JP6493679B2 - Copper powder recovery method - Google Patents

Copper powder recovery method Download PDF

Info

Publication number
JP6493679B2
JP6493679B2 JP2015165676A JP2015165676A JP6493679B2 JP 6493679 B2 JP6493679 B2 JP 6493679B2 JP 2015165676 A JP2015165676 A JP 2015165676A JP 2015165676 A JP2015165676 A JP 2015165676A JP 6493679 B2 JP6493679 B2 JP 6493679B2
Authority
JP
Japan
Prior art keywords
copper
powder
iron powder
copper powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015165676A
Other languages
Japanese (ja)
Other versions
JP2017043797A (en
Inventor
勇悟 宮田
勇悟 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2015165676A priority Critical patent/JP6493679B2/en
Publication of JP2017043797A publication Critical patent/JP2017043797A/en
Application granted granted Critical
Publication of JP6493679B2 publication Critical patent/JP6493679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、プリント基板等に使用される硫酸銅電解めっき向けの補給銅源である易溶性酸化銅の原料などに利用される銅粉に関し、銅イオンを含む液から不純物含有量が少ない高純度銅粉を回収する方法に関するものである。   The present invention relates to copper powder used as a raw material for easily soluble copper oxide, which is a replenishment copper source for copper sulfate electroplating used for printed circuit boards, etc., and high purity with low impurity content from a liquid containing copper ions The present invention relates to a method for recovering copper powder.

プリント基板等のエッチング剤に使用された塩化第二鉄エッチング廃液には、エッチング生成物である塩化第一鉄の他に、銅イオン、ニッケルイオン、クロムイオンなどの金属イオンが存在する。このため、エッチング廃液から有価な金属である銅を回収し有効利用を図ることが行われている。
また、塩化第二鉄エッチング廃液に限らず、銅イオンを含む液から銅粉を回収・再利用する検討が行われている。
In the ferric chloride etching waste liquid used as an etching agent for printed circuit boards and the like, metal ions such as copper ions, nickel ions, and chromium ions are present in addition to ferrous chloride as an etching product. For this reason, recovery of copper, which is a valuable metal, from the etching waste liquid has been attempted for effective use.
Further, not only ferric chloride etching waste liquid but also studies for recovering and reusing copper powder from a liquid containing copper ions are being conducted.

例えば、銅、ニッケル、クロムを含む塩化第二鉄廃液に鉄を添加して、廃液中
に残る塩化第二鉄を塩化第一鉄に還元する還元工程と、前記工程で得られた液に鉄を添加して、銅を析出させて分離することが記載されている(特許文献1)。
For example, a reduction process in which iron is added to a ferric chloride waste liquid containing copper, nickel, and chromium, and ferric chloride remaining in the waste liquid is reduced to ferrous chloride; Is added, and copper is deposited and separated (Patent Document 1).

また、銅イオンとクロロシラン類とを含有するシラン廃液の廃液処理方法として、前記シラン廃液を加水分解して加水分解液とする工程と、前記加水分解液のpHを、該加水分解液がゲル化しない範囲に維持した状態で、無酸素雰囲気下にて該加水分解液中に鉄粉を添加することにより、該加水分解液中に含まれる銅イオンを還元して金属銅として析出させることが記載されている(特許文献2)。   In addition, as a waste liquid treatment method for a silane waste liquid containing copper ions and chlorosilanes, a step of hydrolyzing the silane waste liquid to obtain a hydrolyzed liquid, and a pH of the hydrolyzed liquid, the hydrolyzed liquid is gelled. It is described that the copper ions contained in the hydrolyzed solution are reduced and precipitated as metallic copper by adding iron powder to the hydrolyzed solution in an oxygen-free atmosphere in a state maintained in a non-existing range. (Patent Document 2).

また、銅がイオン状態で含有されている被処理液に、銅金属よりもイオン化傾向が大きい鉄を析出用金属として添加し、イオン化傾向の差異により前記被処理液中に含有される銅金属を鉄金属の表面に析出させ、剥離手段によって鉄金属から銅金属を剥離して回収することが記載されている(特許文献3)。   In addition, to the liquid to be treated containing copper in an ionic state, iron having a higher ionization tendency than copper metal is added as a precipitation metal, and the copper metal contained in the liquid to be treated is determined depending on the difference in ionization tendency. It is described that the copper metal is deposited on the surface of the iron metal, and the copper metal is peeled off from the iron metal by a peeling means and recovered (Patent Document 3).

