JP2006226978A - Method of inspecting damage such as corrosion using potentiometric method - Google Patents

Method of inspecting damage such as corrosion using potentiometric method Download PDF

Info

Publication number
JP2006226978A
JP2006226978A JP2005073859A JP2005073859A JP2006226978A JP 2006226978 A JP2006226978 A JP 2006226978A JP 2005073859 A JP2005073859 A JP 2005073859A JP 2005073859 A JP2005073859 A JP 2005073859A JP 2006226978 A JP2006226978 A JP 2006226978A
Authority
JP
Japan
Prior art keywords
potential difference
damage
corrosion
bottom plate
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005073859A
Other languages
Japanese (ja)
Inventor
Naotake Otsuka
尚武 大塚
Hiroshi Yabe
寛 矢部
Tomoko Hirayama
朋子 平山
Yasunori Shindo
康則 進藤
Takatoshi Furui
貴敏 古井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005073859A priority Critical patent/JP2006226978A/en
Publication of JP2006226978A publication Critical patent/JP2006226978A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein only an AE inspection method exists for inspecting corrosion on an outer surface of a bottom plate of a petroleum tank under use, in a prior art, and wherein a long time and a great inspection expense are required when an ultrasonic inspection method is applied in routine inspection. <P>SOLUTION: This method of the present invention uses a potentiometric method of making a fixed current in a constitutive member such as the bottom plate and a side plate having damages such as the corrosion, and of measuring a potential difference between two points with the damage therebetween. Detection sensitivity for the damage is enhanced by selecting attaching positions of two electrode terminals and a measuring terminal in a position to be as near to a generation position of the damage as possible and to sandwich the damage. A technique of conducting reverse analysis by a complex potential method is developed using a result with a measured potential difference distribution of an outer circumference of the bottom plate of the tank, and a program therefor is prepared. Convergency is verified by the program when the corrosion exists only in one portion, and the program is confirmed to be useful for a practical use, as a result thereof. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電位差法を用いて各種貯槽の底板などの部材の腐食減肉や割れなどの損傷の有無および程度を電位差法を用いて非破壊的に測定し検査する技術に関する。  The present invention relates to a technique for nondestructively measuring and inspecting the presence and degree of damage such as corrosion thinning and cracking of members such as bottom plates of various storage tanks using a potentiometric method.

従来の腐食などの検査方法には、目視検査や超音波検査法、放射線検査法、AE検査法などが主である。目視検査は肉眼で表面を観察する方法であるため、簡単であるが外表面しか検査できず定量性に乏しく検査員の経験や資質に左右される問題がある。超音波検査法は外表面以外の検査も可能で比較的精度がいいが、探傷器を逐一検査部位において検査するため手間と時間を要する欠点がある。放射線検査法は外表面以外の検査も可能であるが裏面に感光材料を設置可能な部位に限られ、精度は超音波検査法より劣り、放射線を取り扱うため被爆の危険性があるため適用が簡単でなく、広範囲の検査にも手間を要するなどの問題がある。AE(アコースティック・エミッション)検査法は比較的広範囲の領域を一度に検査できるが、基本的には検査対象部位に動的な応力が作用している場合にしか適用できず、外部ノイズの影響を受けやすく信頼性が低いなどの欠点がある。また、使用中に測定し得るが底板の外周部における電位差の分布から内部の損傷の位置や損傷程度を推定する逆解析方法として、亀裂問題へ電気ポテンシャル法による数値計算を適用した例などがある。
桑迫・矢島著、非破壊検査 51−10、2002年10月、第645頁から第649頁 加藤著、非破壊検査 49−3、2000年、第152頁から 井上著、「実践振動法による設備診断」、日本プラントメンテナンス協会、1998年 「逆問題のコンピュータアナリシス」、日本機械学会、コロナ社、1991年 久保著、「逆問題」計算力学とCAEシリーズ10、培風館1992年 久保・阪上・大路著、「電気ポテンシャルCT法による二次元,三次元き裂形状測定に関する基礎的研究(境界要素逆問題解析法の開発と未知境界(き裂)同定への適用)」、日本機械学会論文集(A編)、51−467、昭和60年7月,第1818頁から第1825頁まで
Conventional inspection methods such as corrosion mainly include visual inspection, ultrasonic inspection, radiation inspection, and AE inspection. Since visual inspection is a method of observing the surface with the naked eye, it is simple, but only the outer surface can be inspected, and there is a problem that it is poor in quantitativeness and depends on the experience and quality of the inspector. The ultrasonic inspection method can inspect parts other than the outer surface and has a relatively high accuracy, but has a drawback that it takes time and effort to inspect the flaw detector at the inspection part by point. The radiation inspection method can be used for inspections other than the outer surface, but it is limited to the part where the photosensitive material can be placed on the back surface. The accuracy is inferior to the ultrasonic inspection method, and it is easy to apply because there is a risk of exposure to radiation. In addition, there is a problem that it takes time for a wide range of inspections. The AE (acoustic emission) inspection method can inspect a relatively wide area at a time, but it is basically applicable only when dynamic stress is acting on the inspection target part, and the influence of external noise is reduced. There are disadvantages such as being easy to receive and low reliability. In addition, as an inverse analysis method that can be measured during use but estimates the position and extent of damage from the distribution of the potential difference at the outer periphery of the bottom plate, there is an example in which numerical calculation by the electric potential method is applied to the crack problem. .
Kuwasako and Yajima, Nondestructive Inspection 51-10, October 2002, pages 645 to 649 From Kato, Nondestructive Inspection 49-3, 2000, p. 152 Inoue, “Equipment Diagnosis by Practical Vibration Method”, Japan Plant Maintenance Association, 1998 "Computer Analysis of Inverse Problems", The Japan Society of Mechanical Engineers, Corona, 1991 Kubo, "Inverse Problem", Computational Mechanics and CAE Series 10, Baifukan 1992 Kubo, Sakagami, and Oji, “Fundamental study on 2D and 3D crack shape measurement by electric potential CT method (development of boundary element inverse problem analysis method and application to unknown boundary (crack) identification)”, Japan Transactions of the Japan Society of Mechanical Engineers (A), 51-467, July 1985, pages 1818 to 1825

しかしながら、石油タンクの底板の外表面は、地面に接しているため雨水などの影響により使用中に徐々に腐食や割れなどの損傷が進行するが、外表面に検査機器を直接設置したり接触することができないためその腐食の程度を検出することが困難であり、目視検査や放射線検査は適用することができないので現状では超音波検査法とAE検査法しか適用できない。また貯槽の使用中には貯槽内部に検査員が立ち入れないため、AE検査法を除けば、超音波検査法では検査するために一旦貯蔵物をすべて空にして検査する定期検査しか行えず、検査のための費用を多く要することや常時検査できない問題がある。さらに石油貯槽のように大型の貯槽では測定すべき部位が広大であるため、各部位を逐一検査する方法では検査に要する費用や時間が甚大となり、運転費用に占める検査費用の割合が高くなって経済的でないなどの問題がある。一方AE検査法は比較的広範囲の領域を一度に検査できる利点があるが、使用中に静的な応力が作用貯槽の場合の信頼性が低いなどの問題がある。このように、特に貯槽に対しては比較的信頼性のある従来の検査法は超音波検査法であるが、この検査法は数年に一度の検査しか行えず、その場合の検査に要する費用が著しく高くなるため、検査費用が安くて貯槽の使用中にも検査が可能な検査法の開発が強く望まれている。
また、亀裂問題に電気ポテンシャル法を用いて逆解析した例があるが、この手法は基礎となるラプラス方程式に境界条件を与えたときの亀裂の位置および寸法を有限要素法や境界要素法、差分法などの数値計算手法、特に境界要素法により求める方法が適用されているが、計算誤差の集積などにより計算が収束するための条件が厳しくて適用できる問題が限られるという問題がある。
However, since the outer surface of the bottom plate of the oil tank is in contact with the ground, damage such as corrosion and cracking gradually progresses during use due to the influence of rainwater, etc., but inspection equipment is directly installed or contacted on the outer surface Therefore, it is difficult to detect the degree of corrosion, and visual inspection and radiation inspection cannot be applied. Therefore, at present, only ultrasonic inspection method and AE inspection method can be applied. In addition, since the inspector does not enter the storage tank while it is in use, except for the AE inspection method, the ultrasonic inspection method can only perform a periodic inspection to empty all stored items for inspection. There are problems that require a lot of cost for inspection and that cannot always be inspected. In addition, since the parts to be measured are large in large storage tanks such as oil storage tanks, the method of inspecting each part one by one increases the cost and time required for the inspection, and the ratio of the inspection cost to the operating cost increases. There are problems such as not being economical. On the other hand, the AE inspection method has an advantage that a relatively wide area can be inspected at a time, but there is a problem that reliability is low in the case of a storage tank in which static stress is applied during use. In this way, the conventional inspection method that is relatively reliable, particularly for storage tanks, is the ultrasonic inspection method, but this inspection method can only be inspected once every several years, and the cost required for the inspection in that case. Therefore, the development of an inspection method that can be inspected even during use of the storage tank is strongly desired because the inspection cost is low.
In addition, there is an example of an inverse analysis using the electric potential method for the crack problem, but this method uses the finite element method, the boundary element method, the difference of the crack position and size when the boundary condition is given to the underlying Laplace equation. Although numerical calculation methods such as the method, particularly the method obtained by the boundary element method, are applied, there is a problem that the conditions for convergence of the calculation are severe due to accumulation of calculation errors and the problems that can be applied are limited.

