JP2010008146A - Internal impedance measuring device - Google Patents

Internal impedance measuring device Download PDF

Info

Publication number
JP2010008146A
JP2010008146A JP2008165842A JP2008165842A JP2010008146A JP 2010008146 A JP2010008146 A JP 2010008146A JP 2008165842 A JP2008165842 A JP 2008165842A JP 2008165842 A JP2008165842 A JP 2008165842A JP 2010008146 A JP2010008146 A JP 2010008146A
Authority
JP
Japan
Prior art keywords
frequency
measuring
measurement
internal impedance
setting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165842A
Other languages
Japanese (ja)
Inventor
Tetsushi Sato
哲史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2008165842A priority Critical patent/JP2010008146A/en
Publication of JP2010008146A publication Critical patent/JP2010008146A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal impedance measuring device of a fuel cell, shortening a measuring time, and setting optionally the number of measuring points in each frequency band. <P>SOLUTION: This internal impedance measuring device includes: an AC waveform transmitter; and an operation part for storing a measuring condition setting means, a gain measuring means and a phase measuring means. A voltage and current change acquired by responding by a measuring object to an AC superimposed current sent from a load device is taken by the gain measuring means and the phase measuring means, and the voltage and current change is subjected to complex operation of a measuring object, to thereby determine the internal impedance. The measuring condition setting means has a constitution equipped with: a measuring range setting means for setting the minimum value and the maximum value of the frequency of the AC superimposed current sent from the load device; a frequency band setting means for dividing the interval between the minimum frequency and the maximum frequency into a plurality of frequency bands; a frequency unit table for substituting an optional number of measuring points in each of the plurality of frequency bands; and a frequency measuring point determination table for determining a measuring point of the frequency in the frequency unit table. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池における内部インピーダンスを測定するための装置に関する。   The present invention relates to an apparatus for measuring internal impedance in a fuel cell.

石油に代わる新エネルギーとして燃料電池の開発が進められている。この燃料電池とは、電解質膜によって隔てられた燃料極と空気極とにそれぞれ燃料及び酸化剤を供給し、電気化学反応によって電力を発生させる発電装置の一種である。   Fuel cells are being developed as a new energy alternative to oil. This fuel cell is a type of power generator that supplies fuel and an oxidant to a fuel electrode and an air electrode separated by an electrolyte membrane, and generates electric power by an electrochemical reaction.

燃料電池を開発する上で、発電効率や耐久性などの性能を試験することは重要であり、例えば電池を継続して使用すると、様々な要因によって性能が劣化していく。このような状態を試験するために行われる測定の一つが、内部インピーダンスの測定である。   In developing a fuel cell, it is important to test performance such as power generation efficiency and durability. For example, when the battery is continuously used, the performance deteriorates due to various factors. One of the measurements performed to test such a condition is an internal impedance measurement.

以下図4は、燃料電池の電気化学反応を最も単純に示した内部インピーダンスの等価回路41を示した図である。42は燃料電池の電解質抵抗を表し、43は電気二重層容量を、44は電気二重層容量43と並列に存在する反応抵抗を表す。電解質抵抗42は抵抗分極に起因する抵抗であり、電気二重層容量43は異なる二つの相の界面に生じる静電容量であり、反応抵抗44は電荷や物質が電解質中へ移動するときに生じる抵抗である。内部インピーダンスの測定は、この電解質抵抗や反応抵抗等を測定することが目的である。   FIG. 4 is a diagram showing an equivalent circuit 41 of internal impedance that most simply shows the electrochemical reaction of the fuel cell. 42 represents an electrolyte resistance of the fuel cell, 43 represents an electric double layer capacity, and 44 represents a reaction resistance existing in parallel with the electric double layer capacity 43. The electrolyte resistance 42 is a resistance caused by resistance polarization, the electric double layer capacitance 43 is a capacitance generated at the interface between two different phases, and the reaction resistance 44 is a resistance generated when charges and substances move into the electrolyte. It is. The purpose of measuring internal impedance is to measure the electrolyte resistance, reaction resistance, and the like.

