JP6448980B2 - Thermoelectric conversion element and thermoelectric conversion module - Google Patents

Thermoelectric conversion element and thermoelectric conversion module Download PDF

Info

Publication number
JP6448980B2
JP6448980B2 JP2014213756A JP2014213756A JP6448980B2 JP 6448980 B2 JP6448980 B2 JP 6448980B2 JP 2014213756 A JP2014213756 A JP 2014213756A JP 2014213756 A JP2014213756 A JP 2014213756A JP 6448980 B2 JP6448980 B2 JP 6448980B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
pedot
pss
thermoelectric
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014213756A
Other languages
Japanese (ja)
Other versions
JP2016082132A (en
Inventor
和大 桐原
和大 桐原
雅一 向田
雅一 向田
慶碩 衛
慶碩 衛
石田 敬雄
敬雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014213756A priority Critical patent/JP6448980B2/en
Publication of JP2016082132A publication Critical patent/JP2016082132A/en
Application granted granted Critical
Publication of JP6448980B2 publication Critical patent/JP6448980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維状物質からなる断熱材と導電性高分子等の有機熱電材料を複合化した熱電変換素子及び熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion element and a thermoelectric conversion module in which a heat insulating material made of a fibrous material and an organic thermoelectric material such as a conductive polymer are combined.

熱電変換素子は、材料の両端の温度差に応じて当該両端に起電力が発生するゼーベック効果、又は、2種類の異なる材料の端部を接合し、この接合部分を通過させる電流によって接合部分での吸熱又は発熱を生じさせるペルチェ効果を用いて、熱エネルギーと電気エネルギーとを相互に変換する素子である。熱電変換モジュールとは、ゼーベック効果による出力電力又はペルチェ効果による吸熱量が用途に応じて適切になるように、複数の熱電変換素子を電極で配線し、基材で挟んで熱源又は冷却対象物と接触させることを可能にした装置である。   The thermoelectric conversion element has a Seebeck effect in which an electromotive force is generated at both ends according to a temperature difference between both ends of the material, or an end portion of two kinds of different materials, and an electric current that passes through the bonded portion at the bonded portion. It is an element that converts heat energy and electrical energy to each other using the Peltier effect that causes heat absorption or heat generation. The thermoelectric conversion module means that a plurality of thermoelectric conversion elements are wired with electrodes so that the output power by the Seebeck effect or the heat absorption amount by the Peltier effect is appropriate according to the application, and sandwiched between the base material and the heat source or the object to be cooled. It is a device that enables contact.

ゼーベック効果を利用して、工場・家庭などの排熱配管や人体、自動車・鉄道などの種々の熱源からの排熱を熱電変換して利用する場合、これらの熱源に対して熱電変換モジュールを直接取り付けることによって、排熱を電気に変換できる。この時、複雑な形状を持つこれらの熱源から効率的に電力を回収するためには、熱源の形状に合わせて接触できる柔軟性のあるモジュールであることが望ましい。   When using the Seebeck effect to convert exhaust heat from various heat sources such as exhaust pipes in factories and homes, human bodies, automobiles, railways, etc., using thermoelectric conversion modules directly to these heat sources By attaching it, waste heat can be converted into electricity. At this time, in order to efficiently recover power from these heat sources having a complicated shape, it is desirable that the module be a flexible module that can be contacted according to the shape of the heat source.

このような熱源として想定される200℃以下の温度域で実用化されている熱電変換モジュールとしては、Bi-Te無機半導体を焼結・成形して電極と接合した素子を、セラミックス基板上に配置した構造を持つものが一般的である。
Bi-Te無機半導体は、当該温度域において材料としての熱電変換性能が最も高いが、有害で希少な元素を含むこと、焼結プロセスが必須のため大量生産が困難で製造エネルギーコストが高いこと、剛直なセラミックス基板を用いるため複雑な形状の熱源に効率的に熱接触させることが困難であること、などの制約があり、膨大な排熱量を有する当該温度域での熱源に用いる発電素子としては普及していない。
As a thermoelectric conversion module put into practical use in a temperature range of 200 ° C or less that is assumed as such a heat source, an element in which a Bi-Te inorganic semiconductor is sintered and formed and joined to an electrode is placed on a ceramic substrate. A structure having the above structure is common.
Bi-Te inorganic semiconductors have the highest thermoelectric conversion performance as a material in the temperature range, but contain harmful and rare elements, and because the sintering process is essential, mass production is difficult and manufacturing energy costs are high. As a power generation element used for a heat source in the temperature range having a huge amount of exhaust heat, there is a limitation such as it is difficult to efficiently contact a heat source with a complicated shape because a rigid ceramic substrate is used. Not popular.

特許文献1や特許文献2には、導電性高分子がBi-Teなどの無機半導体と同様に熱電変換素子として用いることが可能であることが記載されている。
導電性高分子を用いた場合、当該高分子の溶液を塗布・乾燥させることで容易に連続的に熱電素子を形成でき大量生産が可能となるうえ、希少元素を含まず、さらにはBi-Teなどの無機半導体に比べ素子が低温で製造できるため製造コストを低減できる。さらに、導電性高分子フィルムが柔軟性を持つため、これらからなる熱電変換素子を柔軟性のある基材の上に配置すれば、様々な形状に成型可能な熱電変換モジュールを製造することが可能である。特許文献1及び特許文献2では、従来のBi-Te無機半導体などを用いた熱電変換素子と同様に、キャリアのタイプがp型及びn型両方の導電性高分子熱電材料を用いて発電を行っている。
しかしながら、大気中で塗布製膜が可能で、熱電変換性能の低くないn型導電性高分子は現時点で得られていない。そのため導電性高分子からなる熱電変換素子では、現状においては、p型導電性高分子のみで構成しなければ、発電効率の高い素子が実現できない。
Patent Document 1 and Patent Document 2 describe that a conductive polymer can be used as a thermoelectric conversion element like an inorganic semiconductor such as Bi-Te.
When a conductive polymer is used, a thermoelectric device can be easily and continuously formed by applying and drying the solution of the polymer, enabling mass production, free of rare elements, and Bi-Te. Since an element can be manufactured at a low temperature compared to inorganic semiconductors such as, the manufacturing cost can be reduced. Furthermore, since the conductive polymer film has flexibility, it is possible to manufacture thermoelectric conversion modules that can be molded into various shapes by placing these thermoelectric conversion elements on a flexible substrate. It is. In Patent Document 1 and Patent Document 2, power generation is performed using conductive polymer thermoelectric materials of both p-type and n-type carriers, as in the case of conventional thermoelectric conversion elements using Bi-Te inorganic semiconductors. ing.
However, an n-type conductive polymer that can be coated and formed in the air and does not have low thermoelectric conversion performance has not been obtained at present. Therefore, at present, a thermoelectric conversion element made of a conductive polymer cannot realize an element with high power generation efficiency unless it is composed only of a p-type conductive polymer.

特許文献3では、可とう性のある基板上にp型又はn型のいずれか一方の熱電変換素子を配置し、それらを伸縮可能な配線でつなぐことで、どちらか一方のキャリアタイプでも熱電変換を可能とする柔軟な熱電変換モジュールについて記載されている。特許文献3では、具体的には、p型導電性高分子のみを用いた素子を金属電極で挟みこれらを伸縮可能な金属電極でつないだモジュールで、柔軟性を維持しつつ発電性能が得られることが記載されている。   In Patent Document 3, either a p-type or an n-type thermoelectric conversion element is arranged on a flexible substrate, and these are connected by an expandable / contractible wiring so that either one of the carrier types can be thermoelectrically converted. A flexible thermoelectric conversion module is described. Specifically, Patent Document 3 is a module in which an element using only a p-type conductive polymer is sandwiched between metal electrodes and these are connected by a metal electrode that can be expanded and contracted, and power generation performance can be obtained while maintaining flexibility. It is described.

ここで、p型導電性高分子のみを用いて、柔軟性のある薄膜型のモジュールで発電を行う場合に、p型導電性高分子の単一素子からなるモジュールで得られる最大の発電出力P1は、以下の式で与えられる。 Here, when generating power with a flexible thin-film module using only p-type conductive polymer, the maximum power output P obtained with a module consisting of a single element of p-type conductive polymer 1 is given by the following equation.

Figure 0006448980
ここで、Sは導電性高分子のゼーベック係数、r1は素子の内部抵抗、Rbは素子と電極との界面電気抵抗、ΔTは素子の厚さ方向の両端の温度差である。素子の両側で電極と接合するため、Rbには係数2がつく。
Figure 0006448980
Here, S is the Seebeck coefficient of the conductive polymer, r 1 is the internal resistance of the element, R b is the interface electrical resistance between the element and the electrode, and ΔT is the temperature difference between both ends in the thickness direction of the element. Rb has a factor of 2 because it joins the electrode on both sides of the device.

導電性高分子を用いた熱電変換素子は一般的に、溶液を塗布・乾燥して得られるフィルム状の形状で得られるが、その発電出力を高めるためには素子の内部抵抗r1を小さくすることが必要であり、熱源からの熱流束がフィルム形状の素子の厚さ方向と平行になることが望ましい。その際、導電性高分子フィルムの厚さ方向の両端に十分な温度差ΔTを確保するためには、特許文献3の場合には0.5mm以上、5mm以下の厚みが必要であると記載されている。
しかしながら、塗布製膜法で0.5mm以上の厚みの導電性高分子フィルムを得ようとすると、一度に大量の高分子溶液を塗布・乾燥させる必要があり、その分だけ原料コストが高くなるばかりでなく、乾燥プロセスに要する時間が長くなり製造効率が低下する。
加えて、塗布・乾燥を繰り返したり、薄く製膜したフィルムを重ねたりして厚みを確保した場合は、各々の導電性高分子フィルム層の間の界面で電気抵抗を生じてしまい、結果として素子の内部抵抗r1が高くなって発電出力が低下する問題が生じる。
さらには、素子を挟む電極と伸縮可能な配線材料との間も接合が必要であり、余分な製造プロセスを生むのみならずモジュール全体の抵抗値も増加する問題もある。
A thermoelectric conversion element using a conductive polymer is generally obtained in the form of a film obtained by applying and drying a solution. In order to increase the power output, the internal resistance r 1 of the element is reduced. It is desirable that the heat flux from the heat source be parallel to the thickness direction of the film-shaped element. At that time, in order to secure a sufficient temperature difference ΔT at both ends in the thickness direction of the conductive polymer film, it is described in Patent Document 3 that a thickness of 0.5 mm or more and 5 mm or less is required. Yes.
However, when trying to obtain a conductive polymer film with a thickness of 0.5 mm or more by the coating method, it is necessary to apply and dry a large amount of polymer solution at a time, which only increases the raw material cost. In addition, the time required for the drying process becomes longer and the production efficiency is lowered.
In addition, if the thickness is ensured by repeating coating and drying, or by stacking thin films, an electrical resistance is generated at the interface between the respective conductive polymer film layers, resulting in a device. As a result, the internal resistance r 1 becomes higher and the power generation output is reduced.
Furthermore, it is necessary to join between the electrodes sandwiching the element and the expandable / contractable wiring material, which causes not only an extra manufacturing process but also an increase in the resistance value of the entire module.