しかしながら、上記特許文献1〜特許文献3に記載の方法で得られる銅粉には、被処理液および添加する鉄粉に由来する不純物が含まれるため、易溶性酸化銅として使用するには、さらに、不純物を取り除くための銅粉の精製が必要である。
例えば、特許文献1において、塩化第一鉄液に鉄粉を、一次還元液中に含まれる銅の1.2〜1.7倍当量および塩酸の1倍当量を合わせた量を添加しているため、分離された銅には、銅イオンよりイオン化傾向の低いニッケルやクロムが不純物として多く含まれる。
However, since the copper powder obtained by the method described in Patent Documents 1 to 3 contains impurities derived from the liquid to be treated and the iron powder to be added, in order to use it as a readily soluble copper oxide, It is necessary to refine the copper powder to remove impurities.
For example, in Patent Document 1, iron powder is added to ferrous chloride solution, and an amount of 1.2 to 1.7 times equivalent of copper and 1 time equivalent of hydrochloric acid contained in the primary reducing solution is added. Therefore, the separated copper contains a large amount of impurities such as nickel and chromium, which have a lower ionization tendency than copper ions.

特開平9−156930号公報JP-A-9-156930 特開2010−284579号公報JP 2010-284579 A 特開2008−93633号公報JP 2008-93633 A

本発明は、上記の状況を鑑み、銅イオンを含む液から銅粉を回収するに際し、簡易な方法で、かつ、不純物の含有量の少ない銅粉を得る回収方法を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a recovery method for obtaining copper powder with a low impurity content by a simple method when recovering copper powder from a liquid containing copper ions. .

本発明者は、上記の課題を解決するために鋭意検討した結果、銅イオンを含む液に添加する鉄粉の添加量などの条件を限定することにより、マンガン、クロム、スズ、ニッケル、鉄などの不純物の含有量が少ない銅粉が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor limited conditions such as the amount of iron powder added to a liquid containing copper ions, thereby providing manganese, chromium, tin, nickel, iron, etc. The present inventors have found that a copper powder with a small content of impurities can be obtained, and have completed the present invention.

すなわち、本発明に係る第1形態は、銅イオンを含む液に、アトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、析出した銅粉を分離する工程を含む銅粉の回収方法において、
前記アトマイズ鉄粉を含む鉄粉の添加量が、前記銅イオンを含む液に存在する銅イオンおよび塩酸に対する理論反応量の0.4〜0.6倍であることを特徴とする銅粉の回収方法である。
That is, 1st form which concerns on this invention is a copper powder containing the process of adding the iron powder containing atomized iron powder to the liquid containing copper ion, and depositing copper powder, and then isolate | separating the deposited copper powder. In the collection method,
The amount of iron powder containing the atomized iron powder is 0.4 to 0.6 times the theoretical reaction amount for copper ions and hydrochloric acid present in the liquid containing the copper ions. Is the method.

また、本発明に係る第2形態は、銅イオンを含む液に、アトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、析出した銅粉を分離する工程(1)と、
工程(1)で銅粉を分離した液に、さらにアトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、銅粉を分離する工程(2)と、を含む銅粉の回収方法である。
Moreover, the 2nd form which concerns on this invention adds the iron powder containing an atomized iron powder to the liquid containing a copper ion, and after depositing copper powder, the process (1) which isolate | separates the deposited copper powder,
After adding the iron powder containing atomized iron powder to the liquid from which the copper powder was separated in the step (1) to precipitate the copper powder, the copper powder containing the step (2) for separating the copper powder is recovered. Is the method.

さらに、上記第1形態および第2形態において、アトマイズ鉄粉を含む鉄粉を
添加して銅粉を析出させる時の液温を特定な範囲とする、また、使用する鉄粉の種類などを特定する発明である。
Furthermore, in the said 1st form and 2nd form, the liquid temperature when adding iron powder containing atomized iron powder and precipitating copper powder is made into a specific range, and the kind of iron powder to be used is specified. It is an invention to do.

本発明の銅粉の回収方法は、銅イオンを含む液から銅粉を回収・再利用する方法であり、簡易な方法で不純物の少ない銅粉を得ることができ、得られた銅粉は
硫酸銅電解めっき向け易溶性酸化銅の原料などに利用できる。
The method for recovering copper powder of the present invention is a method for recovering and reusing copper powder from a liquid containing copper ions. A copper powder with less impurities can be obtained by a simple method, and the obtained copper powder is sulfuric acid. It can be used as a raw material for easily soluble copper oxide for copper electrolytic plating.

以下、本発明についてさらに詳しく説明する。
本発明における銅イオンを含む液について特に限定はないが、本発明の目的から銅イオンを含む各種廃液を用いることが好ましく、具体的には、エッチングに用いられた廃液が挙げられ、銅イオンの他にニッケル、クロム等を含む塩化第二鉄廃液、およびシラン類の製造工程で排出される銅イオンとクロロシラン類を含むシラン廃液などが例示される。
Hereinafter, the present invention will be described in more detail.
Although there is no limitation in particular about the liquid containing a copper ion in this invention, It is preferable to use the various waste liquid containing a copper ion for the objective of this invention, Specifically, the waste liquid used for the etching is mentioned, Other examples include ferric chloride waste liquid containing nickel, chromium and the like, and silane waste liquid containing copper ions and chlorosilanes discharged in the production process of silanes.