上記内部インピーダンスを測定する方法には交流ブリッジ法、リサージュ法などいくつかの方法がある。その一つが、周波数制御によるインピーダンス測定法である。周波数制御によるインピーダンス測定方法によると、微小な交流電流を燃料電池に重畳し、その応答で得た電圧と電流変化の振幅及び位相から、複素演算することにより内部インピーダンスが測定できる。更に測定周波数を、設定された複数の測定点において掃引することにより、各周波数域の内部インピーダンスが求められ、燃料電池の電気化学反応を知ることができる。しかしこの場合、上記の各周波数域において設定される測定点数は、すべての測定周波数域において同一であった。   There are several methods for measuring the internal impedance, such as an AC bridge method and a Lissajous method. One of them is an impedance measurement method by frequency control. According to the impedance measurement method based on frequency control, a small alternating current is superimposed on the fuel cell, and the internal impedance can be measured by complex calculation from the voltage and the amplitude and phase of the current change obtained by the response. Further, by sweeping the measurement frequency at a plurality of set measurement points, the internal impedance of each frequency range is obtained, and the electrochemical reaction of the fuel cell can be known. However, in this case, the number of measurement points set in each frequency band is the same in all measurement frequency bands.

だが、内部インピーダンスの測定に際しては、試験という特性上、低周波から高周波まで幅広い周波数を測定対象とする場合が多い。この場合、低周波においては測定に時間がかかるという問題点があった。従来このような問題を解決する手段としては、次のようなものがある。   However, when measuring internal impedance, a wide range of frequencies from low to high is often measured due to the characteristics of testing. In this case, there is a problem that measurement takes time at a low frequency. Conventional means for solving such problems include the following.

負荷装置に交流信号を与え、この負荷装置は与えられた交流信号の周波数に応じた電流を被測定対象から放電させ、このときに被測定対象の両端の電圧と被測定対象から流れる電流をもとにして被測定対象のインピーダンスを求めるインピーダンスの測定装置において、複数の高周波成分をもった波形を前記負荷装置に与える波形発生手段と、被測定対象から流れる電流と被測定対象の両端の電圧をもとに、前記波形の各成分毎に解析を行い、インピーダンスを求める解析手段とを設けるインピーダンスの測定装置である。   An AC signal is applied to the load device, and the load device discharges a current corresponding to the frequency of the applied AC signal from the object to be measured. In the impedance measuring device for determining the impedance of the measurement target, the waveform generating means for giving the load device a waveform having a plurality of high frequency components, the current flowing from the measurement target and the voltage across the measurement target Originally, the impedance measuring apparatus is provided with analysis means for analyzing each component of the waveform and obtaining impedance.

特開2003−090869号公報JP 2003-090869 A

しかしながら、以上に述べた方法では、短時間で複数の周波数測定点における内部インピーダンスを測定することはできるものの、特定の周波数域における特性について詳細に測定したい場合であっても、すべての周波数域における測定点数は同一であり、特定の周波数域においてのみ測定点数を増やすことはできなかった。   However, although the method described above can measure the internal impedance at a plurality of frequency measurement points in a short time, even if it is desired to measure in detail the characteristics in a specific frequency range, The number of measurement points was the same, and the number of measurement points could not be increased only in a specific frequency range.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、測定時間を短縮することができ、かつ各周波数域において測定点数をそれぞれ任意に設定することができる、燃料電池の内部インピーダンス測定装置を実現することを目的とするものである。   The present invention is intended to solve the problems of such a conventional configuration, can reduce the measurement time, and can arbitrarily set the number of measurement points in each frequency range. An object of the present invention is to realize an internal impedance measuring device for a fuel cell.