特許文献4では、導電性高分子を用いた熱電変換素子においてP1を大きくするために、ΔTを大きくするための素子構造の改良方法について記載している。
特許文献4において記載している熱電変換モジュールは、熱源からの熱流束に平行な向きに導電性高分子フィルムを並べた素子の間に、導電性高分子より熱伝導率の低い絶縁性断熱材を挿入し、これらを積層したものを、基材と絶縁性フィルムで挟んだ構造をもつ薄膜型熱電変換モジュールである。
このとき、熱源からの熱流束に垂直な断面積、すなわち薄膜型モジュールの面内方向に平行に切り出した断面積に対して、絶縁体断熱材の断面積が占める割合が大きいほど、素子両端の温度差ΔTを大きくすることができることが記載されている。一方で、モジュール全体の断面積に対する絶縁体断熱材の断面積が占める割合が小さいほど、つまり導電性高分子フィルムの断面積の占める割合が大きいほど、素子の内部抵抗が小さくなり発電出力は大きくなるが、逆に断熱材による効果が小さくなることでΔTが小さくなるため、導電性高分子フィルムの断面積の占める割合は、ある一定の値で最大値を与えるとされている。
このとき、熱電変換モジュールの柔軟性や、高分子フィルムの製造時間など製造上の効率を考慮すると高分子フィルムの厚さを50μm以上かつ200μm以下とすることが最適であると記載されている。
熱源からの熱エネルギーを用いて、センサーなどを駆動するのに十分な電力を得るためには、モジュールの厚さ、つまり高分子フィルムの長さは10mm程度以上とし、高分子フィルムと絶縁性断熱材とを多数積層することが必要である。
以上のように、特許文献4においては、高分子フィルムを熱流束に平行な向きに並べ、積層することで、素子の両端の温度差を大きくすることによって、発電出力を高めることを可能としているが、高分子フィルムの厚さを50μm以上かつ200μm以下にした場合、所望の出力電圧及び電力を得るためには多数の素子を積層する必要があるため、原料となる導電性高分子溶液の使用量が大きくならざるを得ないうえ、多数回の積層工程による製造上の効率低下の問題も存在する。さらには多数回の積層工程により、モジュールの柔軟性を損なう虞がある。
Patent Document 4 describes a method for improving an element structure for increasing ΔT in order to increase P 1 in a thermoelectric conversion element using a conductive polymer.
The thermoelectric conversion module described in Patent Document 4 is an insulating heat insulating material having a lower thermal conductivity than a conductive polymer between elements in which conductive polymer films are arranged in a direction parallel to a heat flux from a heat source. Is a thin film type thermoelectric conversion module having a structure in which a laminate is inserted between a base material and an insulating film.
At this time, the larger the ratio of the cross-sectional area of the insulator insulation to the cross-sectional area perpendicular to the heat flux from the heat source, that is, the cross-sectional area cut out in parallel to the in-plane direction of the thin-film module, It is described that the temperature difference ΔT can be increased. On the other hand, the smaller the proportion of the cross-sectional area of the insulator insulation relative to the cross-sectional area of the entire module, that is, the greater the proportion of the cross-sectional area of the conductive polymer film, the smaller the internal resistance of the element and the larger the power generation output. However, on the contrary, since the effect of the heat insulating material is reduced, ΔT is reduced, and therefore the ratio of the cross-sectional area of the conductive polymer film is assumed to give a maximum value at a certain fixed value.
At this time, it is described that it is optimal to set the thickness of the polymer film to 50 μm or more and 200 μm or less in consideration of the production efficiency such as the flexibility of the thermoelectric conversion module and the production time of the polymer film.
In order to obtain sufficient power to drive the sensor using heat energy from the heat source, the thickness of the module, that is, the length of the polymer film should be about 10 mm or more. It is necessary to laminate a large number of materials.
As described above, in Patent Document 4, it is possible to increase the power generation output by increasing the temperature difference between both ends of the element by arranging and laminating polymer films in a direction parallel to the heat flux. However, when the thickness of the polymer film is 50 μm or more and 200 μm or less, it is necessary to laminate a large number of elements to obtain the desired output voltage and power. In addition to a large amount, there is also a problem of a decrease in production efficiency due to a large number of lamination processes. Furthermore, there is a possibility that the flexibility of the module may be impaired by a large number of stacking steps.

特許4513504号公報Japanese Patent No. 4515044 特開2010−95688号公報JP 2010-95688 A 特開2013−251309号公報JP 2013-251309 A WO2013/065856 A1号WO2013 / 065856 A1

Marko Marinkovic, Dagmawi Belaineh, Veit Wagner, and Dietmar Knipp, Advanced Materials, 24, 4005-4009 (2012).Marko Marinkovic, Dagmawi Belaineh, Veit Wagner, and Dietmar Knipp, Advanced Materials, 24, 4005-4009 (2012).

上記のとおり、特許文献3は、導電性高分子等の有機熱電材料を用いた熱電変換モジュールとして、可とう性のある基板上にp型又はn型のいずれか一方の熱電変換素子を配置し、それらを伸縮可能な配線でつなぐことで、どちらか一方のキャリアタイプでも熱電変換を可能とする柔軟な熱電変換モジュールを記載している。しかしながら、素子の厚さ方向の両端に十分な温度差を確保するためには、厚さを確保するために一度に大量の高分子溶液を塗布・乾燥させる必要があり、その分だけ原料コストが高くなるばかりでなく、乾燥プロセスに要する時間が長くなり製造効率が低下する。加えて、塗布・乾燥を繰り返したり、薄く製膜したフィルムを重ねたりして厚みを確保した場合は、素子の内部抵抗が高くなって発電出力が低下する問題が生じる。さらには、素子を挟む電極と伸縮可能な配線材料との間も接合が必要であり、余分な製造プロセスを生むのみならずモジュール全体の抵抗値も増加する問題もある。   As described above, in Patent Document 3, as a thermoelectric conversion module using an organic thermoelectric material such as a conductive polymer, either a p-type or an n-type thermoelectric conversion element is arranged on a flexible substrate. A flexible thermoelectric conversion module is described in which thermoelectric conversion is possible even with either one of the carrier types by connecting them with an extendable wiring. However, in order to ensure a sufficient temperature difference at both ends in the thickness direction of the element, it is necessary to apply and dry a large amount of polymer solution at a time in order to ensure the thickness. Not only does this increase, but the time required for the drying process increases and manufacturing efficiency decreases. In addition, when the thickness is secured by repeating coating and drying or by stacking thin films, there is a problem that the internal resistance of the element increases and the power generation output decreases. Furthermore, it is necessary to join between the electrodes sandwiching the element and the expandable / contractable wiring material, which causes not only an extra manufacturing process but also an increase in the resistance value of the entire module.

一方、特許文献4は、熱源からの熱流束に平行な向きに導電性高分子フィルムを並べた素子の間に、導電性高分子より熱伝導率の低い絶縁性断熱材を挿入し、これらを積層することにより、素子両端の温度差を大きくすることによって発電出力を高める技術を記載している。しかしながら、所望の出力電圧及び電力を得るためには導電性高分子フィルムの厚さを一定以上に厚くせざるを得ないため、原料となる導電性高分子溶液の使用量が大きくなるうえ、多数回の積層工程による製造上の効率低下の問題も存在する。さらには多数回の積層工程により、モジュールの柔軟性を損なう虞がある。   On the other hand, Patent Document 4 inserts an insulating heat insulating material having a thermal conductivity lower than that of a conductive polymer between elements in which conductive polymer films are arranged in a direction parallel to a heat flux from a heat source. A technique is described in which the power generation output is increased by increasing the temperature difference between both ends of the element by stacking. However, in order to obtain a desired output voltage and power, the thickness of the conductive polymer film must be increased to a certain level or more, and the amount of the conductive polymer solution used as a raw material increases, and a large number There is also a problem of a decrease in manufacturing efficiency due to a single lamination process. Furthermore, there is a possibility that the flexibility of the module may be impaired by a large number of stacking steps.

本発明は、導電性高分子等の有機熱電材料を用いた従来の熱電変換素子及びモジュールの有する上記課題を解決することを目的とし、具体的には、導電性高分子等を用いた熱電変換素子及びモジュールにおいて、導電性高分子等の原料使用量を削減して低コスト化を図りつつ、発電出力を高めることができ、かつ、柔軟性も有する熱電変換素子及びモジュールを提供することを目的とする。   An object of the present invention is to solve the above-described problems of conventional thermoelectric conversion elements and modules using organic thermoelectric materials such as conductive polymers, and specifically, thermoelectric conversion using conductive polymers and the like. An object of the present invention is to provide a thermoelectric conversion element and module that can increase power generation output and have flexibility while reducing costs by reducing the amount of raw materials used such as conductive polymers in the element and module. And

本発明者らは、鋭意検討の結果、ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子等の有機熱電材料を断熱材繊維に浸透・乾燥することで、断熱材繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化した熱電変換素子を作製できることを見出した。このようにして作製した熱電変換素子の両端に電極を接合させ、これを複数電気的に結合し、熱電変換モジュールとすることにより、上記課題を解決した。
上記熱電変換素子の両端に接合する電極としては、金属はく又は金属細線、あるいは線維状物質に金属をメッキ法などで被覆した電極が挙げられ、これらの電極は、直接あるいは金属ペーストを介して熱電変換素子の両端に接合させることができる。
また、上記熱電変換モジュールは、これをさらに高分子フィルム又は樹脂あるいは金属テープで挟んで封止することができる。
As a result of intensive studies, the present inventors have infiltrated and dried an organic thermoelectric material such as a conductive polymer whose conductivity and Seebeck coefficient have been adjusted by dopant molecules and additive molecules into the heat insulating material fiber, so that the heat insulating material fiber While expanding and expanding and forming voids between fibers, the surface of the fiber is covered with an organic thermoelectric material film, and a composite structure is formed so as to form a mesh-like cross-sectional structure surrounding the heat insulating fiber The present inventors have found that a thermoelectric conversion element can be produced. The above problems were solved by bonding electrodes to both ends of the thus produced thermoelectric conversion element and electrically connecting a plurality of them to form a thermoelectric conversion module.
Examples of the electrodes bonded to both ends of the thermoelectric conversion element include metal foil or metal fine wires, or electrodes obtained by coating a fibrous material with a metal by plating or the like. These electrodes can be directly or via a metal paste. It can be joined to both ends of the thermoelectric conversion element.
Further, the thermoelectric conversion module can be sealed by further sandwiching it with a polymer film, resin or metal tape.

上述のとおり、p型導電性高分子のみを用いて、柔軟性のある薄膜型のモジュールで発電を行う場合、p型導電性高分子の単一素子からなるモジュールの最大の発電出力P1は、以下の式で与えられる。 As described above, when generating power with a flexible thin film type module using only the p-type conductive polymer, the maximum power generation output P 1 of the module composed of a single element of the p-type conductive polymer is Is given by the following equation.

Figure 0006448980
ここで、Sは導電性高分子のゼーベック係数、r1は素子の内部抵抗、Rbは素子と電極との界面電気抵抗、ΔTは素子の厚さ方向の両端の温度差である。
Figure 0006448980
Here, S is the Seebeck coefficient of the conductive polymer, r 1 is the internal resistance of the element, R b is the interface electrical resistance between the element and the electrode, and ΔT is the temperature difference between both ends in the thickness direction of the element.

