JP6496174B2 - Inspection method for inspecting tank bottom plate for damage - Google Patents

Inspection method for inspecting tank bottom plate for damage Download PDF

Info

Publication number
JP6496174B2
JP6496174B2 JP2015077025A JP2015077025A JP6496174B2 JP 6496174 B2 JP6496174 B2 JP 6496174B2 JP 2015077025 A JP2015077025 A JP 2015077025A JP 2015077025 A JP2015077025 A JP 2015077025A JP 6496174 B2 JP6496174 B2 JP 6496174B2
Authority
JP
Japan
Prior art keywords
potential
damage
bottom plate
electrode terminals
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015077025A
Other languages
Japanese (ja)
Other versions
JP2016197057A (en
Inventor
中川 淳一
淳一 中川
和実 和田
和実 和田
荒木 孝之
孝之 荒木
杉浦 雅人
雅人 杉浦
健太郎 奥
健太郎 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015077025A priority Critical patent/JP6496174B2/en
Publication of JP2016197057A publication Critical patent/JP2016197057A/en
Application granted granted Critical
Publication of JP6496174B2 publication Critical patent/JP6496174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タンクの底板の損傷(腐食等による減肉や割れ等)を検査する検査方法に関する。   The present invention relates to an inspection method for inspecting damage (thinning or cracking due to corrosion or the like) of a bottom plate of a tank.

従来の化成タンク等の底板の腐食等の使用中検査はAE検査法しかなく、超音波検査法を定期検査に適用すると多大な時間や検査費用を要する等の問題があった。
特許文献1には、損傷を挟んだ2点間の電位差を測定する電位差法を用いる検査方法が開示されている。この場合に、2電極端子および2測定端子の取り付け位置をできるだけ損傷の発生位置に近くなおかつ損傷を挟むような位置となるように選ぶことにより損傷の検出感度が向上すると記載されている。
非特許文献1には、複数の電極に電流を流し、インピーダンスを計測することでタンクの底板の損傷検査を行うEIT(Electrical Impedance Tomography)法のアルゴリズムが提案されている。
Conventional in-use inspections such as corrosion of the bottom plate of chemical conversion tanks and the like are only AE inspection methods, and there is a problem that enormous time and inspection costs are required when ultrasonic inspection methods are applied to periodic inspections.
Patent Document 1 discloses an inspection method using a potential difference method for measuring a potential difference between two points sandwiching damage. In this case, it is described that the detection sensitivity of damage is improved by selecting the attachment positions of the two electrode terminals and the two measurement terminals as close as possible to the damage occurrence positions and sandwiching the damage.
Non-Patent Document 1 proposes an algorithm of an EIT (Electrical Impedance Tomography) method in which a current is passed through a plurality of electrodes and an impedance is measured to inspect a tank bottom plate for damage.

特開2006−226978号公報JP 2006-226978 A

A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements Habib Ammari ・ Hyeonbae Kang ・ Eunjoo Kim ・ Kaouthar Louati ・ Michael S. Vogelius 2007A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements Habib Ammari ・ Hyeonbae Kang ・ Eunjoo Kim ・ Kaouthar Louati ・ Michael S. Vogelius 2007 A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal., 105 (1989), 299-326A. Friedman and M.S.Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal., 105 (1989), 299-326 H. Ammari and H. Kang, high-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal., 34 (2003), 1152-1166H. Ammari and H. Kang, high-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal., 34 (2003), 1152-1166

しかしながら、特許文献1の手法では、2電極端子および2測定端子の組み合わせで取り付け位置を設定しなければならない。検査対象となるタンクには大型のものもあり、損傷箇所の事前特定も困難であることから、特許文献1の手法を採用しても、2電極端子および2測定端子の取り付け位置を多数設定しなければならず、結局は多数の測定回数が必要であり、多大な時間や検査費用を要する等の問題の根本解決には至らないという問題があった。
従来のEIT法では、犬走りと呼ばれているタンクの底板外周に電極端子や電位計測点を設けるため、コンクリート等の被覆物を剥がして計測する必要があった。また、非特許文献1に記載のMUSICアルゴリズムでは、計測ノイズの影響を受けて、複数の損傷がある場合にはすべての損傷を正確に検出することはできない。
However, in the method of Patent Document 1, the attachment position must be set by a combination of two electrode terminals and two measurement terminals. Since there are large tanks to be inspected and it is difficult to specify the damaged part in advance, even if the method of Patent Document 1 is adopted, a large number of mounting positions for the two-electrode terminals and the two measuring terminals are set. In the end, a large number of times of measurement is required, and there is a problem that it does not lead to a fundamental solution of problems such as requiring a lot of time and inspection costs.
In the conventional EIT method, since electrode terminals and potential measurement points are provided on the outer periphery of a bottom plate of a tank called dog running, it is necessary to measure by stripping a covering such as concrete. Further, the MUSIC algorithm described in Non-Patent Document 1 cannot accurately detect all the damages when there are a plurality of damages due to the influence of measurement noise.

本発明は上記のような点に鑑みてなされたものであり、多大な時間や検査費用を要することなく、タンクの底板の損傷を精度良く検査できるようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to make it possible to accurately inspect for damage to the bottom plate of a tank without requiring a lot of time and inspection costs.

EIT法で使用する診断アルゴリズムは円板領域を前提としており、従来から電極端子位置及び電位計測位置はタンクの底板外周とされ、電極端子位置及び電位計測位置の適正化といったことは課題とされていなかった。
本願発明者らは、底板外周以外にもEIT法による検査が可能な電極端子位置及び電位計測位置の存在を明確にすべく、数多くの実験を実施し、側板にも適正な電極端子位置及び電位計測位置が存在することを見出した。また、一度発生した損傷個所は縮小又は消滅することはないので、データ計測を時系列的に実施すればデータ数を増やすことができるとともに、損傷個所の時系列モニタリングができるため、データ増による検出精度向上と時系列モニタリングという新たな損傷部位の診断機能を同時達成できると発想し、従来のMUSICアルゴリズムを拡張して検出精度を高めることができることを見出し、本発明を成すに至った。
The diagnosis algorithm used in the EIT method is based on the disc region. Conventionally, the electrode terminal position and the potential measurement position are the outer periphery of the bottom plate of the tank, and the optimization of the electrode terminal position and the potential measurement position has been a problem. There wasn't.
In order to clarify the existence of electrode terminal positions and potential measurement positions that can be inspected by the EIT method in addition to the outer periphery of the bottom plate, the inventors of the present application conducted a number of experiments, and appropriate electrode terminal positions and potentials on the side plate as well. We found that the measurement position exists. In addition, once damaged parts do not shrink or disappear, the number of data can be increased if data measurement is carried out in time series, and the damage part can be monitored in time series. The idea that a new damaged site diagnosis function of accuracy improvement and time-series monitoring can be achieved at the same time was found, and it was found that the detection accuracy can be enhanced by extending the conventional MUSIC algorithm, and the present invention has been achieved.