上記した目的を達成するために、請求項1記載の内部インピーダンスの測定装置は、負荷装置に任意の交流重畳電流を発生させる信号を与える交流波形発信器と、測定条件設定手段、ゲイン測定手段及び位相測定手段を格納する演算部とを備え、前記負荷装置が流す交流重畳電流に測定対象が応答して得られる電圧及び電流変化を前記ゲイン測定手段並びに位相測定手段が取り込み、取り込んだ該電圧及び電流変化を複素演算して前記測定対象の内部インピーダンスを求める内部インピーダンス測定装置において、前記測定条件設定手段は、前記負荷装置が流す交流重畳電流の周波数の最小値及び最大値を設定する測定範囲設定手段と、前記最小周波数と最大周波数間を複数の周波数域に分ける周波数域設定手段と、前記複数の周波数域ごとにそれぞれ任意の測定点数を代入する周波数単位テーブルと、該周波数単位テーブル内で周波数の測定点を決定する周波数測定点決定テーブルと、を備えることを特徴とする。   In order to achieve the above object, an internal impedance measuring device according to claim 1 is an AC waveform transmitter for giving a signal for generating an arbitrary AC superimposed current to a load device, a measurement condition setting means, a gain measuring means, A calculation unit for storing phase measurement means, and the gain measurement means and the phase measurement means take in the voltage and current change obtained by the measurement object in response to the AC superimposed current flowing through the load device. In an internal impedance measuring apparatus that obtains an internal impedance of the measurement target by performing complex calculation of current changes, the measurement condition setting means sets a measurement range that sets a minimum value and a maximum value of a frequency of an AC superimposed current that the load device flows Means, frequency range setting means for dividing the minimum frequency and the maximum frequency into a plurality of frequency ranges, and for each of the plurality of frequency ranges And frequency unit table to assign any number of measurement points, respectively, characterized in that it comprises a frequency measurement point determination table for determining a measurement point of the frequency in the frequency unit table.

また、請求項2記載の内部インピーダンス測定装置において、測定対象は燃料電池であることを特徴とする。   Further, in the internal impedance measuring apparatus according to claim 2, the measurement object is a fuel cell.

本発明によれば、測定に時間のかかる低周波においては、測定点数を少なく設定することで測定時間を短縮することが可能であり、また、特性について詳細な測定を必要とする周波数の範囲においては、測定点数を多く設定することでこの要請に応えることが可能である。   According to the present invention, it is possible to shorten the measurement time by setting a small number of measurement points at a low frequency that takes a long time to measure, and in a frequency range that requires detailed measurement of characteristics. Can meet this requirement by setting a large number of measurement points.

以下、本発明の実施の形態を図1から図3に基づいて説明する。図1は本発明に係る内部インピーダンスの測定装置の一実施例であり、図2は各周波数域における測定点を設定するためのフロー図であり、図3は本発明の周波数域、測定点、測定点数を説明する図である。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is an example of an internal impedance measuring apparatus according to the present invention, FIG. 2 is a flowchart for setting measurement points in each frequency range, and FIG. 3 is a frequency range, measurement point, It is a figure explaining the number of measurement points.

まず、図1に基づいて、本発明を採用する内部インピーダンスの測定装置について説明する。内部インピーダンス測定装置1は、測定対象であり内部インピーダンスが発生する燃料電池2及びこの燃料電池2へ負荷電流及び交流重畳電流を流す負荷装置3に接続して用いられる。またこの内部インピーダンス測定装置1は、負荷装置3に任意の交流重畳電流を発生させる信号を与える交流波形発信器4と、各種演算を行うための演算部5から構成される。   First, an internal impedance measuring apparatus that employs the present invention will be described with reference to FIG. The internal impedance measuring device 1 is used by being connected to a fuel cell 2 that is a measurement target and generates an internal impedance, and a load device 3 that sends a load current and an AC superimposed current to the fuel cell 2. The internal impedance measuring apparatus 1 includes an AC waveform transmitter 4 that gives a signal for generating an arbitrary AC superimposed current to the load device 3 and a calculation unit 5 for performing various calculations.

例えばオシレータが用いられる交流波形発信器4は、負荷装置3に対し、任意の交流電流を発生させる信号を与える。この信号は、演算部5に位置する測定条件設定手段6によって設定された測定条件に基づき発せられる。これを受けた負荷装置3は、燃料電池2へ流す負荷電流に測定条件に基づいた任意の交流電流を重畳する。この交流重畳電流に燃料電池2が応答し、電圧及び電流変化が発生する。この電圧及び電流変化は演算部5に格納されるゲイン測定手段7及び位相測定手段8に取り込まれ、演算部5は取り込んだ電圧及び電流変化を複素演算することで、燃料電池2の内部インピーダンスを算出する。   For example, the AC waveform transmitter 4 using an oscillator gives a signal for generating an arbitrary AC current to the load device 3. This signal is generated based on the measurement conditions set by the measurement condition setting means 6 located in the calculation unit 5. Upon receiving this, the load device 3 superimposes an arbitrary alternating current based on the measurement conditions on the load current flowing to the fuel cell 2. The fuel cell 2 responds to this alternating current superimposed current, and changes in voltage and current occur. The voltage and current changes are taken into the gain measurement means 7 and the phase measurement means 8 stored in the calculation unit 5, and the calculation unit 5 performs complex calculation on the acquired voltage and current changes, thereby reducing the internal impedance of the fuel cell 2. calculate.