本発明における銅粉の回収方法は、鉄と銅のイオン化傾向の差の利用した方法であり、さらに、銅イオンを含む液に含まれる、不純物であるマンガン、ニッケル、スズおよびクロムなどと、銅とのイオン化傾向の差を利用して、これらの不純物金属の析出を少なくする方法である。
例えば、銅イオンを含む塩化第二鉄廃液に鉄粉を添加することにより、以下の反応式(1)および反応式(2)が進行して銅粉が析出する。
CuCl2 + Fe → Cu + FeCl2 (1)
2HCl + Fe → FeCl2 + H2 (2)
上記反応において、イオン化傾向の違いによりマンガン、ニッケル、スズおよびクロムよりも金属になりやすい銅が、マンガン、ニッケル、スズおよびクロムより優先して銅粉として析出させる条件にすることが重要である。
The method for recovering copper powder in the present invention is a method utilizing the difference in ionization tendency between iron and copper, and impurities such as manganese, nickel, tin and chromium contained in the liquid containing copper ions, and copper This is a method of reducing the precipitation of these impurity metals by utilizing the difference in ionization tendency.
For example, by adding iron powder to a ferric chloride waste liquid containing copper ions, the following reaction formula (1) and reaction formula (2) proceed to deposit copper powder.
CuCl 2 + Fe → Cu + FeCl 2 (1)
2HCl + Fe → FeCl 2 + H 2 (2)
In the above reaction, it is important that copper, which is more likely to be a metal than manganese, nickel, tin and chromium due to the difference in ionization tendency, is preferentially precipitated as copper powder over manganese, nickel, tin and chromium.

本発明において、銅イオンを含む液に添加する鉄粉はアトマイズ鉄粉を含む鉄粉であり、例えば、アトマイズ鉄粉と還元鉄粉との混合鉄粉を用いることができる。
還元鉄粉とアトマイズ鉄粉の混合鉄粉を用いる場合は、混合鉄粉全体におけるアトマイズ鉄粉の割合が15質量%以上であることが好ましく、鉄粉の全量がアトマイズ鉄粉であることが特に好ましい。
アトマイズ鉄粉は、溶融した鉄に水や空気を吹き付けて粉末化した鉄粉であるため、従来技術で使用されている還元鉄粉と比較して、比表面積が小さく、そのため、還元鉄粉に比べて、上記式(1)における反応活性が低いことを本発明者は見出した。
In the present invention, the iron powder added to the liquid containing copper ions is iron powder containing atomized iron powder, and for example, mixed iron powder of atomized iron powder and reduced iron powder can be used.
When using the mixed iron powder of reduced iron powder and atomized iron powder, the ratio of atomized iron powder in the entire mixed iron powder is preferably 15% by mass or more, and the total amount of iron powder is particularly atomized iron powder. preferable.
Atomized iron powder is powdered by spraying water or air onto molten iron, so it has a smaller specific surface area compared to reduced iron powder used in the prior art. In comparison, the present inventor has found that the reaction activity in the above formula (1) is low.

すなわち、還元鉄粉の代わりにアトマイズ鉄粉を含む鉄粉を用いることで、式(1)の副反応で生じるマンガン、ニッケル、スズおよびクロムなどの析出を抑えることができる。例えば、ニッケルは、銅と同様に、下記式(3)によりニッケル金属として析出するが、アトマイズ鉄粉を含む鉄粉を用いることで、還元鉄粉を使用する場合と比較して、反応の進行を抑えることができる。
NiCl2 + Fe → Ni + FeCl2 (3)
That is, by using iron powder containing atomized iron powder instead of reduced iron powder, precipitation of manganese, nickel, tin, chromium, and the like generated by the side reaction of Formula (1) can be suppressed. For example, nickel precipitates as nickel metal according to the following formula (3), similar to copper, but by using iron powder containing atomized iron powder, the progress of the reaction compared to the case of using reduced iron powder. Can be suppressed.
NiCl 2 + Fe → Ni + FeCl 2 (3)

銅イオンを含む液に対するアトマイズ鉄粉を含む鉄粉の添加量は、銅イオンを含む液に存在する銅イオンおよび塩酸に対する理論反応量の0.4〜0.6倍であり、更に好ましくは0.45〜0.55倍である。
アトマイズ鉄粉を含む鉄粉の添加量が、銅イオンおよび塩酸に対する理論反応量の0.4倍未満であると銅の析出量が少なく回収効率が悪くなり、0.6倍を越えるとマンガン、ニッケル、スズ、クロムなどの不純物金属の析出量が増加する。
The addition amount of the iron powder containing atomized iron powder to the liquid containing copper ions is 0.4 to 0.6 times the theoretical reaction amount with respect to copper ions and hydrochloric acid present in the liquid containing copper ions, and more preferably 0. .45 to 0.55 times.
When the amount of iron powder containing atomized iron powder is less than 0.4 times the theoretical reaction amount to copper ions and hydrochloric acid, the amount of copper deposited is small and the recovery efficiency is poor. The amount of precipitation of impurity metals such as nickel, tin and chromium increases.

