JP2011021219A - Method for recovering copper from copper/iron-containing material - Google Patents

Method for recovering copper from copper/iron-containing material Download PDF

Info

Publication number
JP2011021219A
JP2011021219A JP2009166006A JP2009166006A JP2011021219A JP 2011021219 A JP2011021219 A JP 2011021219A JP 2009166006 A JP2009166006 A JP 2009166006A JP 2009166006 A JP2009166006 A JP 2009166006A JP 2011021219 A JP2011021219 A JP 2011021219A
Authority
JP
Japan
Prior art keywords
copper
leaching
iron
solution
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009166006A
Other languages
Japanese (ja)
Other versions
JP5439997B2 (en
Inventor
Noriyuki Nagase
範幸 長瀬
Satoshi Asano
聡 浅野
Kenji Takeda
賢二 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009166006A priority Critical patent/JP5439997B2/en
Publication of JP2011021219A publication Critical patent/JP2011021219A/en
Application granted granted Critical
Publication of JP5439997B2 publication Critical patent/JP5439997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce plate-like electrolytic copper which can be handled as before, from a copper/iron-containing material. <P>SOLUTION: The method for recovering copper from a copper/iron-containing material 11 comprises: a leaching stage 1 where a copper/iron-containing material 11 and an oxidizer 12 are added to a chloride-containing hydrochloric acid acidic leaching starting liquid 10 so as to obtain a leaching liquor 13 and a leaching residue 14; a reducing stage 2 where a reducing agent 20 is added to the leaching liquor 13 so as to reduce iron ions in the leaching liquor 13; an iron removing stage 3 where an oxidizer 30 is added to a reduction liquid 23 obtained in the reducing stage 2 so as to obtain an iron-removed liquid 32 and iron precipitates 31; a solvent extracting stage 4 where an extraction 40 composed of an organic solvent is mixed with the iron-removed liquid 32, and copper ions in the iron-removed liquid 32 are extracted so as to obtain an extracted organic 41 and an extraction remaining liquid 42, next, the extracted organic 41 is mixed into a sulfuric acid acidic solution 44, the mixture is subjected to back extraction so as to obtain a back-extract 45 and an organic 41 after the back-extraction; and an electrowinning stage 5 where the back-extract 45 is subjected to electrowinning so as to obtain electrolytic copper 50 and an electrolytic waste liquid 51. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉄及び銅を含有する含銅鉄物から銅を回収する方法に関し、特に硫化銅鉱物から湿式法で銅を回収する方法に関する。   The present invention relates to a method for recovering copper from a copper-containing iron-containing material containing iron and copper, and particularly to a method for recovering copper from a copper sulfide mineral by a wet method.

銅の製錬は、一般的に硫化銅鉱物に浮遊選鉱などの処理を施して銅が濃縮された銅精鉱とし、この銅精鉱を自溶炉、転炉、精製炉等の炉を通して熔解して不純物を分離して粗銅とし、これをアノードに鋳造する一連の乾式製錬工程と、アノードを電解槽に装入して通電し、カソード上に銅を電着させて製品とする電解精製工程とを組み合わせた方法によって行うことが多い。   Copper smelting is generally a copper concentrate in which copper sulfide minerals have been treated by flotation or the like to concentrate copper, and this copper concentrate is melted through furnaces such as flash furnaces, converters, and refining furnaces. A series of dry smelting processes in which impurities are separated into crude copper and cast into the anode, and the anode is charged into the electrolytic cell and energized, and copper is electrodeposited on the cathode to produce a product. In many cases, the process is combined with a process.

この乾式製錬工程と電解精製工程とを組み合わせた方法は、大量の鉱石を効率よく処理するのに適した方法であるが、一方で、乾式製錬工程で発生する亜硫酸ガスを回収して処理しなければならないなど多大な設備投資と手間が必要であり、また、小規模な設備では効率が低下し不利となるという課題もあった。   This combination of dry smelting process and electrolytic refining process is suitable for efficiently processing a large amount of ore, but on the other hand, it collects and treats sulfurous acid gas generated in the dry smelting process. A large amount of capital investment and labor is required, such as having to be done, and there is also a problem that a small-scale facility is disadvantageous in that the efficiency decreases.

このような状況の下、近年、湿式法による銅の製錬方法が研究されている。湿式法を用いた銅の製錬方法としては、従来から酸化銅鉱物を含有する銅鉱石に硫酸を散布して銅を浸出し、これにより得られる浸出液を溶媒抽出などの方法によって処理して不純物を分離すると同時に銅を濃縮し、この銅の濃縮された液から不溶性アノードを用いた電解採取によって銅を回収する方法が広く知られている。しかし、銅鉱石の大部分を占める硫化鉱、特に黄銅鉱に上記の方法を適用しようとしても、硫酸による黄銅鉱中の銅の浸出速度は極めて遅いので工業的に実用化することは困難であった。   Under such circumstances, in recent years, a copper smelting method by a wet method has been studied. Conventionally, as a copper smelting method using a wet process, sulfuric acid is sprayed on copper ore containing copper oxide mineral to leaching copper, and the resulting leachate is treated by a method such as solvent extraction to produce impurities. A method is widely known in which copper is concentrated at the same time as copper is separated and copper is recovered from the copper-concentrated liquid by electrowinning using an insoluble anode. However, even when trying to apply the above method to sulfide ore, which is a major part of copper ore, especially chalcopyrite, the leaching rate of copper in chalcopyrite with sulfuric acid is very slow, so it was difficult to put it to practical use industrially. It was.

このため、黄銅鉱を対象とした湿式法による銅精錬法が様々提案されてきた。例えば特許文献1では、銅鉱石又は銅精鉱を、制御された超微粉砕工程で処理して粒子サイズを25ミクロン未満に減少し、これを塩化物を含む硫酸溶液中で中程度温度で加圧酸化して浸出し、さらに得られた浸出生成液を溶媒抽出した後逆抽出し、これにより得られる第2銅イオンを含む逆抽出液から銅を電解採取する方法が提案されている。   For this reason, various copper refining methods using a wet method for chalcopyrite have been proposed. For example, in Patent Document 1, copper ore or copper concentrate is processed in a controlled ultra-milling process to reduce the particle size to less than 25 microns and this is added at moderate temperature in a sulfuric acid solution containing chloride. There has been proposed a method in which leaching is performed by pressure oxidation, and the obtained leaching product liquid is subjected to solvent extraction and then back-extracted, and copper is electrolytically collected from the back-extracted liquid containing second copper ions obtained thereby.

この特許文献1の方法は、金属を含有する材料から銅および他の金属を回収するのに有益であり、特に硫化銅鉱石やその濃縮物から銅および他の金属を抽出するのに有益である。この方法は、具体的には、銅含有物質を含む供給ストリームを提供する工程と、該供給ストリーム内の実質的に全ての粒子が圧力浸出の際に実質的に完全に反応するように、供給ストリームの粒子サイズを減少して入口ストリームとする制御された超微粉砕工程と、該入口ストリームを圧力浸出容器内で界面活性剤の存在下で約140℃〜約180℃の温度で圧力浸出して銅含有溶液を形成する工程と、該銅含有溶液から銅を回収する工程と、からなることを特徴としている。   The method of Patent Document 1 is useful for recovering copper and other metals from metal-containing materials, and particularly useful for extracting copper and other metals from copper sulfide ores and concentrates thereof. . The method specifically provides a feed stream comprising a copper-containing material and a feed so that substantially all of the particles in the feed stream react substantially completely upon pressure leaching. Controlled micronization process to reduce the particle size of the stream to an inlet stream and pressure leaching the inlet stream in a pressure brewing vessel at a temperature of about 140 ° C. to about 180 ° C. in the presence of a surfactant. And a step of forming a copper-containing solution and a step of recovering copper from the copper-containing solution.

また、特許文献2では、黄銅鉱を主鉱物とする硫化銅鉱を塩素浸出して得た浸出液から、銅および鉄をそれぞれ電解銅および電解鉄として回収する方法が提案されている。この方法は、黄銅鉱を始めとする硫化銅鉱物を含む銅原料の湿式精錬法において、硫黄の酸化を抑制しながら高浸出率で銅を浸出して一価銅電解で回収し、また随伴する有価金属も回収して、浸出残渣などの廃棄物を可能な限り減少することができる精錬方法を提供するものである。   Patent Document 2 proposes a method of recovering copper and iron as electrolytic copper and electrolytic iron, respectively, from a leachate obtained by leaching copper sulfide ore containing chalcopyrite as the main mineral. This method is a wet refining method for copper raw materials containing copper sulfide minerals such as chalcopyrite, and copper is leached at a high leaching rate while suppressing oxidation of sulfur and recovered by monovalent copper electrolysis. The present invention provides a refining method capable of recovering valuable metals and reducing waste such as leach residue as much as possible.

具体的には、銅原料を塩素による浸出に付し、銅イオンを含む浸出生成液を得る塩素浸出工程と、前記浸出生成液に還元剤を添加し、第1銅イオンを含む還元生成液を得る銅イオン還元処理工程と、前記還元生成液を溶媒抽出に付し、銅を抽出した後に逆抽出を行って銅を含む逆抽出生成液と抽残液とを得る溶媒抽出工程と、前記逆抽出生成液を電解採取に付し、電着銅を得る銅電解採取工程と、前記溶媒抽出工程で得られる抽残液を浄液に付し、精製液を得る浄液工程と、前記精製液を鉄回収処理に付し、鉄含有固形物を得る鉄回収工程と、からなることを特徴としている。   Specifically, a chlorine leaching step for obtaining a leaching product liquid containing copper ions by subjecting a copper raw material to leaching with chlorine, a reducing agent added to the leaching product liquid, and a reduction product liquid containing first copper ions A copper ion reduction treatment step, a solvent extraction step of subjecting the reduction product solution to solvent extraction, extracting copper and performing back extraction to obtain a back extraction product solution containing copper and an extraction residue, and the reverse step A copper electrowinning step for subjecting the extraction product solution to electrowinning to obtain electrodeposited copper, a cleanup step for obtaining a purified solution by attaching the extraction liquid obtained in the solvent extraction step to the purified solution, and the purified solution And an iron recovery process for obtaining an iron-containing solid matter.