本発明の要旨は以下の通りである。
本発明の検査方法は、タンクの底板の損傷を検査する検査方法であって、前記底板の外周又は前記タンクの側板に周方向に位相をずらして配置された複数の電極端子と、前記底板の外周又は前記タンクの側板に周方向に位相をずらして配置された3点以上の計測点とを用い、前記複数の電極端子のうちの2つの電極端子の間に電流を流すことをパターンを変更しながら実行し、前記各パターンにて前記各計測点で電位を計測し、前記各パターンにおける、前記各計測点で計測した電位と、前記電位を計測した際の2つの電極端子と同じ組み合わせで前記各計測点で計測した初期状態の電位との差に基づいて、前記計測電位分布の差と損傷の位置との関係を記述する関数を使って、前記底板の損傷の位置を求め、前記各計測点で計測する電位は、一の基準点の電位に対する電位差であることを特徴とする。
また、本発明の検査方法の他の特徴とするところは、前記関数は、底板領域Ωの外周境界を∂Ω、検査時の底板における損傷の個数をK、損傷の位置を{y1,…,yK}⊂Ωとして、以下の関係式で定義される、∂Ω上の電流密度分布を与えたときに得られる∂Ω上の検査時の電位分布uと初期状態の電位分布Uとの差について、損傷の直径εに関する式であり(Mjは分極テンソルと呼ばれる計量、O(ε3)はεに関する3次以上の微小項)、関数Nは、∂Ω上のΩへの内向き法線をν、ディラックのデルタ関数をδy、∂Ωの長さを|∂Ω|、∂Ωの線素をdsxとして、以下の関係式で定義される点にある。
The gist of the present invention is as follows.
The inspection method of the present invention is an inspection method for inspecting damage to a bottom plate of a tank, and a plurality of electrode terminals arranged in a circumferential direction on the outer periphery of the bottom plate or the side plate of the tank, and the bottom plate Using three or more measurement points arranged on the outer periphery or the side plate of the tank with the phase shifted in the circumferential direction, the current is changed between two electrode terminals of the plurality of electrode terminals. , And measure the potential at each measurement point in each pattern, in the same combination of the potential measured at each measurement point in each pattern and the two electrode terminals when measuring the potential Based on the difference between the initial state potential measured at each measurement point and using a function that describes the relationship between the difference in measured potential distribution and the position of damage, the position of damage to the bottom plate is obtained, The potential measured at the measurement point is Characterized in that it is a potential difference with respect to the potential of one reference point.
Another feature of the inspection method of the present invention is that the function is 、 Ω as the outer peripheral boundary of the bottom plate region Ω, K is the number of damages in the bottom plate at the time of inspection, {y 1 ,. , Y K } ⊂Ω, the potential distribution u at the time of inspection on ∂Ω and the potential distribution U in the initial state obtained by giving the current density distribution on ∂Ω defined by the following relational expression For the difference, it is an equation for the damage diameter ε (M j is a metric called polarization tensor, O (ε 3 ) is a third or higher order micro term for ε), and the function N is inward to Ω over ∂Ω The normal line is ν, the Dirac delta function is δ y , the length of ∂Ω is | ∂Ω |, and the line element of ∂Ω is ds x .

Figure 0006496174
Figure 0006496174

また、本発明の検査方法の他の特徴とするところは、前記電極端子は3つ以上あり、前記パターンを変更するとは、2つの電極端子の組み合わせを変更して電流を流すことをいう点にある。
また、本発明の検査方法の他の特徴とするところは、前記複数の電極端子のうちの2つの電極端子の間に電流を流すことをパターンを変更しながら実行し、前記各パターンにて前記各計測点で電位を計測することを、時系列上の異なるタイミングで複数回実施し、前記各タイミングの前記各パターンにおける、前記各計測点で計測した電位と、前記電位を計測した際の2つの電極端子と同じ組み合わせで前記各計測点で計測した初期状態の電位との差に基づいて、前記計測電位分布の差と損傷の位置との関係を記述する関数を使って、前記底板の損傷の位置を求める点にある。
Another feature of the inspection method of the present invention is that there are three or more electrode terminals, and changing the pattern means changing the combination of the two electrode terminals to flow current. is there.
Another feature of the inspection method according to the present invention is that a current is passed between two electrode terminals of the plurality of electrode terminals while changing the pattern, The measurement of the potential at each measurement point is performed a plurality of times at different timings in the time series, and the potential measured at each measurement point in each pattern at each timing and 2 when the potential is measured. Damage to the bottom plate using a function that describes the relationship between the difference in measured potential distribution and the position of damage based on the difference between the initial state potential measured at each measurement point in the same combination with two electrode terminals. The point is to obtain the position of .

本発明によれば、予め設置された複数の電極端子のうちの2つの電極端子の間に電流を流し、タンクの周方向に位相をずらして配置された3点以上の計測点で電位を計測することで観測データを得るので、多大な時間や検査費用を要することなく、タンクの底板の損傷を精度良く検査することができる。   According to the present invention, an electric current is passed between two electrode terminals of a plurality of pre-installed electrode terminals, and the potential is measured at three or more measurement points that are arranged with a phase shifted in the circumferential direction of the tank. As a result, observation data is obtained, so that damage to the bottom plate of the tank can be accurately inspected without requiring a lot of time and inspection costs.