銅イオンを含む液に存在する銅イオンおよび塩酸に対する理論反応量とは、前記式(1)および式(2)に基づくもので、銅と鉄は同モルで反応して、塩酸2モルに対して鉄1モルで反応するので、例えば、銅がaモル、塩酸がbモル存在する液に対する鉄の理論反応量は、(a+b/2)モルになる。   The theoretical reaction amount with respect to copper ions and hydrochloric acid present in the liquid containing copper ions is based on the above formulas (1) and (2), and copper and iron react at the same mole, and with respect to 2 moles of hydrochloric acid. Therefore, for example, the theoretical reaction amount of iron with respect to a liquid containing a mole of copper and b mole of hydrochloric acid is (a + b / 2) mole.

アトマイズ鉄粉を含む鉄粉を、銅イオンを含む液に添加して銅粉を析出させる時の液の温度は、50〜80℃であることが好ましく、更に好ましくは50〜75℃である。
銅粉を析出させる液温が50℃未満であると鉄、マンガン、クロムなどの不純物金属の析出量が増加する恐れがあり、80℃を越えると多量の水および塩酸が蒸発する恐れがあり作業性に問題がある。
The temperature of the liquid when adding the iron powder containing atomized iron powder to the liquid containing copper ions to precipitate the copper powder is preferably 50 to 80 ° C, more preferably 50 to 75 ° C.
If the liquid temperature at which the copper powder is deposited is less than 50 ° C, the amount of deposited impurities such as iron, manganese, and chromium may increase, and if it exceeds 80 ° C, a large amount of water and hydrochloric acid may evaporate. There is a problem with sex.

さらに、本発明の銅粉の回収方法は、次の2つの回収工程を組み合わせた方法が望ましい。
工程(1):銅イオンを含む液に、アトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、析出した銅粉を分離する工程
工程(2):前記工程(1)で銅粉を分離した液に、さらにアトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、銅粉を分離する工程
上記の2つの工程により、銅イオンを含む液から繰り返し銅粉を析出させることにより、不純分金属の含有量が少ない銅粉の収量を増加することができる。
Further, the copper powder recovery method of the present invention is preferably a method in which the following two recovery steps are combined.
Step (1): A step of adding copper powder containing atomized iron powder to a liquid containing copper ions to precipitate copper powder, and then separating the deposited copper powder. Step (2): In the step (1) The process of separating the copper powder after adding the iron powder containing atomized iron powder to the liquid from which the copper powder has been separated and then separating the copper powder. From the above two processes, the copper powder is repeatedly formed from the liquid containing the copper ions. By precipitating, it is possible to increase the yield of copper powder having a low impurity metal content.

さらに、前記工程(1)におけるアトマイズ鉄粉を含む鉄粉の添加量が、銅イオンを含む液中の銅イオンおよび塩酸に対する理論反応量の0.4〜0.6倍であることが好ましく、前記工程(2)におけるアトマイズ鉄粉を含む鉄粉の添加量が、工程(1)で銅粉を分離する前の液に存在する銅イオンおよび塩酸に対する理論反応量の0.3〜0.4倍であることが好ましい。
工程(1)において、アトマイズ鉄粉を含む鉄粉の添加量が、0.4倍未満であると銅の析出量が少なく回収効率が悪くなり、0.6倍を越えるとニッケル、クロムなどの不純物金属の析出量が増加する恐れがある。
工程(2)において、アトマイズ鉄粉を含む鉄粉の添加量が、0.3倍未満であると銅の析出量が少なく回収効率が悪くなり、0.4倍を越えるとニッケル、クロムなどの不純物金属の析出量が増加する恐れがある。
Furthermore, it is preferable that the addition amount of the iron powder containing atomized iron powder in the step (1) is 0.4 to 0.6 times the theoretical reaction amount with respect to copper ions and hydrochloric acid in the liquid containing copper ions, The amount of iron powder containing atomized iron powder in the step (2) is 0.3 to 0.4 of the theoretical reaction amount for copper ions and hydrochloric acid present in the liquid before separating the copper powder in step (1). It is preferable that it is double.
In step (1), if the amount of iron powder containing atomized iron powder is less than 0.4 times, the amount of copper deposited is small and the recovery efficiency is poor, and if it exceeds 0.6 times, nickel, chromium, etc. There is a possibility that the amount of deposited impurity metal increases.
In step (2), if the amount of iron powder containing atomized iron powder is less than 0.3 times, the amount of copper deposited is small and the recovery efficiency is poor, and if it exceeds 0.4 times, nickel, chromium, etc. There is a possibility that the amount of deposited impurity metal increases.