また、非特許文献1には塩酸溶液を用いて銅精鉱を浸出し、溶媒抽出を組み合わせて銅を回収する方法が提案されている。この方法は、塩酸溶液の液温を沸点近くまで上昇させ、2段の浸出槽を用いて銅精鉱を浸出することを特徴としている。しかし、この方法は塩酸溶液を沸点近くまで昇温させるため、多量のエネルギーを必要とし、蒸発する塩酸や水分を回収する手間も要する。さらに2段の浸出に6時間もの長時間を要するなど効率的な方法ではなかった。   Non-Patent Document 1 proposes a method for recovering copper by leaching copper concentrate using a hydrochloric acid solution and combining solvent extraction. This method is characterized in that the temperature of the hydrochloric acid solution is raised to near the boiling point, and copper concentrate is leached using a two-stage leaching tank. However, since this method raises the temperature of the hydrochloric acid solution to near the boiling point, a large amount of energy is required, and labor for recovering evaporated hydrochloric acid and moisture is also required. Furthermore, it was not an efficient method because it required a long time of 6 hours for the two-stage leaching.

さらに、特許文献3に示すように、塩酸を用いた銅の湿式製錬方法も提案されている。この方法は、銅を含む鉱物に塩酸を添加して養生をした後、得られた養生物に水を加えるという簡単な操作によって銅を水中に浸出させることを特徴とする銅鉱石から銅を分離する方法である。しかし、この方法では高濃度の塩酸を使用するのでコストがかかる。さらに、養生に要する時間が長く、生産性が低い問題があった。   Furthermore, as shown in Patent Document 3, a copper hydrometallurgical method using hydrochloric acid has also been proposed. This method separates copper from copper ore, which is characterized by adding copper to minerals containing copper and curing it, and then leaching the copper into the water by a simple operation of adding water to the resulting aquaculture. It is a method to do. However, this method is costly because it uses high-concentration hydrochloric acid. In addition, the time required for curing is long and the productivity is low.

特表2004−504494号公報JP-T-2004-504494 特開2005−60813号公報(第1〜3頁)JP 2005-60813 A (pages 1 to 3) 特開平09−241770号公報JP 09-241770 A

Demarthe,J.M.et.al.;“A New Hydrometallurgical Process for Copper”,in‘Extractive Metallurgy of Copper’,TMS,1976,p.825−848Demarthe, J .; M.M. et. al. "A New Hydrological Process for Copper", in 'Extractive Metallurgy of Copper', TMS, 1976, p. 825-848.

上述したそれぞれの湿式法による銅の製錬方法は、上述した乾式製錬法に比べると処理温度が低いことからエネルギーが節約できる上、設備の稼動率を調整しやすく生産調整が容易である等の利点がある。しかし、硫化銅鉱物を、例えば硫酸浸出するには加圧浸出装置が必要となり、また例えば塩素ガスで浸出する場合には電解採取工程で発生する塩素ガスを回収する設備が必要となるなど設備コストと手間を要するという課題があった。   The above-mentioned copper smelting methods by the respective wet methods can save energy because the processing temperature is lower than the above-described dry smelting methods, and can easily adjust the operation rate of the equipment and easily adjust the production. There are advantages. However, for example, when leaching copper sulfide minerals with sulfuric acid, a pressure leaching device is required, and when leaching with chlorine gas, for example, equipment for recovering chlorine gas generated in the electrowinning process is required. There was a problem that it took time and effort.

また、硫酸を用いて加圧浸出する場合、硫化鉱物中の硫黄の酸化される割合が無視できなかった。硫黄が酸化されるとSO 2−などの硫酸イオンを生成するが、硫酸イオンは後工程となる電解採取工程で用いられる不溶性アノードの劣化を促進したり、塩素ガスの回収効率を低下させたりする原因となることが知られており、硫化銅鉱物から銅を浸出する際には、硫黄の酸化を抑制する必要があった。 In addition, when pressure leaching was performed using sulfuric acid, the rate of oxidation of sulfur in the sulfide mineral could not be ignored. When sulfur is oxidized, sulfate ions such as SO 4 2− are generated, but the sulfate ions promote deterioration of the insoluble anode used in the subsequent electrowinning process or reduce the recovery efficiency of chlorine gas. Therefore, it was necessary to suppress oxidation of sulfur when leaching copper from a copper sulfide mineral.

さらに、銅を回収するための電解採取が塩酸や塩化物など塩化浴の電解液を用いて行われる場合には、硫酸浴からの電解採取を用いて板状の電気銅を得る場合とは異なり、電気銅は粉状や粒状などの形状として得られる。粉状や粒状の銅は取り扱いのための容器や設備が必要であり、酸化されやすく酸素品位の増加や発熱の恐れなどの課題がある。さらに、一般に銅の地金はカソードのままの板状やカソードを小さく切断した小片形状を標準として市場で取引されるため、粉状や粒状などの形をした銅は規格外の扱いとなり、販売上の制約となる課題もあった。   Furthermore, when the electrolytic collection for recovering copper is performed using an electrolytic solution of a chloride bath such as hydrochloric acid or chloride, it is different from the case of obtaining plate-like electrolytic copper using electrolytic collection from a sulfuric acid bath. Electro copper is obtained in the form of powder or granules. Powdered and granular copper requires containers and equipment for handling, and is prone to oxidation and has problems such as an increase in oxygen quality and fear of heat generation. In addition, copper ingots are generally traded on the market in the form of a plate with a cathode or small pieces with the cathode cut into small pieces, so copper in the form of powder or particles is treated as non-standard and sold. There was also a problem that became a restriction on the above.

塩化浴から平滑な電着を得ようとする検討も様々に行なわれてきたが、特別な装置や電解方法が必要となるなど手間とコストがかかり、さらに硫酸浴から得られる電気銅ほどには平滑な物を得るには至っておらず実用的な水準とは言い難いものが多かった。   Various attempts have been made to obtain smooth electrodeposition from a chloride bath, but it requires labor and cost, such as the need for special equipment and electrolysis methods, and as much as electrolytic copper obtained from a sulfuric acid bath. There were many things which were not able to be said to be a practical level since it did not reach a smooth thing.

以上述べたように、低コストかつ効率的に銅鉱石などの含銅鉄物から銅を浸出し、しかも従来と同じように取り扱うことのできる板状の電気銅を得る方法が求められていた。本発明は、このような事情に鑑みてなされたものであり、銅の湿式精錬法において、難溶性の黄銅鉱などの含銅鉄物から効率良く銅を浸出し、従来と同様に販売可能な板状の電気銅を得ることを目的とするものである。   As described above, there has been a demand for a method for obtaining plate-like electrolytic copper that can be leached from a copper-containing iron material such as copper ore and can be handled in the same manner as before, at low cost and efficiently. The present invention has been made in view of such circumstances, and in the copper refining method, copper is efficiently leached from copper-containing irons such as hardly soluble chalcopyrite and can be sold in the same manner as in the past. The object is to obtain plate-like electrolytic copper.

上記の課題を解決するため、本発明が提供する含銅鉄物からの銅の回収方法は、(1)塩化物を含有する塩酸酸性の浸出始液に含銅鉄物と酸化剤を添加し、含銅鉄物中の銅と鉄を浸出させて浸出液と浸出残渣とを得る浸出工程と、(2)前記浸出液に還元剤を添加して浸出液中の3価の鉄イオンを2価の鉄イオンに還元する還元工程と、(3)前記還元工程で得た還元液に酸化剤を添加し、銅イオンを含有する脱鉄液と鉄澱物を得る脱鉄工程と、(4)有機溶媒からなる抽出剤に前記脱鉄液を混合し、脱鉄液中の銅イオンを有機溶媒中に抽出して抽出有機と抽残液とを得、次に硫酸酸性溶液に該抽出有機を混合し、抽出有機中の銅イオンを逆抽出して逆抽出液と逆抽出後有機を得る溶媒抽出工程と、(5)前記逆抽出液を電解採取し、電気銅と電解廃液を得る電解採取工程と、からなることを特徴としている。   In order to solve the above-mentioned problems, the present invention provides a method for recovering copper from a copper-containing iron material. (1) Add a copper-containing iron material and an oxidizing agent to a hydrochloric acid-containing leaching start solution containing chloride. A leaching step of leaching copper and iron in a copper-containing iron material to obtain a leaching solution and a leaching residue; and (2) adding a reducing agent to the leaching solution to convert trivalent iron ions in the leaching solution into divalent iron. A reduction step of reducing to ions, (3) a deironation step of adding an oxidant to the reducing solution obtained in the reduction step to obtain a deiron solution containing copper ions and an iron starch, and (4) an organic solvent. The above-mentioned iron removal solution is mixed with the extractant consisting of the above, and the copper ions in the iron removal solution are extracted into an organic solvent to obtain an extraction organic and a residual extract, and then the extraction organic is mixed into the sulfuric acid acidic solution. A solvent extraction step of back-extracting copper ions in the extracted organic to obtain a back-extracted solution and an organic after back-extraction; And electrowinning step to obtain an electrolytic liquid waste, it is characterized in that it consists of.