検査対象とするタンクの底面を模式的に示す図である。It is a figure which shows typically the bottom face of the tank made into test | inspection object. 一の電極端子と組み合わせることのできる電極端子を説明するための図である。It is a figure for demonstrating the electrode terminal which can be combined with one electrode terminal. 実施形態におけるタンクの底板の損傷を検査する検査方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the test | inspection method which test | inspects damage of the bottom plate of the tank in embodiment. 実施例における側板での電位計測結果を示す図である。It is a figure which shows the electric potential measurement result in the side plate in an Example. 実施例における底板での電位計測結果を示す図である。It is a figure which shows the electric potential measurement result in the baseplate in an Example. 実施例における底板の外周における各パターンでの電位差の特性線を示す図である。It is a figure which shows the characteristic line of the electrical potential difference in each pattern in the outer periphery of the baseplate in an Example. 実施例における損傷検出結果を表すコンター図である。It is a contour figure showing the damage detection result in an Example. 従来法における損傷検出結果を表すコンター図である。It is a contour figure showing the damage detection result in a conventional method.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、検査対象とするタンクの底面を模式的に示す図である。底面1の周囲に、筒状の側板が垂直に設置されて、タンクが構成される。
図1に示すように、タンクの底板1の外周に、その周方向に45度ずつ位相をずらして8本の電極端子2(必要に応じて符号2a〜2hを付す)が配置されている。電極端子2は、底板1の外周から外方向に突出するように設けられる。
8本の電極端子2a〜2hのうちの任意の2つの電極端子2、2の間に、電流印加装置により一定電流を流すことができる。8本の電極端子2a〜2hがある場合、図2に線で結んで示すように、例えば電極端子2aは他の7本の電極端子2b〜2hと組み合わせることができる。このように、2つの電極端子2、2の組み合わせは、82=28種類となる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a diagram schematically showing the bottom surface of a tank to be inspected. A cylindrical side plate is vertically installed around the bottom surface 1 to form a tank.
As shown in FIG. 1, eight electrode terminals 2 (denoted by reference numerals 2a to 2h as necessary) are arranged on the outer periphery of the bottom plate 1 of the tank with a phase shifted by 45 degrees in the circumferential direction. The electrode terminal 2 is provided so as to protrude outward from the outer periphery of the bottom plate 1.
A constant current can be passed between any two electrode terminals 2 and 2 among the eight electrode terminals 2a to 2h by a current application device. When there are eight electrode terminals 2a to 2h, for example, the electrode terminal 2a can be combined with the other seven electrode terminals 2b to 2h, as shown by a line in FIG. Thus, there are 8 C 2 = 28 types of combinations of the two electrode terminals 2 and 2.

また、底板1の外周に、その周方向に位相をずらして3点以上の計測点3が配置されている。各計測点3では、電位計測装置により電位を計測する。ここでいう各計測点3の電位とは、一の基準点の電位に対する電位差のことである。一の基準点は、例えば底板1の外周上に設定してもよいし、底板1とは別の箇所に設定してもよい。また、アース電位を基準点の電位としてもよい。計測点3は、タンクの周方向で洩れなく電位を計測して電位分布を捉えられるように、周方向に等間隔で、できるだけ多数配置されるのが好ましい。   Further, three or more measurement points 3 are arranged on the outer periphery of the bottom plate 1 while shifting the phase in the circumferential direction. At each measurement point 3, the potential is measured by a potential measuring device. Here, the potential at each measurement point 3 is a potential difference with respect to the potential at one reference point. One reference point may be set, for example, on the outer periphery of the bottom plate 1 or may be set at a location different from the bottom plate 1. Further, the ground potential may be the reference point potential. It is preferable to arrange as many measurement points 3 as possible at equal intervals in the circumferential direction so that the potential can be captured by measuring the potential without leakage in the circumferential direction of the tank.

本実施形態では、2つの電極端子2、2の間に一定電流を流すことをパターンを変更しながら実行し、各パターンにて各計測点3で電位を計測して、EIT(Electrical Impedance Tomography)逆問題を適用することにより、底板1の損傷の位置を求める。EITとは、対象物の境界の電位計測値から内部に存在する小さな損傷を電気抵抗の差異として検出する逆問題手法の総称であり、本実施形態では、非特許文献1に開示されているMUSIC(Multiple Signal Classification)アルゴリズムと呼ばれる信号処理に立脚した数学手法を適用する。   In the present embodiment, a constant current is passed between the two electrode terminals 2 and 2 while changing the pattern, the potential is measured at each measurement point 3 in each pattern, and EIT (Electrical Impedance Tomography). By applying the inverse problem, the position of damage to the bottom plate 1 is obtained. EIT is a general term for inverse problem methods for detecting small damage existing inside as a difference in electrical resistance from a measured potential value of a boundary of an object. In this embodiment, MITIC disclosed in Non-Patent Document 1 is used. Apply a mathematical method based on signal processing called (Multiple Signal Classification) algorithm.

[電極端子位置及び電位計測位置]
電極端子2及び計測点3は、理想的には底板1の外周に配置するものであるが、計測が困難である場合には、タンクの側板に配置するようにしても良い。その場合は、底板1からの高さが、底板1の直径の0.8倍以下となるように配置するのが好ましい。
[Electrode terminal position and potential measurement position]
The electrode terminal 2 and the measurement point 3 are ideally arranged on the outer periphery of the bottom plate 1, but may be arranged on the side plate of the tank when measurement is difficult. In that case, it is preferable to arrange so that the height from the bottom plate 1 is 0.8 times or less the diameter of the bottom plate 1.

[MUSICアルゴリズム]
まず、MUSICアルゴリズムについて以下に説明する。
そのために初めに、電位分布の支配方程式について説明する。底板領域Ω(⊂R2)における検査時の電気伝導度分布をσ、初期状態の電気伝導度分布をσ0とする。電極端子に電流を流した時の∂Ω上の電流密度分布をfとすると、Ωにおける検査時の電位分布u及び初期状態の電位分布Uは、それぞれ式(1)、式(2)のような楕円型偏微分方程式の境界値問題の解で与えられることが知られている。ここで、∂Ωは底板領域Ωの外周境界、νは∂Ω上のΩへの内向き法線である。
[MUSIC algorithm]
First, the MUSIC algorithm will be described below.
Therefore, first, the governing equation of the potential distribution will be described. In the bottom plate region Ω (⊂R 2 ), the electrical conductivity distribution at the time of inspection is σ, and the initial electrical conductivity distribution is σ 0 . When the current density distribution on ∂Ω when a current is passed through the electrode terminal is f, the potential distribution u at the time of inspection and the potential distribution U in the initial state in Ω are respectively expressed by equations (1) and (2). It is known that it is given by the solution of the boundary value problem of an elliptic partial differential equation. Here, ∂Ω is the outer boundary of the bottom plate region Ω, and ν is an inward normal to Ω on ∂Ω.

Figure 0006496174
Figure 0006496174

続いて、∂Ω上での電位計測値とΩ内の損傷位置との関係式について説明する。検査時の底板における損傷の個数をK、損傷の位置を{y1,…,yK}⊂Ωとする。そして、∂Ω上の電流密度分布fを与えたときに得られる∂Ω上の検査時の電位分布uと初期状態の電位分布Uとの差について、損傷の直径εに関する漸近展開解析(非特許文献2、3を参照のこと)を行うと、式(3)が導出できることが知られている。MUSIC等のEIT手法では、すべて式(3)を基本としている。 Next, a relational expression between the measured potential value on ∂Ω and the damage position in Ω will be described. Assume that the number of damages in the bottom plate at the time of inspection is K, and the position of damage is {y 1 ,..., Y K } ⊂Ω. Asymptotic expansion analysis on the damage diameter ε for the difference between the potential distribution u at the time of inspection on ∂Ω and the initial potential distribution U obtained when the current density distribution f on ∂Ω is given (non-patented) It is known that equation (3) can be derived by performing the literatures 2 and 3). All EIT methods such as MUSIC are based on equation (3).