従来、最大出力P1を求める際にはRbは無視されることが多かったが、本発明者らは、導電性高分子を用いた熱電変換モジュールの場合、r1に比べてRbが桁違いに大きく、Rbの大きさがP1を支配する重要な因子の一つであることを見いだした。
Rbは素子と電極の界面に固有の値として得られる接触抵抗rcを用いて、Rb = rc/Aで与えられる。ここでAは素子と電極の接触面積である。
金や銀、銅、ニッケル、アルミニウムなどの種々の金属電極と導電性高分子素子との間の接触抵抗rcは、金属の種類に関わらずBi-Te無機半導体などを用いた従来の熱電変換モジュールのrcと比べて桁違いに大きいのが現状である。例えば、非特許文献1では、導電性高分子と同様に導電性を有する有機系半導体と電極金属との間のrcが、約1Ωcm2程度であることが報告されており、Bi-Te合金と電極金属との間のrcより5〜6桁大きな値である。
導電性高分子として、ドーパント分子及び添加材分子による適切な塗布乾燥プロセスで導電率を高めた膜状の導電性高分子を用いる場合、当該導電性高分子のr1は、1mΩ程度のオーダーを有する(後述の実施例2の(2−5)、表2参照)。
したがって、種々の形状の熱源に適用し、出力電圧を適切に高くするモジュールを実現するために、1個の素子のサイズを数mm〜数十mm角程度、すなわちAを数mm2〜数千mm2程度の範囲で調整する場合、Rbはr1に比べて数桁大きな値を持つことになる。
従来の無機系材料のように、素子の電気抵抗の大部分をr1が占める場合、r1は材料自身の熱抵抗と比例関係にあるため、出力増加のために電気抵抗を低下しようとすれば素子の温度差が低下しこれが出力低下の原因となり、これらを独立に調整できない。一方、導電性高分子等の有機系材料では、Rbが素子の電気抵抗の大部分を占めるため、素子の温度差ΔTと電気抵抗(電極界面抵抗Rb)は互いに独立に調整し、高出力化を実現することができる。
Conventionally, when obtaining the maximum output P 1 , R b was often ignored, but the present inventors have found that R b is smaller than r 1 in the case of a thermoelectric conversion module using a conductive polymer. We found that Rb was one of the most important factors governing P1.
R b is given by R b = r c / A using a contact resistance r c obtained as a value inherent to the interface between the element and the electrode. Here, A is the contact area between the element and the electrode.
Gold, silver, copper, nickel, the contact resistance r c between the various metal electrodes and a conductive polymer element, such as aluminum, conventional thermoelectric conversion using, for example, Bi-Te inorganic semiconductor regardless of the type of the metal The current situation is an order of magnitude larger than the module r c . For example, Non-Patent Document 1, r c between the organic semiconductor and the electrode metal similar to the conductive polymer having conductivity have been reported to be about 1Ωcm 2, Bi-Te alloy to be 5-6 orders of magnitude greater than r c between the electrode metal.
When using a film-like conductive polymer whose conductivity has been increased by an appropriate coating and drying process using dopant molecules and additive molecules as the conductive polymer, r 1 of the conductive polymer is on the order of about 1 mΩ. (See (2-5) of Example 2 described later, Table 2).
Therefore, in order to realize a module that can be applied to a heat source of various shapes and appropriately increase the output voltage, the size of one element is several mm to several tens of mm square, that is, A is several mm 2 to several thousand. when adjusting in mm 2 in the range of about, R b will have several orders of magnitude larger value as compared to r 1.
When r 1 occupies most of the electrical resistance of the element, as in the case of conventional inorganic materials, r 1 is proportional to the thermal resistance of the material itself, so it is likely that the electrical resistance will be lowered to increase the output. In other words, the temperature difference between the elements decreases, which causes a decrease in output and cannot be adjusted independently. On the other hand, in organic materials such as conductive polymers, R b occupies most of the electric resistance of the element, so the temperature difference ΔT and the electric resistance (electrode interface resistance R b ) of the element are adjusted independently of each other, and high Output can be realized.

したがって、有機熱電材料を用いた熱電変換素子の電極との界面電気抵抗Rbは素子の内部抵抗r1に比べて非常に大きい現状において、P1を最大化するためには、導電性高分子のゼーベック係数S、及び素子両端の温度差ΔTを大きくし、Rbを小さくすることが有効である。特に、ドーパント分子及び添加材分子による適切な塗布乾燥プロセスを用いてゼーベック係数及び導電率を高めた(すなわち、r1を小さくした)導電性高分子を用いる場合、ΔTを大きくし、Rbを小さくすることの2点が有効である。 Therefore, in order to maximize P 1 in the present situation, the interface electrical resistance R b with the electrode of the thermoelectric conversion element using the organic thermoelectric material is very large compared to the internal resistance r 1 of the element. It is effective to increase the Seebeck coefficient S and the temperature difference ΔT between both ends of the element and decrease R b . In particular, when using a conductive polymer with an increased Seebeck coefficient and conductivity (i.e., with reduced r 1 ) using an appropriate coating and drying process with dopant molecules and additive molecules, ΔT is increased and R b is increased. Two points of reduction are effective.

本発明により、ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子等の有機熱電材料を断熱材繊維に浸透・乾燥することで、断熱材繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化した熱電変換素子を作製することにより、断熱材繊維の表面形状の粗さに起因して、素子の表面形状も粗さを有するものとなるため、電極金属との接触面積Aが大きくなり、これにより、電極界面抵抗Rbを小さくすることができる。 In accordance with the present invention, an organic thermoelectric material such as a conductive polymer whose conductivity and Seebeck coefficient are adjusted by a dopant molecule and an additive molecule is infiltrated and dried into the heat insulating fiber to expand and contract the heat insulating fiber. A thermoelectric conversion element with a composite structure is formed so that a mesh-like cross-sectional structure is formed so that the fiber surface is covered with a film of an organic thermoelectric material while surrounding the heat insulating material fiber while forming a cavity between the fibers. As a result, since the surface shape of the element also has roughness due to the roughness of the surface shape of the heat insulating fiber, the contact area A with the electrode metal is increased, and thereby the electrode interface resistance R b Can be reduced.

また、本発明による熱電変換素子は、断熱材繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜で被覆することによって、同じ量の有機熱電材料のみを用いて製膜した場合と比べて、素子を格段に厚くすることができ、これにより、素子の両端の温度差ΔTを十分な範囲に確保することができる。また、本発明による熱電変換素子は、断熱材繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化しているため、有機熱電材料の被膜を介して導電性が保たれるので、素子の内部抵抗増加は、出力電力に影響を及ぼさない範囲にとどまる。
このため、本発明の熱電変換モジュールにおいては、熱電変換素子の両端の温度差ΔTを十分な範囲に確保しつつ、素子の内部抵抗が発電出力に影響を及ぼさない程度に導電性高分子の使用量を出来る限り少なくすることができ、これにより原料コストを抑えることができ、また、製造プロセスや製造時間の増加による製造効率の低下をもたらさない。加えて、本発明の熱電変換素子はそれ自体柔軟性を有するので、これを用いることで、複雑な形状を持つ熱源から効率的に電力を回収することのできる、熱源の形状に合わせて接触できる柔軟性のあるモジュールを作製することができる。
In addition, the thermoelectric conversion element according to the present invention has the same amount of organic thermoelectric by covering the surface of the fiber with a film of an organic thermoelectric material while expanding and contracting the heat insulating fiber to form a thickness and a cavity between the fibers. Compared with the case where the film is formed using only the material, the element can be made much thicker, and thereby, the temperature difference ΔT between both ends of the element can be secured in a sufficient range. In addition, the thermoelectric conversion element according to the present invention has a complex structure so that the surface of the heat insulating material fiber is covered with a film of an organic thermoelectric material and a mesh-like cross-sectional structure is formed so as to surround the heat insulating material fiber. Since conductivity is maintained through the coating of the thermoelectric material, the increase in the internal resistance of the element remains within a range that does not affect the output power.
Therefore, in the thermoelectric conversion module of the present invention, the conductive polymer is used to such an extent that the internal resistance of the element does not affect the power generation output while ensuring a sufficient temperature difference ΔT between the both ends of the thermoelectric conversion element. The amount can be reduced as much as possible, whereby the raw material cost can be suppressed, and the production efficiency is not lowered due to an increase in the production process and production time. In addition, since the thermoelectric conversion element of the present invention itself has flexibility, by using this, it is possible to efficiently recover power from a heat source having a complicated shape, and contact according to the shape of the heat source. A flexible module can be manufactured.

本出願は、具体的には、以下の発明を提供する。
〈1〉ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子等の有機熱電材料を断熱材繊維に浸透・乾燥することで、断熱材繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化された熱電変換素子。
〈2〉〈1〉に記載の複合組織化された熱電変換素子の両端に電極を接合させることにより構成された熱電変換モジュール。
〈3〉電極が、金属はく又は金属細線、あるいは繊維状物質に金属をメッキ法などで被覆した電極であり、これらの電極は、直接あるいは金属ペーストを介して熱電変換素子の両端に接合されている、〈2〉に記載の熱電変換モジュール。
〈4〉〈2〉または〈3〉に記載の熱電変換素子の電極を介して複数の当該熱電変換素子同士を電気的に結合した、熱電変換モジュール。
〈5〉さらに高分子フィルム又は樹脂あるいは金属テープで挟んで封止された、〈4〉に記載の熱電変換モジュール。
〈6〉ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子等の有機熱電材料を断熱材繊維に浸透・乾燥することで、断熱材繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化することを特徴とする、複合組織化された熱電変換素子の製造方法。
Specifically, the present application provides the following inventions.
<1> An organic thermoelectric material such as a conductive polymer whose conductivity and Seebeck coefficient are adjusted by dopant molecules and additive molecules is infiltrated and dried into the heat insulating fiber, so that the heat insulating fiber expands and contracts to increase the thickness and A thermoelectric conversion element that is compounded so as to form a mesh-like cross-sectional structure in which a surface of a fiber is covered with a film of an organic thermoelectric material and a heat insulating material fiber is surrounded while forming a cavity between the fibers.
<2> A thermoelectric conversion module configured by bonding electrodes to both ends of the thermoelectric conversion element having the composite structure described in <1>.
<3> The electrode is a metal foil or metal wire, or an electrode in which a fibrous material is coated with a metal by plating or the like, and these electrodes are joined to both ends of the thermoelectric conversion element directly or via a metal paste. The thermoelectric conversion module according to <2>.
<4> A thermoelectric conversion module in which a plurality of thermoelectric conversion elements are electrically coupled to each other through electrodes of the thermoelectric conversion elements according to <2> or <3>.
<5> The thermoelectric conversion module according to <4>, further sealed with a polymer film, resin, or metal tape.
<6> An organic thermoelectric material such as a conductive polymer whose conductivity and Seebeck coefficient are adjusted by dopant molecules and additive molecules is infiltrated and dried into the heat-insulating fiber, so that the heat-insulating fiber expands and contracts to increase the thickness and The composite structure is characterized in that while forming a cavity between fibers, the surface of the fiber is covered with a film of organic thermoelectric material, and a composite structure is formed so as to form a mesh-like cross-sectional structure surrounding the heat insulating material fiber A method for manufacturing an organized thermoelectric conversion element.