上記本発明の含銅鉄物からの銅の回収方法においては、前記浸出工程で浸出処理される前の含銅鉄物の少なくとも一部を前記還元剤として使用し、使用後は還元残渣として還元液から分離して浸出始液に添加することができる。また、前記塩化物は塩化第1銅または塩化第2銅であり、前記浸出始液中の銅イオン濃度が10g/L以上80g/L以下の範囲にあることが好ましい。さらに、前記抽出剤として酸性溶媒抽出剤またはキレート抽出剤を用いることが好ましい。   In the method for recovering copper from the copper-containing iron material of the present invention, at least a part of the copper-containing iron material before the leaching treatment in the leaching step is used as the reducing agent, and after use, it is reduced as a reduction residue. It can be separated from the liquid and added to the leaching starting liquid. The chloride is cuprous chloride or cupric chloride, and the copper ion concentration in the leaching start liquid is preferably in the range of 10 g / L to 80 g / L. Furthermore, it is preferable to use an acidic solvent extractant or a chelate extractant as the extractant.

また、上記本発明の含銅鉄物からの銅の回収方法においては、前記浸出液の酸化還元電位が、銀塩化銀電極を参照電極とした場合で500mV以上550mV以下の範囲に維持されるように浸出工程で添加する酸化剤の量を制御することが好ましい。また、前記脱鉄液の酸化還元電位が、銀塩化銀電極を参照電極とした場合で500mV以上800mV以下の範囲に維持されるように脱鉄工程で添加する酸化剤の量を制御することが好ましい。   In the method for recovering copper from the copper-containing iron material of the present invention, the redox potential of the leaching solution is maintained in the range of 500 mV or more and 550 mV or less when the silver-silver chloride electrode is used as a reference electrode. It is preferable to control the amount of oxidizing agent added in the leaching step. In addition, the amount of oxidizing agent added in the deironing step may be controlled so that the oxidation-reduction potential of the deironing solution is maintained in the range of 500 mV to 800 mV when the silver-silver chloride electrode is used as a reference electrode. preferable.

さらに、上記本発明の含銅鉄物からの銅の回収方法においては、前記抽残液を前記浸出始液として使用してもよい。また、前記含銅鉄物は、黄銅鉱、班銅鉱若しくは輝銅鉱を含む銅鉱石及び/又は銅精鉱、銅を含む金属スクラップ、金属精錬の中間原料のいずれか1種類以上のものであることが好ましい。   Furthermore, in the method for recovering copper from the copper-containing iron product of the present invention, the extraction residual liquid may be used as the leaching start liquid. In addition, the copper-containing iron product is one or more of copper ore and / or copper concentrate, copper concentrate, copper scrap-containing metal scrap, and metal refining intermediate raw material containing chalcopyrite, briquette or chalcocite Is preferred.

本発明によれば、そのままの状態で外販可能な表面平滑な板状電着の電気銅を得ることができる。また、加圧容器を必要とせずに含銅鉄物中の銅を室温で浸出でき、設備コストを低減できる。   According to the present invention, it is possible to obtain plate-shaped electrodeposited electrolytic copper with a smooth surface that can be sold outside in the same state. Moreover, the copper in a copper-containing iron thing can be leached at room temperature, without requiring a pressurization container, and installation cost can be reduced.

本発明の銅の回収方法の一具体例を示す概略フロー図である。It is a schematic flowchart which shows one specific example of the copper collection | recovery method of this invention.

本発明における湿式の銅の回収方法は、以下の一連の工程で構成されるものである。すなわち、先ず銅精鉱などの含銅鉄物に含まれる銅および鉄を、塩化物を含んだ塩酸酸性の浸出始液を用いて浸出し(浸出工程)、得られた浸出液に含まれる3価の鉄イオンを銅精鉱などの還元剤を利用して2価の鉄イオンに還元する(還元工程)。次に、この還元された液から鉄を除去して銅イオンを含有する脱鉄液と鉄澱物を得る(脱鉄工程)。   The wet copper recovery method in the present invention is composed of the following series of steps. That is, first, copper and iron contained in a copper-containing iron product such as copper concentrate are leached using a hydrochloric acid leaching start solution containing chloride (leaching step), and the trivalent contained in the obtained leachate. The iron ions are reduced to divalent iron ions using a reducing agent such as copper concentrate (reduction process). Next, iron is removed from the reduced solution to obtain a deiron solution and iron starch containing copper ions (deiron step).

次に、脱鉄液中の銅イオンを溶媒抽出により抽出剤中に抽出し、得られた抽出有機中の銅イオンを硫酸で逆抽出して硫酸銅溶液からなる逆抽出液を得る(溶媒抽出工程)。最後に、この硫酸銅溶液からなる逆抽出液を電解採取して電気銅すなわち銅メタルを回収する(電解工程)。以下、これら一連の工程からなる本発明の銅の回収方法の一具体例について、図1を参照しながら各工程毎に詳細に説明する。   Next, the copper ions in the deiron solution are extracted into the extractant by solvent extraction, and the copper ions in the extracted organic obtained are back extracted with sulfuric acid to obtain a back extract composed of a copper sulfate solution (solvent extraction). Process). Finally, electrolytic extraction of the back extract made of this copper sulfate solution is performed to recover electrolytic copper, that is, copper metal (electrolysis step). Hereinafter, a specific example of the copper recovery method of the present invention comprising a series of these steps will be described in detail for each step with reference to FIG.

(浸出工程1)
本発明の一具体例の銅の回収方法においては、先ず浸出工程1において、塩酸酸性溶液を用いた浸出始液10に含銅鉄物11を添加して含銅鉄物11に含まれる銅および鉄を浸出する。これにより、銅イオンと鉄イオンを含む浸出液13と、浸出残渣14とを得ることができる。ここで、含銅鉄物11とは、銅および鉄を共に含む被浸出物質であり、例えば、黄銅鉱、班銅鉱、輝銅鉱などの鉱物を含む銅鉱石や銅精鉱、銅を含む金属スクラップ、金属精錬の中間原料のいずれか1種類以上を含むものを挙げることができる。
(Leaching process 1)
In the copper recovery method of one specific example of the present invention, first, in the leaching step 1, the copper-containing iron material 11 is added to the leaching start solution 10 using a hydrochloric acid acidic solution, and the copper contained in the copper-containing iron material 11 and Leach iron. Thereby, the leaching solution 13 containing copper ions and iron ions and the leaching residue 14 can be obtained. Here, the copper-containing iron material 11 is a leached material containing both copper and iron, for example, copper ore, copper concentrate, and metal scrap containing copper, including minerals such as chalcopyrite, briquette, and chalcopyrite. And those containing any one or more of intermediate raw materials for metal refining.

浸出始液10には、前述したように塩酸酸性溶液を用いるが、塩酸のほかに塩化銅や塩化ナトリウムなどの塩化物が含まれている。特に、塩化物として塩化第1銅や塩化第2銅が共存することが望ましい。これにより、浸出速度の向上に大きな効果が得られる。これは、銅塩化物から生じる銅イオンは、2価に酸化されると銅精鉱などに接触したときに酸化剤として銅を浸出する働きを有するからである。なお、酸化剤として作用した2価の銅イオン自身は、1価の銅イオンに還元される。よって、より効率的に銅を浸出するために、空気などの酸化剤12を吹き込んで1価に還元された銅イオンを2価イオンに酸化することが好ましい。   The leaching start solution 10 uses a hydrochloric acid acidic solution as described above, but contains chlorides such as copper chloride and sodium chloride in addition to hydrochloric acid. In particular, it is desirable that cuprous chloride and cupric chloride coexist as chlorides. Thereby, a great effect is obtained in improving the leaching rate. This is because copper ions generated from copper chloride have a function of leaching copper as an oxidant when they are divalently oxidized and come into contact with copper concentrate. In addition, the bivalent copper ion itself which acted as an oxidizing agent is reduced to a monovalent copper ion. Therefore, in order to leach copper more efficiently, it is preferable to oxidize copper ions reduced to monovalent ions by blowing in an oxidizing agent 12 such as air to divalent ions.

上記銅塩化物による浸出速度向上の効果を調べるために、以下の実験を行った。先ず、塩酸濃度3モル/Lの塩酸酸性溶液に、塩化物イオン(Cl)濃度が180g/Lとなるように試薬塩化第2銅を加えて調整した。このとき、銅イオン濃度は66g/Lとなる。次に、この塩化物を含有する塩酸酸性溶液を浸出始液として、スラリー濃度20g/Lとなるように黄銅鉱を主体とする銅精鉱を添加した。さらに、このスラリーを90℃の温度に維持して酸化還元電位を測定しながら空気を吹き込み、銅精鉱に含まれる銅がほぼ完全に浸出されるまでに要する時間を測定した。 In order to investigate the effect of the leaching rate improvement by the copper chloride, the following experiment was conducted. First, the reagent cupric chloride was added to a hydrochloric acid acidic solution having a hydrochloric acid concentration of 3 mol / L so that the chloride ion (Cl ) concentration was 180 g / L. At this time, the copper ion concentration is 66 g / L. Next, a copper concentrate mainly composed of chalcopyrite was added so as to obtain a slurry concentration of 20 g / L using a hydrochloric acid acidic solution containing chloride as a starting liquid. Further, while maintaining the slurry at a temperature of 90 ° C., air was blown in while measuring the oxidation-reduction potential, and the time required until copper contained in the copper concentrate was almost completely leached was measured.