Figure 0006496174
Figure 0006496174

ここで、Mjは分極テンソル(polarization tensor)と呼ばれる計量、Nはノイマン関数(Neumann function)、O(ε3)はεに関する3次以上の微小項である。分極テンソルMjは自己共役となる。ノイマン関数Nは楕円型偏微分方程式(4)の解として得られるもので、解析解は式(5)で与えられる。ここで、δyはディラックのデルタ関数、|∂Ω|は∂Ωの長さ、dsxは∂Ωの線素、r0はタンクの半径である。 Here, M j is a metric called a polarization tensor, N is a Neumann function, and O (ε 3 ) is a third-order or more minute term related to ε. The polarization tensor M j is self-conjugated. The Neumann function N is obtained as a solution of the elliptic partial differential equation (4), and the analytical solution is given by the equation (5). Here, δ y is a Dirac delta function, | ∂Ω | is a length of ∂Ω, ds x is a line element of ∂Ω, and r 0 is a radius of the tank.

Figure 0006496174
Figure 0006496174

∂Ω上の電流密度分布fに対して∂Ω上の関数を対応させる作用素(写像)A及びTを上述の関数を用いてそれぞれ式(6)、(7)で定義する。   Operators (mappings) A and T that associate a function on ∂Ω with a current density distribution f on ∂Ω are defined by equations (6) and (7), respectively, using the above functions.

Figure 0006496174
Figure 0006496174

分極テンソルMjは自己共役であるから、任意の∂Ω上の電流密度分布fに対して式(3)が成り立つことは式(8)で表現することができる。つまり、式(8)は、電流密度分布fを与えたときの∂Ω上の検査時電位分布と初期状態電位分布との差A[f]は、損傷位置の関数T[f]として近似的に表現できることを意味している。 Since the polarization tensor M j is self-conjugated, it can be expressed by Expression (8) that Expression (3) holds for a current density distribution f on an arbitrary ∂Ω. That is, the equation (8) indicates that the difference A [f] between the inspection potential distribution and the initial state potential distribution on ∂Ω when the current density distribution f is given is approximately as a function T [f] of the damage position. It means that it can be expressed.

Figure 0006496174
Figure 0006496174

続いて、損傷位置を決定する方法について説明する。式(8)を用いて損傷位置{y1,…,yK}を求めるが、式(7)中のUつまり初期状態におけるΩ内の電位分布を知り得ないため、直接的に求めることができない。従って、MUSICアルゴリズムでは、次の事実を使う。すなわち、yが損傷の位置を参照していることと、任意の単位ベクトルeの内積で定義される関数e・∇yN(・,y)が作用素Tの値域に属することは等価である。ここで、式(8)を用いれば、式(9)が成り立つ。 Next, a method for determining the damage position will be described. The damage position {y 1 ,..., Y K } is obtained using equation (8), but U in equation (7), that is, the potential distribution within Ω in the initial state cannot be known, so it can be obtained directly. Can not. Therefore, the following fact is used in the MUSIC algorithm. That is, it is equivalent that y refers to the position of damage and the function e · ∇ y N (·, y) defined by the inner product of an arbitrary unit vector e belongs to the range of the operator T. Here, if Expression (8) is used, Expression (9) is established.

Figure 0006496174
Figure 0006496174

実際の計測では計測点と電流密度分布は離散的にしか設定できないので、式(9)を離散化する。Pを∂Ω上の計測点数、{x1,・・・,xP}⊂∂Ωを観測点、Mを与える電流密度分布の数、{f1,・・・,fM}を与える電流密度分布とする。このとき、K個の損傷をすべて検出するためには、理論的にはP≫M≧2Kなる関係を満たす必要がある。関数e・∇yN(・,y)を離散化したものは式(10)で定義されるように{x1,・・・,xP}における値を対応させるベクトルg(y)となる。 In actual measurement, the measurement points and current density distribution can only be set discretely, so Equation (9) is discretized. Measurement points on ∂Ω the P, {x 1, ···, x P} observation points ⊂∂Omega, the number of current density distribution which gives M, {f 1, ···, f M} currents give The density distribution. At this time, in order to detect all K damages, it is theoretically necessary to satisfy the relationship P >> M ≧ 2K. A discretized version of the function e · ∇ y N (·, y) becomes a vector g (y) corresponding to the values in {x 1 ,..., X P } as defined by the equation (10). .

Figure 0006496174
Figure 0006496174

同様に、電流密度fm(m=1,・・・,M)を与えたときの∂Ω上の検出時電位分布及び初期状態電位分布をそれぞれum、Umとすると、式(6)で定義したA[fm]を離散化したものは{x1,・・・,xP}における値を対応させるベクトル[(um−Um)(xp)]p=1,・・・,Pとなる。従って、Range(A)を離散化したものはベクトルの族{[(um−Um)(xp))p=1,・・・,Pm=1,・・・,Mが張る空間、すなわち式(11)で定義するP×M行列Rを用いてRange(R)となる。 Similarly, assuming that the detection potential distribution and the initial state potential distribution on ∂Ω when current density f m (m = 1,..., M) is given as u m and U m , respectively, is obtained by discretizing the a [f m] as defined in {x 1, ···, x P } vectors to corresponding values in the [(u m -U m) ( x p)] p = 1, ··・, P. Therefore, Range family of those discretizing (A) is the vector {[(u m -U m) (x p)) p = 1, ···, P} m = 1, ···, M spanned Range (R) is obtained by using a space, that is, a P × M matrix R defined by Expression (11).

Figure 0006496174
Figure 0006496174

従って、式(9)を離散化したものは、式(10)及び(11)で定義したベクトルg(y)、行列Rを用いた式(12)となる。つまり、底板内の点yについて式(10)でベクトルg(y)を算出し、このベクトルが底板外周の計測電位から式(11)で求められる行列Rの値域に属すれば、この点yは損傷位置であることを意味する。   Accordingly, what is obtained by discretizing Equation (9) is Equation (12) using the vector g (y) and the matrix R defined by Equations (10) and (11). That is, if the vector g (y) is calculated by the equation (10) for the point y in the bottom plate and this vector belongs to the range of the matrix R obtained by the equation (11) from the measured potential on the outer periphery of the bottom plate, this point y Means a damaged position.