本発明の銅粉の回収方法は、前記のとおり、銅が銅イオンとして溶解している溶液に、アトマイズ鉄粉を含む鉄粉を添加することで、鉄と銅のイオン化傾向の違いにより銅粉が析出される原理を利用したものである。
従来の技術と比較して、鉄粉の種類を反応活性の小さいアトマイズ鉄粉を含む鉄粉にすること、さらにアトマイズ鉄粉を含む鉄粉の添加割合を限定すること、および銅粉を析出させる液温を限定することにより、エッチング廃液等の銅イオンが溶解する液から不純物金属の含有量の少ない銅粉を回収することができる。
As described above, the method for recovering copper powder of the present invention adds copper powder containing atomized iron powder to a solution in which copper is dissolved as copper ions. This is based on the principle of precipitation.
Compared with the conventional technology, the type of iron powder is changed to iron powder containing atomized iron powder with low reaction activity, and the addition ratio of iron powder containing atomized iron powder is limited, and copper powder is deposited. By limiting the liquid temperature, it is possible to recover copper powder with a low content of impurity metals from a liquid in which copper ions such as etching waste liquid dissolve.

本発明の回収方法において、得られたスラリー状液体から、ろ過および加熱乾燥することで、不純物金属が少ない銅粉を回収することができる。ろ過および加熱乾燥については、公知の装置および条件が適用できる。
回収された銅粉に含まれる不純物金属としては、原料に相当する銅イオンを含む液に影響されるが、例えば、鉄、マンガン、ニッケル、スズ、クロムなどが挙げられ、これらの中でも、最も多い不純物金属は鉄である。
本発明の方法によれば、銅粉に含まれる鉄の含有量を5000ppm以下にすることができるので、特に精製をすることなく、易溶性酸化銅の原料として使用可能である。
In the recovery method of the present invention, copper powder with few impurity metals can be recovered from the resulting slurry liquid by filtration and heat drying. Known devices and conditions can be applied for filtration and heat drying.
The impurity metal contained in the recovered copper powder is affected by the liquid containing copper ions corresponding to the raw material, and examples thereof include iron, manganese, nickel, tin, chromium, etc. The impurity metal is iron.
According to the method of the present invention, since the content of iron contained in the copper powder can be 5000 ppm or less, it can be used as a raw material for easily soluble copper oxide without any particular purification.

以下、実施例および比較例により、本発明を具体的に説明する。
<実施例1>
プリント基板のエッチングに使用した塩化第二鉄廃液(銅イオン:3.4質量%、塩酸:1.5質量%)40g(銅イオンおよび塩酸に対する理論反応量は0.0296モル)を100mLのポリテトラフルオロエチレン(PTFE)製のビーカーに入れた。
ビーカーをウォーターバスで加温しながら、ビーカー内の液をスリーワンモーター・PTFE製攪拌羽で撹拌した。
液温が75℃になった時点において、還元鉄粉(JFEスチール社製、TK−H−C)0.690gとアトマイズ鉄粉(神戸製鋼所社製、91NN)0.138gの混合鉄粉(0.0148モル)を塩化第二鉄廃液に添加した。液温を75℃に1時間保持した後、加温と撹拌を停止した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
<Example 1>
40 g of ferric chloride waste solution (copper ions: 3.4% by mass, hydrochloric acid: 1.5% by mass) used for etching the printed circuit board (theoretical reaction amount with respect to copper ions and hydrochloric acid is 0.0296 mol) It put into the beaker made from tetrafluoroethylene (PTFE).
While heating the beaker with a water bath, the liquid in the beaker was stirred with a stirring blade made by Three One Motor PTFE.
When the liquid temperature reaches 75 ° C., mixed iron powder (0.690 g of reduced iron powder (manufactured by JFE Steel, TK-HC) and 0.138 g of atomized iron powder (91NN, manufactured by Kobe Steel) ( 0.0148 mol) was added to the ferric chloride waste liquor. After maintaining the liquid temperature at 75 ° C. for 1 hour, heating and stirring were stopped.