本発明の複合組織化された熱電変換素子は、有機熱電材料の溶液を単に塗布・乾燥して得る従来の膜状熱電変換素子に比べて、同じ有機熱電材料原料溶液使用量で材料の厚みを格段に厚くすることができ、これにより素子の両端の温度差を大きくすることができる。
さらに、本発明の熱電変換モジュールは、複合組織化する断熱材の表面形状の粗さを利用して、有機熱電材料と電極金属との接触面積を大きくすることができ、これにより電極界面抵抗をも低下することができる。これらの特性により、本発明の熱電変換素子を用いた熱電変換モジュールは、有機熱電材料を従来のように単に膜状にした熱電変換素子を用いた熱電変換モジュールと比べて、発電出力を大幅に高めることができる。
また、これに加えて、本発明の熱電変換素子は柔軟性も有するため、当該素子を複数結合し構成された熱電変換モジュールにおいても柔軟性を保持することができる。
従って、本発明の熱電変換素子を用いた熱電変換モジュールは、これまで発電に供されなかった、工場・家庭などの排熱配管や人体、自動車・鉄道といった複雑な形状を持つ熱源からの熱を発電に供し、高い出力の電力として回収するモジュールとして利用できる。
Compared with the conventional film-shaped thermoelectric conversion element obtained by simply applying and drying a solution of an organic thermoelectric material, the composite-structured thermoelectric conversion element of the present invention can reduce the thickness of the material with the same organic thermoelectric material raw material usage amount. The thickness can be significantly increased, and thereby the temperature difference between both ends of the element can be increased.
Furthermore, the thermoelectric conversion module of the present invention can increase the contact area between the organic thermoelectric material and the electrode metal by utilizing the roughness of the surface shape of the heat insulating material that forms a composite structure, thereby reducing the electrode interface resistance. Can also be reduced. Due to these characteristics, the thermoelectric conversion module using the thermoelectric conversion element of the present invention has a greatly increased power generation output compared to a thermoelectric conversion module using a thermoelectric conversion element in which an organic thermoelectric material is simply formed into a film as in the past. Can be increased.
In addition, since the thermoelectric conversion element of the present invention also has flexibility, it is possible to maintain flexibility even in a thermoelectric conversion module configured by combining a plurality of the elements.
Therefore, the thermoelectric conversion module using the thermoelectric conversion element of the present invention can generate heat from a heat source having a complicated shape such as exhaust heat piping, human body, automobile, railway, etc. that has not been used for power generation until now. It can be used as a module for power generation and recovering as high output power.

本発明による繊維状断熱材と導電性高分子との複合組織体の形状を示す図(断面の模式図)。The figure which shows the shape of the composite structure | tissue of the fibrous heat insulating material and conductive polymer by this invention (sectional schematic diagram). 本発明による断熱材と複合組織化した熱電変換素子及び薄型熱電変換モジュールの作製手順を示す図。The figure which shows the preparation procedures of the thermoelectric conversion element and thin thermoelectric conversion module which were compounded with the heat insulating material by this invention. PEDOT:PSS塗布不織布素子(本発明)とPEDOT:PSS薄膜素子(比較例)を用いた熱電変換モジュールの上下面の温度差と加熱用ヒータの加熱電力との関係を示す図。ラミネートフィルムとNi箔のみの場合の温度差と比較している。モジュールは、5℃の冷却ステージと加熱用ヒータを付けた銅板で挟んでいる。The figure which shows the relationship between the temperature difference of the upper and lower surfaces of the thermoelectric conversion module using the PEDOT: PSS application | coating nonwoven fabric element (this invention) and the PEDOT: PSS thin film element (comparative example), and the heating power of the heater for heating. This is compared with the temperature difference when only the laminate film and Ni foil are used. The module is sandwiched between copper plates with a 5 ° C cooling stage and a heater. PEDOT:PSS塗布不織布素子(本発明)とPEDOT:PSS薄膜素子(比較例)の熱電変換モジュールの上下面の温度差と、加熱用ヒータの加熱電力との関係を示す図。ラミネートフィルムとNi箔のみの場合の温度差を差し引いている。モジュールは、5℃の冷却ステージと加熱用ヒータを付けた銅板で挟んでいる。The figure which shows the relationship between the temperature difference of the upper and lower surfaces of the thermoelectric conversion module of a PEDOT: PSS application nonwoven fabric element (this invention) and a PEDOT: PSS thin film element (comparative example), and the heating power of the heater for a heating. The temperature difference between only the laminate film and Ni foil is subtracted. The module is sandwiched between copper plates with a 5 ° C cooling stage and a heater. PEDOT:PSS薄膜素子を用いた薄型熱電変換モジュール(比較例)の発電試験における出力電圧及び出力電力密度と出力電流の関係を示す図。The figure which shows the relationship between the output voltage and output power density, and output current in the power generation test of the thin thermoelectric conversion module (comparative example) using a PEDOT: PSS thin film element. PEDOT:PSS塗布不織布素子を用いた薄型熱電モジュール(本発明)の発電試験における出力電圧及び出力電力密度と出力電流の関係を示す図。The figure which shows the relationship between the output voltage and output power density, and output current in the power generation test of the thin thermoelectric module (this invention) using the PEDOT: PSS application | coating nonwoven fabric element. PEDOT:PSS塗布不織布素子(本発明)とPEDOT:PSS薄膜素子(比較例)の上下面の電子顕微鏡写真。Electron micrographs of the upper and lower surfaces of a PEDOT: PSS-coated nonwoven fabric element (present invention) and a PEDOT: PSS thin film element (comparative example). 各種PEDOT:PSS塗布不織布素子の断面の電子顕微鏡写真。添加剤EGを3重量%一定にして、高分子濃度1.3重量%PEDOT:PSS溶液の使用量を変えた場合。Electron micrographs of cross sections of various PEDOT: PSS coated nonwoven fabric elements. When the amount of PEDOT: PSS solution used is 1.3% by weight and the concentration of additive EG is kept constant at 3% by weight. 各種PEDOT:PSS塗布不織布素子の断面の電子顕微鏡写真。高分子濃度1.3重量%PEDOT:PSS溶液の使用量を10.5ml一定にして、添加剤EGの割合を変えた場合。Electron micrographs of cross sections of various PEDOT: PSS coated nonwoven fabric elements. When the amount of the additive EG is changed while the amount of the PEDOT: PSS solution with a polymer concentration of 1.3% by weight is kept constant at 10.5 ml. 各種PEDOT:PSS塗布不織布素子の厚さを示す図。(a) 添加剤EGは3重量%一定とし、高分子濃度1.3重量% PEDOT:PSS溶液の使用量を変化させた場合。(b) 高分子濃度1.3重量%PEDOT:PSS溶液の使用量を10.5ml一定にして、添加剤EGの割合を変えた場合。The figure which shows the thickness of various PEDOT: PSS application | coating nonwoven fabric elements. (a) Additive EG is fixed at 3% by weight, and the polymer concentration is 1.3% by weight. The amount of PEDOT: PSS solution used is changed. (b) When the amount of the additive EG is changed while the amount of the PEDOT: PSS solution with a polymer concentration of 1.3% by weight is kept constant at 10.5 ml. 各種PEDOT:PSS塗布不織布素子の上下に生じる温度差ΔTelementを示す図。いずれも2cm×2cmの面積に切り出して、5℃の冷却ステージと加熱用ヒータ(4W)を付けたアルミ板で挟んでいる。(a) 添加剤EGは3重量%一定とし、高分子濃度1.3重量% PEDOT:PSS溶液の使用量を変化させた場合。(b) 高分子濃度1.3重量% PEDOT:PSS溶液の使用量を10.5ml一定にして、添加剤EGの割合を変えた場合。The figure which shows temperature difference (DELTA) T element which arises on the upper and lower sides of various PEDOT: PSS application | coating nonwoven fabric elements. Both are cut out in an area of 2 cm × 2 cm and sandwiched between aluminum plates with a 5 ° C. cooling stage and a heater (4 W). (a) Additive EG is fixed at 3% by weight, and the polymer concentration is 1.3% by weight. The amount of PEDOT: PSS solution used is changed. (b) High polymer concentration of 1.3% by weight When the amount of PEDOT: PSS solution used is fixed at 10.5 ml and the ratio of additive EG is changed. 各種PEDOT:PSS塗布不織布素子の上下に温度差を付与した場合の厚さ方向のSeebeck係数を示す図。(a) 添加剤EGは3重量%一定とし、高分子濃度1.3重量%PEDOT:PSS溶液の使用量を変化させた場合。(b) 高分子濃度1.3重量%PEDOT:PSS溶液の使用量を10.5ml一定にして、添加剤EGの割合を変えた場合。The figure which shows the Seebeck coefficient of the thickness direction at the time of giving a temperature difference to the upper and lower sides of various PEDOT: PSS application | coating nonwoven fabric elements. (a) When the additive EG is 3% by weight constant and the amount of the polymer concentration 1.3% by weight PEDOT: PSS solution is changed. (b) When the amount of the additive EG is changed while the amount of the PEDOT: PSS solution with a polymer concentration of 1.3% by weight is kept constant at 10.5 ml. 各種PEDOT:PSS塗布不織布を用いた単一の熱電変換素子からなるモジュールの出力電力試算値(5℃の冷却ステージと加熱用ヒータ(4W)を付けたアルミ板で挟んだ場合)を示す図。(a) 添加剤EGは3重量%一定とし、高分子濃度1.3重量%PEDOT:PSS溶液の使用量を変化させた場合。(b) 高分子濃度1.3重量%PEDOT:PSS溶液の使用量を10.5ml一定にして、添加剤EGの割合を変えた場合。The figure which shows the estimated output power value of the module which consists of a single thermoelectric conversion element using various PEDOT: PSS application | coating nonwoven fabrics (when pinched | interposed with the aluminum board which attached the cooling stage of 5 degreeC, and the heater for heating (4W)). (a) When the additive EG is 3% by weight constant and the amount of the polymer concentration 1.3% by weight PEDOT: PSS solution is changed. (b) When the amount of the additive EG is changed while the amount of the PEDOT: PSS solution with a polymer concentration of 1.3% by weight is kept constant at 10.5 ml.

以下、図面を参照して本発明を実施するための最良の形態について説明する。以下の実施の形態の構成は例示であり、本発明は実施の形態の構成に限定されない。   The best mode for carrying out the present invention will be described below with reference to the drawings. The configuration of the following embodiment is an exemplification, and the present invention is not limited to the configuration of the embodiment.