次に、図2に基づいて、前記測定条件設定手段6において測定点数が決定されるフローについて説明する。まず、周波数の最小値及び最大値をそれぞれ任意に設定して測定範囲を決定する(S201)。続いて、この測定範囲に複数の周波数域を設定し(S202)、この周波数域に0から順に番号を割り当てていく(S203)。この番号が、周波数域を他の周波数域と区別する際の識別番号となる。次に各周波数域において、当該周波数域内で行う測定の点数をそれぞれ独立して任意に決定する(S204)。この測定点数を、演算部5に保存される周波数単位テーブルに代入し(S205)、各周波数域において測定する点数だけ周波数測定点決定テーブルを作成する(S206)。周波数単位テーブルは以下の数式1の集合である。

Figure 2010008146
Next, a flow for determining the number of measurement points in the measurement condition setting means 6 will be described with reference to FIG. First, the measurement range is determined by arbitrarily setting the minimum value and the maximum value of the frequency (S201). Subsequently, a plurality of frequency ranges are set in this measurement range (S202), and numbers are assigned to the frequency ranges in order from 0 (S203). This number is an identification number for distinguishing the frequency range from other frequency ranges. Next, in each frequency band, the number of points to be measured in the frequency band is arbitrarily determined independently (S204). The number of measurement points is substituted into the frequency unit table stored in the calculation unit 5 (S205), and frequency measurement point determination tables are created for the number of points to be measured in each frequency range (S206). The frequency unit table is a set of Equation 1 below.
Figure 2010008146

上記数式1において、nは当該周波数域に割り当てられた番号を示し、xは測定点数を示す。またy及びzは、当該周波数域がどの範囲の周波数を測定対象としているのかを示すため、最小周波数と最大周波数がそれぞれ代入される。   In Equation 1, n indicates a number assigned to the frequency range, and x indicates the number of measurement points. Further, y and z indicate the range of frequencies in the frequency range to be measured, and the minimum frequency and the maximum frequency are respectively substituted.

また、既に述べたとおり、各周波数単位テーブル内に、単数又は複数の数式2から構成される周波数測定点決定テーブルが設けられている。数式2は以下の通りである。

Figure 2010008146
上記数式1において、各周波数域における測定点数(x)が代入されると、この周波数測定点数決定テーブルに周波数単位テーブルに基づいた数値が代入され、測定する周波数が自動的に決定される。 Further, as already described, a frequency measurement point determination table composed of one or a plurality of mathematical expressions 2 is provided in each frequency unit table. Formula 2 is as follows.
Figure 2010008146
In Equation 1, when the number of measurement points (x) in each frequency range is substituted, a numerical value based on the frequency unit table is substituted into this frequency measurement point number determination table, and the frequency to be measured is automatically determined.

この数式2において、kは、最小周波数から最大周波数までの全周波数域を通じて何番目の測定点に係る式であるかを示すものであり、0から順に数字が割り当てられる。Yは、数式1において定義されている最小周波数(y)を、mHzの単位で表すものであり、tには、この式が当該周波数単位テーブルで規定された単数又は複数の測定点のうち、何番目の測定点に係る式であるかを定義するための数字が1から順に代入される。最後に、nにはこの式が前述の周波数単位テーブルのどのテーブルに係る式であるかを定義するために、本テーブルの上位に位置する周波数単位テーブルの識別番号が代入される。   In Equation 2, k indicates what number the measurement point is in the entire frequency range from the minimum frequency to the maximum frequency, and numbers are assigned in order from 0. Y represents the minimum frequency (y) defined in Equation 1 in units of mHz, and t represents one or a plurality of measurement points defined by the frequency unit table. Numbers for defining the number of measurement points are substituted in order from 1. Finally, in order to define to which table of the above-mentioned frequency unit table this equation is related to n, the identification number of the frequency unit table located at the top of this table is substituted.