以上の課題を解決するために、第一発明は、腐食などの損傷を有する貯槽の底板や側板などの構成部材に一定電流を流し、損傷を挟んだ2点間の電位差を測定する電位差法を用いる。この方法は電気ポテンシャル法、または電気抵抗法とも呼ばれる。その原理は、腐食や割れなどが進行して部材の断面積が減少すると、電気抵抗が増大するので、その変化を電位差の変化として検出するものである。この方法を貯槽の底板に適用する場合、底板の外周に近い任意の2点に電極端子を取り付けてこの電極端子間に一定電流を流し、外周に近い任意の2測定端子の間の電位差を測定する。
また第二発明は、第一発明における2電極端子の取り付け位置をできるだけ損傷の発生位置に近くなおかつ損傷を挟むような位置となるように選び、なおかつ電位差を測定する2測定端子の位置を2電極端子に近い位置に選ぶことにより損傷の検出感度が向上する。
また第三発明は、損傷を有する貯槽の底板や側板などの構成部材の内部に予め電極端子および測定端子またはそのいずれかをそれぞれ1組または複数の組設置しておくと損傷部位に近い位置において電位差を測定できるので検出精度を向上させる。
また第四発明および第五発明および第九発明は、貯槽の底板や側板などの構成部材と形状寸法が相似なモデルを用いて損傷発生位置と損傷の程度を種々に想定し、これらの想定した損傷発生位置と損傷の程度の各場合について、予め異なる複数の位置に測定端子の測定位置を変えて電位差を実験的に測定するかまたは数値解析または理論解析によってそれぞれの電位差の分布を求めておく。そして実際の貯槽の底板や側板などの構成部材について電位差分布を測定し、この結果を上記モデルの電位差分布と比較して両者がもっともよく一致する場合を見つけることによって損傷発生位置と損傷の程度を推定する。
また第六発明ないし第十二発明は、貯槽の底板や側板などの構成部材について異なる複数の位置に測定端子の測定位置を変えて電位差を測定して電位差の分布を求める。そしてこの電位差の分布を条件として逆解析することによって損傷発生位置と損傷の程度を推定する。
また第十三発明は、第四発明および第五発明および第九発明による順解析による検査方法と、第六発明ないし第十二発明による逆解析による検査方法を併用して検査の精度を向上させる。
また第十四発明は、第一発明ないし第十三発明の検査方法を貯槽以外の一般の容器や各種構造物に適用することによって腐食や割れなどの損傷を検査する。
In order to solve the above-mentioned problems, the first invention is a potential difference method for measuring a potential difference between two points with a constant current flowing through components such as a bottom plate and a side plate of a storage tank having damage such as corrosion. Use. This method is also called an electric potential method or an electric resistance method. The principle is to detect the change as a change in potential difference because the electrical resistance increases when the cross-sectional area of the member decreases due to progress of corrosion or cracking. When this method is applied to the bottom plate of a storage tank, electrode terminals are attached to any two points close to the outer periphery of the bottom plate, a constant current is passed between these electrode terminals, and the potential difference between any two measurement terminals close to the outer periphery is measured. To do.
In the second invention, the mounting position of the two-electrode terminal in the first invention is selected so as to be as close as possible to the position where the damage has occurred and the position where the damage is sandwiched, and the position of the two measuring terminals for measuring the potential difference is set to the two electrodes. The damage detection sensitivity is improved by selecting a position close to the terminal.
In the third invention, when one or a plurality of electrode terminals and / or measurement terminals are installed in advance in the components such as the bottom plate and the side plate of the damaged storage tank, at a position close to the damaged part. Since the potential difference can be measured, the detection accuracy is improved.
In addition, the fourth invention, the fifth invention and the ninth invention assume various damage occurrence positions and damage levels using models similar in shape and size to the structural members such as the bottom plate and the side plate of the storage tank. In each case of the damage occurrence position and the degree of damage, the potential difference is experimentally measured by changing the measurement position of the measurement terminal to a plurality of different positions in advance, or the distribution of each potential difference is obtained by numerical analysis or theoretical analysis. . Then, the potential difference distribution is measured for components such as the bottom plate and side plate of the actual storage tank, and the result is compared with the potential difference distribution of the above model to find the case where the two match best, thereby determining the damage occurrence position and the degree of damage. presume.
In the sixth invention to the twelfth invention, the potential difference distribution is obtained by measuring the potential difference by changing the measurement position of the measurement terminal to a plurality of different positions on the constituent members such as the bottom plate and the side plate of the storage tank. The damage occurrence position and the degree of damage are estimated by performing inverse analysis on the condition of the distribution of the potential difference.
The thirteenth invention improves the accuracy of the inspection by using the inspection method based on the forward analysis according to the fourth invention, the fifth invention and the ninth invention together with the inspection method based on the reverse analysis according to the sixth invention to the twelfth invention. .
In the fourteenth aspect, the inspection method according to the first to thirteenth aspects is inspected for damage such as corrosion and cracking by applying it to general containers other than storage tanks and various structures.

第一発明ないし第三発明によれば、貯槽の底板のように内表面からは目視したりやアクセスすることができない裏表面の腐食や割れなどの損傷を比較的簡単な測定装置を用いて検査することが可能となる。
また第一発明ないし第十三発明によれば、貯槽などの使用中に運転を止めることなく検査が可能となり、しかも広範囲の検査対象領域を比較的短時間で検査することが可能となる。これらの検査ができることによって、貯槽などの検査対象構造物の検査の信頼性が増すので、構造物の安全性が向上し、さらには検査に要する費用が安くなることに経済的なメリットも著しく向上する。
また第二発明によると、貯槽の底板で強度上特に問題となる底板外周に近い部分に損傷がある場合などでは、電極と測定端子の位置を損傷に近くてなおかつ損傷を挟む位置に設置することによって検出精度が向上するので実用上の効果が期待される。
また第三発明によると、貯槽の底板で電極位置や測定端子の位置から離れた位置、例えば底板の中央部に損傷がある場合などの場合の検出感度は一般的にかなり低くて検査精度が劣るのに対して、電極位置や測定端子を予めタンク底板中央部付近などに設置しておくと、検出感度が向上することによって検査精度を改良することができる。
また第十四発明によると、第一発明ないし第十三発明の検査方法を貯槽以外の一般の容器や各種構造物に適用することによって適用範囲が広がるので、構造物の安全性の向上に役立てることができる。
According to the first invention or the third invention, a damage such as corrosion or cracking of the back surface that cannot be visually observed or accessed from the inner surface such as the bottom plate of the storage tank is inspected using a relatively simple measuring device. It becomes possible.
Further, according to the first to thirteenth inventions, it is possible to inspect without stopping operation during use of a storage tank or the like, and it is possible to inspect a wide range of inspection target areas in a relatively short time. By being able to perform these inspections, the reliability of inspection of structures to be inspected, such as storage tanks, increases, so that the safety of the structures is improved and the cost of inspection is reduced, and the economic merit is significantly improved. To do.
In addition, according to the second invention, in the case where the bottom plate of the storage tank is damaged in the vicinity of the outer periphery of the bottom plate, which is particularly problematic in terms of strength, the position of the electrode and the measurement terminal should be set at a position near the damage and sandwiching the damage. Since the detection accuracy is improved by this, a practical effect is expected.
Further, according to the third invention, the detection sensitivity in the case where the bottom plate of the storage tank is far from the position of the electrode or the measurement terminal, for example, when the central portion of the bottom plate is damaged is generally very low and the inspection accuracy is poor. On the other hand, if the electrode position and the measurement terminal are installed in the vicinity of the center of the tank bottom plate in advance, the detection accuracy can be improved and the inspection accuracy can be improved.
Moreover, according to the fourteenth invention, the application range is expanded by applying the inspection method of the first invention to the thirteenth invention to general containers other than storage tanks and various structures, which helps to improve the safety of the structure. be able to.

この発明の実施形態の説明を図1に示し、他の実施形態の説明を図2及び図3及び図4に示す。また、電気ポテンシャル法をタンク底板の腐食の検出に適用した場合の検出感度を求めた例を図5に示す。また、逆解析を行うための説明のための図を図6ないし図9に示す。  A description of an embodiment of the present invention is shown in FIG. 1, and a description of other embodiments is shown in FIGS. FIG. 5 shows an example in which the detection sensitivity is obtained when the electric potential method is applied to the detection of corrosion of the tank bottom plate. Further, FIGS. 6 to 9 show diagrams for explaining the reverse analysis.

この発明の一実施形態を図1および図2に示す。
図1は鋼製円筒タンクであり、底板1およびアニュラ板2は互いに突合せ溶接または重ね隅肉溶接されて盛り土3の上に設置されている。側板4はアニュラ板2に隅肉溶接されて鉛直方向に設置され、この側板の上端には屋根板5が溶接され、底板1およびアニュラ板2、側板4、屋根板5で囲まれた内部には油や水などの内容液6が貯蔵されている。この円筒タンクの底板1およびアニュラ板は内溶液中の水分による内面腐食や地下水や雨水が盛り土の上面に浸入することによる外面腐食が生じるので、タンクの安全性を確保するためにはこの腐食の程度を定量的に測定する必要がある。
図2は底板およびアニュラ板を上方から見た平面図である。底板の中心を通る直径線7とアニュラ板の端面が交わる2点の付近に電極端子8および9を取付け、定電流電源装置10の正負の電極と端子8および9を導体線11でそれぞれ接続することにより、電極端子8および9の間に一定電流I(A)を流す。そして同じ電極端子8および9またはその付近に測定用端子12および13を取付け、これらの測定端子と電圧計14を導体線15で接続することにより電位差E(V)を測定する。同様に底板の中心を回転中心として直径線7をアニュラ板の外周に沿って一定角度ごとに回転させ、その直径とアニュラ板の端面が交わる2点に、端子8と12の組および端子9と13の組をそれぞれ移動させながら測定端子12および13の間の電位差を電圧計14により測定する。
One embodiment of the present invention is shown in FIGS.
FIG. 1 shows a steel cylindrical tank. A bottom plate 1 and an annular plate 2 are installed on a bank 3 by butt welding or lap fillet welding. The side plate 4 is fillet welded to the annular plate 2 and installed in the vertical direction. A roof plate 5 is welded to the upper end of the side plate, and the bottom plate 1, the annular plate 2, the side plate 4, and the roof plate 5 are enclosed inside. The contents liquid 6 such as oil or water is stored. The bottom plate 1 and the annular plate of this cylindrical tank are subject to internal corrosion due to moisture in the internal solution and external corrosion due to the infiltration of groundwater and rainwater into the upper surface of the embankment. The degree needs to be measured quantitatively.
FIG. 2 is a plan view of the bottom plate and the annular plate as viewed from above. Electrode terminals 8 and 9 are attached in the vicinity of two points where the diameter line 7 passing through the center of the bottom plate and the end face of the annular plate intersect, and the positive and negative electrodes of the constant current power supply device 10 and the terminals 8 and 9 are connected by conductor wires 11, respectively. As a result, a constant current I (A) flows between the electrode terminals 8 and 9. Then, the measurement terminals 12 and 13 are attached to the same electrode terminals 8 and 9 or the vicinity thereof, and the potential difference E (V) is measured by connecting these measurement terminals and the voltmeter 14 with the conductor wire 15. Similarly, the diameter line 7 is rotated at a certain angle along the outer periphery of the annular plate with the center of the bottom plate as the center of rotation, and at the two points where the diameter and the end surface of the annular plate intersect, a set of terminals 8 and 12 and a terminal 9 The potential difference between the measurement terminals 12 and 13 is measured by the voltmeter 14 while moving the 13 sets.