実施例1 熱電変換素子及びモジュールの作製
まず、本願発明を実施するための熱電変換素子及びモジュールを作製する方法を、図1および2を用いて説明する。
(1)有機熱電材料の調整
有機熱電材料の1例として選んだ導電性高分子の原料溶液は、本実施例においては高分子濃度が1.3重量%のPEDOT:PSS水溶液(Clevios社PH1000)である。この導電性高分子は、PSS(ポリスチレンサルフォネート)がドーパント分子として作用し、PEDOT(ポリエチレンジオキシチオフェン)分子に導電性を付与したポリマーである。熱電変換に用いるには、添加材分子としてエチレングリコール(EG)を3重量%程度添加したPEDOT:PSS水溶液を用いることで、乾燥後の試料の導電率及びゼーベック係数を調整することが必要である。
導電性高分子を成形し素子を作製する際には、本実施例においては、EGを添加したPEDOT:PSS水溶液を塗布・乾燥して薄膜状にした素子、及び同溶液をセルロースからなる繊維に吸着・乾燥させた素子の2種類を用意した。
(2)薄膜状の熱電変換素子の作製(比較例)
まず前者の、EGを添加したPEDOT:PSS水溶液を塗布・乾燥して薄膜状にした素子の作製プロセスを説明する。
PDMS(ポリジメチルシロキサン)をコーティングした7.5cm×3.75cmのサイズのスチロールケースに、上記のEGを3重量%添加したPEDOT:PSS(高分子濃度1.3重量%)水溶液10.5mlを入れて、ホットプレート上で大気中60〜80℃にて乾燥させてフィルム状試料を得た。このフィルムをスチロールケースから剥がしてさらにホットプレート上で大気中130〜160℃にてアニールした薄膜素子を得た。乾燥後のPEDOT:PSS膜の厚さは約80μmであった。この素子は本発明の効果を証明するための比較として用意した、従来の単純な塗布乾燥プロセスによる素子であり、以下、この素子をPEDOT:PSS薄膜素子と呼ぶ。
(3)繊維状断熱材と複合組織化した熱電変換素子の作製
次に、EGを添加したPEDOT:PSS水溶液をセルロースからなる繊維(不織布)に浸透・乾燥させた素子の作製プロセスを説明する。
本実施例では、導電性高分子と複合化させる断熱性物質として、セルロースからなる繊維(不織布)を用いた。旭化成せんい社製のセルロース不織布(BEMCOT M-1型)を広げたシートを7.5cm×3.75cmのサイズで切り出して8枚分を重ね(非圧縮時の厚さ8枚分合計1.5mm)(重量0.68g)、それをPDMSのシートの上にのせて、上記のEGを3重量%添加したPEDOT:PSS(高分子濃度1.3重量%)水溶液を10.5ml(セルロース不織布1g当たり15.4mlに相当)滴下し、ホットプレート上で大気中60〜80℃にて乾燥させた。この不織布をPDMSシートから剥がしてさらにホットプレート上で大気中130〜160℃にてアニールした試料を得た。乾燥後のセルロース不織布の厚さは、約0.8mm(800μm)以上であった。以下、このようにして調製された試料をPEDOT:PSS塗布不織布素子と呼ぶ。
セルロース不織布試料にPEDOT:PSSを浸透・乾燥させた素子の断面の模式図を図1に示し、また、当該素子の電子顕微鏡写真を図8および9の(c)、(d)、並びに、図7の(b)に示す。
これらの電子顕微鏡写真から、本発明のPEDOT:PSS塗布不織布素子においては、図1に示されるように、不織布の繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面をPEDOT:PSSの膜が被覆し、不織布繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化されていることが見て取れる。
実施例では、有機材料と繊維状断熱材との複合組織化の1例として、上記のPEDOT:PSS塗布不織布素子を用いて説明したが、本発明における複合組織化の定義は、上記実施例のように、断熱材繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成することである。
Example 1 Production of Thermoelectric Conversion Element and Module First, a method for producing a thermoelectric conversion element and module for carrying out the present invention will be described with reference to FIGS.
(1) Preparation of organic thermoelectric material The raw material solution of the conductive polymer selected as an example of the organic thermoelectric material is a PEDOT: PSS aqueous solution (Clevios PH1000) having a polymer concentration of 1.3% by weight in this example. . This conductive polymer is a polymer in which PSS (polystyrene sulfonate) acts as a dopant molecule and imparts conductivity to a PEDOT (polyethylenedioxythiophene) molecule. To use for thermoelectric conversion, it is necessary to adjust the conductivity and Seebeck coefficient of the dried sample by using a PEDOT: PSS aqueous solution to which about 3% by weight of ethylene glycol (EG) is added as an additive molecule. .
When forming an element by molding a conductive polymer, in this example, the PEDOT: PSS aqueous solution to which EG was added was applied and dried to form a thin film, and the solution was applied to fibers made of cellulose. Two types of adsorbed and dried elements were prepared.
(2) Fabrication of thin film thermoelectric conversion element (comparative example)
First, the fabrication process of the former, in which a PEDOT: PSS aqueous solution containing EG is applied and dried to form a thin film, will be described.
Place 10.5 ml of PEDOT: PSS (polymer concentration 1.3 wt%) aqueous solution with 3 wt% of the above EG in a 7.5 cm x 3.75 cm styrene case coated with PDMS (polydimethylsiloxane) The film sample was obtained by drying at 60 to 80 ° C. in the air. This film was peeled off from the styrene case, and a thin film device annealed on a hot plate at 130 to 160 ° C. in the atmosphere was obtained. The thickness of the PEDOT: PSS film after drying was about 80 μm. This device is a device prepared by a conventional simple coating / drying process prepared as a comparison for proving the effect of the present invention. Hereinafter, this device is referred to as a PEDOT: PSS thin film device.
(3) Production of Thermoelectric Conversion Element Combined with Fibrous Thermal Insulating Material Next, a process for producing an element in which a PEDOT: PSS aqueous solution to which EG has been added is infiltrated into fiber (nonwoven fabric) made of cellulose will be described.
In this example, a fiber (nonwoven fabric) made of cellulose was used as the heat insulating material to be combined with the conductive polymer. A sheet of cellulose nonwoven fabric (BEMCOT M-1 type) made by Asahi Kasei Fiber Co., Ltd. is cut out in a size of 7.5 cm x 3.75 cm and stacked for 8 sheets (total thickness of 8 sheets when uncompressed is 1.5 mm in total) (weight 0.68g), put it on a sheet of PDMS, and drop 10.5ml of PEDOT: PSS (polymer concentration 1.3wt%) aqueous solution with 3% by weight of the above EG (corresponding to 15.4ml per 1g of cellulose nonwoven fabric) And dried at 60-80 ° C. in the air on a hot plate. The nonwoven fabric was peeled from the PDMS sheet, and a sample that was annealed on a hot plate at 130 to 160 ° C. in the atmosphere was obtained. The thickness of the cellulose nonwoven fabric after drying was about 0.8 mm (800 μm) or more. Hereinafter, the sample thus prepared is referred to as a PEDOT: PSS-coated nonwoven fabric element.
FIG. 1 shows a schematic view of a cross section of an element obtained by infiltrating and drying PEDOT: PSS into a cellulose nonwoven fabric sample, and electron micrographs of the element are shown in FIGS. 8 and 9 (c), (d), and FIG. 7 (b).
From these electron micrographs, in the PEDOT: PSS coated nonwoven fabric element of the present invention, as shown in FIG. 1, the nonwoven fabric fibers are expanded and contracted to form thicknesses and voids between the fibers, and the surface of the fibers. It can be seen that a PEDOT: PSS film is coated and a composite structure is formed so as to form a network-like cross-sectional structure surrounding the nonwoven fabric fibers.
In the examples, the PEDOT: PSS-coated nonwoven fabric element was used as an example of the composite organization of the organic material and the fibrous heat insulating material. However, the definition of the composite organization in the present invention is the same as that of the above example. As described above, the insulating fiber is expanded and contracted to form a thickness and a cavity between the fibers, and the surface of the fiber is covered with an organic material film to form a mesh-like cross-sectional structure surrounding the insulating fiber. That is.

(4)熱電変換モジュールの作製
PEDOT:PSSを用いた上記の2種類の素子を縦5mm×横3mm角に切断し、その上下に銀ペーストを薄く塗布したのち、ニッケル箔で素子を挟んで接着し乾燥させたもの単一素子からなるモジュールとした。さらに、図2に示すように、出力電圧や出力電力が適切な値として取り出せるように、複数個の素子をニッケル箔電極で直列につないだ熱電変換モジュールを作製した。本実施例においては、後述する発電性能試験の目的に応じて、5又は6素子を直列に接続したモジュールを作製した。発電性能の比較は後述のように、得られた発電出力を使用した素子数で割って規格化した値を用いた。
素子は、それぞれ直接ラミネートフィルム上で直列に接続した。
本実施例の場合、キャリアのタイプがp型の導電性高分子を、銀ペーストを介してニッケル箔でつないだ構造であり、一般的なp型・n型両方の熱電半導体を用いたπ型素子ではなく、ユニレグ型と呼ばれる素子である。これは、現在のところ、熱電変換性能の高い高分子として、p型のキャリアタイプしか得られていないためである。図2は、このような一方のキャリアタイプの素子のみを用いる場合のモジュールの結合様式を示したものである。
将来的にp型・n型両方のキャリアタイプにおいて熱電変換性能の高い高分子が得られた場合は、発電効率を高めるためにπ型素子を形成してもよく、その場合p型素子とn型素子を交互に並べ、ニッケル箔はモジュールの上側と下側でそれぞれp型素子とn型素子を結ぶようにして配線するように配置される。
ラミネートフィルムは、市販のフィルムとして、PET(ポリエチレンテレフタレート)製の厚さ75〜100μmのフィルムを用いた。この直列配列素子の上に同じラミネートフィルムをかぶせてラミネート加工を行った。
ラミネート加工は、ラミネーター(明光商会製、HA330-V6型)を用いて、ローラー温度90〜110℃にて行った。ラミネート後、図2に示すように直列配列素子の両端のニッケル箔のラミネートフィルムを除去して、熱電発電の際の出力電力をニッケル箔電極から取り出せるようにして、薄型熱電変換モジュールを完成した。
PEDOT:PSS薄膜素子及びPEDOT:PSS塗布不織布素子、ニッケル箔はいずれも柔軟性があるため、ラミネートされた薄膜熱電変換モジュールは柔軟性を維持しており、曲率半径にして最小2 cm程度にまで曲げても熱電素子の配線を壊さず、内部抵抗も殆ど変化しないことを確認した。
(4) Production of thermoelectric conversion module
PEDOT: The above two types of elements using PSS are cut into 5 mm x 3 mm square, silver paste is thinly applied on the top and bottom, the element is sandwiched with nickel foil, and then dried. Single element A module consisting of Further, as shown in FIG. 2, a thermoelectric conversion module in which a plurality of elements are connected in series with nickel foil electrodes so that the output voltage and output power can be taken out as appropriate values was manufactured. In this example, a module in which 5 or 6 elements were connected in series was produced according to the purpose of the power generation performance test described later. As will be described later, the power generation performance was compared by using the value obtained by dividing the obtained power generation output by the number of elements used.
Each element was directly connected in series on the laminate film.
In the case of this example, a carrier type is a structure in which a p-type conductive polymer is connected with a nickel foil via a silver paste, and a π-type using both general p-type and n-type thermoelectric semiconductors It is not an element but an element called a unileg type. This is because at present, only a p-type carrier type is obtained as a polymer having high thermoelectric conversion performance. FIG. 2 shows how modules are connected when only one of the carrier type elements is used.
In the future, if a polymer with high thermoelectric conversion performance is obtained for both p-type and n-type carrier types, a π-type element may be formed to increase power generation efficiency. The mold elements are alternately arranged, and the nickel foil is arranged so as to connect the p-type element and the n-type element on the upper side and the lower side of the module, respectively.
As the laminate film, a film made of PET (polyethylene terephthalate) and having a thickness of 75 to 100 μm was used as a commercially available film. Lamination was performed by covering the serially arranged elements with the same laminate film.
Lamination was performed at a roller temperature of 90 to 110 ° C. using a laminator (manufactured by Meiko Shokai, HA330-V6 type). After lamination, the thin film of the thermoelectric conversion module was completed by removing the nickel foil laminate film at both ends of the serially arranged elements as shown in FIG. 2 so that the output power at the time of thermoelectric power generation could be taken out from the nickel foil electrode.
PEDOT: PSS thin film element, PEDOT: PSS coated non-woven element, and nickel foil are both flexible, so the laminated thin film thermoelectric conversion module maintains flexibility, and the radius of curvature is about 2 cm minimum. It was confirmed that even when bent, the wiring of the thermoelectric element was not broken and the internal resistance was hardly changed.

