide and the raw material B for producing silicon carbide includes a granulated product obtained by granulating a powder for producing silicon carbide using an adhesive. Method of manufacturing silicon carbide. 炭化珪素製造用原料Aが加熱されて生成した炭化珪素と、炭化珪素製造用原料Bが加熱されて生成した炭化珪素とで、不純物であるアルミニウム、鉄およびチタンの各元素毎の含有率の差が、いずれも、4ppm以下である請求項1〜3のいずれか1項に記載の炭化珪素の製造方法。
The difference in content of each element of aluminum, iron and titanium as impurities between silicon carbide produced by heating raw material A for producing silicon carbide and silicon carbide produced by heating raw material B for producing silicon carbide The method for producing silicon carbide according to any one of claims 1 to 3, wherein the amount of each is 4 ppm or less.
JP2015177373A 2015-09-09 2015-09-09 Method of manufacturing silicon carbide Active JP6527430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177373A JP6527430B2 (en) 2015-09-09 2015-09-09 Method of manufacturing silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177373A JP6527430B2 (en) 2015-09-09 2015-09-09 Method of manufacturing silicon carbide

Publications (2)

Publication Number Publication Date
JP2017052665A JP2017052665A (en) 2017-03-16
JP6527430B2 true JP6527430B2 (en) 2019-06-05

Family

ID=58320247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177373A Active JP6527430B2 (en) 2015-09-09 2015-09-09 Method of manufacturing silicon carbide

Country Status (1)

Country Link
JP (1) JP6527430B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351614A (en) * 1999-06-10 2000-12-19 Bridgestone Corp Silicon carbide powder and its production
JP2013112544A (en) * 2011-11-25 2013-06-10 Taiheiyo Cement Corp High-purity silicon carbide whisker and method for producing the same
JP6184732B2 (en) * 2013-04-26 2017-08-23 株式会社トクヤマ Silicon carbide granules and method for producing the same
CN105308223B (en) * 2013-07-26 2018-02-13 贰陆股份公司 Method for synthesizing ultra-high purity carborundum
JP6210598B2 (en) * 2014-02-25 2017-10-11 太平洋セメント株式会社 Method for producing silicon carbide powder

Also Published As

Publication number Publication date
JP2017052665A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6210598B2 (en) Method for producing silicon carbide powder
TWI613335B (en) Method for producing tantalum carbide powder and tantalum carbide single crystal
JP5999715B2 (en) Method for producing silicon carbide powder
US20110262339A1 (en) Production of solar-grade silicon from silicon dioxide
US20110262336A1 (en) Production of solar-grade silicon from silicon dioxide
JP2013112541A (en) Method for manufacturing refractory containing silicon carbide
JP6297812B2 (en) Method for producing silicon carbide
JP6527430B2 (en) Method of manufacturing silicon carbide
JP2013107783A (en) Method for manufacturing silicon carbide sintered compact
JP2013112544A (en) High-purity silicon carbide whisker and method for producing the same
JP5797086B2 (en) Method for producing high purity silicon carbide powder
JP2019085303A (en) Manufacturing method and manufacturing device of silicon
JP6270414B2 (en) Method for producing silicon carbide
JP6707407B6 (en) Method for producing silicon carbide powder
JP6304477B2 (en) Silicon carbide powder and method for producing the same
JP6616660B2 (en) Method for producing silicon carbide
JP6261384B2 (en) Method for producing silicon carbide
JPH0624728A (en) Production of cristobalite
JP2021147283A (en) Composite particle and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190510

R150 Certificate of patent or registration of utility model

Ref document number: 6527430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250