図3は他の実施例であり、図1の底板1およびアニュラ板2を上方から見た平面図である。この実施例は定電流電源装置10の電極端子8および9を、底板の中心を通らない弦16とアニュラ板の端面が交わる2点付近に取付け、一定電流を流す。そして同じ電極端子8および9またはその付近に電圧測定用端子12および13を取付けて電圧計14より電位差を測定する。同様に弦16の位置を底板の周方向に一定間隔づつずらして、端子8と12の組および端子9と13の組をそれぞれ移動させながら測定端子12および13の間の電位差を電圧計14により測定する。  FIG. 3 shows another embodiment, and is a plan view of the bottom plate 1 and the annular plate 2 of FIG. 1 as viewed from above. In this embodiment, the electrode terminals 8 and 9 of the constant current power supply device 10 are mounted near two points where the string 16 that does not pass through the center of the bottom plate and the end surface of the annular plate intersect, and a constant current is passed. Then, voltage measuring terminals 12 and 13 are attached to or near the same electrode terminals 8 and 9 and a potential difference is measured by a voltmeter 14. Similarly, the position of the string 16 is shifted at regular intervals in the circumferential direction of the bottom plate, and the potential difference between the measurement terminals 12 and 13 is measured by the voltmeter 14 while moving the set of terminals 8 and 12 and the set of terminals 9 and 13 respectively. taking measurement.

図4はさらに他の実施例であり、図1の底板1およびアニュラ板2を上方から見た平面図である。図4では、電極端子8および9を図2と同様に底板の直径線7とアニュラ板の端面の交点付近に設置し、電圧測定端子12および13は弦16の端点付近に設置している。  FIG. 4 is still another embodiment, and is a plan view of the bottom plate 1 and the annular plate 2 of FIG. 1 as viewed from above. In FIG. 4, the electrode terminals 8 and 9 are installed in the vicinity of the intersection of the diameter line 7 of the bottom plate and the end face of the annular plate as in FIG. 2, and the voltage measuring terminals 12 and 13 are installed in the vicinity of the end of the string 16.

図2ないし図4において、定電流電源装置10の出力電流をI(A)とし、電圧計14で測定された電位差をE(V)、測定端子12および13間の電気抵抗値をR(Ω)とすると、次式のオームの法則が成立する。
E=RI (2)
ここで測定端子間の長さL(m)が板厚t(m)および板幅b(m)に比して大きい場合には、板材料の抵抗率をρ(Ω・m)とすると電気抵抗Rは次式で表される。
R=ρL/(bt) (3)
ここで板幅bが長さLに比して無視できない場合には、板幅方向に対して電流密度が一様でなくなるため、(3)式が成立しないが幅方向に一様に電流が流れるとみなした時の見掛け上の幅を有効幅beとすると上の(3)式のbの変わりにbeを用いればよい。
式(3)を式(2)に代入すると、
E=ρLI/(bt) (4)
すなわち、腐食などにより板厚tが減少すると電位差Eが増大するのでこの関係から板厚tを推定することができる。
ここで、底板およびアニュラ板がほぼ均一に板厚が減少した場合には式(4)により板厚tに逆比例して電位差Eが上昇し、図2のように底板の直径上の測定端子12および13の位置をアニュラ板の外周に沿って移動させた場合にも同じ電位差が測定される。
しかるに底板およびアニュラ板が局部的に腐食したり不均一に腐食して減肉した場合には、測定端子12および13の位置によって測定される電位差Eに差異が生じる。すなわち、局部的に減肉された領域が測定端子の近くにある場合には減肉による電位差の上昇の影響が大きく、測定端子から離れた領域にある場合には減肉による電位差の上昇の影響が小さい。ゆえに底板またはアニュラ板を同じ大きさを有するn個の小さな部分領域に分割し、各部分領域jごとに測定される電位差に及ぼす減肉部分の位置および減肉量の影響度f(j)を予め解析または実験により求めておけば、式(1)により測定端子間の電位差が求まるので、n箇所以上の位置で測定した電位差の値を用いて式(1)の連立方程式を解けば、各部分領域jにおける減肉の影響度f(j)が求まり、減肉量が推定できることになる。ただし式(1)中のEは底板およびアニュラ板に腐食による減肉がない場合に測定される測定端子間の電位差であり、gは測定端子間の電位差を決定する関数である。
2 to 4, the output current of the constant current power supply device 10 is I (A), the potential difference measured by the voltmeter 14 is E (V), and the electrical resistance value between the measurement terminals 12 and 13 is R (Ω ), The following Ohm's law holds.
E = RI (2)
Here, when the length L (m) between the measurement terminals is larger than the plate thickness t (m) and the plate width b (m), it is assumed that the resistivity of the plate material is ρ (Ω · m). The resistance R is expressed by the following formula.
R = ρL / (bt) (3)
Here, when the plate width b is not negligible compared to the length L, the current density is not uniform in the plate width direction. Therefore, equation (3) is not satisfied, but the current is uniformly distributed in the width direction. If the apparent width when it is considered to flow is the effective width be, be may be used instead of b in the above equation (3).
Substituting equation (3) into equation (2),
E = ρLI / (bt) (4)
That is, if the plate thickness t decreases due to corrosion or the like, the potential difference E increases, so the plate thickness t can be estimated from this relationship.
Here, when the thickness of the bottom plate and the annular plate is substantially uniform, the potential difference E increases in inverse proportion to the thickness t according to the equation (4), and the measurement terminal on the diameter of the bottom plate as shown in FIG. The same potential difference is measured when the positions 12 and 13 are moved along the outer periphery of the annular plate.
However, when the bottom plate and the annular plate are locally corroded or unevenly corroded and thinned, a difference occurs in the potential difference E measured depending on the positions of the measurement terminals 12 and 13. That is, when the locally thinned area is near the measurement terminal, the effect of the potential difference increase due to the thinning is large, and when the area is away from the measurement terminal, the potential difference increases due to the thinning. Is small. Therefore, the bottom plate or the annular plate is divided into n small partial regions having the same size, and the influence f (j) of the position of the thinned portion and the thinning amount on the potential difference measured for each partial region j is obtained. If it is obtained in advance by analysis or experiment, the potential difference between the measurement terminals can be obtained by Equation (1). Therefore, if the simultaneous equations of Equation (1) are solved using the value of the potential difference measured at n or more positions, The degree of influence f (j) of the thinning in the partial region j is obtained, and the thinning amount can be estimated. However E 0 in formula (1) is the potential difference between the measurement terminals which are measured when there is no thinning due to corrosion in the bottom plate and annular plate, g is a function that determines the potential difference between the measurement terminals.

電位Vは抵抗率が等方かつ等質で板厚方向に電位差がない均一な二次元状態の場合には次のラプラス方程式が成立する。

Figure 2006226978
ゆえに上述の影響度を用いて板厚の分布を求める方法に代わって、2つの測定端子の組をアニュラ板の周方向に移動させながら順次測定された値を境界条件として式(5)を逆解析することによって、底板およびアニュラ板の任意の位置における電位を求め、それからその位置における板厚を求める方法を用いることができる。
上記の図2および図3、図4の方法で定電流電源装置10を定電圧電源装置に、電圧計14を電流計に置き換え、定電圧条件下で電流を測定する方法を用いても同様な結果が得られる。In the case of a uniform two-dimensional state in which the potential V has an isotropic and uniform resistivity and no potential difference in the thickness direction, the following Laplace equation is established.
Figure 2006226978
Therefore, instead of the method of obtaining the thickness distribution using the above-mentioned influence degree, the equation (5) is inverted using the values measured sequentially while moving the set of two measurement terminals in the circumferential direction of the annular plate as the boundary condition. By analyzing, the electric potential in the arbitrary positions of a baseplate and an annular board can be calculated | required, and the method of calculating | requiring the board thickness in the position from it can be used.
The same method can be used when the constant current power supply device 10 is replaced with a constant voltage power supply device and the voltmeter 14 is replaced with an ammeter by the method shown in FIGS. Results are obtained.

図2で、タンク底板半径a=22.5(m),腐食の大きさ(半径)がc=1.5(m)、腐食位置の極座標(r、β)(r=16.5(m)、β=0(°))であって電極端子間の弦の距離lを変化させたときの底板外周上の電位差を有限要素法で求め、腐食がある場合とない場合の差を腐食がない場合の電位差で除した電位差変化Δvの周方向角度θに対する変化を図5に示す。本図によると、電極位置を腐食の近傍に設置し、本図の例では1が18(m)以下であれば腐食による電位差変化は4(%)程度以上あるので、請求項2による方法を用いれば、タンク底板の外周部に近い腐食による電位差変化は十分検出し得る感度を有していることがわかる。In FIG. 2, the tank bottom plate radius a = 22.5 (m), the magnitude (radius) of corrosion is c = 1.5 (m), and the polar coordinates (r 1 , β) (r 1 = 16.5) of the corrosion position. (M), β = 0 (°)), and the potential difference on the outer periphery of the bottom plate when the distance l of the string between the electrode terminals is changed is obtained by the finite element method. FIG. 5 shows the change of the potential difference Δv divided by the potential difference when there is no corrosion with respect to the circumferential angle θ. According to this figure, the electrode position is set in the vicinity of corrosion, and in the example of this figure, if 1 is 18 (m) or less, the potential difference change due to corrosion is about 4 (%) or more. If it uses, it turns out that it has the sensitivity which can fully detect the potential difference change by the corrosion near the outer peripheral part of a tank bottom plate.

複素ポテンシャル法(Complex potential drop method以下CPDMと言う)を用いた逆解析による損傷位置およびその程度を推定する方法は以下の通りである。
(1) 解析モデル
本研究では以下のような解析モデルを想定するものとする。
● 円板形金属板を対象とする。
● 円板は、腐食箇所以外は、その厚さや電気抵抗などは一様であるとする。
● 円板には腐食箇所が1個だけある。
● 腐食部は完全に電流を通さない。(円板厚さが減少して電気抵抗は増加しているが、電流を通さないことはないような腐食については、これを、等価な電流を通さない腐食部に置き換えて考える。)
● 腐食部は円形であるとする。また、その径は円板の径に比較して小さい。
● 電気抵抗(あるいは電流値)の測定のための電極は円板周囲の任意の位置に取り付けることが出来るとする。電極は円形で、その中心は丁度円板の外周上にあるとする。また、電極の大きさも円板の径に比して十分小さいとする。
(2)腐食がない場合の電位分布
はじめに、腐食箇所が存在しない場合の円板内の電位差分布を求めるものとする。そのモデルとしてFig3.1に示すような円板の中心を原点にした複素平面Z=x+iyを考える。円板の半径をaとし、電極が円板の直径軸上で、Z=±aの位置に設置されているものとする。
円板の電界状態を表す複素ポテンシャル関数は、Z=aに強さqの吹き出し、Z=−aに−qの吸い込みを置いて、