図3に基づき、具体例を挙げると以下の通りである。例えば、0.01Hz以上100kHz以下の周波数域を測定する場合、まずこの周波数を任意の周波数ごとに複数の周波数域に分ける。最初の周波数域(0)は、周波数が0.01Hz以上0.1Hz未満とし、次の周波数域(1)は、周波数を0.1Hz以上1Hz未満とする。このように100kHzまで任意の数の周波数域に分け、0から順に番号を割り当てていく。そして、各周波数域における測定点数を設定する。例えば最初の周波数域(0)であって、測定周波数は0.01Hz以上0.1Hz未満であり、測定点数を2回と設定した場合、数式1に各設定を代入すると以下の通りになる。

Figure 2010008146
A specific example based on FIG. 3 is as follows. For example, when measuring a frequency range of 0.01 Hz to 100 kHz, first, this frequency is divided into a plurality of frequency ranges for each arbitrary frequency. The first frequency range (0) has a frequency of 0.01 Hz to less than 0.1 Hz, and the next frequency range (1) has a frequency of 0.1 Hz to less than 1 Hz. In this way, an arbitrary number of frequency ranges up to 100 kHz are divided and numbers are assigned in order from 0. Then, the number of measurement points in each frequency range is set. For example, in the first frequency range (0), the measurement frequency is 0.01 Hz or more and less than 0.1 Hz, and when the number of measurement points is set to two, substituting each setting into Equation 1 results in the following.
Figure 2010008146

次に、上記周波数域において設定された測定点の数だけ周波数測定点決定テーブルが生成される。これによって、測定される周波数が決定する。上記例によると、測定点9の数は2なので、周波数測定点決定テーブルは2つ生成される。また、0.01Hzは10mHzを意味するので、Yには10が代入される。さらに、最初の周波数域なので、周波数域を識別するための番号は0である。ここで生成される周波数測定点決定テーブルは以下の通りである。

Figure 2010008146
Figure 2010008146
続いて、同じように0.1Hz以上1Hz未満に設定した周波数域(1)において、たとえば測定点9の数を4と決める。後は、既に述べた場合と同じように周波数単位テーブルを設定し、周波数測定点決定テーブルに数値を代入していけばよい。なお、上述した周波数域(0)における測定点数(x)を2と設定しているので、本周波数域(1)において、数式2のkには2から順に代入される。 Next, frequency measurement point determination tables are generated for the number of measurement points set in the frequency range. This determines the frequency to be measured. According to the above example, since the number of measurement points 9 is 2, two frequency measurement point determination tables are generated. Since 0.01 Hz means 10 mHz, 10 is substituted for Y. Furthermore, since it is the first frequency range, the number for identifying the frequency range is zero. The frequency measurement point determination table generated here is as follows.
Figure 2010008146
Figure 2010008146
Subsequently, for example, the number of measurement points 9 is determined to be 4 in the frequency range (1) set to 0.1 Hz or more and less than 1 Hz. After that, it is only necessary to set the frequency unit table in the same manner as described above and substitute a numerical value into the frequency measurement point determination table. Note that since the number of measurement points (x) in the frequency range (0) described above is set to 2, in this frequency range (1), k in Equation 2 is substituted in order from 2.

このようにして設定された測定条件に基づき、交流波形発信器は負荷装置へ信号を与える。この信号を受けた負荷装置は、燃料電池へ流す負荷電流にこの測定条件に基づいた任意の交流電流を重畳する。この交流重畳電流に燃料電池が応答し発生した電圧及び電流変化を、演算部が格納するゲイン測定手段及び位相測定手段が取り込む。そして、この演算部において電圧及び電流変化を複素演算することで、燃料電池の内部インピーダンスが算出できる。   Based on the measurement conditions set in this way, the AC waveform transmitter provides a signal to the load device. Upon receiving this signal, the load device superimposes an arbitrary alternating current based on this measurement condition on the load current flowing to the fuel cell. The gain measurement means and the phase measurement means stored in the calculation section capture the voltage and current changes generated by the fuel cell in response to the alternating current superimposed current. And the internal impedance of a fuel cell is computable by carrying out complex operation of the voltage and electric current change in this calculating part.