Figure 0006496174
Figure 0006496174

最後に、g(y)がRange(R)に属するかを判定する方法について説明する。Range(R)は、RP空間(P次元ベクトル空間)の部分空間となるため、g(y)をRange(R)へ射影したものがg(y)と一致すれば、g(y)はRange(R)に属したことになる。そこで、以下のような方法で判定する。まず、式(13)に示すように、行列Rの特異値分解(singular value decomposition)を行う。 Finally, a method for determining whether g (y) belongs to Range (R) will be described. Range (R), since the subspace of R P space (P-dimensional vector space), if they match those projected g of (y) to the Range (R) is the g (y), g (y) is It belongs to Range (R). Therefore, the determination is made by the following method. First, as shown in Equation (13), a singular value decomposition of the matrix R is performed.

Figure 0006496174
Figure 0006496174

ここで、v1,・・・,vMはP次元ベクトル、w1,・・・,wMはM次元ベクトルである。なお、○内に×の記号は2つのベクトルの直積演算記号である。λ1≧λ2≧・・・≧λM≧0であり、最大固有値λ1と比べて微小な固有値を除いた主固有値をλ1,・・・,λsとすると、λs+1,・・・,λMはノイズに対応する固有値となる。主固有値の選択方法は、例えば、最大固有値の0.1倍以上のものとすれば良い。ノイズ成分を排除した行列Rに関するRange(R)は主固有値λ1,・・・,λsに対応する固有ベクトルv1,・・・,vsで張られる部分空間にとなる。従って、Range(R)への射影行列Pは式(14)で与えられる。 Here, v 1, ···, v M is P-dimensional vector, w 1, ···, is w M is an M-dimensional vector. In addition, the symbol x in the circle is a direct product operation symbol of two vectors. a λ 1 ≧ λ 2 ≧ ··· ≧ λ M ≧ 0, the principal eigenvalue except the small eigenvalues as compared to the maximum eigenvalue λ 1 λ 1, ···, When λ s, λ s + 1, ..., λ M is an eigenvalue corresponding to noise. The main eigenvalue selection method may be, for example, 0.1 or more times the maximum eigenvalue. Range about matrix R which eliminated the noise component (R) is the main eigenvalue lambda 1, ..., eigenvector v 1 corresponding to lambda s, the subspace spanned., At v s. Therefore, the projection matrix P to Range (R) is given by equation (14).

Figure 0006496174
Figure 0006496174

g(y)のRange(R)への射影Pg(y)がg(y)と一致しているかどうかを判別するには、g(y)のRange(R)の補空間への射影(I−P)g(y)の大きさとPg(y)の大きさを比較すれば良い。ここで、Iは恒等行列(単位行列)である。つまり、式(15)で定義する指標L(y)が発散するときにPg(y)はg(y)と一致し、すなわちg(y)はRange(R)に属する。   To determine whether the projection Pg (y) of g (y) onto Range (R) matches g (y), the projection of g (y) onto Range (R) 's complement space (I -P) The magnitude of g (y) may be compared with the magnitude of Pg (y). Here, I is an identity matrix (unit matrix). That is, when the index L (y) defined by Expression (15) diverges, Pg (y) matches g (y), that is, g (y) belongs to Range (R).

Figure 0006496174
Figure 0006496174

Ω内の点yについて網羅的に式(15)で定義したL(y)を算出し、関数Lがピークをもつ点を求めることで、損傷の位置の検出が可能になる。以上が、MUSICアルゴリズムに関する説明である。   By calculating L (y) comprehensively defined by the equation (15) for the point y in Ω and obtaining the point where the function L has a peak, the position of damage can be detected. The above is the description regarding the MUSIC algorithm.

[MUSICアルゴリズムの拡張]
本願発明者らはタンク底板損傷検出へのMUSICアルゴリズム適用を試み、ミニチュアサンプルラボ実験を実施し、1点の損傷検出は可能であるが、計測ノイズの影響を受けて複数点の損傷検出が困難であるとの問題に直面したため、この問題を解決すべく鋭意検討した。MUSICアルゴリズムにおいて損傷情報は、式(11)で定義される行列Rに含まれている。従って、時系列的に検査を実施して得られ、蓄積した行列Rを使用すれば、異なるタイミングで検査したときのノイズ成分の情報は行列Rの中で平準化されると考えた。これに対して、損傷は時間経過とともに縮小又は消滅することは無いので、損傷情報は行列Rの中で強調されると考えた。この考え方は、MUSICアルゴリズムで展開されている偏微分方程式論の枠を超えたものであり、本願発明者らはこの方法が実用的であることを、数多くの実験を実施して確認した。具体的なアルゴリズムを以下に説明する。
[Extension of MUSIC algorithm]
The inventors of the present application tried to apply the MUSIC algorithm to tank bottom plate damage detection, conducted a miniature sample lab experiment, and could detect damage at one point, but it was difficult to detect damage at multiple points due to the influence of measurement noise As we faced the problem of being, we studied diligently to solve this problem. In the MUSIC algorithm, damage information is included in the matrix R defined by Equation (11). Therefore, it was considered that if the matrix R obtained by performing the inspection in time series and using the accumulated matrix R is used, the information of the noise component when inspected at different timings is leveled in the matrix R. On the other hand, since damage does not shrink or disappear over time, damage information is considered to be emphasized in the matrix R. This concept goes beyond the framework of the partial differential equation theory developed by the MUSIC algorithm, and the inventors of the present application have confirmed that this method is practical by conducting many experiments. A specific algorithm will be described below.

Q回実施した検査から得られたデータを基に損傷検査を行うことにする。q回目(q=1,・・・,Q)の検査において与えた電流密度分布の数をMqとし、式(11)で得られた行列をR1,・・・,RQとする。各行列RqはP×Mq行列であるから、これらは結合することができる。M=M1+・・・+MQとすると、結合したR=[R1 ・・・ RQ]はP×M行列となり、この行列Rを用いて式(15)で定義した関数Lを求めれば良い。このとき、M≧Pとなり得るが、特異値分解以降の処理はMUSICアルゴリズムと同様に実施できる。 Damage inspection will be performed based on data obtained from Q inspections. q th (q = 1, ···, Q ) the number of current density distribution given in the inspection of the M q, the matrix obtained by the equation (11) R 1, ···, and R Q. Since each matrix R q is a P × M q matrix, they can be combined. If M = M 1 +... + M Q , the combined R = [R 1 ... R Q ] becomes a P × M matrix, and the function L defined by Equation (15) can be obtained using this matrix R. It ’s fine. At this time, although M ≧ P, processing after singular value decomposition can be performed in the same manner as the MUSIC algorithm.