その結果、浸出始液に銅イオン濃度で66g/L程度となるように銅塩化物を含有させて浸出した場合、銅がほぼ完全に浸出するまでに要する時間は6時間程度であった。一方、浸出始液に銅イオンを生じる試薬塩化第2銅を添加しない以外は上記と同様にして黄銅鉱を主体とする銅精鉱を浸出した。その結果、浸出始液には銅精鉱から浸出する銅イオンが徐々に加わるので銅イオン濃度には上昇傾向が見られたものの、銅がほぼ完全に浸出するまでに13時間もの極端に長い時間が必要であった。   As a result, when the leaching start solution was leached by containing copper chloride so that the copper ion concentration was about 66 g / L, the time required for the copper to be almost completely leached was about 6 hours. On the other hand, a copper concentrate mainly composed of chalcopyrite was leached in the same manner as described above except that the reagent cupric chloride that generates copper ions was not added to the leaching start solution. As a result, although copper ions leached from the copper concentrate were gradually added to the leaching start solution, although an upward trend was observed in the copper ion concentration, it took an extremely long time of 13 hours for copper to be almost completely leached. Was necessary.

このように、浸出始液10を調製して浸出工程1を開始する際に、当該浸出始液10に銅イオンが含まれていなくても、浸出工程1が進むにつれて徐々に銅精鉱などの含銅鉄物11から銅イオンが浸出され、さらに酸化されて2価の銅イオンとなる。従って、銅イオンが酸化され得る状況にある限り、所定濃度の2価の銅イオンが常に系内に存在して酸化剤として作用することになるので、ある程度浸出が進んだ後は効率よく含銅鉄物11の浸出を行うことができる。但し、ある程度系内に銅イオンが蓄積して効率よく含銅鉄物11の浸出が行われるようになるまでにはある程度時間がかかるため、この時間を短縮させたい場合は、浸出始液10を調製する際に銅塩化物を添加することが好ましい。   Thus, when the leaching start liquid 10 is prepared and the leaching process 1 is started, even if the leaching start liquid 10 does not contain copper ions, as the leaching process 1 proceeds, the copper concentrate or the like is gradually added. Copper ions are leached from the copper-containing iron material 11, and are further oxidized to become divalent copper ions. Therefore, as long as copper ions can be oxidized, divalent copper ions of a predetermined concentration are always present in the system and act as an oxidizing agent. Leaching of the iron object 11 can be performed. However, since it takes some time until copper ions accumulate in the system to some extent and the copper-containing iron material 11 is efficiently leached out, if it is desired to shorten this time, the leaching start solution 10 is used. It is preferable to add copper chloride during the preparation.

浸出始液10に含まれる銅イオン濃度は、10g/Lよりも低いと効果が低くなるため、少なくとも10g/L以上であることが好ましい。なお、銅イオン濃度が20g/L以上になると、浸出速度はほとんど変わらなくなる。一方、銅イオン濃度が80g/Lよりも高濃度な浸出始液10を用いて浸出すると、銅が過飽和となって銅の浸出を妨げることがあるため好ましくない。従って、浸出始液10の銅イオン濃度は80g/L以下とすることが好ましい。より効率よく浸出反応を行うためには、浸出始液10の銅イオン濃度は20g/L以上60g/L以下が特に好ましい。   When the concentration of copper ions contained in the leaching start liquid 10 is lower than 10 g / L, the effect is reduced. Therefore, the concentration is preferably at least 10 g / L. Note that when the copper ion concentration is 20 g / L or more, the leaching rate hardly changes. On the other hand, leaching with the leaching start solution 10 having a copper ion concentration higher than 80 g / L is not preferable because copper may become supersaturated and hinder copper leaching. Therefore, the copper ion concentration of the leaching start solution 10 is preferably 80 g / L or less. In order to perform the leaching reaction more efficiently, the copper ion concentration of the leaching start solution 10 is particularly preferably 20 g / L or more and 60 g / L or less.

浸出工程1においては、浸出液13の温度を60℃以上100℃以下の温度範囲に維持することが好ましく、70℃以上90℃以下が特に好ましい。これは、浸出工程1では、より高い反応温度で行ったほうが短時間に確実な浸出を行うことができるからである。すなわち、効率的な反応が期待できる60℃以上とすることが好ましく、反応性がより向上する70℃以上が特に好ましい。   In the leaching step 1, the temperature of the leaching solution 13 is preferably maintained in a temperature range of 60 ° C. or higher and 100 ° C. or lower, and particularly preferably 70 ° C. or higher and 90 ° C. or lower. This is because, in the leaching step 1, leaching can be reliably performed in a shorter time when performed at a higher reaction temperature. That is, the temperature is preferably 60 ° C. or higher at which efficient reaction can be expected, and 70 ° C. or higher is particularly preferable because the reactivity is further improved.

一方、浸出液13の温度が高すぎると、塩酸の揮発が促進されてロスが増えたり設備の腐食を促進したりすることがある。特に100℃を越えると水分の蒸発が激しくなり、突沸することもある。従って、余裕を見込んで90℃以下とすることが好ましい。このような温度範囲であれば、反応槽の材質として合成樹脂もしくは合成樹脂でライニングした容器を用いることができ、設備コストも低減できる。さらに、硫黄の融点以下の温度で浸出することができるため、硫化鉱物など硫黄が含まれる含銅鉄物の場合に、当該含有される硫黄の酸化を抑制することができるという利点も生ずる。   On the other hand, if the temperature of the leachate 13 is too high, the volatilization of hydrochloric acid is promoted, and loss may increase or corrosion of equipment may be promoted. In particular, when the temperature exceeds 100 ° C., the evaporation of water becomes violent and may cause bumping. Accordingly, it is preferable to set the temperature to 90 ° C. or less in consideration of a margin. Within such a temperature range, a synthetic resin or a container lined with a synthetic resin can be used as the material of the reaction vessel, and the equipment cost can be reduced. Furthermore, since it can be leached at a temperature lower than the melting point of sulfur, in the case of a copper-containing iron product containing sulfur such as a sulfide mineral, there is an advantage that oxidation of the contained sulfur can be suppressed.

ところで、浸出工程1での浸出液13の酸化還元電位を一定に維持して所定の時間浸出し、硫化鉱物に含有された銅が浸出液13中に浸出された割合(浸出度合い)を調査したところ、銀−塩化銀電極を参照電極とした場合での(以降の酸化還元電位も同様)酸化還元電位が500mV未満では浸出残渣14中に銅が残存し、浸出が十分に行われていなかった。したがって、酸化還元電位は500mV以上に維持することが望ましい。   By the way, when the oxidation-reduction potential of the leaching solution 13 in the leaching step 1 is maintained constant and leached for a predetermined time, the ratio of the leaching of the copper contained in the sulfide mineral to the leaching solution 13 (exudation degree) was investigated. When the silver-silver chloride electrode was used as a reference electrode (the same applies to the subsequent oxidation-reduction potential), if the oxidation-reduction potential was less than 500 mV, copper remained in the leaching residue 14 and leaching was not sufficiently performed. Therefore, it is desirable to maintain the redox potential at 500 mV or higher.

また、浸出工程1では前述したように空気などの酸化剤12を併用すると反応を促進することができる。酸化剤12には空気の他、酸素、オゾン、過酸化水素などさまざまなものを用いることができるが、空気あるいは酸素を用いるのが安価で容易であるので好ましい。空気あるいは酸素を吹き込んで酸化を行った場合、酸化還元電位は概ね600mV程度まで上昇させることができるが、酸化還元電位が550mVを超える領域では、銅はほとんど浸出されており、これ以上酸化還元電位を上昇させても無駄なコストがかかるだけとなる。従って、酸化還元電位は550mV以下に維持することが望ましい。   In the leaching step 1, the reaction can be promoted by using an oxidant 12 such as air as described above. As the oxidant 12, various materials such as oxygen, ozone, hydrogen peroxide and the like can be used in addition to air, but it is preferable to use air or oxygen because it is inexpensive and easy. When oxidation is performed by blowing air or oxygen, the oxidation-reduction potential can be increased to about 600 mV, but copper is almost leached in the region where the oxidation-reduction potential exceeds 550 mV. Increasing the cost will only incur unnecessary costs. Therefore, it is desirable to maintain the oxidation-reduction potential at 550 mV or less.

すなわち、浸出工程1では、浸出時の酸化還元電位を500mV以上550mV以下の範囲に維持することが好ましい。なお、酸化還元電位は、浸出が行われる反応槽内の酸化還元電位(ORP)を測定することによって制御できる。このように、本浸出工程1では、塩素ガスなどの有毒なガスを取り扱わないので、ハンドリングが安全かつ容易である。さらに、短時間の内に高い浸出率で銅を浸出できる特徴も有している。   That is, in the leaching step 1, it is preferable to maintain the oxidation-reduction potential during leaching in the range of 500 mV to 550 mV. The oxidation-reduction potential can be controlled by measuring the oxidation-reduction potential (ORP) in the reaction tank in which leaching is performed. Thus, in this leaching process 1, since toxic gas, such as chlorine gas, is not handled, handling is safe and easy. Furthermore, it has the feature that copper can be leached at a high leaching rate within a short time.