Figure 2006226978
で与えられる。
F(Z)の実部が電圧分布を、虚部が流れ関数を与える。「流れ関数」とは、流体力学的には流線に相当し、関数値=一定をみたす曲線を意味する
円板上の1点を考え、複素平面上の極座標を
Figure 2006226978
と置いて、これを式(3.1)に代入し、F(Z)の実部を求めると、
Figure 2006226978
を得る。なお、虚部は、右図の偏角を用いて
Figure 2006226978
となる。式(3.4)の関係から、円板円周が流線の1つになっている、つまり、式(3.1)が円板に対する複素ポテンシャル関数になっていることが分かる。
式(3.3)に戻って、式(3.3)をもとに、円板内の電圧分布を
Figure 2006226978
とおく。なお、q、Cは境界条件
Figure 2006226978
によって決定される。ここでrは電極の半径を指す。
円板内を流れる全電流に相当するq(値はマイナスで出てくる)は
Figure 2006226978
となる。なお、式(3.1)の複素ポテンシャル関数は無限平面上に吹き出しと吸い込みが置かれた場合の式であって、式(3.8)で示す値はそのような場合の電流値に相当する。式(3.8)の電流値の内、その半分は円板内を通って+極から−極に流れ、残りの半分は「円板の外側の無限平面」を通って+極から−極に流れる。したがって、円板内に流れ込む全電流値はq/2であるといえる。
以上の理論により、腐食減肉がない場合の円板内の電圧分布や円板を流れる全電流値を求める事が出来る。
(3)「腐食部」のポテンシャル関数による表示
x軸に対して角度αの方向に流れる一様流れ[流速をUとする]の中に、半径cの円柱が置かれているものとする。
円柱周りの流れを表す複素ポテンシャル関数は
Figure 2006226978
で与えられる。
そこで、Z=Zの位置に腐食があったと仮定する。ただし腐食は半径がcで、その大きさは円板の径に比して十分小さいものとする。式(3.1)で与えられる流れは、本来「一様流れ」ではないが、腐食の半径が十分小さいとし、腐食の近傍では「一様流れ」であると近似できるものとする。すなわち、式(3.1)の複素ポテンシャル関数がZ=Zの近傍では、
Figure 2006226978
で表される一様流れと近似できるものとする。
そのとき、腐食があった場合の複素ポテンシャル関数は
Figure 2006226978
となる。
式(3.10)のF(Z)については、右辺の第1項+第2項、すなわち、式(1)のF(Z)相当部分は「円板円周が流線の1つになる」という境界条件を満たしている。しかし、右辺第3項を加えると、この円板円周での境界条件を満たさなくなってしまっている。
そこで、式(3.10)にさらに補正項を加えて、円板円周での境界条件を満たすようにする。そのために、Z=Zの円板外周円[半径のaの円]に関する反転点に、式(3.10)の右辺第3項によって生じる流れを補償して境界条件を満たすようにするような二重吹き出しを置く。いま
Figure 2006226978
出しの方向が異なる2種類の二重吹き出しを置き、最終結果として、式(3.10)の代わりに、複素ポテンシャル関数を次のようにする。
Figure 2006226978
この複素ポテンシャル関数が「円板円周が流線の1つとなる」という境界条件を満たしていることの確認は後述するものとする。
一般に、複素ポテンシャル関数F(Z)で与えられる流れの中の任意の1点での流速のx軸方向成分、y軸方向成分をu、vとすると、これらは
Figure 2006226978
で与えられる。
式(3.12)の中の速度U及び方向αは、式(3.12)において、左辺の第1,2,4,5項の部分、すなわち、Z=Zに置き2重吹き出し項以外の項によって、Z=Zに誘起される速度及び方向として求める。すなわち、
Figure 2006226978
をZで微分した後、Z=Zとおき、その結果を式(3.13)の右辺として、式(3.13)の関係を用いて速度成分u、vを求める。
こうして求められた1点Z=Zでの速度成分から、流速Uと流れの方向αを
Figure 2006226978
によって求める。
式(3.14)の中にはすでにUやαが含まれているので、u、v中にもU、αが含まれている。したがって、式(3.15)、式(3.16)はU、αを未知変数とする非線形連立方程式になっていることになる。
(4)「腐食部」の位置と大きさの推定方法
円板外周に沿ってFig.3.4のような一巡経路A→B→C→D→A
を考える。B→C、D→Aは電極付近を回る経路である。
複素積分の性質により、一般に
Figure 2006226978
である。
いま考えている系では、経路内の特異点は「腐食」の位置のみであり、腐食は複素ポテンシャル関数では1位の極で表されるので、いまの系では
Figure 2006226978
となる。結局
Figure 2006226978
が成り立つ。
そこで、式(3.19)の左辺の積分を、実際の測定値に基づいて実行することを考える。
まず、被積分関数F(Z)を実部と虚部に分けて表示し、
Figure 2006226978
とする。物理的には、実部Φは電圧分布、虚部Ψは流れ関数である。
A→B、C→Dはそれぞれ流線であるので、流れ関数Ψは一定値をとる。そこで、
Figure 2006226978
とする。
式(3.12)において、右辺第3,4,5項を合わせた部分については、円板周囲全体が1つの流線になる(流れ関数の値が一定である)。また、第1項+第2項については、式(3.4)の考え方にしたがって流れ関数の値を求めると、
Figure 2006226978
となる。また、電圧分布は経路上ではすべて既知であり、特にB→C,D→Aでは、それぞれΦ=Φ、Φ=Φで一定であるとする。
(i)A→Bでの積分
経路A→Bでは
Figure 2006226978
である。電極は十分小さいとして、Aではθ=0、Bではθ=πと近似する。
Figure 2006226978
(ii)B→Cでの積分
経路の半径をδとする。B→Cの経路では
Figure 2006226978
また、Bではθ=π/2、Cではθ=−π/2であるとして、
Figure 2006226978
流れ関数Ψについては、B(θ=π/2)でのΨ=Ψ=q/4から、C(θ=−π/2)でのΨ=Ψ=3q/4まで、θの1次関数で変化するものと仮定すると、
Figure 2006226978
Figure 2006226978
式(3.27),(3.28)の積分結果はδ(電極半径に相当)に比例する。電極半径は金属円板の径に比して小さいとしているので、上記での流れ関数に関する近似による誤差の影響は比較的小さいものである。
(iii)C→Dでの積分
経路C→Dでは
Figure 2006226978
また、Dではθ=3π/2、Aではθ=π/2であるとして、
Figure 2006226978
(iv)D→Aでの積分
経路D→Aでは
Figure 2006226978
また、Dではθ=3π/2、Aではθ=π/2であるとして、
Figure 2006226978
流れ関数Ψについては、D(θ=3π/2)でのΨ=Ψ=3q/4から、A(θ=π/2)でのΨ=Ψ=q/4まで、θの1次関数で変化するものとすると、
Figure 2006226978
なお、式(3.33)、式(3.34)の積分結果については、電極半径に関して、式((3.27)、式(3.28)の場合と同様のことが言える。
以上より、上記の積分の和は、
Figure 2006226978
式(3.35)、式(3.36)と式(3.19)を等置して、
Figure 2006226978
これらの式は、腐食の極座標位置(r、β)および腐食の大きさcを未知変数とする連立方程式になっている。しかし、このままでは未知数の方が多い。そこで、Fig.3.5のように、電極位置をA−A’、B−B’という風に設置して、電極分布を測定し、式(3.37)、式(3.38)と同様の式を作る。電極位置が異なれば、それらの結果は独立であるので、これらから腐食の位置と大きさを推定できると考えられる。The method of estimating the damage position and its degree by inverse analysis using the complex potential method (hereinafter referred to as CPDM) is as follows.
(1) Analysis model In this study, the following analysis model is assumed.
● Targets disc-shaped metal plates.
● It is assumed that the thickness and electrical resistance of the disk are uniform except for the corroded part.
● There is only one corrosion spot on the disc.
● The corroded part is completely impassable. (Concerning corrosion that does not allow current to pass through, although the electrical resistance increases as the disc thickness decreases, this is replaced with a corroded part that does not pass an equivalent current.)
● Assume that the corroded part is circular. Moreover, the diameter is small compared with the diameter of a disc.
● It is assumed that the electrode for measuring electrical resistance (or current value) can be installed at any position around the disk. It is assumed that the electrode is circular and its center is just on the outer periphery of the disk. Further, the size of the electrode is also sufficiently smaller than the diameter of the disc.
(2) Potential distribution when there is no corrosion First, the potential difference distribution in the disc when there is no corrosion is obtained. As the model, consider a complex plane Z = x + iy with the center of the disk as shown in FIG. It is assumed that the radius of the disk is a and the electrode is installed at a position of Z = ± a on the diameter axis of the disk.
The complex potential function representing the electric field state of the disk is given by blowing a strength q at Z = a and sucking -q at Z = -a,
Figure 2006226978
Given in.
The real part of F (Z) gives the voltage distribution and the imaginary part gives the flow function. A “flow function” is equivalent to a streamline in terms of fluid mechanics, and a function value is a constant curve. Considering a point on a disk, polar coordinates on a complex plane are
Figure 2006226978
By substituting this into equation (3.1) and finding the real part of F (Z),
Figure 2006226978
Get. The imaginary part uses the declination in the right figure.
Figure 2006226978
It becomes. From the relationship of Equation (3.4), it can be seen that the circumference of the disk is one of the streamlines, that is, Equation (3.1) is a complex potential function for the disc.
Returning to Equation (3.3), the voltage distribution in the disc is calculated based on Equation (3.3).
Figure 2006226978
far. Q and C are boundary conditions.
Figure 2006226978
Determined by. Here, r indicates the radius of the electrode.
Q 0 corresponding to the total current flowing in the disk (value is negative)
Figure 2006226978
It becomes. Note that the complex potential function of Equation (3.1) is an equation when a balloon and a suction are placed on an infinite plane, and the value shown in Equation (3.8) corresponds to the current value in such a case. To do. Half of the current value in equation (3.8) flows through the disc from the + pole to the −pole, and the other half passes through the “infinite plane outside the disc” to the + pole and the −pole. Flowing into. Therefore, it can be said that total current value flowing into the circle plate is q 0/2.
According to the above theory, the voltage distribution in the disk and the total current value flowing through the disk when there is no corrosion thinning can be obtained.
(3) Display by “potential function” of “corroded part” It is assumed that a cylinder with a radius c is placed in a uniform flow [with a flow velocity of U] flowing in an angle α with respect to the x-axis.
The complex potential function representing the flow around a cylinder is
Figure 2006226978
Given in.
Therefore, it is assumed that there is corrosion at the position of Z = Z 1. However, the radius of corrosion is c, and its size is sufficiently smaller than the diameter of the disc. The flow given by equation (3.1) is not originally “uniform flow”, but it is assumed that the radius of corrosion is sufficiently small and can be approximated as “uniform flow” in the vicinity of corrosion. That is, when the complex potential function of Equation (3.1) is in the vicinity of Z = Z 1 ,
Figure 2006226978
It can be approximated to the uniform flow represented by
Then, the complex potential function when there is corrosion is
Figure 2006226978
It becomes.
For F (Z) in equation (3.10), the first term + second term on the right side, that is, the portion corresponding to F (Z) in equation (1) is “the disc circumference is one of the streamlines. Meets the boundary condition. However, if the third term on the right side is added, this boundary condition on the disk circumference is not satisfied.
Therefore, a correction term is further added to the equation (3.10) so as to satisfy the boundary condition on the circumference of the disk. For this reason, the flow is generated by the third term on the right side of the equation (3.10) at the inversion point related to the outer peripheral circle of Z = Z 1 [circle of radius a] so that the boundary condition is satisfied. Put a double callout. Now
Figure 2006226978
Two types of double balloons with different directions of placement are placed, and as a final result, instead of equation (3.10), the complex potential function is as follows.
Figure 2006226978
Confirmation that the complex potential function satisfies the boundary condition that “the disk circumference is one of the streamlines” will be described later.
Generally, when the x-axis direction component and the y-axis direction component of the flow velocity at an arbitrary point in the flow given by the complex potential function F (Z) are u and v, these are
Figure 2006226978
Given in.
The velocity U and the direction α in the equation (3.12) are set in the first, second, fourth, and fifth terms on the left side in the equation (3.12), that is, Z = Z 1 and the double blowing term. by terms other than obtained as the speed and direction induced in the Z = Z 1. That is,
Figure 2006226978
After you differentiated by Z, Z = Z 1 Distant, the result as the right-hand side of equation (3.13), determining the velocity components u, v using the relation of equation (3.13).
From the velocity component at one point Z = Z 1 thus determined, the flow velocity U and the flow direction α are determined.
Figure 2006226978
Ask for.
Since U and α are already included in equation (3.14), U and α are also included in u and v. Therefore, equations (3.15) and (3.16) are nonlinear simultaneous equations with U and α as unknown variables.
(4) Method for Estimating Position and Size of “Corrosion” FIG. Circuit A as shown in 3.4 A → B → C → D → A
think of. B → C and D → A are routes around the electrodes.
Due to the nature of complex integrals,
Figure 2006226978
It is.
In the current system, the only singular point in the path is the position of “corrosion”. Corrosion is represented by the 1st pole in the complex potential function.
Figure 2006226978
It becomes. After all
Figure 2006226978
Holds.
Therefore, consider executing the integration of the left side of Equation (3.19) based on the actual measurement value.
First, the integrand F 1 (Z) is displayed separately for the real part and the imaginary part,
Figure 2006226978
And Physically, the real part Φ is a voltage distribution and the imaginary part Ψ is a flow function.
Since A → B and C → D are streamlines, the flow function Ψ has a constant value. Therefore,
Figure 2006226978
And
In the equation (3.12), for the part of the third, fourth, and fifth terms on the right side, the entire circumference of the disk becomes one streamline (the value of the flow function is constant). For the first term + second term, when the value of the flow function is obtained according to the concept of equation (3.4),
Figure 2006226978
It becomes. In addition, the voltage distribution is all known on the path, and in particular, in the case of B → C and D → A, it is assumed that Φ = Φ 1 and Φ = Φ 2 are constant.
(I) Integration from A to B In route A to B
Figure 2006226978
It is. Assuming that the electrodes are sufficiently small, A approximates θ = 0 and B approximates θ = π.
Figure 2006226978
(Ii) The radius of the integration path from B to C is δ. On the B → C route
Figure 2006226978
Further, assuming that θ = π / 2 in B and θ = −π / 2 in C,
Figure 2006226978
For the stream function Ψ, from Ψ = Ψ 1 = q / 4 at B (θ = π / 2) to Ψ = Ψ 2 = 3q / 4 at C (θ = −π / 2), 1 of θ Assuming that it changes with the following function:
Figure 2006226978
Figure 2006226978
The integration results of equations (3.27) and (3.28) are proportional to δ (corresponding to the electrode radius). Since the electrode radius is assumed to be smaller than the diameter of the metal disk, the influence of the error due to the approximation on the flow function described above is relatively small.
(Iii) In the integration path C → D from C → D
Figure 2006226978
Also, assuming that D = θ = 3π / 2 and A = θ = π / 2,
Figure 2006226978
(Iv) In the integration path D → A from D → A
Figure 2006226978
Also, assuming that D = θ = 3π / 2 and A = θ = π / 2,
Figure 2006226978
For the stream function Ψ, from Ψ = Ψ 2 = 3q / 4 at D (θ = 3π / 2) to Ψ = Ψ 1 = q / 4 at A (θ = π / 2), the first order of θ If the function changes,
Figure 2006226978
Note that the integration results of the equations (3.33) and (3.34) can be said to be the same as those of the equations ((3.27) and (3.28)) with respect to the electrode radius.
From the above, the sum of the above integrals is
Figure 2006226978
Equation (3.35), Equation (3.36), and Equation (3.19) are placed equally,
Figure 2006226978
These equations are simultaneous equations in which the polar coordinate position (r 1 , β) of corrosion and the magnitude c of corrosion are unknown variables. However, there are more unknowns as they are. Therefore, FIG. As shown in 3.5, the electrode position is set in the wind of AA ′ and BB ′, the electrode distribution is measured, and the same expressions as Expressions (3.37) and (3.38) are obtained. create. Since the results are independent if the electrode positions are different, it is considered that the position and magnitude of corrosion can be estimated from these.