実施例2 熱電変換モジュールの熱電発電性能試験
(1)試験の概要
薄型熱電変換モジュールに対する熱電発電性能試験の手順を説明する。
薄型熱電変換モジュールを一定温度に冷却したアルミ製ステージとヒータで加熱した銅板で挟み、ヒータの加熱電力を制御することで薄型熱電変換モジュールの上下(厚さ方向)に付与する温度差を変化できるようにした。アルミ製ステージの冷却はペルチェ素子を搭載した冷却システム(オーム電機社製、OCE-TCR12075WL型)を用いて行った。ヒータ加熱によりモジュール上下に温度差を生じさせ、モジュールの両端の電極間に発生する出力電圧をナノボルトメータ(キーサイトテクノロジー社製、34420A型)で測定した。さらに、モジュールを自作の低抵抗負荷回路に接続して出力電流を測定することにより、モジュールからの出力電力を測定した。薄型熱電変換モジュールと銅板の間、及び薄型熱電変換モジュールと冷却ステージの間にそれぞれ薄片状のK型熱電対を挟むことにより、それぞれモジュールの高温側(上側)温度及び低温側(下側)温度を測定し、モジュールの上下に付与された温度差を求めた。K型熱電対による温度計測は、デジタルマルチメータ(ケースレーインスツルメンツ社製、2700型)を用いて行った。ナノボルトメータ、デジタルマルチメータ、ヒータ電源(TEXIO社製、PA36-2B)及び自作の低抵抗負荷回路は、デジタルインターフェースボードを介してコンピュータと接続されており、ヒータ加熱電力及び負荷抵抗をそれぞれ0〜20W及び0〜30Ωの間で制御しつつ、出力電圧(電力)及びモジュール上下の温度差を計測することが可能である。
Example 2 Thermoelectric Power Generation Performance Test of Thermoelectric Conversion Module (1) Outline of Test A procedure of a thermoelectric power generation performance test for a thin thermoelectric conversion module will be described.
The temperature difference applied to the top and bottom (thickness direction) of the thin thermoelectric conversion module can be changed by sandwiching the thin thermoelectric conversion module between an aluminum stage cooled to a certain temperature and a copper plate heated by a heater and controlling the heating power of the heater. I did it. The aluminum stage was cooled using a cooling system (Ohm Electric Co., OCE-TCR12075WL type) equipped with a Peltier element. A temperature difference was generated between the upper and lower parts of the module by heating the heater, and the output voltage generated between the electrodes at both ends of the module was measured with a nanovoltmeter (Keysight Technology, Model 34420A). Furthermore, the output power from the module was measured by connecting the module to a self-made low resistance load circuit and measuring the output current. By sandwiching a flaky K-type thermocouple between the thin thermoelectric conversion module and the copper plate and between the thin thermoelectric conversion module and the cooling stage, the high temperature side (upper side) temperature and the low temperature side (lower side) temperature of the module, respectively. Was measured, and the temperature difference applied to the top and bottom of the module was determined. Temperature measurement using a K-type thermocouple was performed using a digital multimeter (Keithley Instruments, Model 2700). The nanovoltmeter, digital multimeter, heater power supply (manufactured by TEXIO, PA36-2B) and self-made low resistance load circuit are connected to the computer via the digital interface board, and the heater heating power and load resistance are 0 respectively. It is possible to measure the output voltage (power) and the temperature difference between the top and bottom of the module while controlling between ~ 20W and 0 ~ 30Ω.

(2)試験結果
(2−1)各素子の厚さ方向の温度差ΔT
実施例1において作製したPEDOT:PSS薄膜素子及びPEDOT:PSS塗布不織布素子をそれぞれラミネート加工した2種類の薄型熱電変換モジュールの発電性能試験の結果を述べる。
図3に、冷却ステージを5℃に制御してヒータ加熱電力を変化させた時のモジュール上下(厚さ方向)の温度差の変化を示す。PEDOT:PSS薄膜素子の場合、図3(a)で白抜き三角形のドットでプロットしたように、モジュール上下の温度差はヒータ加熱電力に比例している。同様に、ラミネートフィルムにニッケル箔を2枚挟んでラミネートしたフィルムについても、図3(a)の黒塗り三角形のドットに示すようにモジュール上下の温度差はヒータ加熱電力に比例している。そこで、PEDOT:PSS薄膜素子をラミネートしたモジュール上下の温度差から、ニッケル箔を2枚挟んでラミネートしたフィルム上下の温度差を差し引くことにより、PEDOT:PSS薄膜素子の厚さ方向に生じる温度差を求めることができる。
PEDOT:PSS塗布不織布素子についても、図3(b)に示すように、PEDOT:PSS塗布不織布素子をラミネートしたモジュール上下の温度差、及びニッケル箔を2枚挟んでラミネートしたフィルム上下の温度差は共にヒータ加熱電力に比例しており、両者の差を求めることにより、同様に、PEDOT:PSS塗布不織布素子の厚さ方向に生じる温度差を求めることができる。
これら2種類の素子の厚さ方向の温度差は、試料やニッケル箔と銀ペーストの界面、及び銀ペーストの熱抵抗を含んだうえでの値であることに注意が必要であるものの、厚さの大きなPEDOT:PSS塗布不織布素子の方がPEDOT:PSS薄膜素子よりも大きな温度差が生じている。
この様子を図4に両者の素子の温度差を比較する形で示した。図4より、冷却ステージ温度及びヒータ加熱電力がそれぞれ5℃及び18Wの時、PEDOT:PSS塗布不織布素子の厚さ方向の温度差は23.8Kであるのに対し、PEDOT:PSS薄膜素子のそれは10.5Kであった。この結果を含め、本実施例では、同じ冷却ステージ温度及びヒータ加熱電力においてPEDOT:PSS塗布不織布素子の方がPEDOT:PSS薄膜素子よりも約2.3〜4.6倍大きな温度差が生じていることが分かった。
(2) Test results
(2-1) Temperature difference ΔT in the thickness direction of each element
The results of the power generation performance test of the two types of thin thermoelectric conversion modules obtained by laminating each of the PEDOT: PSS thin film element and the PEDOT: PSS coated non-woven element produced in Example 1 will be described.
FIG. 3 shows changes in the temperature difference between the top and bottom of the module (thickness direction) when the heater heating power is changed by controlling the cooling stage to 5 ° C. In the case of a PEDOT: PSS thin film element, the temperature difference between the top and bottom of the module is proportional to the heater heating power, as plotted with white triangular dots in FIG. Similarly, with respect to a film obtained by laminating two nickel foils on a laminate film, the temperature difference between the upper and lower modules is proportional to the heater heating power as shown by the black triangles in FIG. Therefore, by subtracting the temperature difference between the top and bottom of the film laminated with two nickel foils from the temperature difference between the top and bottom of the module laminated with the PEDOT: PSS thin film element, the temperature difference generated in the thickness direction of the PEDOT: PSS thin film element is obtained. Can be sought.
As for PEDOT: PSS coated nonwoven fabric element, as shown in Fig. 3 (b), the temperature difference between the top and bottom of the module laminated with PEDOT: PSS coated nonwoven fabric element and the temperature difference between the top and bottom of the film laminated with two nickel foils sandwiched Both are proportional to the heater heating power, and by obtaining the difference between the two, similarly, the temperature difference generated in the thickness direction of the PEDOT: PSS-coated nonwoven fabric element can be obtained.
It should be noted that the temperature difference in the thickness direction of these two types of elements is the value including the sample, the interface between the nickel foil and the silver paste, and the thermal resistance of the silver paste. PEDOT: PSS-coated non-woven element having a larger size produces a larger temperature difference than PEDOT: PSS thin film element.
This state is shown in FIG. 4 by comparing the temperature difference between the two elements. From FIG. 4, when the cooling stage temperature and the heater heating power are 5 ° C. and 18 W, respectively, the temperature difference in the thickness direction of the PEDOT: PSS coated nonwoven fabric element is 23.8K, whereas that of the PEDOT: PSS thin film element is 10.5. K. Including this result, in this example, it was found that the PEDOT: PSS coated nonwoven fabric element had a temperature difference about 2.3 to 4.6 times greater than that of the PEDOT: PSS thin film element at the same cooling stage temperature and heater heating power. It was.

(2−2)外部負荷結合時の各モジュールの出力電圧、出力電流および出力電力密度
続いて、冷却ステージ温度及びヒータ加熱電力がそれぞれ5℃及び18 Wの時において、薄型熱電変換モジュールに負荷抵抗を接続し、モジュールから負荷抵抗に供給される出力電圧、出力電流を測定した結果の例、ならびに両者の積として求めた出力電力を素子の面積で割った出力電力密度の値の例を図5及び図6に示す。
PEDOT:PSS薄膜素子をラミネートした比較例のモジュールの発電試験を測定した結果として、図5の黒塗り三角形のドットで示すように、負荷抵抗をつながない場合の開放出力電圧が0.685mVであり、負荷抵抗を30Ωから1Ωへ変化させて出力電流を増加させるに従い、出力電圧は直線的に低下し、負荷抵抗1Ωの場合に出力電流0.144mAを得た。この結果を用いて出力電力を計算し、これを素子の面積で割って出力電力密度を求め、出力電流との関係をプロットしたのが図5の白抜き三角形のドットである。出力電力密度は出力電流に対して放物線状のカーブとなっており、そのピーク値から最大出力電力密度を求めると、0.144μW/cm2となった。以上の例も含め、本比較例で発電性能試験行った結果は、表1に示すとおり、PEDOT:PSS薄膜素子からなる熱電変換モジュールとして、最大出力電力密度0.144〜0.174μW/cm2となった。
一方、PEDOT:PSS塗布不織布素子をラミネートした本実施例のモジュールの発電試験を測定した結果の例として、図6の黒塗り円のドットで示すように、負荷抵抗をつながない場合の開放出力電圧が6.63mVであり、負荷抵抗を30Ωから1Ωへ変化させて出力電流を増加させるに従い、出力電圧は図6と同様に直線的に低下し、負荷抵抗1Ωの場合に出力電流1.87mAを得た。この結果を用いて出力電力を計算し、これを素子の面積で割って出力電力密度を求め、出力電流との関係をプロットしたのが図6の白抜き円のドットである。出力電力密度はやはり図5と同様に出力電流に対して放物線状のカーブとなっており、そのピーク値から最大出力電力密度を求めると、4.54μW/cm2となった。
以上の例も含め、本実施例で複数のモジュールの発電性能試験を行った結果を総合すると、表1に示すとおり、PEDOT:PSS塗布不織布素子からなる熱電変換モジュールとして、最大出力電力密度3.23〜4.54μW/cm2となった。
(2-2) Output voltage, output current, and output power density of each module when external load is coupled. Next, when the cooling stage temperature and heater heating power are 5 ° C and 18 W, respectively, load resistance is reduced to the thin thermoelectric conversion module. And an example of the result of measuring the output voltage and output current supplied from the module to the load resistor, and an example of the value of the output power density obtained by dividing the output power obtained as the product of both by the area of the element. And shown in FIG.
As a result of measuring the power generation test of the module of the comparative example in which the PEDOT: PSS thin film element is laminated, the open output voltage when the load resistance is not connected is 0.685 mV as shown by the black triangle dots in FIG. As the output current was increased by changing the load resistance from 30Ω to 1Ω, the output voltage decreased linearly, and an output current of 0.144mA was obtained when the load resistance was 1Ω. The output power is calculated using this result, divided by the area of the element to obtain the output power density, and the relationship with the output current is plotted as white triangle dots in FIG. The output power density is a parabolic curve with respect to the output current, and the maximum output power density obtained from the peak value was 0.144 μW / cm 2 . As shown in Table 1, the result of the power generation performance test in this comparative example including the above examples was a maximum output power density of 0.144 to 0.174 μW / cm 2 as a thermoelectric conversion module composed of PEDOT: PSS thin film elements. .
On the other hand, as an example of the result of measuring the power generation test of the module of this example in which the PEDOT: PSS coated nonwoven fabric element was laminated, as shown by the black circle dots in FIG. 6, the open output voltage when no load resistance is connected Is 6.63mV, and as the output current is increased by changing the load resistance from 30Ω to 1Ω, the output voltage decreases linearly in the same way as in Fig. 6, and the output current is 1.87mA when the load resistance is 1Ω. . The output power is calculated by using this result, divided by the area of the element to obtain the output power density, and the relationship with the output current is plotted as white circle dots in FIG. Similarly to FIG. 5, the output power density is a parabolic curve with respect to the output current. When the maximum output power density is obtained from the peak value, it is 4.54 μW / cm 2 .
Summarizing the results of the power generation performance tests of a plurality of modules in this example, including the above example, as shown in Table 1, as a thermoelectric conversion module composed of PEDOT: PSS coated nonwoven fabric elements, the maximum output power density is 3.23 to It was 4.54 μW / cm 2 .