(還元工程2)
上記浸出工程1では含銅鉄物11中の銅と共に鉄も浸出される。上述の500以上550mV以下の酸化還元電位に維持した場合、浸出液13の中では鉄イオンの多くは3価の形態で存在すると考えられる。3価の鉄イオンは水酸化鉄を形成し沈殿しやすいが、このとき生成する水酸化鉄は微細で濾過性や沈降性が劣り、さらに後工程の溶媒抽出工程4に持ち込まれるとクラッドを生成するなどして操業を阻害する要因となる。従って、3価の鉄イオンが浸出液13中に存在するのは好ましくない。
(Reduction process 2)
In the leaching step 1, iron is also leached together with the copper in the copper-containing iron material 11. When the oxidation-reduction potential of 500 to 550 mV is maintained, most of the iron ions in the leachate 13 are considered to exist in a trivalent form. Trivalent iron ions form iron hydroxide and are likely to precipitate, but the iron hydroxide produced at this time is fine and inferior in filterability and sedimentation. Further, when it is brought into the solvent extraction process 4 in the subsequent process, a clad is formed. It becomes a factor which obstructs operation by doing. Therefore, it is not preferable that trivalent iron ions exist in the leachate 13.

そこで、鉄を効果的に分離する方法の一つとして、比較的濾過性や沈降性の良い鉄化合物の一つであるゲーサイト(FeOOH)を生成することが考えられる。ここで、溶液中に含有する鉄イオンからゲーサイトを形成させるには、3価の鉄イオンから生成させるよりも、2価の鉄イオンを酸化剤などによって3価イオンに酸化する方が酸化の途中でゲーサイトの形成も促進され、溶液から鉄成分を効率よく分離できることが知られている。   Therefore, as one method for effectively separating iron, it is conceivable to generate goethite (FeOOH) which is one of iron compounds having relatively good filterability and sedimentation. Here, in order to form goethite from iron ions contained in the solution, oxidation of divalent iron ions to trivalent ions with an oxidizing agent or the like is more effective than formation from trivalent iron ions. It is known that the formation of goethite is promoted along the way, and the iron component can be efficiently separated from the solution.

したがって、上記の浸出液13中の鉄イオンがほぼすべて2価となるように一旦還元することが望ましい。このため、本還元工程2では、浸出液13に還元剤20を添加して浸出液13中の3価の鉄イオンを2価の鉄イオンに還元し、還元液23を得ている。還元目標としては、酸化還元電位が480mV以下となる状態であればよい。なお、浸出液13中には銅イオンも存在するが、2価の形態で存在する銅イオンを1価にまで還元すると、銅の沈殿が生成しやすくなり、鉄と共に残渣に分配してロスとなる可能性がある。従って、酸化還元電位は銅イオンが2価で安定な300mV以上とすることが望ましい。   Therefore, it is desirable to reduce the iron ions in the leachate 13 once so that almost all iron ions are divalent. For this reason, in this reduction process 2, the reducing agent 20 is added to the leaching solution 13 to reduce the trivalent iron ions in the leaching solution 13 to divalent iron ions to obtain a reducing solution 23. The reduction target may be in a state where the oxidation-reduction potential is 480 mV or less. In addition, copper ions are also present in the leachate 13. However, when copper ions present in a divalent form are reduced to monovalent, copper precipitates are easily generated and distributed to the residue together with iron, resulting in a loss. there is a possibility. Therefore, it is desirable that the oxidation-reduction potential be 300 mV or more, which is stable because the copper ion is divalent.

上記還元剤20に使用する材料は、特に限定するものではないが、図1の点線21に示すように、上記浸出工程1で浸出処理される前の含銅鉄物11の少なくとも一部を還元剤20として用いることができる。還元剤20として使用した含銅鉄物11は、還元残渣22として還元液23から分離した後、図1の点線24に示すように、上記浸出工程1に送って含銅鉄物11として浸出始液10に添加するのが望ましい。これにより、浸出液13を還元する程度が緩くなり、還元に要するコストや手間を節約することができる。   Although the material used for the reducing agent 20 is not particularly limited, as shown by a dotted line 21 in FIG. 1, at least a part of the copper-containing iron material 11 before being leached in the leaching step 1 is reduced. It can be used as the agent 20. The copper-containing iron product 11 used as the reducing agent 20 is separated from the reducing solution 23 as a reduction residue 22, and then sent to the leaching step 1 to start leaching as the copper-containing iron product 11 as shown by a dotted line 24 in FIG. It is desirable to add to the liquid 10. Thereby, the grade which reduces the leaching solution 13 becomes loose, and the cost and labor which reduction requires can be saved.

(脱鉄工程3)
脱鉄工程3では、前述の還元液23中に存在する2価の鉄イオンを、酸化剤30を用いて酸化してゲーサイトなどの鉄澱物31を生成する。生成した鉄澱物31は、銅イオンを含有する脱鉄液32から分離される。ここで使用する酸化剤30は、浸出工程1と同じように、空気、酸素、オゾン、過酸化水素などの少なくとも1種類以上を用いることができる。この中でも、制御が容易で過剰な酸化を防止しやすく且つ安価な、空気もしくは酸素を用いることが好ましい。
(Deironing process 3)
In the iron removal step 3, the divalent iron ions present in the reducing solution 23 are oxidized using the oxidizing agent 30 to generate iron starch 31 such as goethite. The produced iron starch 31 is separated from the iron removal solution 32 containing copper ions. As in the leaching step 1, the oxidizing agent 30 used here can be at least one or more of air, oxygen, ozone, hydrogen peroxide, and the like. Among these, it is preferable to use air or oxygen that is easy to control, easily prevents excessive oxidation, and inexpensive.

鉄イオンを酸化し3価イオンの形態とするには、加える酸化剤30を調整して脱鉄液32の酸化還元電位を500mV以上に維持することが望ましく、550mV以上に維持することがより望ましく、600mV以上に維持するのが特に望ましい。一方、脱鉄液32の酸化還元電位が必要以上に高すぎると、後工程の溶媒抽出工程4において有機溶媒の劣化を促進する可能性がある。さらに、酸化剤30も余分に必要となりコストが増加し、装置の耐酸化性対策も必要となるなどの問題がある。よって、800mV以下に維持することが望ましい。   In order to oxidize iron ions to form trivalent ions, it is desirable to adjust the oxidizing agent 30 to be added and maintain the oxidation-reduction potential of the deiron solution 32 at 500 mV or higher, and more preferably at 550 mV or higher. It is particularly desirable to maintain it at 600 mV or higher. On the other hand, if the oxidation-reduction potential of the iron removal liquid 32 is too high than necessary, deterioration of the organic solvent may be promoted in the solvent extraction step 4 that is a subsequent step. Furthermore, there is a problem in that an extra oxidizer 30 is required, the cost increases, and measures against oxidation resistance of the apparatus are required. Therefore, it is desirable to maintain it at 800 mV or less.

(溶媒抽出工程4)
脱鉄工程3で処理されてゲーサイトが取り除かれた脱鉄液32は、次に溶媒抽出工程4で処理される。溶媒抽出工程4では先ず抽出剤40に脱鉄液32を混合して互いに接触させ、銅イオンを選択的に抽出剤40中に抽出して抽出有機41を得る。抽出剤40には、例えば酸性溶媒抽出剤もしくはキレート抽出剤などの有機溶媒を用いることができる。
(Solvent extraction step 4)
The iron removal solution 32 from which the goethite has been removed by the iron removal step 3 is then processed in the solvent extraction step 4. In the solvent extraction step 4, first, the extraction agent 40 is mixed with the deiron solution 32 and brought into contact with each other, and copper ions are selectively extracted into the extraction agent 40 to obtain the extraction organic 41. For the extractant 40, for example, an organic solvent such as an acidic solvent extractant or a chelate extractant can be used.

これらの抽出剤40を用いて銅イオンを抽出すると、下記式1に示すように、抽出に伴って抽出後の抽残液42中に塩酸が生成する。この抽残液42は、図1の点線43に示すように、浸出工程1に繰り返して浸出始液10として再利用することができる。なお、当該抽残液42には平衡等の制約によりある程度銅イオンが残留するが、この銅イオンは前述の脱鉄工程3によって2価で存在しているため、そのまま酸化剤として用いることができる。   When copper ions are extracted using these extractants 40, hydrochloric acid is generated in the extracted residual liquid 42 after extraction as shown in the following formula 1. As shown by the dotted line 43 in FIG. 1, the extraction residual liquid 42 can be reused as the leaching start liquid 10 by repeating the leaching step 1. In addition, although some copper ions remain in the extraction residual liquid 42 due to constraints such as equilibrium, since the copper ions are divalently present in the above-described deironing step 3, they can be used as they are as oxidizing agents. .

[式1]
2R−H+CuCl→2R−Cu+2HCl (R:抽出剤の官能基)
[Formula 1]
2R-H + CuCl 2 → 2R-Cu + 2HCl (R: functional group of extractant)

次に、銅イオンを抽出した抽出有機41を硫酸酸性溶液44に混合して互いに接触させ、銅イオンを硫酸銅の形態として抽出有機41から硫酸酸性溶液44中に逆抽出し逆抽出液45を得る。逆抽出後有機46は、前述の抽出剤40として再利用される。このように、溶媒抽出工程4では塩酸酸性の溶液中の銅イオンを、硫酸酸性の溶液中の銅イオンとして回収することを特徴としている。銅イオンを硫酸塩の溶液中の銅イオンとして抽出有機41から分離することによって、後工程の電解採取工程5において、平滑な板状の電析を得ることができる。   Next, the extracted organic 41 from which the copper ions have been extracted is mixed with the sulfuric acid acidic solution 44 and brought into contact with each other, and the copper ions are back-extracted from the extracted organic 41 into the sulfuric acid acidic solution 44 in the form of copper sulfate. obtain. The organic 46 after back extraction is reused as the extractant 40 described above. Thus, the solvent extraction step 4 is characterized in that copper ions in a hydrochloric acid acidic solution are recovered as copper ions in a sulfuric acid acidic solution. By separating the copper ions from the extraction organic 41 as copper ions in a sulfate solution, a smooth plate-like electrodeposition can be obtained in the subsequent electrowinning step 5.