得られた銅粉が沈殿した液体を、PTFE製ロートと桐山ろ紙No.4(強酸用)を使用して吸引ろ過した。ロート内に蒸留水50mLを加えてスポイトで銅粉を分散させ、ろ過中にさらに蒸留水を50mL加えながら吸引ろ過を行なった。
ろ過により得られた銅粉を、PTFE製時計皿に入れて、80℃で30分間乾燥させて銅粉を0.90g得た。
得られた銅粉を硝酸・塩酸混合液に溶解し、ICP−AES装置で測定した結果、鉄の含有量は2000ppmであった。その他の金属の含有量は表1のとおりであった。
The liquid in which the obtained copper powder was precipitated was mixed with a PTFE funnel and Kiriyama filter paper No. Suction filtration was performed using 4 (for strong acid). Distilled water (50 mL) was added to the funnel, the copper powder was dispersed with a dropper, and suction filtration was performed while adding 50 mL of distilled water during filtration.
The copper powder obtained by filtration was put in a PTFE watch glass and dried at 80 ° C. for 30 minutes to obtain 0.90 g of copper powder.
The obtained copper powder was dissolved in a mixed solution of nitric acid and hydrochloric acid and measured with an ICP-AES apparatus. As a result, the iron content was 2000 ppm. The contents of other metals were as shown in Table 1.

<実施例2>
還元鉄粉0.552gとアトマイズ鉄粉0.110gの混合鉄粉(0.0118モル)を用いた以外は実施例1と同じ方法で銅粉の回収を行ない、銅粉を0.55g得た。
得られた銅粉における、鉄の含有量は3000ppmであり、その他の金属の含有量は表1のとおりであった。
<Example 2>
The copper powder was recovered in the same manner as in Example 1 except that 0.552 g of reduced iron powder and 0.110 g of mixed iron powder (0.0118 mol) of atomized iron powder were used, and 0.55 g of copper powder was obtained. .
In the obtained copper powder, the iron content was 3000 ppm, and the contents of other metals were as shown in Table 1.

<実施例3>
還元鉄粉0.828gとアトマイズ鉄粉0.166gの混合鉄粉(0.0178モル)を用いた以外は実施例1と同じ方法で銅粉の回収を行ない、銅粉を1.12g得た。
得られた銅粉における、鉄の含有量は4500ppmであり、その他の金属の含有量は表1のとおりであった。
<Example 3>
Copper powder was recovered in the same manner as in Example 1 except that 0.828 g of reduced iron powder and 0.166 g of mixed iron powder (0.0178 mol) of atomized iron powder were used, and 1.12 g of copper powder was obtained. .
In the obtained copper powder, the iron content was 4500 ppm, and the contents of other metals were as shown in Table 1.

<比較例1>
還元鉄粉0.414gとアトマイズ鉄粉0.083gの混合鉄粉(0.0089モル)を用いた以外は実施例1と同じ方法で銅粉の回収を行ない、銅粉を0.14g得た。
得られた銅粉における、鉄の含有量は5600ppmであり、その他の金属の含有量は表1のとおりであった。
<Comparative Example 1>
Copper powder was recovered in the same manner as in Example 1 except that mixed iron powder (0.0089 mol) of 0.414 g of reduced iron powder and 0.083 g of atomized iron powder was used, and 0.14 g of copper powder was obtained. .
In the obtained copper powder, the iron content was 5600 ppm, and the contents of other metals were as shown in Table 1.

<比較例2>
還元鉄粉0.966gとアトマイズ鉄粉0.193gの混合鉄粉(0.0208モル)を用いた以外は実施例1と同じ方法で銅粉の回収を行ない、銅粉を1.25g得た。
得られた銅粉における、鉄の含有量は6900ppmであり、その他の金属の含有量は表1のとおりであった。
<Comparative example 2>
Copper powder was recovered in the same manner as in Example 1 except that 0.966 g of reduced iron powder and 0.193 g of atomized iron powder (0.0208 mol) were used, and 1.25 g of copper powder was obtained. .
In the obtained copper powder, the iron content was 6900 ppm, and the contents of other metals were as shown in Table 1.

<比較例3>
還元鉄粉1.242gとアトマイズ鉄粉0.248gの混合鉄粉(0.0266モル)を用いた以外は実施例1と同じ方法で銅粉の回収を行ない、銅粉を1.33g得た。
得られた銅粉における、鉄の含有量は41000ppmであり、その他の金属の含有量は表1のとおりであった。
<Comparative Example 3>
The copper powder was recovered in the same manner as in Example 1 except that 1.242 g of reduced iron powder and 0.248 g of atomized iron powder (0.0266 mol) were used, and 1.33 g of copper powder was obtained. .
In the obtained copper powder, the iron content was 41000 ppm and the contents of other metals were as shown in Table 1.