[検査の流れ]
図3に、実施形態におけるタンクの底板1の損傷を検査する検査方法の流れを示す。
本実施形態では、2つの電極端子2、2の間に電流を流すパターンを、2つの電極端子2、2の組み合わせを変更することで変更する。すなわち、2つの電極端子2、2の間に電流を流すパターンは、2つの電極端子2、2の組み合わせの数である28パターンある。パターンの数は任意であるが、既述したようにMUSICアルゴリズムでは損傷の個数Kの2倍以上の観測データが必要であることから、できるだけ多くのパターンを確保できるようにするのが好ましい。
[Inspection flow]
FIG. 3 shows a flow of an inspection method for inspecting damage to the bottom plate 1 of the tank in the embodiment.
In the present embodiment, the pattern in which current flows between the two electrode terminals 2 and 2 is changed by changing the combination of the two electrode terminals 2 and 2. That is, there are 28 patterns in which current flows between the two electrode terminals 2 and 2, which is the number of combinations of the two electrode terminals 2 and 2. Although the number of patterns is arbitrary, as described above, the MUSIC algorithm requires observation data that is twice or more the number of damages K, so it is preferable to ensure as many patterns as possible.

前準備として、28パターンで2つの電極端子2、2の間に一定電流を流し、各パターンにて各計測点3で初期状態の電位を計測しておく(ステップS1)。2つの電極端子2、2の間に流す一定電流は、例えば10A×2秒とする。ここで、初期状態の電位とは、例えばタンクの使用開始時に計測した電位とすれば良いが、使用開始時に限らず、使用開始後であっても時系列上の所定のタイミングで計測した電位としても良い。   As a preparation, a constant current is passed between the two electrode terminals 2 and 2 in 28 patterns, and the initial potential is measured at each measurement point 3 in each pattern (step S1). The constant current flowing between the two electrode terminals 2 and 2 is, for example, 10 A × 2 seconds. Here, the potential in the initial state may be, for example, a potential measured at the start of use of the tank, but is not limited to the time at the start of use, but as a potential measured at a predetermined timing in time series even after the start of use. Also good.

次に、底板1の損傷を検査するときに、ステップS1と同様、28パターンで2つの電極端子2、2の間に一定電流を流し、各パターンにて各計測点3で電位を計測する(ステップS2)。2つの電極端子2、2の間に流す一定電流は、ここでも10A×2秒とする。   Next, when inspecting the damage to the bottom plate 1, a constant current is passed between the two electrode terminals 2 and 2 in 28 patterns as in step S1, and the potential is measured at each measurement point 3 in each pattern ( Step S2). Here, the constant current flowing between the two electrode terminals 2 and 2 is also 10 A × 2 seconds.

次に、各パターンにおける、ステップS2で各計測点3で計測した電位と、ステップS2での2つの電極端子2、2と同じ組み合わせで各計測点3で計測した初期状態の電位との差を求め、MUSICアルゴリズムを利用して底板1の損傷の位置を求める。MUSICアルゴリズムを利用した底板1の損傷の位置検出処理は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現することが可能である。
ここで、式(3)の説明では、損傷のあるときの電位分布uと、損傷のないときの電位分布Uとの差を求めるとしているが、実際にタンクに用いられる底板1では、使用開始時であっても健全部だけが存在するわけでなく、凹凸等が存在する。そこで、本発明を適用するに際して、電位分布Uとして、初期状態の電位分布を用いる。これにより、底板1の初期状態を基準として、そこから発生した損傷の位置を捉えることができ、タンクの使用や経年変化により発生する損傷を精度良く検査することができる。
また、初期状態の電位分布については計測値を用いる代わりに、有限要素法等により電流条件を与えて算出される電位分布に代替しても良い。
Next, in each pattern, the difference between the potential measured at each measurement point 3 in step S2 and the initial potential measured at each measurement point 3 in the same combination as the two electrode terminals 2 and 2 in step S2. The position of damage of the bottom plate 1 is obtained using the MUSIC algorithm. The position detection processing for damage to the bottom plate 1 using the MUSIC algorithm can be realized by a computer device including, for example, a CPU, a ROM, a RAM, and the like.
Here, in the description of the expression (3), the difference between the potential distribution u when there is damage and the potential distribution U when there is no damage is obtained. Even if it is time, not only a healthy part exists but unevenness etc. exist. Therefore, when the present invention is applied, the potential distribution U in the initial state is used as the potential distribution U. Thereby, the position of the damage that has occurred from the initial state of the bottom plate 1 can be grasped, and the damage that occurs due to the use of the tank or aging can be inspected with high accuracy.
Further, the potential distribution in the initial state may be replaced with a potential distribution calculated by giving a current condition by a finite element method or the like instead of using a measured value.

本実施例は、本発明を適用したタンクの底板1の損傷を検査するに際し、好適な電極端子及び計測点位置、並びに、検査性能を評価したものである。
直径1.3m、厚さ3mmのSUS304の底板1に、図1に示すように、損傷を模擬して2個の円柱状の貫通穴5(直径40mm)を空けたものを対象として実験を行った。28パターンで2つの電極端子2、2の間に一定電流(10A×2秒)を流し、各パターンにて各計測点3で電位を計測した。
また、初期状態として、底板1に貫通穴5を空ける前に、28パターンで2つの電極端子2、2の間に一定電流(10A×2秒)を流し、各パターンにて各計測点3で電位を計測した。
In this embodiment, when inspecting damage to the bottom plate 1 of the tank to which the present invention is applied, suitable electrode terminals and measurement point positions and inspection performance are evaluated.
As shown in FIG. 1, an experiment was conducted on a bottom plate 1 of SUS304 having a diameter of 1.3 m and a thickness of 3 mm, in which two cylindrical through-holes 5 (diameter 40 mm) were formed by simulating damage. It was. A constant current (10 A × 2 seconds) was passed between the two electrode terminals 2 and 2 in 28 patterns, and the potential was measured at each measurement point 3 in each pattern.
Further, as an initial state, before making the through hole 5 in the bottom plate 1, a constant current (10 A × 2 seconds) is passed between the two electrode terminals 2 and 2 in 28 patterns, and at each measurement point 3 in each pattern. The potential was measured.