上記逆解析方法の流れ(フローチャート)を以下に示す。

Figure 2006226978
Figure 2006226978
The flow (flow chart) of the inverse analysis method is shown below.
Figure 2006226978
Figure 2006226978

逆解析の基礎となる変数の無次元化の方法を以下に示す。電圧を与える複素ポテンシャル関数は式(3.12)中のUはqに比例する。また、ここでは、電流値を常に一定にするという状況を想定している。したがって、ここでは

Figure 2006226978
とする。
次に、解析結果の汎用性から言って、諸量を無次元化しておく事が望ましい。そこで、半径や腐食の大きさなど、「長さ」に関する諸量は円板半径aで除して無次元化する。すなわち、
Figure 2006226978
とする。
また、流速については、式(3.12)の複素ポテンシャル関数を用い、上記で仮定したqを用いて式(3.13)で流速を計算すると、流速は「1/(長さ)」の次元をもつことがわかるので、流速については、
Figure 2006226978
式(4.3)ではu、v、Uはqに比例することを考慮して無次元化している。
式(4.1)〜式(4.3)を考慮して、基礎複素ポテンシャル関数を表すと、
Figure 2006226978
となる。The method of non-dimensionalization of variables that is the basis of inverse analysis is shown below. In the complex potential function that gives a voltage, U in equation (3.12) is proportional to q. Here, it is assumed that the current value is always constant. So here
Figure 2006226978
And
Next, considering the versatility of the analysis results, it is desirable to make the quantities dimensionless. Therefore, various quantities related to the “length” such as the radius and the size of corrosion are divided by the disc radius a to make them dimensionless. That is,
Figure 2006226978
And
As for the flow velocity, when the complex potential function of Equation (3.12) is used and the flow velocity is calculated by Equation (3.13) using q assumed above, the flow velocity is “1 / (length)”. As you can see that it has dimensions,
Figure 2006226978
In equation (4.3), u, v, and U are made dimensionless considering that they are proportional to q.
Considering the equations (4.1) to (4.3), the basic complex potential function is expressed as follows:
Figure 2006226978
It becomes.

逆解析の基礎となる順解析プログラムの方法を以下に示す。
(1)腐食のない円板の電圧測定プログラム作成について
まず、式(4.4)をもとに、円板上の任意の位置での電圧を求めるプログラムを作る手順を示す。
式(4.4)のF(S)に対して、任意の位置

Figure 2006226978
での、実部[流れのポテンシャル部]を求める。つまり、式(4.4)に式(4.5)を代入して、式(4.5)を実部と虚部に分解する。すると
Figure 2006226978
となる。
Figure 2006226978
αの決定には繰り返し計算が必要である。
Figure 2006226978
(i)腐食の位置と大きさ(R、β、C)を与える。
(ii)計算の出発値として、C=0.0[腐食が無い場合]を想定する。そうすると、付録
Figure 2006226978
Figure 2006226978
の値として(iii)に戻る。
以上によって、腐食の位置と大きさが与えられた場合の、円板上の任意の位置での電圧値を計算できる。
(2)腐食を有する場合のプログラム作成について
上記(1)で作ったプログラムを用いれば、腐食の位置と大きさが与えられたときの、金属円板外周上での電圧分布を計算することができる。
留数定理を正しく用い、計算に間違いがなければ式(3.37),式(3.38)が成り立つはずである。
Figure 2006226978
等の部分」と「実際に実験で測定される円板周囲上での電圧分布から数値積分によって計算する部分」に分ける。電極電圧に関する項は、ここでは前者に含ませる。そうすると(3.37)は
Figure 2006226978
同様に、式(3.38)は
Figure 2006226978
となる。ここに、
Figure 2006226978
(δ:電極半径)である。
また、電極電圧は
Figure 2006226978
で与えている。
なお、式(4.8),式(4.10)の一巡積分は厳密にはFig3.4の「A→B」と「C→D」の2つの経路上での積分の和である。
Figure 2006226978
属円板周囲上での電圧分布から数値積分によって計算する。
実部、虚部のそれぞれが「左辺」=「右辺」になっていれば、解析手順やプログラムが「明らかに間違っていたということはない」ことが示されたことになる。
もし、「左辺」=「右辺」になっていなければ、
・ 解析に誤りがある。
・ プログラムに誤りがある
・ 両方とも正しいが、計算誤差などが入りやすくて十分な精度が得られていないのいずれかであると思われるので再度検討する。
(3)逆解析アルゴリズムの準備
上記(2)で示した積分値が腐食に対してどの程度の感度をもっているかを検討しておくことが必要である。腐食の位置や大きさが変化しても、積分値の変化が小さければ、それは逆解析した時、腐食の推定の誤差が大きいことを意味する。
そこで、腐食の位置や大きさを変化させて、上記積分値の変化を見る。式(4.7),式(4.8)の値、および式(4.9),式(4.10)の値は、それぞれ等しくなることは、4.2.2で確認されているので、積分値の評価には、左辺と右辺のどちらを用いてもよい。しかし、理論的に正しい値であるはずの左辺を用いる方がよいと考え左辺を用いて計算することにする。
そこでデータの採取方法としてβの値を0°から180°、Rの値を0〜0.4まで変化させて、JR1、JS1を計算する。
そして、それぞれの関係を図で表し、このとき、図の変化が大きければ、その項目は逆解析に用いる情報量として有用であり、変化が小さければ、逆解析の際の情報量としては使いにくいということになる。
このようにして、逆解析に有用な情報量を抽出する。The method of the forward analysis program that is the basis of the reverse analysis is shown below.
(1) Creating a voltage measurement program for a disk without corrosion First, a procedure for creating a program for obtaining a voltage at an arbitrary position on a disk based on the equation (4.4) will be described.
Arbitrary position with respect to F 1 (S) in formula (4.4)
Figure 2006226978
The real part [the potential part of the flow] is obtained. That is, the formula (4.5) is substituted into the formula (4.4), and the formula (4.5) is decomposed into a real part and an imaginary part. Then
Figure 2006226978
It becomes.
Figure 2006226978
The determination of α requires repeated calculation.
Figure 2006226978
(I) Give the position and magnitude of corrosion (R 1 , β, C).
(Ii) As a starting value for the calculation, C = 0.0 [when there is no corrosion] is assumed. Then appendix
Figure 2006226978
Figure 2006226978
Return to (iii) as the value of.
As described above, the voltage value at an arbitrary position on the disk when the position and magnitude of corrosion are given can be calculated.
(2) Program creation in the case of having corrosion If the program created in (1) above is used, the voltage distribution on the outer circumference of the metal disk when the position and magnitude of corrosion are given can be calculated. it can.
If the residue theorem is used correctly and there is no mistake in the calculation, the equations (3.37) and (3.38) should hold.
Figure 2006226978
Etc. "and" the part calculated by numerical integration from the voltage distribution on the disk circumference actually measured in the experiment ". The term relating to the electrode voltage is included here in the former. Then (3.37) is
Figure 2006226978
Similarly, equation (3.38) is
Figure 2006226978
It becomes. here,
Figure 2006226978
(Δ: electrode radius).
The electrode voltage is
Figure 2006226978
Is given in.
Strictly speaking, the one-round integration of Expressions (4.8) and (4.10) is the sum of integrations on the two paths “A → B” and “C → D” of FIG.
Figure 2006226978
It is calculated by numerical integration from the voltage distribution around the genus disk.
If each of the real part and the imaginary part is “left side” = “right side”, it means that the analysis procedure and the program are “obviously not wrong”.
If “Left side” = “Right side” is not set,
・ There is an error in the analysis.
-There is an error in the program.-Both are correct, but it seems that either the calculation error etc. is easy to enter and sufficient accuracy is not obtained.
(3) Preparation of inverse analysis algorithm It is necessary to examine how sensitive the integrated value shown in (2) above is to corrosion. Even if the position and magnitude of corrosion change, if the change in integral value is small, it means that the error in estimation of corrosion is large when inverse analysis is performed.
Therefore, the change in the integrated value is observed by changing the position and size of corrosion. It is confirmed in 4.2.2 that the values of equations (4.7) and (4.8), and equations (4.9) and (4.10) are equal. Therefore, either the left side or the right side may be used for evaluating the integral value. However, we think that it is better to use the left side, which should be the theoretically correct value, and we will calculate using the left side.
Therefore, as a data collection method, the value of β is changed from 0 ° to 180 °, the value of R 1 is changed from 0 to 0.4, and J R1 and J S1 are calculated.
Then, each relationship is shown in a diagram. At this time, if the change in the diagram is large, the item is useful as the amount of information used for the reverse analysis, and if the change is small, it is difficult to use as the information amount for the reverse analysis. It turns out that.
In this way, the amount of information useful for reverse analysis is extracted.