なお、溶媒抽出を行った後の抽残液42には抽出されなかった亜鉛、ニッケル等の不純物が含まれていることがある。このため、抽残液42を一部抜き出して、例えば炭酸カルシウムや水酸化カルシウムで中和したり、硫化水素によって硫化したりしてこれら不純物を抽残液42から分離することが好ましい。これにより、抽残液42の繰り返しに伴う系内での不純物の蓄積を抑制できる。   Note that the extraction residual liquid 42 after the solvent extraction may contain impurities such as zinc and nickel that have not been extracted. For this reason, it is preferable that a part of the extraction liquid 42 is extracted and neutralized with, for example, calcium carbonate or calcium hydroxide, or sulfided with hydrogen sulfide to separate these impurities from the extraction liquid 42. Thereby, accumulation of impurities in the system accompanying the repetition of the extraction residual liquid 42 can be suppressed.

(電解採取工程5)
上述の溶媒抽出工程4の逆抽出によって得られた逆抽出液45は、次に電解始液として電解採取工程5に送られる。ここで電解採取によって銅イオンは電気銅50、すなわち銅メタルとしてカソード上に電着され、よって銅の回収が行われる。電解条件は従来から用いられてきた条件をそのまま適用することができる。例えばアノードを鉛、カソードをステンレスとし、液温を60℃前後に維持して電流密度を300A/mとすれば、240時間通電した後に、厚さが9mm程度に電着した銅を得ることができる。
(Electrolytic collection process 5)
The back extract 45 obtained by the back extraction in the solvent extraction step 4 is then sent to the electrowinning step 5 as an electrolysis start solution. Here, copper ions are electrodeposited on the cathode as electrolytic copper 50, that is, copper metal, by electrowinning, so that copper is recovered. As the electrolysis conditions, the conditions conventionally used can be applied as they are. For example, if the anode is lead, the cathode is stainless, the liquid temperature is maintained at around 60 ° C., and the current density is 300 A / m 2 , after having been energized for 240 hours, copper electrodeposited to a thickness of about 9 mm can be obtained. Can do.

この電解採取工程5では、電解液として硫酸性の溶液を用いるので、前述したように、カソード上に電析する銅は、硫酸浴の電解精製で得られる電気銅と同様に表面が平滑な板状の形状となる。よって、販売上の制約なく取り扱うことができる。なお、銅を回収した後の電解廃液51は、図1の点線52に示すように、上記の溶媒抽出工程4に繰り返し、硫酸酸性溶液44として銅イオンを逆抽出する用途に再利用することもできる。   In this electrowinning step 5, since a sulfuric acid solution is used as the electrolytic solution, as described above, the copper electrodeposited on the cathode is a plate having a smooth surface like the electrolytic copper obtained by electrolytic purification of a sulfuric acid bath. It becomes a shape. Therefore, it can be handled without restrictions on sales. In addition, as shown by the dotted line 52 in FIG. 1, the electrolytic waste liquid 51 after recovering copper may be reused for the purpose of back extracting copper ions as the sulfuric acid acidic solution 44 by repeating the above-described solvent extraction step 4. it can.

以下、本発明の実施例及び比較例によって本発明を詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、酸化還元電位はすべて銀−塩化銀電極を参照電極として測定した。また、金属成分は蛍光X線分析法またはICPを用いて分析した。   EXAMPLES Hereinafter, although an Example and a comparative example of this invention demonstrate this invention in detail, this invention is not limited at all by these Examples. All oxidation-reduction potentials were measured using a silver-silver chloride electrode as a reference electrode. The metal component was analyzed using fluorescent X-ray analysis or ICP.

[実施例1]
浸出始液として、塩酸濃度3モル/Lの塩酸酸性溶液に、試薬塩化第2銅を添加して銅イオン濃度65g/Lとなるように調整した。このとき、塩化物イオン(Cl)濃度は、約180g/Lとなる。この塩化物を含有する塩酸酸性溶液に、スラリー濃度が20g/Lになるように黄銅鉱を主体とする下記表1に示す組成の平均粒径30μmの銅精鉱を加えた。このスラリー2リットルを容量3リットルのガラス製反応容器に入れて90℃の液温に維持し、スターラーで攪拌しながら毎分2リットルの空気を吹き込みつつ浸出を行った。
[Example 1]
As a leaching start solution, a reagent cupric chloride was added to an acidic hydrochloric acid solution having a hydrochloric acid concentration of 3 mol / L to adjust the copper ion concentration to 65 g / L. At this time, the chloride ion (Cl ) concentration is about 180 g / L. To this hydrochloric acid-containing hydrochloric acid-containing solution, copper concentrate having an average particle size of 30 μm and having a composition shown in Table 1 below, mainly composed of chalcopyrite, was added so that the slurry concentration was 20 g / L. 2 liters of this slurry was put into a 3 liter glass reaction vessel and maintained at a liquid temperature of 90 ° C., and leaching was performed while blowing 2 liters of air per minute while stirring with a stirrer.

Figure 2011021219
Figure 2011021219

浸出開始から1時間後に酸化還元電位が520mVに達したので空気の吹き込みを止め、さらに2時間攪拌を継続すると酸化還元電位は480mVに低下した。スラリーを濾過して浸出残渣と浸出液とに分離し、それぞれの銅含有量を分析した。その結果、銅精鉱に含まれていた銅の98%以上が浸出液中に浸出していた。   One hour after the start of leaching, the oxidation-reduction potential reached 520 mV. Therefore, when the blowing of air was stopped and stirring was continued for another 2 hours, the oxidation-reduction potential decreased to 480 mV. The slurry was filtered and separated into a leaching residue and a leaching solution, and each copper content was analyzed. As a result, 98% or more of the copper contained in the copper concentrate was leached into the leachate.

上記浸出処理で得た浸出液2リットルを容量3リットルのガラス製ビーカーに入れ、上記表1に示すものと同じ組成の銅精鉱200gを加えて液温を95℃に維持し、4時間攪拌した。酸化還元電位は継続して測定した。なお、攪拌中に空気を巻き込まないように、ビーカーの表面はラップで覆った。所定時間経過後、酸化還元電位は420mVまで低下したので、攪拌を止め濾過し還元液と還元残渣とに分離した。   2 liters of the leachate obtained by the above leaching treatment was put into a glass beaker having a capacity of 3 liters, 200 g of copper concentrate having the same composition as shown in Table 1 above was added, the liquid temperature was maintained at 95 ° C., and the mixture was stirred for 4 hours. . The redox potential was measured continuously. The surface of the beaker was covered with a wrap so that air was not involved during stirring. After a predetermined time, the oxidation-reduction potential dropped to 420 mV, so stirring was stopped and filtration was performed to separate the reducing solution and the reduction residue.

上記で得た還元液の液温を約80℃に維持し、毎分1リットルの流量で空気を6時間吹き込んだ。沈殿の生成が終了した時のpHは0.9であった。その後、濾過して濾液と澱物とに分離した。これら濾液と澱物とを分析すると、下記表2に示すように、還元液に含まれていた鉄のほぼ1/3を鉄澱物として分離することができることが分かった。この鉄殿物をX回折で同定したところ、ゲーサイトであることが確かめられた。   The liquid temperature of the reducing solution obtained above was maintained at about 80 ° C., and air was blown in at a flow rate of 1 liter per minute for 6 hours. The pH at the end of the precipitation was 0.9. Then, it filtered and isolate | separated into the filtrate and the starch. When these filtrates and starches were analyzed, it was found that approximately 1/3 of the iron contained in the reducing solution could be separated as iron starches as shown in Table 2 below. When this iron temple was identified by X-ray diffraction, it was confirmed to be goethite.

Figure 2011021219
Figure 2011021219

上記の浸出・還元・脱鉄の一連の工程を経て得られた脱鉄液に抽出剤を混合し銅イオンを抽出した。抽出剤にはキレート系の抽出剤であるCognis社製の商品名LIX860iを用い、これを炭化水素系希釈剤(ジャパンエナジー社製、商品名EMクリーン3000)を用いて濃度を30%に希釈して使用した。   An extractant was mixed with the iron removal liquid obtained through the above-described series of steps of leaching, reduction, and iron removal to extract copper ions. As the extractant, a brand name LIX860i manufactured by Cognis, which is a chelate type extractant, was used, and this was diluted to 30% using a hydrocarbon-based diluent (trade name EM Clean 3000 manufactured by Japan Energy Co., Ltd.). Used.

次に、抽出済みの抽出有機を、硫酸濃度3モル/L、銅イオン濃度20g/Lの硫酸銅を含む逆抽出用の硫酸酸性溶液と接触混合させて逆抽出を行い、逆抽出液を得た。このとき、逆抽出液内の鉄イオン濃度は0.6g/L、塩化物イオン濃度は0.1g/L未満であり、銅イオンは、鉄イオンや塩化物イオンから良好に分離されていることが分かった。   Next, the extracted organic extract is contact-mixed with a sulfuric acid solution for back extraction containing copper sulfate having a sulfuric acid concentration of 3 mol / L and a copper ion concentration of 20 g / L, and back extraction is performed to obtain a back extract. It was. At this time, the iron ion concentration in the back extract is 0.6 g / L, the chloride ion concentration is less than 0.1 g / L, and the copper ions are well separated from the iron ions and chloride ions. I understood.