このときの側板での電位計測値を図4に、底板1の外周での電位計測値を図5に示す。側板における電極端子2及び計測点3の位置はすべて底板から1m以内の高さである。両者は1.5%未満の誤差で一致しており、底板1の損傷検出精度に及ぼす影響はないことを確認している。また、他にも電極端子2及び計測点3の位置を変更して電位計測を行い、電極端子2及び計測点3をタンクの側板に配置する場合に、底面1から同じ高さに揃える必要はなく、底面1からの高さが相互に(電極端子2同士、計測点3同士、電極端子2と計測点3)異なっていても良いことが確認できた。   The measured potential value at the side plate at this time is shown in FIG. 4, and the measured potential value at the outer periphery of the bottom plate 1 is shown in FIG. The positions of the electrode terminal 2 and the measurement point 3 on the side plate are all within 1 m from the bottom plate. Both agree with an error of less than 1.5%, and it is confirmed that there is no influence on the damage detection accuracy of the bottom plate 1. In addition, when the potential measurement is performed by changing the positions of the electrode terminal 2 and the measurement point 3, and the electrode terminal 2 and the measurement point 3 are arranged on the side plate of the tank, it is necessary to align them from the bottom surface 1 at the same height. It was confirmed that the heights from the bottom surface 1 may be different from each other (electrode terminals 2, measurement points 3, electrode terminals 2 and measurement points 3).

損傷検査は、電極端子2及び計測点3の位置は底板1の外周として得られたデータを基に実施した。図6に、底板1の外周における各パターンでの電位差u−Uの特性線を示す。横軸がタンクの周方向の計測位置を、縦軸が電位差を示す。本実施例では、28パターンの観測データである特性線が得られている。
また、図7に、拡張したMUSICアルゴリズムで算出したL(y)のコンター図を示す。図7(a)〜(d)は、ベクトルg(y)を算出する式(10)において、異なる4つの微分方向eで貫通穴5の位置を探索した結果を示したものである。微分方向により貫通穴5の位置の検出精度は異なるが、どのケースも貫通穴5の位置を概ね捉えていることがわかる。損傷検査を実施するに際して任意の微分方向で算出したL(y)を用いて損傷の位置を評価しても良いし、複数の微分方向で算出したL(y)を平均した値を用いて損傷の位置を評価しても良い。
The damage inspection was performed based on the data obtained as the positions of the electrode terminal 2 and the measurement point 3 as the outer periphery of the bottom plate 1. FIG. 6 shows characteristic lines of the potential difference u−U in each pattern on the outer periphery of the bottom plate 1. The horizontal axis indicates the measurement position in the circumferential direction of the tank, and the vertical axis indicates the potential difference. In the present embodiment, characteristic lines that are observation data of 28 patterns are obtained.
FIG. 7 shows a contour diagram of L (y) calculated by the extended MUSIC algorithm. 7A to 7D show the results of searching for the position of the through hole 5 in four different differential directions e in the equation (10) for calculating the vector g (y). Although the detection accuracy of the position of the through-hole 5 differs depending on the differential direction, it can be seen that all cases generally capture the position of the through-hole 5. When performing damage inspection, the position of damage may be evaluated using L (y) calculated in an arbitrary differential direction, or damage is calculated using an average of L (y) calculated in a plurality of differential directions. May be evaluated.

一方、図8に、同じ対象(直径1.3m、厚さ3mmのSUS304の底板1に、図1に示すように、損傷を模擬して2個の円柱状の貫通穴5(直径40mm)を空けたもの)について、従来法、すなわち損傷を挟んだ2点間の電位差を測定する電位差法を用いた場合のコンター図を示す。従来法では非線形最適化法で穴位置を探索しているため、局所解になることは不可避であり、図8に示すように、2つの穴位置に対し、場所的に異なる4つの箇所に穴が空いているという結果になっている。図7と図8の比較から、本法の優位性が明らかである。   On the other hand, in FIG. 8, the same object (the bottom plate 1 of SUS304 having a diameter of 1.3 m and a thickness of 3 mm is provided with two cylindrical through holes 5 (diameter 40 mm) simulating damage as shown in FIG. A contour diagram in the case of using a conventional method, that is, a potential difference method for measuring a potential difference between two points sandwiching damage is shown. In the conventional method, since the hole position is searched by the non-linear optimization method, it is unavoidable to become a local solution, and as shown in FIG. The result is that it is vacant. From the comparison between FIG. 7 and FIG. 8, the superiority of this method is clear.

以上のように、予め設置された複数の電極端子2のうちの2つの電極端子2、2の間に電流を流し、タンクの周方向に位相をずらして配置された3点以上の計測点3で電位を計測することで観測データを得るので、多大な時間や検査費用を要することなく、タンクの底板1の損傷を検査することができる。   As described above, three or more measurement points 3 are arranged by passing a current between two electrode terminals 2 and 2 out of a plurality of electrode terminals 2 installed in advance and shifting the phase in the circumferential direction of the tank. Since the observation data is obtained by measuring the electric potential at, damage to the bottom plate 1 of the tank can be inspected without requiring much time and inspection cost.

以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   Although the present invention has been described together with the embodiments, the above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is interpreted in a limited manner by these. It must not be. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

1:底板、2:電極端子、3:計測点   1: Bottom plate, 2: Electrode terminal, 3: Measurement point

Claims (4)