以下に逆解析プログラムの作成方法について述べる。
逆解析を行う際に、指標値として使えると考えられる式は、式(3.37)と式(3.38)である。しかし、結果で述べるが、式(3.38)では、高精度で検出しなければならない電圧検出が、いくつかの指数の近似による計算誤差の中に埋もれてしまい、理論解析値と底板外周電圧分布の積分値が一致しないと考えられる。よって腐食の検出について、式(3.38)は捨てて、式(3.37)のみで欠陥推定を行うものとする。
(1)逆解析に用いる情報について
・ まず、未知量は腐食の位置(rとβ)と腐食の大きさ(c)の3つである。
・ 式(3.37)の右辺は、電圧分布(実際の場だと、電圧測定結果)を積分することによって値が決まる。
・ そこで、電圧測定結果から得られた、式(3.37)右辺の量をfとする。 すなわち、

Figure 2006226978
(これは、いわば、測定結果として、既知の量である。)
・ 欠陥の位置は不明であるが、欠陥の位置と大きさ(r、β、c)を仮定すれば、式(3.37)の左辺は理論解析によって計算できる。この理論計算結果をgとする。
すなわち、
Figure 2006226978
・ fとgが一致すれば、それが欠陥位置(の1つの候補)となる。
・ 勝手に(r、β、c)を与えたのでは、fとgは一致しない。そこで、fとgとの差を誤差Eとする。Eは(r、β、c)の与え方に依存する。
すなわち、
Figure 2006226978
・ (r、β、c)の組合せを変えて、Eの変化をみる。
・ Eがある大きさより小さければ、それが欠陥の候補となる。
しかし、未知量が3つであるのに、情報量が1つでは、未知量を確定できないことは明らか。すなわち情報量を増やす必要がある。その1つは、電極位置を円板円周上でずらしていき、そのときのfの変化を情報量とすることである。電極位置をZ=±1からθ回転させたときの電圧分布は、電極がZ=±1にあって、欠陥位置がβ→β−θとしたときと同じであるから、上のgは容易に計算できる。このように電極位置θを変化させ、それぞれのθ位置で、上述のEの分布を計算する。そうして、Eが最小(あるいはある閾値以下)となる(r、β、c)の集合を求める。電極位置θをどうもっていっても、かならずEを最小とするような(r、β、c)が見つかれば、それが推定欠陥となる。
(2) 滑降シンプレックス法について
また収束計算プログラムには滑降シンプレックス法を用いている。以下にその説明を述べる。
・ 滑降シンプレックス法は、多次元関数の最小化アルゴリズムとしては決して高速とは言えないが、アルゴリズムとしては単純なため、手っ取り早く計算してみる場合に向いているとされる。
・ 「シンプレックス(simplex)」とは、N次元においてはN+1個の点(頂点;vertex)を結んだ線(稜線)及びそれらによって形成される面によって構成される多面体のことである。2次元なら3角形、3次元なら4面体のこと。
・ N次元においてN+1個の点を準備したとき、それらが構成するシンプレックスが縮退していなければ(体積が0でなければ)、どれか1点を原点として、そこからの位置ベクトルを設定できる。それらの各点での関数値を求め、以下のような作業を繰り返し、シンプレックスの体積を小さくしていく。この体積が十分小さくなったら解が求まったことになる。
○ 関数値最大点を残りの点の重心の反対側に対称移動:(「反射」と言う)
○ 上記で対象移動した点をさらにその方向に伸ばす:(「膨張」と言う)
○ 1次元の収縮
○ (その時点の)最小点への全次元の収縮
(3) 逆解析プログラムの検討について
逆解析プログラムを作成した後、問題となるのはその性能である。その性能を確認する為に、腐食の位置を仮定し、逆解析の結果がその位置に収束するかどうかを確認する。今回作成した逆解析プログラムは、解析を1対の電極により周方向に互いに90°ずれた2回の測定結果を情報量として用いて行っている。その為、電極からの距離や腐食の大きさによって、その精度が大きく異なると考えられるので、どの程度の精度を持っているのかを確認し、検討することが重要であると考えられる。The following describes how to create a reverse analysis program.
Expressions that can be used as index values when performing inverse analysis are Expression (3.37) and Expression (3.38). However, as will be described in the results, in the equation (3.38), voltage detection that must be detected with high accuracy is buried in calculation errors due to approximation of several exponents, and theoretical analysis values and bottom plate outer peripheral voltage It is considered that the integrated values of the distribution do not match. Therefore, regarding the detection of corrosion, the equation (3.38) is discarded and the defect estimation is performed using only the equation (3.37).
(1) Information used for reverse analysis-First, there are three unknown quantities: the position of corrosion (r 1 and β) and the magnitude of corrosion (c).
-The value on the right side of Equation (3.37) is determined by integrating the voltage distribution (in the actual field, the voltage measurement result).
-Therefore, let f be the amount of the right side of Equation (3.37) obtained from the voltage measurement result. That is,
Figure 2006226978
(This is a known amount as a measurement result.)
The position of the defect is unknown, but if the defect position and size (r 1 , β, c) are assumed, the left side of the equation (3.37) can be calculated by theoretical analysis. Let this theoretical calculation result be g.
That is,
Figure 2006226978
If f and g match, it becomes a defect position (one candidate).
-If (r 1 , β, c) is given without permission, f and g do not match. Therefore, an error E is defined as a difference between f and g. E depends on how (r 1 , β, c) is given.
That is,
Figure 2006226978
Change the combination of (r 1 , β, c) and see the change in E.
• If E is less than a certain size, it becomes a candidate for a defect.
However, although there are three unknown quantities, it is clear that the unknown quantity cannot be determined with one information quantity. That is, the amount of information needs to be increased. One of them is to shift the electrode position on the circumference of the disk, and to change the change of f at that time as the information amount. Voltage distribution when the electrode position was theta 1 rotated from Z = ± 1, the electrode is in the Z = ± 1, since it is as if a defect position is a β → β-θ 1, the upper g Can be calculated easily. In this way, the electrode position θ 1 is changed, and the distribution of E described above is calculated at each θ 1 position. Thus, a set of (r 1 , β, c) in which E is minimum (or below a certain threshold) is obtained. Regardless of the position of the electrode θ 1 , if (r 1 , β, c) that minimizes E is found, it becomes an estimated defect.
(2) Downhill simplex method The downhill simplex method is used for the convergence calculation program. The explanation is described below.
・ The downhill simplex method is not fast as a multidimensional function minimization algorithm, but it is simple as an algorithm, so it is suitable for quick calculation.
“Simplex” refers to a polyhedron composed of lines (edge lines) connecting N + 1 points (vertices) in N dimensions and surfaces formed by them. If it is 2D, it is a triangle. If it is 3D, it is a tetrahedron.
When N + 1 points are prepared in the N dimension, if the simplex that they constitute is not degenerate (the volume is not 0), the position vector can be set from any one point as the origin. The function values at these points are obtained, and the following operations are repeated to reduce the volume of the simplex. If this volume is sufficiently small, the solution has been obtained.
○ The maximum function value point is moved symmetrically to the opposite side of the center of gravity of the remaining points: (referred to as “reflection”)
○ Extend the point you moved above in that direction further:
○ One-dimensional shrinkage ○ All-dimensional shrinkage to the minimum point (at that time) (3) About the analysis of the inverse analysis program After creating the inverse analysis program, the problem is its performance. In order to confirm the performance, the position of corrosion is assumed and it is confirmed whether the result of the inverse analysis converges to that position. The reverse analysis program created this time uses two measurement results that are 90 ° apart from each other in the circumferential direction by a pair of electrodes as an information amount. Therefore, the accuracy is considered to vary greatly depending on the distance from the electrode and the magnitude of corrosion. Therefore, it is considered important to confirm and examine the accuracy.