このように、本願はそれぞれの周波数域において、任意に測定点数を設定することができる構成なので、測定時間を短縮し、また特定の周波数域を詳細に調べることができる。   Thus, since the present application is configured to arbitrarily set the number of measurement points in each frequency range, the measurement time can be shortened and a specific frequency range can be examined in detail.

以上、本願発明における最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術等はすべて本発明の範疇に含まれることは勿論である。   As mentioned above, although the best form in this invention was demonstrated, this invention is not limited with the description and drawing by this form. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

図1は本発明に係る内部インピーダンス測定装置の一実施例である。FIG. 1 shows an embodiment of an internal impedance measuring apparatus according to the present invention. 図2は、図2は各周波数域における測定点を設定するためのフロー図である。FIG. 2 is a flowchart for setting measurement points in each frequency band. 図3は本発明の周波数域、測定点、測定点数を説明する図である。FIG. 3 is a diagram for explaining the frequency range, measurement points, and number of measurement points of the present invention. 図4は、燃料電池の電気化学反応を最も単純に示した内部インピーダンスの等価回路である。FIG. 4 is an equivalent circuit of internal impedance that most simply shows the electrochemical reaction of the fuel cell.

符号の説明Explanation of symbols

1.内部インピーダンス測定装置
2.燃料電池
3.負荷装置
4.交流波形発信器
5. 演算部
6.測定条件設定手段
7.ゲイン測定手段
8.位相測定手段
41.内部インピーダンスの等価回路
42.電解質抵抗
43.電気二重層容量
44.反応抵抗
1. 1. Internal impedance measuring device 2. Fuel cell 3. Load device 4. AC waveform transmitter Calculation unit 6. 6. Measurement condition setting means Gain measurement means8. Phase measuring means 41. Equivalent circuit of internal impedance 42. Electrolyte resistance 43. Electric double layer capacity 44. Reaction resistance

Claims (2)

負荷装置に任意の交流重畳電流を発生させる信号を与える交流波形発信器と、
測定条件設定手段、ゲイン測定手段及び位相測定手段を格納する演算部とを備え、
前記負荷装置が流す交流重畳電流に測定対象が応答して得られる電圧及び電流変化を前記ゲイン測定手段並びに位相測定手段が取り込み、取り込んだ該電圧及び電流変化を複素演算して前記測定対象の内部インピーダンスを求める内部インピーダンス測定装置において、
前記測定条件設定手段は、前記負荷装置が流す交流重畳電流の周波数の最小値及び最大値を設定する測定範囲設定手段と、前記最小周波数と最大周波数間を複数の周波数域に分ける周波数域設定手段と、前記複数の周波数域ごとにそれぞれ任意の測定点数を代入する周波数単位テーブルと、該周波数単位テーブル内で周波数の測定点を決定する周波数測定点決定テーブルと、を備えることを特徴とする内部インピーダンス測定装置。
An AC waveform transmitter for giving a signal for generating an arbitrary AC superimposed current to the load device;
A calculation condition setting means, a gain measurement means and a calculation unit for storing a phase measurement means,
The gain measuring means and the phase measuring means take in the voltage and current change obtained by the measurement object in response to the alternating current superimposed current flowing by the load device, and complexly calculate the taken voltage and current change to calculate the inside of the measurement object. In an internal impedance measuring device for obtaining impedance,
The measurement condition setting means includes a measurement range setting means for setting a minimum value and a maximum value of a frequency of an alternating current superimposed current flowing through the load device, and a frequency range setting means for dividing the minimum frequency and the maximum frequency into a plurality of frequency ranges. And a frequency unit table for substituting an arbitrary number of measurement points for each of the plurality of frequency ranges, and a frequency measurement point determination table for determining a frequency measurement point in the frequency unit table. Impedance measuring device.
前記測定対象は燃料電池であることを特徴とする請求項1記載の内部インピーダンス測定装置。 2. The internal impedance measuring apparatus according to claim 1, wherein the measurement object is a fuel cell.
JP2008165842A 2008-06-25 2008-06-25 Internal impedance measuring device Pending JP2010008146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165842A JP2010008146A (en) 2008-06-25 2008-06-25 Internal impedance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165842A JP2010008146A (en) 2008-06-25 2008-06-25 Internal impedance measuring device

Publications (1)