タンクの底板の損傷を検査する検査方法であって、
前記底板の外周又は前記タンクの側板に周方向に位相をずらして配置された複数の電極端子と、
前記底板の外周又は前記タンクの側板に周方向に位相をずらして配置された3点以上の計測点とを用い、
前記複数の電極端子のうちの2つの電極端子の間に電流を流すことをパターンを変更しながら実行し、前記各パターンにて前記各計測点で電位を計測し、
前記各パターンにおける、前記各計測点で計測した電位と、前記電位を計測した際の2つの電極端子と同じ組み合わせで前記各計測点で計測した初期状態の電位との差に基づいて、前記計測電位分布の差と損傷の位置との関係を記述する関数を使って、前記底板の損傷の位置を求め、
前記各計測点で計測する電位は、一の基準点の電位に対する電位差であることを特徴とする検査方法。
An inspection method for inspecting a tank bottom plate for damage,
A plurality of electrode terminals arranged on the outer periphery of the bottom plate or the side plate of the tank with a phase shifted in the circumferential direction;
Using three or more measurement points arranged with a phase shift in the circumferential direction on the outer periphery of the bottom plate or the side plate of the tank,
Executing a current flow between two electrode terminals of the plurality of electrode terminals while changing a pattern, measuring a potential at each measurement point in each pattern,
Based on the difference between the potential measured at each measurement point in each pattern and the potential in the initial state measured at each measurement point in the same combination as the two electrode terminals when the potential was measured. Using a function that describes the relationship between the difference in potential distribution and the location of damage, determine the location of damage to the bottom plate,
An inspection method, wherein the potential measured at each measurement point is a potential difference with respect to the potential at one reference point.
前記関数は、底板領域Ωの外周境界を∂Ω、検査時の底板における損傷の個数をK、損傷の位置を{y1,…,yK}⊂Ωとして、以下の関係式で定義される、∂Ω上の電流密度分布を与えたときに得られる∂Ω上の検査時の電位分布uと初期状態の電位分布Uとの差について、損傷の直径εに関する式であり(Mjは分極テンソルと呼ばれる計量、O(ε3)はεに関する3次以上の微小項)、
関数Nは、∂Ω上のΩへの内向き法線をν、ディラックのデルタ関数をδy、∂Ωの長さを|∂Ω|、∂Ωの線素をdsxとして、以下の関係式で定義されることを特徴とする請求項1に記載の検査方法。
Figure 0006496174
The function is defined by the following relational expression where 外 周 Ω is the outer boundary of the bottom plate region Ω, K is the number of damages in the bottom plate at the time of inspection, and {y 1 ,..., Y K } ⊂Ω is the damage position. The difference between the potential distribution u at the time of inspection on ∂Ω and the potential distribution U in the initial state obtained when a current density distribution on ∂Ω is given, is an expression relating to the diameter ε of damage (M j is polarization) A metric called a tensor, O (ε 3 ) is a minor term of 3rd order or more about ε),
The function N has the following relationship, where ν is the inward normal to Ω on ∂Ω, δ y is the Dirac delta function, | ∂Ω | is the length of ∂Ω, and ds x is the line element of ∂Ω. The inspection method according to claim 1, wherein the inspection method is defined by an expression.
Figure 0006496174
前記電極端子は3つ以上あり、
前記パターンを変更するとは、2つの電極端子の組み合わせを変更して電流を流すことをいうことを特徴とする請求項1又は2に記載の検査方法。
There are three or more electrode terminals,
The inspection method according to claim 1 or 2, wherein changing the pattern means changing a combination of two electrode terminals to flow a current.
前記複数の電極端子のうちの2つの電極端子の間に電流を流すことをパターンを変更しながら実行し、前記各パターンにて前記各計測点で電位を計測することを、時系列上の異なるタイミングで複数回実施し、
前記各タイミングの前記各パターンにおける、前記各計測点で計測した電位と、前記電位を計測した際の2つの電極端子と同じ組み合わせで前記各計測点で計測した初期状態の電位との差に基づいて、前記計測電位分布の差と損傷の位置との関係を記述する関数を使って、前記底板の損傷の位置を求めることを特徴とする請求項1乃至3のいずれか1項に記載の検査方法。
It is different in time series that a current is passed between two electrode terminals of the plurality of electrode terminals while changing a pattern, and measuring a potential at each measurement point in each pattern. Conduct multiple times at the timing ,
Based on the difference between the potential measured at each measurement point in each pattern at each timing and the initial state potential measured at each measurement point in the same combination as the two electrode terminals when the potential was measured. 4. The inspection according to claim 1 , wherein the damage position of the bottom plate is obtained using a function that describes a relationship between the difference in the measured potential distribution and the position of the damage. 5. Method.
JP2015077025A 2015-04-03 2015-04-03 Inspection method for inspecting tank bottom plate for damage Active JP6496174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015077025A JP6496174B2 (en) 2015-04-03 2015-04-03 Inspection method for inspecting tank bottom plate for damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015077025A JP6496174B2 (en) 2015-04-03 2015-04-03 Inspection method for inspecting tank bottom plate for damage

Publications (2)

Publication Number Publication Date
JP2016197057A JP2016197057A (en) 2016-11-24
JP6496174B2 true JP6496174B2 (en) 2019-04-03

Family

ID=57358137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015077025A Active JP6496174B2 (en) 2015-04-03 2015-04-03 Inspection method for inspecting tank bottom plate for damage

Country Status (1)

Country Link
JP (1) JP6496174B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899644B2 (en) * 2016-10-17 2021-07-07 日本製鉄株式会社 Damage inspection system, damage inspection method, and program
CN110779960B (en) * 2019-11-13 2021-07-30 上海交通大学 CFRP damage detection method based on resistance change

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087246B2 (en) * 1989-09-14 1996-01-29 株式会社日立製作所 Electrical impedance distribution measurement method
US5661406A (en) * 1995-09-27 1997-08-26 Leak Location Services, Inc. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques
JP2006226978A (en) * 2005-02-16 2006-08-31 Naotake Otsuka Method of inspecting damage such as corrosion using potentiometric method

Also Published As

Publication number Publication date
JP2016197057A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP4904489B2 (en) Damage detection apparatus and damage detection method
Ren et al. Gaussian mixture model and delay-and-sum based 4D imaging of damage in aircraft composite structures under time-varying conditions
EA024212B1 (en) Three dimensional imaging of a mass flow
US6982563B2 (en) Monitoring of corrosion induced loss of material by means of a plurality of electrical resistance measurements (field signature method, electrical resistance tomography)
JP2013522601A5 (en)
US10180486B2 (en) Test standards and methods for impedance calibration of a probe system, and probe systems that include the test standards or utilize the methods
JP6496174B2 (en) Inspection method for inspecting tank bottom plate for damage
CN114487561A (en) Method and device for measuring voltage of conducting wire based on electric field sensor
JPH05340907A (en) Diagnosing method of corrosion of reinforcing rod or the like in concrete
JP2013019841A (en) Defect evaluation method for structure
JP6899644B2 (en) Damage inspection system, damage inspection method, and program
Lee et al. A digital technique for diagnosing interconnect degradation by using digital signal characteristics
JP2010008146A (en) Internal impedance measuring device
Kothoke et al. Analysis of Partial Discharge using Phase-Resolved (nq) Statistical Techniques
JP2008139138A (en) Electrochemical noise measuring method
KR101514883B1 (en) Aparatus, method and system for diagnosing decrepit of pipe
RU2449264C1 (en) Method of monitoring corrosive state of pipeline
JP2008078392A (en) Characteristic analysis method and device, abnormal-equipment estimation method and device, program that allows computer to execute characteristic analysis method or abnormal-equipment estimation method, and computer-readable recording medium that records program
Du et al. Model-assisted probability of detection for structural health monitoring of flat plates
US9046460B2 (en) Particle measuring apparatus and measuring method using the same
BR112020023705B1 (en) DETECTION OF ANODE DEFECTS BY A NON-DESTRUCTIVE ALUMINUM REDUCTION CELL METHOD
JP6007923B2 (en) Thinning detection device
KR20170079828A (en) Method of inspecting pattern defect
Ahmed et al. Analog fault diagnosis by inverse problem technique
US8538129B2 (en) Mask program defect test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190308

R150 Certificate of patent or registration of utility model

Ref document number: 6496174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250