タンク底板上の電圧分布は以下の方法により求められる。すなわち、電極端子におけるポテンシャルの吹き出し強さをq=1とすれば、円板上の電圧分布を与える複素ポテンシャル関数は、腐食の位置をS=Riβ,腐食の大きさ(タンク底板半径aで無次元化)をCとして

Figure 2006226978
で与えられる。
任意の位置S=R・eiθでの電圧は、F(S)の実部で与えられる。
各項ごとに、順に計算する。
[第1項+第2項]
Figure 2006226978
[第3項]
Figure 2006226978
Figure 2006226978
[第4項]
Figure 2006226978
[第5項]
Figure 2006226978
Figure 2006226978
以上より、電圧分布は
Figure 2006226978
で与えられる。
式(a−37)で算出される「電圧」は相対的なもので、値がマイナスになる場合もある。特に+極であるS=1の近傍では値が負になり、−極であるS=−1の近傍では値が正になる。式(a−30)を流れの複素ポテンシャルと考えたときは、流れが実部の値が小さい箇所から大きい箇所に向かって流れるような形で定式化されている。(a−37)式が式(3.37)のΦに対応する量となる。The voltage distribution on the tank bottom plate is obtained by the following method. That is, assuming that the potential blowing strength at the electrode terminal is q = 1, the complex potential function that gives the voltage distribution on the disk has the position of corrosion as S 1 = R 1 e , and the magnitude of corrosion (tank bottom plate). Dimensionless with radius a) as C
Figure 2006226978
Given in.
The voltage at an arbitrary position S = R · e is given by the real part of F 1 (S).
Calculate for each term in turn.
[1st term + 2nd term]
Figure 2006226978
[Section 3]
Figure 2006226978
Figure 2006226978
[Section 4]
Figure 2006226978
[Section 5]
Figure 2006226978
Figure 2006226978
From the above, the voltage distribution is
Figure 2006226978
Given in.
The “voltage” calculated by the equation (a-37) is a relative value, and the value may be negative. In particular, the value is negative in the vicinity of S = 1, which is the positive pole, and the value is positive in the vicinity of S = -1, which is the negative pole. When formula (a-30) is considered as the complex potential of the flow, it is formulated in such a way that the flow flows from a portion having a small real part value toward a large portion. The equation (a-37) is an amount corresponding to Φ in the equation (3.37).

実施形態5の式(a−37)を用いて電圧分布を計算するためには、腐食の位置での流れの速度

Figure 2006226978
位置に置いた2重吹き出し[右辺第3項]を除いたその他の成分、すなわち
Figure 2006226978
が、腐食の位置
Figure 2006226978
に誘起する速度として与えられる。
Figure 2006226978
で与えられる。
式(a−38)を式(a−40)の右辺に代入すると
Figure 2006226978
を得る。これに
Figure 2006226978
を代入する。やはり、項別に計算する。付録4と異なって、今回は実部と虚部の両方が必要である。
[第1項]
Figure 2006226978
よって、
Figure 2006226978
[第2項]
Figure 2006226978
よって、
Figure 2006226978
[第3項]
Figure 2006226978
よって、
Figure 2006226978
[第4項]
Figure 2006226978
よって、
Figure 2006226978
以上をまとめると、腐食の位置での流速は
Figure 2006226978
となる。
Figure 2006226978
ることになる。In order to calculate the voltage distribution using the formula (a-37) of the fifth embodiment, the flow velocity at the position of corrosion is calculated.
Figure 2006226978
Other components excluding the double balloon placed at the position [third term on the right side],
Figure 2006226978
But the location of corrosion
Figure 2006226978
Is given as the rate of induction.
Figure 2006226978
Given in.
Substituting equation (a-38) into the right side of equation (a-40)
Figure 2006226978
Get. to this
Figure 2006226978
Is assigned. After all, it calculates by term. Unlike Appendix 4, this time we need both real and imaginary parts.
[Section 1]
Figure 2006226978
Therefore,
Figure 2006226978
[Section 2]
Figure 2006226978
Therefore,
Figure 2006226978
[Section 3]
Figure 2006226978
Therefore,
Figure 2006226978
[Section 4]
Figure 2006226978
Therefore,
Figure 2006226978
In summary, the flow velocity at the location of corrosion is
Figure 2006226978
It becomes.
Figure 2006226978
Will be.

繰り返し計算による流速Uとその方向αを求めるプログラム以下に示す。

Figure 2006226978
Figure 2006226978
Figure 2006226978
A program for obtaining the flow velocity U and its direction α by repeated calculation is shown below.
Figure 2006226978
Figure 2006226978
Figure 2006226978

逆解析プログラムとその流れを以下に示す。

Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
The reverse analysis program and its flow are shown below.
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978
Figure 2006226978

図2で、タンク底板半径a=22.5(m),腐食の大きさ(半径)がc=1.5(m)およびc=3(m)の場合について、腐食位置の極座標(r、β)を種々に変化させた場合について逆解析を行った。その結果腐食の大きさが2つの場合ともに仮定値に収束した場合を◎、c=3(m)の場合のみ収束した場合を○、両方とも収束しなかった場合を×印で示す。この結果から、β=0°および45°の場合以外はほぼ収束し、本逆解析方法が有効であることがわかった。β=0°および45°の場合については電極端子の位置をずらして再度測定し直せばβの値が変わるので解は収束することになり問題が生じなくなると考えられる。

Figure 2006226978
In FIG. 2, when the tank bottom plate radius a = 22.5 (m) and the magnitude (radius) of corrosion is c = 1.5 (m) and c = 3 (m), polar coordinates (r 1 , Β) was subjected to reverse analysis for various changes. As a result, in the case of two corrosion magnitudes, the case of convergence to the assumed value is indicated by ◎, the case of convergence only when c = 3 (m) is indicated by ◯, and the case where both have not converged is indicated by x. From this result, it was found that the convergence was almost complete except when β = 0 ° and 45 °, and this inverse analysis method was effective. In the case of β = 0 ° and 45 °, if the position of the electrode terminal is shifted and measurement is performed again, the value of β changes, so the solution converges and no problem arises.
Figure 2006226978

発明の効果The invention's effect

以上で説明したように、本発明で提案した方法を用いることにより、機械や装置の板厚を測定するための測定箇所の数を従来の技術に比して少なくすることができ、さらに機械や装置の使用に支障のない位置に測定端子を設置することにより使用中の板厚測定を可能とすることができ、その結果、従来技術の場合に比して時間と労力、費用を減ずることができる。  As described above, by using the method proposed in the present invention, the number of measurement points for measuring the plate thickness of a machine or device can be reduced as compared with the conventional technique. By installing the measurement terminal at a position where there is no hindrance to the use of the device, it is possible to measure the thickness of the plate in use, and as a result, time, labor and cost can be reduced compared to the case of the conventional technology. it can.

この発明の一形態を示す円筒形タンクの構造図である。  1 is a structural diagram of a cylindrical tank showing an embodiment of the present invention. この発明の一形態を示す円筒形タンクの底板およびアニュラ板の平面図に、直径線上に電極端子および測定端子を設置した説明図である。  It is explanatory drawing which installed the electrode terminal and the measurement terminal on the diameter line in the top view of the bottom plate and annular plate of a cylindrical tank which show one form of this invention. この発明の一形態を示す円筒形タンクの底板およびアニュラ板の平面図に、弦上に電極端子および測定端子を設置した説明図である。  It is explanatory drawing which installed the electrode terminal and the measurement terminal on the string in the top view of the bottom plate and annular plate of the cylindrical tank which show one form of this invention. この発明の一形態を示す円筒形タンクの底板およびアニュラ板の平面図に、直径線上に電極端子を設置し、弦上に測定端子を設置した説明図である。  It is explanatory drawing which installed the electrode terminal on the diameter line and installed the measurement terminal on the string in the top view of the bottom plate and annular plate of the cylindrical tank which shows one form of this invention. この発明の一実施例を示す腐食の有無による電位差変化Δνの周方向角度θの分布の解析例である。  It is an example of analysis of distribution of circumferential direction angle θ of potential difference change Δν depending on the presence or absence of corrosion showing an embodiment of the present invention. タンク底板の解析モデルを示す図である。  It is a figure which shows the analysis model of a tank bottom plate. タンク底板上の位置を示す極座標の定義の図である。  It is a figure of the definition of the polar coordinate which shows the position on a tank bottom plate. タンク底板上に仮定した腐食も出る近傍のポテンシャル流れを示す図である。  It is a figure which shows the potential flow of the vicinity which the corrosion also assumed on a tank bottom plate also arises. タンク底板の外周に沿った積分経路を示す図である。  It is a figure which shows the integration path along the outer periphery of a tank bottom plate.

符号の説明Explanation of symbols

1 底板
2 アニュラ板
3 盛り土
4 側板
5 屋根板
6 内容液
7 直径線
8 電極端子
9 電極端子
10 定電流電源装置
11 導体線
12 測定用端子
13 測定用端子
14 電圧計
15 導体線
16 弦
DESCRIPTION OF SYMBOLS 1 Bottom plate 2 Annular plate 3 Filling 4 Side plate 5 Roof plate 6 Content liquid 7 Diameter wire 8 Electrode terminal 9 Electrode terminal 10 Constant current power supply device 11 Conductor wire 12 Measuring terminal 13 Measuring terminal 14 Voltmeter 15 Conductor wire 16 String

Claims (14)