Publication Number Publication Date
JP2010008146A true JP2010008146A (en) 2010-01-14

Family

ID=41588844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165842A Pending JP2010008146A (en) 2008-06-25 2008-06-25 Internal impedance measuring device

Country Status (1)

Country Link
JP (1) JP2010008146A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908665A (en) * 2017-02-10 2017-06-30 西南交通大学 A kind of one-phase AC-system dq decomposes impedance measurement method
RU2752797C1 (en) * 2020-10-08 2021-08-06 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Device for studying structural and transport properties of membranes under controlled ambient temperature and humidity
CN113759250A (en) * 2021-07-12 2021-12-07 清华大学 Method for predicting life of fuel cell
WO2024084644A1 (en) * 2022-10-20 2024-04-25 株式会社Subaru Fuel cell stack condition determination device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209912A (en) * 1991-02-28 1993-08-20 Yokogawa Hewlett Packard Ltd Measurement condition setting method for list sweep
JPH11352162A (en) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd Frequency characteristic measuring device
JP2003090869A (en) * 2001-07-09 2003-03-28 Yokogawa Electric Corp Impedance measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209912A (en) * 1991-02-28 1993-08-20 Yokogawa Hewlett Packard Ltd Measurement condition setting method for list sweep
JPH11352162A (en) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd Frequency characteristic measuring device
JP2003090869A (en) * 2001-07-09 2003-03-28 Yokogawa Electric Corp Impedance measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908665A (en) * 2017-02-10 2017-06-30 西南交通大学 A kind of one-phase AC-system dq decomposes impedance measurement method
RU2752797C1 (en) * 2020-10-08 2021-08-06 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Device for studying structural and transport properties of membranes under controlled ambient temperature and humidity
CN113759250A (en) * 2021-07-12 2021-12-07 清华大学 Method for predicting life of fuel cell
CN113759250B (en) * 2021-07-12 2022-05-13 清华大学 Method for predicting life of fuel cell
WO2024084644A1 (en) * 2022-10-20 2024-04-25 株式会社Subaru Fuel cell stack condition determination device

Similar Documents

Publication Publication Date Title
KR101688824B1 (en) Ac impedance measuring device
TWI752787B (en) Method and system for evaluating soundness of battery
JP5723298B2 (en) Method for confirming stability of electrical system and method for controlling electrical system
Debenjak et al. Detection of Flooding and Drying inside a PEM Fuel Cell Stack.
JP6789025B2 (en) Diagnostic frequency determination method, storage battery deterioration diagnosis method, diagnostic frequency determination system and storage battery deterioration diagnosis device
RU2009112406A (en) NON-DESTRUCTIVE SYSTEMS, DEVICES AND METHODS FOR ASSESSING DEVICES FOR IONTOPHORETIC DELIVERY OF MEDICINES
Van Haeverbeke et al. Equivalent electrical circuits and their use across electrochemical impedance spectroscopy application domains
JP2007333494A (en) Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP2011158444A (en) Method and device for detecting remaining capacity of secondary battery
WO2015008728A1 (en) Battery state detection device
Mosbæk et al. Electrochemical characterization and degradation analysis of large SOFC stacks by impedance spectroscopy
JP2008107168A (en) Method and device for detecting battery property
JP2014134467A (en) Secondary battery state diagnostic method
US20230015110A1 (en) Method for Diagnosing at Least One Fuel Cell Stack of a Fuel Cell Device, Computer-Readable Storage Medium, and Fuel Cell Diagnostic System
JP2010008146A (en) Internal impedance measuring device
Dotelli et al. Combining electrical and pressure measurements for early flooding detection in a PEM fuel cell
JP2011122917A (en) Device for evaluating battery characteristics
Slepski et al. On-line measurement of cell impedance during charging and discharging process
JP5454928B2 (en) Battery inspection method and battery inspection apparatus
CN104977534A (en) Method for estimating state-of-health of battery and device thereof
JP2010160055A (en) Battery inspection method
JP2017044569A (en) Battery state measurement method and battery state measurement device
KR101445940B1 (en) Apparatus and Method for Controlling Charging/Discharging of Battery
JP2005180927A (en) Impedance-measuring instrument
KR20200143207A (en) Method of evaluating impedance spectroscopy for used battery module, recording medium and apparatus for performing the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130417