上記溶媒抽出及び逆抽出で得られた各溶液中に含まれる銅イオン、鉄イオン、硫黄イオン、塩化物イオンの濃度(g/L)を下記表3に示す。この表3から分かるように、脱鉄液に含有していた銅イオンの35%を抽出することができた。一方、鉄イオンは5%未満しか抽出しておらず、良好な銅イオン抽出特性が得られていることが分かった。   The concentrations (g / L) of copper ions, iron ions, sulfur ions, and chloride ions contained in each solution obtained by the solvent extraction and back extraction are shown in Table 3 below. As can be seen from Table 3, 35% of the copper ions contained in the iron removal solution could be extracted. On the other hand, iron ions were extracted by less than 5%, and it was found that good copper ion extraction characteristics were obtained.

Figure 2011021219
Figure 2011021219

上記逆抽出で得た逆抽出液を電解液として、容量2リットルの塩ビ製電解槽に入れ液温を60℃に維持した。この中に60×60mmのサイズの鉛製のアノード1枚と、カソードとして同サイズで裏面をマスキングテープで覆ったステンレス板1枚とを面間が30mmとなるように対面させて装入した。電解槽内の電解液はスターラーで攪拌した。アノードとカソード間に1.1Aの電流を流した。この状態で20時間通電した後、通電を停止して、カソードを引揚げて電着板を引き剥がし、水で洗浄し、空気を吹き付けて乾燥した。電着物は表面が平滑で、分析すると銅品位は99%以上であった。   The back extract obtained by the back extraction was used as an electrolyte solution in a 2 liter PVC electrolytic tank, and the solution temperature was maintained at 60 ° C. A lead anode having a size of 60 × 60 mm and a stainless steel plate of the same size and having the back surface covered with masking tape were placed facing each other so that the distance between them was 30 mm. The electrolytic solution in the electrolytic cell was stirred with a stirrer. A current of 1.1 A was passed between the anode and the cathode. After energizing for 20 hours in this state, the energization was stopped, the cathode was lifted, the electrodeposition plate was peeled off, washed with water, and dried by blowing air. The electrodeposit had a smooth surface and analysis showed that the copper quality was 99% or more.

[実施例2]
浸出始液としての塩化物を含有する塩酸酸性溶液中の銅イオン濃度を90g/Lにした以外は実施例1と同様の条件で酸化還元電位が520mVになるまで連続して浸出を行った。浸出完了後に浸出残渣中に残った銅から計算すると、銅精鉱中の銅の浸出率は98%以上であり、十分な浸出が行われていた。しかし、過飽和で銅の結晶が析出し、閉塞などを考えると上記実施例1ほどには好ましくはなかった。なお、酸化還元電位は、浸出を開始してから2.5時間後に520mVに到達した。
[Example 2]
Leaching was continuously carried out until the oxidation-reduction potential reached 520 mV under the same conditions as in Example 1 except that the concentration of copper ions in the acidic hydrochloric acid solution containing chloride as the leaching start solution was 90 g / L. When calculated from the copper remaining in the leaching residue after completion of leaching, the leaching rate of copper in the copper concentrate was 98% or more, and sufficient leaching was performed. However, copper crystals were precipitated due to supersaturation, which was not as favorable as in Example 1 above in view of blockage and the like. The oxidation-reduction potential reached 520 mV 2.5 hours after the start of leaching.

[実施例3]
浸出始液としての塩化物を含有する塩酸酸性溶液中の銅イオン濃度を9g/Lにした以外は実施例1と同様の条件で酸化還元電位が520mVになるまで連続して浸出した。なお、実施例1と同じ塩化物イオン濃度となるように、試薬塩化第2銅に加えて塩化ナトリウムを加えた。酸化還元電位が520mVに到達するのに9時間を要したが、銅精鉱中の銅の98%以上を浸出することができた。
[Example 3]
Leaching was continued until the oxidation-reduction potential reached 520 mV under the same conditions as in Example 1 except that the copper ion concentration in the hydrochloric acid acidic solution containing chloride as the leaching start solution was 9 g / L. In addition, sodium chloride was added to the reagent cupric chloride so that the same chloride ion concentration as in Example 1 was obtained. Although it took 9 hours for the redox potential to reach 520 mV, 98% or more of the copper in the copper concentrate could be leached.

[比較例1]
浸出工程において空気を吹き込まなかった以外は実施例1と同じ条件とした。その結果、浸出開始から3時間が経過しても、酸化還元電位は406mVまでしか上がらず、銅精鉱中の銅の浸出率も10%にとどまった。
[Comparative Example 1]
The conditions were the same as in Example 1 except that air was not blown in the leaching process. As a result, even after 3 hours from the start of leaching, the oxidation-reduction potential increased only to 406 mV, and the leaching rate of copper in the copper concentrate remained at 10%.

[実施例4]
浸出始液としての塩化物を含有する塩酸酸性溶液中の銅イオン濃度を0g/Lとした以外は実施例1と同様の条件で酸化還元電位が520mVになるまで連続して浸出を行った。なお、実施例1と同じ塩化物イオン濃度となるように銅の代わりに塩化ナトリウムを加えた。銅精鉱中の銅の浸出率は95%以上となったが、520mVに達するのに14時間を要した。
[Example 4]
Leaching was continuously carried out until the oxidation-reduction potential reached 520 mV under the same conditions as in Example 1 except that the copper ion concentration in the hydrochloric acid acidic solution containing chloride as the leaching start solution was 0 g / L. In addition, sodium chloride was added instead of copper so that it might be the same chloride ion concentration as Example 1. Although the copper leaching rate in the copper concentrate was 95% or more, it took 14 hours to reach 520 mV.

[実施例5]
浸出の目標の酸化還元電位を500mVとした以外は実施例1と同じ条件で、浸出試験を行った。このときの銅浸出率は約80%にとどまった。
[Example 5]
The leaching test was conducted under the same conditions as in Example 1 except that the target redox potential for leaching was 500 mV. The copper leaching rate at this time was only about 80%.

[比較例2]
上記実施例1と同様にして得られた浸出液250mLをビーカーに入れ、実施例1における還元工程を経ずに、液温を70℃に維持しながら毎分0.5リットルの空気を吹き込んだ。空気を吹き込み始める前での液の酸化還元電位は523mVで、3時間経過しても酸化還元電位は537mVまでしか上昇せず、下記表4に示すように、浸出液に含有した鉄の4%程度しか分離して除去することはできなかった。
[Comparative Example 2]
250 mL of the leachate obtained in the same manner as in Example 1 was placed in a beaker, and 0.5 liters of air was blown per minute while maintaining the liquid temperature at 70 ° C. without passing through the reduction step in Example 1. The redox potential of the liquid before starting to blow air was 523 mV, and the redox potential increased only to 537 mV even after 3 hours, and as shown in Table 4 below, about 4% of the iron contained in the leachate However, it could only be separated and removed.

Figure 2011021219
Figure 2011021219

1 浸出工程
2 還元工程
3 脱鉄工程
4 溶媒抽出工程
5 電解採取工程
1 leaching process 2 reduction process 3 iron removal process 4 solvent extraction process 5 electrowinning process

Claims (8)