<実施例4>
鉄粉としてアトマイズ鉄粉0.828g(0.0148モル)のみを用いた以外は実施例1と同じ方法で銅粉の回収を行ない、銅粉を0.93g得た。
得られた銅粉における、鉄の含有量は5ppmであり、その他の金属の含有量は表1のとおりであった。
<Example 4>
The copper powder was recovered by the same method as in Example 1 except that only 0.828 g (0.0148 mol) of atomized iron powder was used as the iron powder to obtain 0.93 g of copper powder.
In the obtained copper powder, the iron content was 5 ppm, and the contents of other metals were as shown in Table 1.

<実施例5>
液温が50℃である以外は、実施例1と同じ方法で銅粉の回収を行ない、銅粉を0.88g得た。
得られた銅粉における、鉄の含有量は220ppmであり、その他の金属の含有量は表1のとおりであった。
<Example 5>
The copper powder was recovered in the same manner as in Example 1 except that the liquid temperature was 50 ° C., to obtain 0.88 g of copper powder.
In the obtained copper powder, the iron content was 220 ppm, and the contents of other metals were as shown in Table 1.

<実施例6>
液温が60℃である以外は、実施例1と同じ方法で銅粉の回収を行ない、銅粉を0.85g得た。
得られた銅粉における、鉄の含有量は490ppmであり、その他の金属の含有量は表1のとおりであった。
<Example 6>
The copper powder was recovered by the same method as in Example 1 except that the liquid temperature was 60 ° C., to obtain 0.85 g of copper powder.
In the obtained copper powder, the iron content was 490 ppm, and the contents of other metals were as shown in Table 1.

<参考例>
実施例5で銅粉を分離した後のろ液に、アトマイズ鉄粉を0.497g(0.0089モル)を用いて、実施例1と同じ方法で銅粉の回収を行ない、銅粉を0.35g得た。
得られた銅粉における、鉄の含有量は14000ppmであり、その他の金属の含有量は表1のとおりであった。
<Reference example>
In the filtrate after separating the copper powder in Example 5, 0.497 g (0.0089 mol) of atomized iron powder was used, and the copper powder was recovered in the same manner as in Example 1. .35 g was obtained.
In the obtained copper powder, the iron content was 14,000 ppm, and the contents of other metals were as shown in Table 1.

Figure 0006493679
Figure 0006493679

実施例1〜実施例6の条件で得られた銅粉における鉄の含有量は5000ppm以下であり、マンガン、クロム、ニッケル、スズの含有量も比較例に比べて少ないことがわかる。   It turns out that content of iron in the copper powder obtained on the conditions of Example 1- Example 6 is 5000 ppm or less, and content of manganese, chromium, nickel, and tin is also small compared with a comparative example.

本発明の銅粉の回収方法は、簡易な方法で不純物の少ない銅粉を得ることができ、得られた銅粉は硫酸銅電解めっき向け易溶性酸化銅の原料などに利用可能である。   The copper powder recovery method of the present invention can obtain a copper powder with few impurities by a simple method, and the obtained copper powder can be used as a raw material for easily soluble copper oxide for copper sulfate electrolytic plating.

Claims (7)