貯槽の底板や側板などの構成部材の任意の2点に電極端子を取り付け、定電流電源装置の正負の電極と2つの電極端子を導体線でそれぞれ接続することにより、2つの電極端子の間に一定電流を流す。そして同じ電極端子またはその付近または任意の位置に2つの測定用端子を取付け、これらの測定端子と電圧計を導体線で接続することにより測定端子間の電位差を測定する。2測定端子の間の電位差を測定することにより、板厚の減少がない場合の同じ測定端子位置の間の電位差との差異を求めることにより部分的または全体的な板厚の減少の有無とその変化割合を検出し、これから構成部材に発生する腐食や割れなどの損傷を検査する方法。この方法で定電流電源装置を定電圧電源装置に、電圧計を電流計に置き換え、定電圧条件下で電流を測定する方法を用いてもよい。  Electrode terminals are attached to any two points of the constituent members such as the bottom plate and side plate of the storage tank, and the positive and negative electrodes of the constant current power supply device and the two electrode terminals are connected by conductor wires, respectively, so that there is a gap between the two electrode terminals. Apply a constant current. Then, two measurement terminals are attached to the same electrode terminal, the vicinity thereof, or an arbitrary position, and the potential difference between the measurement terminals is measured by connecting these measurement terminals and a voltmeter with a conductor wire. By measuring the potential difference between the two measurement terminals, and determining the difference from the potential difference between the same measurement terminal positions when there is no reduction in the thickness, the presence or absence of partial or overall reduction in the thickness A method of detecting the rate of change and inspecting damage such as corrosion and cracking that will occur in the components. In this method, a constant current power supply device may be replaced with a constant voltage power supply device, a voltmeter may be replaced with an ammeter, and a current may be measured under a constant voltage condition. 2電極端子の取り付け位置を上記損傷の発生位置にできるだけ近くなおかつ損傷を挟むような位置となるように選び、なおかつ電位差を測定する2つの測定端子の位置を2つの電極端子に近い位置に選ぶことにより腐食や割れなどの損傷の検出感度を向上させる請求項1記載の検査方法  Choose the mounting position of the two-electrode terminal as close as possible to the above-mentioned damage occurrence position and the position where the damage is sandwiched, and select the position of the two measurement terminals for measuring the potential difference close to the two electrode terminals The inspection method according to claim 1, wherein the detection sensitivity of damage such as corrosion and cracking is improved by 損傷を有する部材の内部に予め電極端子および測定端子またはそのいずれかをそれぞれ1組または複数の組設置しておくことにより電位差の検出精度を向上させる請求項1記載の検査方法  2. The inspection method according to claim 1, wherein one or more electrode terminals and / or measurement terminals are installed in advance in the damaged member to improve the potential difference detection accuracy. 貯槽の底板や側板などの構成部材と形状寸法が相似なモデルを用いて種々の損傷発生位置と損傷の程度について、予め異なる複数の位置に電極端子および測定端子の位置を変えて電位差を実験的に測定するかまたは数値解析または理論解析によってそれぞれの電位差の分布を求めておき、これを実際の構成部材について測定した電位差分布と比較して両者がもっともよく一致する場合を見つけることによって損傷発生位置と損傷の程度を推定する順解析による請求項1ないし請求項3記載の検査方法  Using a model similar in shape and dimensions to components such as the bottom plate and side plate of the storage tank, the potential difference was experimentally determined by changing the positions of the electrode terminals and measurement terminals to different positions in advance for various damage occurrence positions and damage levels. The position of damage occurrence is determined by measuring the potential difference distribution by numerical measurement or theoretical analysis and comparing it with the potential difference distribution measured for the actual component to find the best match. 4. An inspection method according to claim 1 or 2, wherein a forward analysis for estimating the degree of damage is performed. 請求項4記載の検査方法において、貯槽の底板や側板などの構成部材板を同じ大きさを有するn個の小さな部分領域に分割し、各部分領域jごとに測定される電位差に及ぼす減肉部分の位置および減肉量の影響度f(j)を予め解析または実験により求めておき、
Figure 2006226978
により測定端子間の電位差が求まるので、n箇所以上の位置で測定した電位差の値を用いて式(1)の連立方程式を解けば、各部分領域jにおける減肉の影響度f(j)が求まり、減肉量が推定できる。
5. The method according to claim 4, wherein a component plate such as a bottom plate or a side plate of the storage tank is divided into n small partial areas having the same size, and a thinned portion affecting the potential difference measured for each partial area j. The position f and the influence degree f (j) of the thinning amount are obtained in advance by analysis or experiment,
Figure 2006226978
Since the potential difference between the measurement terminals can be obtained by the above equation, if the simultaneous equations of Equation (1) are solved using the value of the potential difference measured at n or more positions, the influence f (j) of the thinning in each partial region j can be obtained. The amount of thinning can be estimated.
貯槽の底板や側板などの構成部材について異なる複数の位置に電極端子および測定端子の位置を変えて電位差を測定することによって電位差の分布を求め、この電位差の分布を条件として逆解析することによって損傷発生位置と損傷の程度を推定する請求項1ないし請求項3記載の検査方法  Damage to the components such as the bottom plate and side plate of the storage tank by measuring the potential difference by changing the position of the electrode terminal and the measurement terminal at different positions, and performing reverse analysis on this potential difference distribution as a condition. 4. The inspection method according to claim 1, wherein the occurrence position and the degree of damage are estimated. 請求項6記載の逆解析において、複素ポテンシャル法から得られた式(2)を用いて損傷(腐食)の極座標位置(r、β)および大きさ(腐食の半径)cを求める。ここで左辺は理論解であり、右辺はタンク周囲のポテンシャル分布の測定値から得られる積分地であり、aはタンク底板の半径、θはタンク中心を通る基準x軸からの周方向座標、Uは速度ポテンシャルΦの流速である。
Figure 2006226978
ただし式(2)のままでは未知数の方が多いので、Fig.3.5のように、電極位置をA−A’、B−B’というように変化して設置したときの電極分布を測定することによって複数の式を導き、これらの連立方程式を解くことによって腐食の位置と大きさを推定する。
In the inverse analysis according to claim 6, the polar coordinate position (r 1 , β) and magnitude (corrosion radius) c of the damage (corrosion) are obtained using the equation (2) obtained from the complex potential method. Here, the left side is a theoretical solution, the right side is an integration point obtained from a measured value of potential distribution around the tank, a is a radius of the tank bottom plate, θ is a circumferential coordinate from the reference x-axis passing through the tank center, U Is the flow velocity of the velocity potential Φ.
Figure 2006226978
However, since there are more unknowns in the equation (2), FIG. As shown in 3.5, a plurality of equations are derived by measuring the electrode distribution when the electrode positions are changed as AA ′ and BB ′, and by solving these simultaneous equations, Estimate the location and magnitude of corrosion.
請求項7記載の逆解析において、タンク底板上の電圧分布を求めるためのアルゴリズム  8. The inverse analysis according to claim 7, wherein an algorithm for obtaining a voltage distribution on the tank bottom plate is used. 請求項7記載の逆解析において、逆解析のために必要な順解析プログラムのフローチャートおよびそのプログラム作成方法  8. The reverse analysis according to claim 7, wherein a flow chart of a forward analysis program necessary for the reverse analysis and a method for creating the program 請求項7記載の逆解析において、逆解析のためのプログラムのフローチャートおよびそのプログラム作成方法  8. The reverse analysis according to claim 7, wherein a flow chart of a program for reverse analysis and a method for creating the program 請求項7記載の逆解析において、ポテンシャル流の流速およびその方向を求めるためのプログラム  The program for obtaining the flow velocity and direction of the potential flow in the inverse analysis according to claim 7. 請求項7記載の逆解析において、逆解析をおこなうためのプログラム  8. A program for performing reverse analysis in reverse analysis according to claim 7. 請求項4記載の検査方法および請求項5記載の検査方法の2つの方法を併用して検査する方法  A method for inspecting a combination of the inspection method according to claim 4 and the inspection method according to claim 5 貯槽以外の一般の容器や各種構造物に対して請求項1ないし請求項13記載の検査方法を適用することによって、腐食や割れなどの損傷を検査する検査方法  An inspection method for inspecting damage such as corrosion and cracking by applying the inspection method according to claim 1 to general containers and various structures other than storage tanks.
JP2005073859A 2005-02-16 2005-02-16 Method of inspecting damage such as corrosion using potentiometric method Pending JP2006226978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073859A JP2006226978A (en) 2005-02-16 2005-02-16 Method of inspecting damage such as corrosion using potentiometric method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073859A JP2006226978A (en) 2005-02-16 2005-02-16 Method of inspecting damage such as corrosion using potentiometric method

Publications (1)

Publication Number Publication Date
JP2006226978A true JP2006226978A (en) 2006-08-31

Family

ID=36988464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073859A Pending JP2006226978A (en) 2005-02-16 2005-02-16 Method of inspecting damage such as corrosion using potentiometric method

Country Status (1)

Country Link
JP (1) JP2006226978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153496A1 (en) * 2011-05-09 2012-11-15 国立大学法人神戸大学 Distribution analysis device
JP2016197057A (en) * 2015-04-03 2016-11-24 新日鐵住金株式会社 Method of checking damage to tank bottom plate
CN112033890A (en) * 2020-10-05 2020-12-04 中国石油大学(华东) Corrosion detection method and equipment for pipeline
KR102613993B1 (en) * 2023-07-24 2023-12-13 한국전력기술 주식회사 Method for evaluating integrity of pipe with wall-thinning and reinforcement and integrity of pipe with wall-thinning

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153496A1 (en) * 2011-05-09 2012-11-15 国立大学法人神戸大学 Distribution analysis device
JP6035535B2 (en) * 2011-05-09 2016-11-30 国立大学法人神戸大学 Distribution analyzer
US9568567B2 (en) 2011-05-09 2017-02-14 National University Corporation Kobe University Distribution analysis device
JP2016197057A (en) * 2015-04-03 2016-11-24 新日鐵住金株式会社 Method of checking damage to tank bottom plate
CN112033890A (en) * 2020-10-05 2020-12-04 中国石油大学(华东) Corrosion detection method and equipment for pipeline
CN112033890B (en) * 2020-10-05 2023-07-25 中国石油大学(华东) Pipeline corrosion detection method and equipment thereof
KR102613993B1 (en) * 2023-07-24 2023-12-13 한국전력기술 주식회사 Method for evaluating integrity of pipe with wall-thinning and reinforcement and integrity of pipe with wall-thinning

Similar Documents

Publication Publication Date Title
EP2808677B1 (en) Method for non-contact metallic constructions assessment
US8542127B1 (en) Apparatus for the non-contact metallic constructions assessment
US8447532B1 (en) Metallic constructions integrity assessment and maintenance planning method
US6734670B2 (en) Determining a surface profile of an object
Le et al. Hall sensor array based validation of estimation of crack size in metals using magnetic dipole models
WO2007088913A1 (en) Damage detecting device or and damage detection method
Safizadeh et al. Gas pipeline corrosion mapping using pulsed eddy current technique
CN102095793A (en) Quantitative magnetic flux leakage testing method for defect at root part of butt weld of pipeline
JP2006226978A (en) Method of inspecting damage such as corrosion using potentiometric method
Zhao et al. A novel ACFM probe with flexible sensor array for pipe cracks inspection
Blakeley et al. ACFM: Application of ACFM for inspection through metal coatings
Yin et al. Corrosion depth inversion method based on the lift-off effect of the capacitive imaging (CI) technique
Wan et al. Investigation of drag effect using the field signature method
Shi et al. Dual sensing coils used for RFEC testing of joint casings in oil wells
WO2019044018A1 (en) Non-destructive inspection device
CN104122323A (en) Non-magnetization pipeline-interior detection method
JP6175091B2 (en) Eddy current inspection device and eddy current inspection method
KR102067531B1 (en) Residual Stress Measurement Apparatus for Tubular Type Electric Power Transmission Tower
Hayashi et al. Crack detection for welded joint with surface coating using unsaturated AC magnetic flux leakage
Pearson et al. A study of MFL signals from a spectrum of defect geometries
US20200049661A1 (en) Eddy current inspection device for nondestructive testing
Gaynor et al. Reduction in fatigue failures through crack detection by alternating current field measurement
JP2008145137A (en) Eddy current flaw detection probe, flaw detector, and flaw detection method
Yigzew et al. Non-destructive damage detection for steel pipe scaffolds using MFL-based 3D defect visualization
RU2671296C1 (en) Method of metal corrosion loss assessment in pipeline inaccessible area