(1)塩化物を含有する塩酸酸性の浸出始液に含銅鉄物と酸化剤を添加し、含銅鉄物中の銅と鉄を浸出させて浸出液と浸出残渣とを得る浸出工程と、
(2)前記浸出液に還元剤を添加して浸出液中の3価の鉄イオンを2価の鉄イオンに還元する還元工程と、
(3)前記還元工程で得た還元液に酸化剤を添加し、銅イオンを含有する脱鉄液と鉄澱物を得る脱鉄工程と、
(4)有機溶媒からなる抽出剤に前記脱鉄液を混合し、脱鉄液中の銅イオンを有機溶媒中に抽出して抽出有機と抽残液とを得、次に硫酸酸性溶液に該抽出有機を混合し、抽出有機中の銅イオンを逆抽出して逆抽出液と逆抽出後有機を得る溶媒抽出工程と、
(5)前記逆抽出液を電解採取し、電気銅と電解廃液を得る電解採取工程と、からなることを特徴とする含銅鉄物からの銅の回収方法。
(1) A leaching step of adding a copper-containing iron and an oxidizing agent to a hydrochloric acid acidic leaching start solution containing chloride, and leaching copper and iron in the copper-containing iron to obtain a leaching solution and a leaching residue;
(2) a reduction step of adding a reducing agent to the leachate to reduce trivalent iron ions in the leachate to divalent iron ions;
(3) a deironing step of adding an oxidizing agent to the reducing solution obtained in the reducing step to obtain a deironing solution containing copper ions and an iron starch;
(4) The above-mentioned iron removal solution is mixed with an extractant composed of an organic solvent, and copper ions in the iron removal solution are extracted into an organic solvent to obtain an extraction organic and a residual extraction solution. A solvent extraction step of mixing extracted organics, back extracting copper ions in the extracted organics to obtain a back extract and back extracted organics;
(5) A method for recovering copper from a copper-containing iron product, comprising: an electrolytic collection step of electrolytically collecting the back extract to obtain electrolytic copper and an electrolytic waste solution.
前記浸出工程で浸出処理される前の含銅鉄物の少なくとも一部を前記還元剤として使用し、使用後は還元残渣として還元液から分離して浸出始液に添加することを特徴とする、請求項1に記載の含銅鉄からの銅の回収方法。   Using at least a part of the copper-containing iron material before being leached in the leaching step as the reducing agent, after use, separating from the reducing solution as a reducing residue and adding to the leaching start solution, The method for recovering copper from the copper-containing iron according to claim 1. 前記塩化物が塩化第1銅または塩化第2銅であり、前記浸出始液中の銅イオン濃度が10g/L以上80g/L以下の範囲にあることを特徴とする、請求項1又は2に記載の含銅鉄からの銅の回収方法。   The said chloride is cuprous chloride or cupric chloride, and the copper ion concentration in the said leaching start liquid exists in the range of 10 g / L or more and 80 g / L or less, The Claim 1 or 2 characterized by the above-mentioned. A method for recovering copper from the described copper-containing iron. 前記抽出剤として酸性溶媒抽出剤またはキレート抽出剤を用いることを特徴とする、請求項1〜3のいずれかに記載の含銅鉄からの銅の回収方法。   The method for recovering copper from copper-containing iron according to any one of claims 1 to 3, wherein an acidic solvent extractant or a chelate extractant is used as the extractant. 前記浸出液の酸化還元電位が、銀塩化銀電極を参照電極にした場合で500mV以上550mV以下の範囲に維持されるように浸出工程で添加する酸化剤の量を制御することを特徴とする、請求項1〜4のいずれかに記載の含銅鉄からの銅の回収方法。   The amount of oxidizing agent added in the leaching step is controlled so that the oxidation-reduction potential of the leaching solution is maintained in a range of 500 mV or more and 550 mV or less when a silver-silver chloride electrode is used as a reference electrode. Item 5. A method for recovering copper from copper-containing iron according to any one of Items 1 to 4. 前記脱鉄液の酸化還元電位が、銀塩化銀電極を参照電極とした場合で500mV以上800mV以下の範囲に維持されるように前記脱鉄工程で添加する酸化剤の量を制御することを特徴とする、請求項1〜5のいずれかに記載の含銅鉄からの銅の回収方法。   The amount of oxidizing agent added in the deironing step is controlled so that the oxidation-reduction potential of the deironing solution is maintained in the range of 500 mV to 800 mV when a silver-silver chloride electrode is used as a reference electrode. The method for recovering copper from the copper-containing iron according to any one of claims 1 to 5. 前記抽残液を前記浸出始液として使用することを特徴とする、請求項1〜6のいずれかに記載の含銅鉄からの銅の回収方法。   The method for recovering copper from copper-containing iron according to any one of claims 1 to 6, wherein the extraction residual liquid is used as the leaching start liquid. 前記含銅鉄物が、黄銅鉱、班銅鉱若しくは輝銅鉱を含む銅鉱石及び/又は銅精鉱、銅を含む金属スクラップ、金属精錬の中間原料のいずれか1種類以上のものであることを特徴とする、請求項1〜7のいずれかに記載の含銅鉄からの銅の回収方法。   The copper-containing iron product is one or more of copper ore and / or copper concentrate, copper concentrate, copper-containing metal scrap, and metal refining intermediate raw material containing chalcopyrite, briquette or chalcocite The method for recovering copper from copper-containing iron according to any one of claims 1 to 7.
JP2009166006A 2009-07-14 2009-07-14 Method for recovering copper from copper-containing iron Active JP5439997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166006A JP5439997B2 (en) 2009-07-14 2009-07-14 Method for recovering copper from copper-containing iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166006A JP5439997B2 (en) 2009-07-14 2009-07-14 Method for recovering copper from copper-containing iron

Publications (2)

Publication Number Publication Date
JP2011021219A true JP2011021219A (en) 2011-02-03
JP5439997B2 JP5439997B2 (en) 2014-03-12

Family

ID=43631535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166006A Active JP5439997B2 (en) 2009-07-14 2009-07-14 Method for recovering copper from copper-containing iron

Country Status (1)

Country Link
JP (1) JP5439997B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513201A (en) * 2011-02-25 2014-05-29 ドイチェ エーデルスタールヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of hard material particles
CN104087971A (en) * 2014-07-11 2014-10-08 北京矿冶研究总院 Method for treating lead matte
CN104451159A (en) * 2014-12-02 2015-03-25 赣州中联环保科技开发有限公司 Process for recycling metals from electroplating wastewater
JP2020019664A (en) * 2018-07-31 2020-02-06 住友金属鉱山株式会社 Production method of high purity cobalt chloride aqueous solution
CN112143899A (en) * 2020-09-16 2020-12-29 励福(江门)环保科技股份有限公司 Method for recovering copper and enriching precious metals from waste circuit boards
CN113213547A (en) * 2021-03-10 2021-08-06 斯瑞尔环境科技股份有限公司 Method for recovering copper and iron from etching waste liquid
CN115772607A (en) * 2022-12-12 2023-03-10 昆明理工大学 Method for efficiently leaching chalcopyrite by using ultrasonic-enhanced complexing agent
CN115772606A (en) * 2022-12-12 2023-03-10 昆明理工大学 Method for leaching chalcopyrite by ultrasonically strengthening persulfate oxidation in hydrochloric acid system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877734A (en) * 2019-11-26 2021-06-01 云梭(宁波)科技有限公司 Treatment method of high-speed rail alloy treatment equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141346A (en) * 1982-02-15 1983-08-22 Dowa Mining Co Ltd Collecting method of metal from industrial by-product
JPS61132516A (en) * 1984-11-29 1986-06-20 Kurita Water Ind Ltd Extraction process
JPS61143527A (en) * 1984-12-14 1986-07-01 Kurita Water Ind Ltd Treatment of metal-containing water
JPH02197533A (en) * 1989-01-25 1990-08-06 Sumitomo Metal Mining Co Ltd Separation of valuable metal
JP2000256645A (en) * 1999-03-08 2000-09-19 Univ Miyazaki Method for selectively recovering copper ion from alkaline solution
JP2004504494A (en) * 2000-07-25 2004-02-12 フェルプス ドッジ コーポレイション Method for recovery of copper from sulfide ore material using ultra-fine grinding and moderate temperature pressure leaching
JP2005060813A (en) * 2002-11-18 2005-03-10 Sumitomo Metal Mining Co Ltd Method for refining copper raw material containing copper sulfide mineral

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141346A (en) * 1982-02-15 1983-08-22 Dowa Mining Co Ltd Collecting method of metal from industrial by-product
JPS61132516A (en) * 1984-11-29 1986-06-20 Kurita Water Ind Ltd Extraction process
JPS61143527A (en) * 1984-12-14 1986-07-01 Kurita Water Ind Ltd Treatment of metal-containing water
JPH02197533A (en) * 1989-01-25 1990-08-06 Sumitomo Metal Mining Co Ltd Separation of valuable metal
JP2000256645A (en) * 1999-03-08 2000-09-19 Univ Miyazaki Method for selectively recovering copper ion from alkaline solution
JP2004504494A (en) * 2000-07-25 2004-02-12 フェルプス ドッジ コーポレイション Method for recovery of copper from sulfide ore material using ultra-fine grinding and moderate temperature pressure leaching
JP2005060813A (en) * 2002-11-18 2005-03-10 Sumitomo Metal Mining Co Ltd Method for refining copper raw material containing copper sulfide mineral

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513201A (en) * 2011-02-25 2014-05-29 ドイチェ エーデルスタールヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of hard material particles
US9365910B2 (en) 2011-02-25 2016-06-14 Deutsche Edelstahlwerke Gmbh Method for recovering hard material particles
CN104087971A (en) * 2014-07-11 2014-10-08 北京矿冶研究总院 Method for treating lead matte
CN104451159A (en) * 2014-12-02 2015-03-25 赣州中联环保科技开发有限公司 Process for recycling metals from electroplating wastewater
JP2020019664A (en) * 2018-07-31 2020-02-06 住友金属鉱山株式会社 Production method of high purity cobalt chloride aqueous solution
JP7070208B2 (en) 2018-07-31 2022-05-18 住友金属鉱山株式会社 Method for manufacturing high-purity cobalt chloride aqueous solution
CN112143899A (en) * 2020-09-16 2020-12-29 励福(江门)环保科技股份有限公司 Method for recovering copper and enriching precious metals from waste circuit boards
CN112143899B (en) * 2020-09-16 2022-07-01 励福(江门)环保科技股份有限公司 Method for recovering copper and enriching precious metals from waste circuit boards
CN113213547A (en) * 2021-03-10 2021-08-06 斯瑞尔环境科技股份有限公司 Method for recovering copper and iron from etching waste liquid
CN115772607A (en) * 2022-12-12 2023-03-10 昆明理工大学 Method for efficiently leaching chalcopyrite by using ultrasonic-enhanced complexing agent
CN115772606A (en) * 2022-12-12 2023-03-10 昆明理工大学 Method for leaching chalcopyrite by ultrasonically strengthening persulfate oxidation in hydrochloric acid system

Also Published As

Publication number Publication date
JP5439997B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5439997B2 (en) Method for recovering copper from copper-containing iron
Zhang et al. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide
JP4999108B2 (en) Gold leaching method
JP4468999B2 (en) Method for recovering metals from minerals
CA2454821C (en) Process for direct electrowinning of copper
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
EA014105B1 (en) Processing of nickel ore or concentrates with sodium chloride
JP2009256764A (en) Method for collecting copper from ore
CN102994747A (en) Technology for recovering metallic copper from high-lead copper matte
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP5370683B2 (en) Method for recovering copper from copper sulfide
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
JP2011105969A (en) Method for recovering silver from sulfide containing copper
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
Kumar et al. Recovery of cadmium from hydrometallurgical zinc smelter by selective leaching
EP3739069B1 (en) Method of extracting metals from polymetallic sulphide ores or concentrates
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP6233478B2 (en) Purification method of bismuth
WO2018138917A1 (en) Bismuth purification method
JP2010202457A (en) Method for removing chlorine in acidic liquid
JP4506660B2 (en) Silver recovery method in wet copper smelting process
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150