銅イオンを含む液に、アトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、析出した銅粉を分離する工程を含む銅粉の回収方法において、
前記アトマイズ鉄粉を含む鉄粉の添加量が、前記銅イオンを含む液に存在する銅イオンおよび塩酸に対する理論反応量の0.4〜0.6倍であることを特徴とする銅粉の回収方法。
In the method for recovering copper powder, including the step of separating the deposited copper powder, after adding the iron powder containing atomized iron powder to the liquid containing copper ions and precipitating the copper powder,
The amount of iron powder containing the atomized iron powder is 0.4 to 0.6 times the theoretical reaction amount for copper ions and hydrochloric acid present in the liquid containing the copper ions. Method.
前記鉄粉を添加して銅粉を析出させる時の液温が、50〜80℃の範囲である請求項1に記載の銅粉の回収方法。   The method for recovering copper powder according to claim 1, wherein a liquid temperature when the iron powder is added to precipitate the copper powder is in a range of 50 to 80 ° C. 前記鉄粉の全量がアトマイズ鉄粉である請求項1または請求項2に記載の銅粉の回収方法。   The method for recovering copper powder according to claim 1 or 2, wherein the total amount of the iron powder is atomized iron powder. 銅イオンを含む液に、アトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、析出した銅粉を分離する工程(1)と、
工程(1)で銅粉を分離した液に、さらにアトマイズ鉄粉を含む鉄粉を添加して銅粉を析出させた後、銅粉を分離する工程(2)と、
を含む銅粉の回収方法。
Step (1) of separating the precipitated copper powder after adding the iron powder containing atomized iron powder to the liquid containing copper ions and precipitating the copper powder;
Step (2) for separating copper powder after adding copper powder containing atomized iron powder to the copper liquid separated in step (1) and precipitating copper powder,
Of collecting copper powder containing
工程(1)におけるアトマイズ鉄粉を含む鉄粉の添加量が、銅イオンを含む液に存在する銅イオンおよび塩酸に対する理論反応量の0.4〜0.6倍であり、工程(2)におけるアトマイズ鉄粉を含む鉄粉の添加量が、工程(1)で銅粉を分離する前の液に存在する銅イオンおよび塩酸に対する理論反応量の0.3〜0.4倍である請求項4に記載の銅粉の回収方法。   The amount of iron powder containing atomized iron powder in step (1) is 0.4 to 0.6 times the theoretical reaction amount for copper ions and hydrochloric acid present in the liquid containing copper ions, and in step (2) The addition amount of iron powder containing atomized iron powder is 0.3 to 0.4 times the theoretical reaction amount with respect to copper ions and hydrochloric acid present in the liquid before separating the copper powder in step (1). The method for recovering copper powder as described in 1. 工程(1)および工程(2)における鉄粉を添加して銅粉を析出させる時の液温が、50〜80℃の範囲であることを特徴とする請求項4または請求項5のいずれかに記載の銅粉の回収方法。   The liquid temperature when adding the iron powder in the step (1) and the step (2) and precipitating the copper powder is in a range of 50 to 80 ° C. The method for recovering copper powder as described in 1. 前記工程(1)および工程(2)の鉄粉の全量がアトマイズ鉄粉である請求項4〜請求項6のいずれかに記載の銅粉の回収方法。   The method for recovering copper powder according to any one of claims 4 to 6, wherein the total amount of iron powder in the step (1) and the step (2) is atomized iron powder.
JP2015165676A 2015-08-25 2015-08-25 Copper powder recovery method Active JP6493679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165676A JP6493679B2 (en) 2015-08-25 2015-08-25 Copper powder recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165676A JP6493679B2 (en) 2015-08-25 2015-08-25 Copper powder recovery method

Publications (2)

Publication Number Publication Date
JP2017043797A JP2017043797A (en) 2017-03-02
JP6493679B2 true JP6493679B2 (en) 2019-04-03

Family

ID=58209280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165676A Active JP6493679B2 (en) 2015-08-25 2015-08-25 Copper powder recovery method

Country Status (1)

Country Link
JP (1) JP6493679B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179707A (en) * 1984-09-27 1986-04-23 Tsurumi Soda Kk Production of copper-coated iron powder
JPS6179706A (en) * 1984-09-27 1986-04-23 Tsurumi Soda Kk Manufacture of copper coated iron powder
JPH032302A (en) * 1989-05-26 1991-01-08 Nisshin Steel Co Ltd Manufacture of high purity copper fine powder
DE4142432A1 (en) * 1991-12-20 1993-06-24 Wacker Chemie Gmbh METHOD FOR PRODUCING COPPER POWDER
JPH07138620A (en) * 1993-11-17 1995-05-30 Tsurumi Soda Co Ltd Production of copper powder from cupric chloride liquid
JP3739845B2 (en) * 1995-12-11 2006-01-25 鶴見曹達株式会社 Treatment method of ferric chloride waste liquid

Also Published As

Publication number Publication date
JP2017043797A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5598778B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2697778B2 (en) Treatment of cupric chloride waste liquid
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN106517301B (en) A kind of method that basic copper chloride is reclaimed in the contained waste liquid from sulfuric acid system
CN103993173A (en) Method for removing chlorine from nickel cobalt hydroxide
JP2011021219A (en) Method for recovering copper from copper/iron-containing material
TW201545989A (en) Method of manufacturing Tin(II) oxide, Tin(II) oxide, method of manufacturing tin plating solution, and method of removing impurities from Tin plating solution
JP5512482B2 (en) Method for separating and recovering zinc from galvanizing waste liquid
JP5589854B2 (en) How to recover bismuth
CN105132707A (en) Method for recycling silver from silver-copper composite material
JP2010138490A (en) Method of recovering zinc
JP6493679B2 (en) Copper powder recovery method
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JP5925384B2 (en) Method for producing high purity manganese and high purity manganese
KR101465032B1 (en) Recycle process of high purity nickel powder from waste nickel plating solution and High purity nickel powder using that
JP2011161386A (en) Method for treating thioarsenite
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP5564514B2 (en) Method for producing high purity zinc oxide using secondary dust
TW201313911A (en) Method of recycling tin and copper metals from acidic waste liquid
JP6597349B2 (en) Blast furnace wastewater treatment method
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
CN103911513A (en) Solder stripping waste liquid treatment method
JP2006083457A (en) Treatment method for zinc leach residue and the like
RU2340688C1 (en) Method for reprocessing of copper-chloride fusion cake, which is waste from titanium tetrachloride cleaning
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6493679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250