(2−3)薄膜素子と複合組織化素子の有機熱電材料使用量当たりの性能の対比
この結果をもとに、PEDOT:PSS薄膜素子及びPEDOT:PSS塗布不織布素子について、単位出力電力当たりのPEDOT:PSS原料使用量を算出することも可能であり、その値は表1に示すように、PEDOT:PSS薄膜では3780〜4570μL/μWであるのに対し、PEDOT:PSS塗布不織布では72〜101μL/μWとなり、PEDOT:PSS薄膜に比べて1/37〜1/63の原料使用量で同じ出力が得られることが分かった。
(2-3) Comparison of performance per unit amount of organic thermoelectric material of thin film element and composite textured element Based on this result, PEDOT per unit output power for PEDOT: PSS thin film element and PEDOT: PSS coated non-woven element : It is also possible to calculate the amount of PSS raw material used. As shown in Table 1, the value is 3780-4570 μL / μW for PEDOT: PSS thin film, but 72-101 μL / for PEDOT: PSS coated nonwoven fabric. It was found to be μW, and the same output can be obtained with the amount of raw material used between 1/37 and 1/63 compared with the PEDOT: PSS thin film.

Figure 0006448980
Figure 0006448980

(2−4)複合組織化素子の出力電力に及ぼす素子−電極間界面抵抗の影響の検討
続いて、PEDOT:PSS塗布不織布素子を用いたモジュールの最大出力電力の増加に及ぼす素子-電極間界面抵抗の値の影響について検討した結果を説明する。
「背景技術」で述べたように、単一素子からなるモジュールの最大の発電出力P1を求める際のモジュールの電気抵抗は、素子の導電率及びサイズから求められる内部抵抗r1、及び素子-電極間界面電気抵抗Rbを考慮して、r1+2Rbで求められることに注意が必要である。
モジュールの電気抵抗は、PEDOT:PSS薄膜素子、PEDOT:PSS塗布不織布素子に対し、それぞれ図5、図6の黒塗りドットで示される出力電圧と出力電流の関係を示す曲線の傾きを使用した素子数で割って求めることができる。加えて、それぞれの素子の厚さ方向の導電率を直流4端子法で測定することにより1素子あたりの内部抵抗r1を求めることができるため、上記で求めたr1+2Rbからr1を差し引いて2で割ることによりRbを求めることが出来る。
その結果、表2に示すように、PEDOT:PSS薄膜素子を用いたモジュールではr1= 0.0017Ωに対してRb = 0.26〜0.38Ωとなり、r1に比べてRbが2桁以上大きいことが分かった。
これに対してPEDOT:PSS塗布不織布素子を用いたモジュールでは、不織布と複合組織化することで導電率が低下しr1 = 0.030Ωとなるものの、Rb = 0.13〜0.20Ωとなった。
すなわち、いずれの試料においてもモジュールの電気抵抗の値の大部分をRbが占める一方、Rb自体はPEDOT:PSS塗布不織布素子を用いることによりPEDOT:PSS薄膜素子の1/1.3〜1/2.9に低下している。この電極界面抵抗の低下も、(2−1)で検討したΔTの増大とともに、最大出力電力の増加に寄与している。
先に述べたとおりRbは、素子と電極の界面に固有の値として得られる接触抵抗rc、及び素子と電極の接触面積Aを用いて、Rb = rc/Aで与えられる。本実施例において、同じロット及び同じ調製条件で得たPEDOT:PSS溶液及び銀ペーストを用いているためrcは不変と仮定すると、PEDOT:PSS塗布不織布素子を用いたモジュールのRbがPEDOT:PSS薄膜素子のそれより低下した理由は、Aが1.3〜2.9倍程度に広くなったことに起因すると考えられる。
そこで図7に示すように素子の上下面の表面形状をみると、(a)のPEDOT:PSS薄膜素子では凹凸の無い平滑な形状であるのに対し、(b)のPEDOT:PSS塗布不織布素子では不織布の線維に起因する凹凸が見られたため、Aが大幅に広くなったことと矛盾していないことが確認できた。この様子は、図1で模式的に説明した、繊維状断熱材と有機材料の複合組織化による表面形状の粗さの増加を実験的に確認したものである。
(2-4) Examination of influence of element-electrode interface resistance on output power of composite textured element Subsequently, element-electrode interface on increase of maximum output power of module using PEDOT: PSS coated nonwoven fabric element The result of examining the influence of the resistance value will be described.
As described in “Background Art”, the electrical resistance of the module when obtaining the maximum power generation output P 1 of the module composed of a single element is the internal resistance r 1 obtained from the conductivity and size of the element, and the element − Note that r 1 + 2R b is obtained in consideration of the interelectrode electrical resistance R b .
The electrical resistance of the module is an element using the slope of the curve indicating the relationship between the output voltage and the output current indicated by the black dots in FIGS. 5 and 6 for the PEDOT: PSS thin film element and the PEDOT: PSS coated nonwoven fabric element, respectively. Can be obtained by dividing by a number. In addition, it is possible to determine the internal resistance r 1 per element by measuring the thickness direction of the conductivity of each element in the DC four-terminal method, the r 1 from r 1 + 2R b obtained above R b can be obtained by subtracting and dividing by 2.
As a result, as shown in Table 2, in the module using PEDOT: PSS thin film element, R b = 0.26 to 0.38Ω for r 1 = 0.0017Ω, and R b is two orders of magnitude larger than r 1 I understood.
On the other hand, in the module using the PEDOT: PSS coated nonwoven fabric element, although the electrical conductivity was lowered by forming a composite structure with the nonwoven fabric and r 1 = 0.030Ω, R b = 0.13 to 0.20Ω.
That is, Rb occupies most of the electrical resistance value of the module in any sample, while Rb itself is 1 / 1.3 to 1 / 2.9 of PEDOT: PSS thin film element by using PEDOT: PSS coated nonwoven fabric element. It has dropped to. This decrease in electrode interface resistance also contributes to an increase in maximum output power as ΔT studied in (2-1) increases.
As described above, R b is given by R b = r c / A using the contact resistance r c obtained as a value inherent to the interface between the element and the electrode, and the contact area A between the element and the electrode. PEDOT in this example was obtained in the same lot and the same preparation conditions: If the r c due to the use of PSS solution and silver paste Assuming unchanged, PEDOT: a module using the PSS coated nonwoven element R b is PEDOT: The reason why the PSS thin film element is lower than that of the PSS thin film element is thought to be that A is about 1.3 to 2.9 times wider.
Therefore, as shown in FIG. 7, when the surface shape of the upper and lower surfaces of the element is viewed, the PEDOT: PSS thin film element in (a) has a smooth shape without irregularities, whereas the PEDOT: PSS coated nonwoven element in (b) In the example, the unevenness caused by the fibers of the nonwoven fabric was observed, so that it was confirmed that A was not inconsistent with the fact that A was significantly widened. This state has been experimentally confirmed to increase the roughness of the surface shape due to the composite organization of the fibrous heat insulating material and the organic material, which is schematically described in FIG.

Figure 0006448980
Figure 0006448980

(3)実施例1、2の結果のまとめ
実施例1および2で得られた、以上の結果をまとめると次のとおりである。
EGを3重量%添加した高分子濃度1.3重量%のPEDOT:PSS水溶液を同一量(10.5mL)用いて、従来の単に当該水溶液を塗布・乾燥する方法と、当該水溶液をセルロース不織布に浸透・乾燥する方法により、膜状に成形された熱電変換素子を作製した。塗布・乾燥法は、7.5cm×3.75cmのサイズの容器に水溶液を流延し、乾燥することで行い、不織布への浸透・乾燥法は、7.5cm×3.75cm、非圧縮時の厚さ1.5mmのセルロース不織布(重さ約0.68g)に水溶液を滴下し、乾燥することで行った。
塗布・乾燥法で得られた素子(PEDOT:PSS薄膜素子)の膜厚は約80μmであるのに対し、不織布への浸透・乾燥法で得られた素子(PEDOT:PSS塗布不織布素子)の膜厚は約800μmであり、同一量の水溶液を用いることで、PEDOT:PSS塗布不織布素子は、PEDOT:PSS薄膜素子に比べて、厚さを約10倍とすることができた。これにより、試料の単位体積あたりのPEDOT:PSS溶液使用量は1/13〜1/20に削減することになる。
これらの素子を5mm×3mm角に切断し、その上下面にAgペースト用いてニッケル箔を電極として接着し、、発電試験に供する目的に応じて、5個ないし6個の素子を当該電極により直列に結合した熱電変換モジュールを作製した。これらの熱電変換モジュールは、いずれも、十分な柔軟性を有しており、曲率半径にして最小2cm程度にまで曲げても熱電モジュール内の配線を壊さず、内部抵抗も殆ど変化しなかった。
このようにして作製した2種類の熱電変換モジュールについて、素子の上下面の温度差及びモジュールの発電出力の測定を行った。その結果、従来の単純なPEDOT:PSS塗布・乾燥膜素子に比べて、PEDOT:PSS塗布不織布素子の上下面の温度差は2.3〜4.6倍大きくなり、電極界面抵抗は、発電出力特性の解析の結果、従来の膜材料に比べて約1/1.3〜1/2.9に低下していることが分かった。この電極界面抵抗の低下は、有機熱電材料と電極金属との接触面積の増大が原因であることが、複合組織化素子の表面形態の観察から確かめられた。
結果としてこのPEDOT:PSS不織布複合組織化素子を用いたモジュールは、最高出力電力密度として4.54μW/cm2(温度差23.8Kの時)を実現したうえ、単位出力電力あたりに必要なPEDOT:PSS溶液の量は、PEDOT:PSS薄膜素子の1/37〜1/63で済むことが分かった。このモジュールは柔軟性も維持しており、薄く軽いフレキシブル熱電モジュールの実用化に大きく貢献し得るものである。
(3) Summary of results of Examples 1 and 2 The above results obtained in Examples 1 and 2 are summarized as follows.
Using the same amount (10.5 mL) of a PEDOT: PSS aqueous solution with a polymer concentration of 1.3% by weight with 3% by weight of EG, the conventional method of simply applying and drying the aqueous solution, and penetrating and drying the aqueous solution into a cellulose nonwoven fabric Thus, a thermoelectric conversion element formed into a film shape was produced. The coating / drying method is performed by casting an aqueous solution into a 7.5cm x 3.75cm size container and drying, and the penetration / drying method to the nonwoven fabric is 7.5cm x 3.75cm, uncompressed thickness 1.5 An aqueous solution was dropped onto a mm-thick cellulose nonwoven fabric (weighing about 0.68 g) and dried.
The element (PEDOT: PSS thin film element) obtained by the coating / drying method has a film thickness of about 80 μm, whereas the element (PEDOT: PSS coated nonwoven element) obtained by the penetration / drying method into the nonwoven fabric is used. The thickness was about 800 μm, and by using the same amount of aqueous solution, the PEDOT: PSS coated nonwoven fabric element could be about 10 times thicker than the PEDOT: PSS thin film element. Thereby, the amount of PEDOT: PSS solution used per unit volume of the sample is reduced to 1/13 to 1/20.
These elements are cut into 5 mm x 3 mm squares, and Ag foil is attached to the top and bottom surfaces using nickel paste as electrodes, and 5 to 6 elements are connected in series with the electrodes depending on the purpose for the power generation test. A thermoelectric conversion module coupled to was fabricated. All of these thermoelectric conversion modules had sufficient flexibility, and even when the radius of curvature was bent to a minimum of about 2 cm, the wiring in the thermoelectric module was not broken and the internal resistance hardly changed.
With respect to the two types of thermoelectric conversion modules thus produced, the temperature difference between the upper and lower surfaces of the element and the power generation output of the module were measured. As a result, the temperature difference between the upper and lower surfaces of the PEDOT: PSS coated nonwoven fabric element is 2.3 to 4.6 times larger than the conventional simple PEDOT: PSS coated / dried membrane element, and the electrode interface resistance is As a result, it was found that the ratio was reduced to about 1 / 1.3% to 1 / 2.9 compared to the conventional film material. It was confirmed from the observation of the surface morphology of the composite textured element that the decrease in the electrode interface resistance was caused by the increase in the contact area between the organic thermoelectric material and the electrode metal.
As a result, the module using this PEDOT: PSS non-woven composite textured element achieves a maximum output power density of 4.54μW / cm 2 (at a temperature difference of 23.8K) and requires PEDOT: PSS per unit output power. The amount of the solution was found to be 1/37 to 1/63 of the PEDOT: PSS thin film element. This module also maintains flexibility, and can greatly contribute to the practical application of thin and light flexible thermoelectric modules.

実施例3.複合組織化素子における有機熱電材料の適切な複合量の検討
セルロース不織布(BEMCOT M-1型)を、実施例1と同様に、8枚分の厚さ(1.5mm)で7.5cm×3.75cmのサイズ(重さ約0.68g)に切り出し、そこにEGを添加剤として高分子濃度1.3重量%のPEDOT:PSS水溶液を浸透させ、乾燥させた試料において、PEDOT:PSS水溶液の量及びEGの添加量が、素子の厚さや構造に及ぼす影響、ならびに熱電発電特性に及ぼす影響を調べた。これらの結果を図8〜図13を用いて示し、良好な発電出力を得るのに必要な溶液量及び添加剤添加量について、以下に述べる。
試料はいずれの場合も、PDMSのシートの上で、EG添加あるいは無添加の高分子濃度1.3重量%のPEDOT:PSS水溶液を不織布に滴下し、ホットプレート上で大気中60〜80℃にて乾燥させた後、不織布をPDMSシートから剥がしてさらにホットプレート上で大気中130〜160℃にてアニールして得たものである。
Example 3 Examination of appropriate composite amount of organic thermoelectric material in composite textured element As in Example 1, cellulose nonwoven fabric (BEMCOT M-1 type) is 7.5 cm × 3.75 cm in thickness (1.5 mm) for 8 sheets. Cut into a size (weight approximately 0.68g), PEDOT: PSS aqueous solution with a polymer concentration of 1.3% by weight was infiltrated with EG as an additive, and in the dried sample, the amount of PEDOT: PSS aqueous solution and the amount of EG added The effect on the thickness and structure of the element and the effect on the thermoelectric generation characteristics were investigated. These results are shown in FIG. 8 to FIG. 13, and the amount of solution and the amount of additive added necessary to obtain a good power output will be described below.
In either case, on the PDMS sheet, a PEDOT: PSS aqueous solution with a polymer concentration of 1.3% by weight with or without EG is dropped onto the nonwoven fabric and dried on the hot plate at 60-80 ° C in the air. Then, the nonwoven fabric was peeled off from the PDMS sheet and further annealed on the hot plate at 130 to 160 ° C. in the atmosphere.

添加剤EGの添加量を3重量%で一定にして、PEDOT:PSS溶液使用量を変えた場合の、PEDOT:PSS塗布不織布素子の断面の電子顕微鏡写真を図8に示す。
図を見ると明らかなように、溶液使用量が10.5mlの場合(図8(c)及び(d))に、素子の厚みが最も大きくなっている。さらに、溶液使用量が10.5mlの場合には、素子内に直径約200μm程度の大きさの空洞が厚み方向に互いに約500μmの間隔を置いて形成されており(図8(c))、乾燥後のPEDOT:PSSが繊維を取り囲む形で互いに結び付き、繊維間の空洞も部分的に確保しながら、網目状の断面構造を形成している様子も見える(図8(d))。この繊維を被覆するPEDOT:PSSの膜厚は、より高倍率の電子顕微鏡観察により300〜500nmの程度であることが分かった。PEDOT:PSSの網目状断面構造は試料全体に均一に分布していることから、図8の素子の厚さ方向の導電性は適切に確保されていることが見て取れる。
一方、溶液使用量が19mlの場合は、溶液量10.5mlで見られた空洞の形成は無いうえ(図8(e))、繊維間の空洞も少なく、繊維はPEDOT:PSSのマトリクス中にほぼ埋包された状態に近い(図8(f))。このため、素子の導電性は良好であるものの、厚みは10.5mlの場合に比べて薄くなっている。
さらに、溶液使用量が2mlの場合も、溶液量10.5mlで見られた空洞の形成は無いうえ(図8(a))、繊維はPEDOT:PSSがコーティングされた状態である(図8(b))が繊維同士の物理的な接触が弱いために、繊維をコーティングしているPEDOT:PSS薄膜の繊維間の導電パスが形成されにくく、このため図8の素子の厚さ方向の導電性は他の溶液量に比べて低いことが見て取れる。また、この場合も素子の厚みは10.5mlの場合に比べて薄くなっている。
以上のことから、EG添加量3重量%のPEDOT:PSS塗布不織布素子では、PEDOT:PSSの溶液量が約10.5mlの場合において、繊維を膨張させた状態のまま乾燥が完了することで不織布内に空洞が形成され、かつ繊維間にも部分的に空洞を形成されることにより、最も試料を厚くすることが出来ていることが分かった。溶液量が多い場合は、PEDOT:PSS溶液乾燥時のPEDOT:PSSの凝集の効果が繊維の膨張よりも強く働き、空洞の形成が抑えられていると考えられる。
FIG. 8 shows an electron micrograph of a cross section of the PEDOT: PSS coated nonwoven fabric element when the amount of the additive EG is kept constant at 3% by weight and the amount of PEDOT: PSS solution used is changed.
As is apparent from the figure, the thickness of the element is the largest when the amount of the solution used is 10.5 ml (FIGS. 8C and 8D). Further, when the amount of the solution used is 10.5 ml, cavities having a diameter of about 200 μm are formed in the element at intervals of about 500 μm in the thickness direction (FIG. 8 (c)). It can be seen that the subsequent PEDOT: PSS is connected to each other in a form surrounding the fibers, and a network-like cross-sectional structure is formed while partially securing the cavities between the fibers (FIG. 8D). The film thickness of PEDOT: PSS covering this fiber was found to be about 300 to 500 nm by observation with a higher magnification electron microscope. Since the PEDOT: PSS mesh-like cross-sectional structure is uniformly distributed throughout the sample, it can be seen that the conductivity in the thickness direction of the element of FIG. 8 is appropriately secured.
On the other hand, when the amount of the solution used is 19 ml, there is no formation of cavities seen with the solution amount of 10.5 ml (FIG. 8 (e)), and there are few cavities between the fibers, and the fibers are almost in the PEDOT: PSS matrix. It is close to the embedded state (FIG. 8 (f)). For this reason, although the conductivity of the element is good, the thickness is thinner than in the case of 10.5 ml.
Furthermore, even when the amount of the solution used is 2 ml, there is no formation of the cavity seen with the solution amount of 10.5 ml (FIG. 8 (a)), and the fiber is in a state coated with PEDOT: PSS (FIG. 8 (b)). )) Is weak in physical contact between the fibers, it is difficult to form a conductive path between the fibers of the PEDOT: PSS thin film coated with the fibers. Therefore, the conductivity in the thickness direction of the element of FIG. It can be seen that it is low compared to other solution volumes. Also in this case, the thickness of the element is thinner than that in the case of 10.5 ml.
From the above, in a PEDOT: PSS coated nonwoven fabric element with an EG addition amount of 3% by weight, when the PEDOT: PSS solution amount is about 10.5 ml, the drying is completed while the fibers are expanded, so that the inside of the nonwoven fabric It was found that the sample could be made the thickest by forming cavities in the region and partially forming cavities between the fibers. When the amount of the solution is large, it is considered that the effect of agglomeration of PEDOT: PSS during drying of the PEDOT: PSS solution works stronger than the expansion of the fibers, and the formation of cavities is suppressed.

次に、PEDOT:PSS溶液の使用量を10.5mlに一定にして、添加剤EGの添加量を変えた場合の、PEDOT:PSS塗布不織布素子の断面の電子顕微鏡写真を図9に示す。
EG 3重量%の場合の図9(c)及び(d)は、図8(c)及び(d)とそれぞれ同じ図である。図9を見ると、EG 3重量%の場合(図9(c)及び(d))は、EG添加無し(0%)の場合(図9(a)及び(b))や、EG 30重量%の場合(図9(e)及び(f))に比べて試料の厚みが最も大きい。
添加剤EGが無い場合は、繊維の膨張によるとみられる不織布内部の大きな空洞形成は見られないうえ、図9(b)のように、繊維の周囲に付着するPEDOT:PSSは部分的に凝集し塊となっている様子が見られる。
一方、EG 30重量%の場合には、EG 3重量%の場合(図9(c)及び(d))と同様に、乾燥後のPEDOT:PSSが繊維を取り囲む形で互いに結び付き、繊維間の空洞も部分的に確保しながら、網目状の断面構造を形成している様子も見えるが(図9(f))、やはりEG3重量%で見られた様な直径約200μm程度の大きさの空洞形成は生じていない。
このようなPEDOT:PSS塗布不織布素子の断面構造のEG添加量依存性は次のような要因によるものと推測される。EGを3重量%程度添加した場合は、PEDOT:PSS溶液を基板上に滴下すると、基板に沿った面でPEDOTの配向が生じて導電性を高めることが、既に発表されている。この特性により、EG 3重量%の場合は、PEDOT:PSSが繊維表面に沿って取り囲むように配向し膜形成しながら乾燥し、膜が互いに結び付いた網目状の断面構造を形成する。また、乾燥が進むと繊維間やPEDOT:PSS膜と繊維の間にも空洞が形成される。逆にEG添加しない場合は上記のような繊維表面に沿った分子配向をしないため、PEDOT:PSSは無秩序に繊維を取り巻き、乾燥後部分的な凝集を起こす。EG添加はさらに、不織布や繊維自体の膨張・伸縮を促す効果も有しており、EGが3重量%の量では、不織布や繊維が膨張した後、速やかにPEDOT:PSS膜内部のEGが蒸発するため、直径約200μm程度の大きさの規則的な空洞形成が生じると思われる。規則的な形成は、使用した不織布が、ある程度規則的に繊維の束が簡易に編まれた状態の布であることに起因する。
一方、EGの添加量が多い場合、乾燥過程で不織布や繊維自体の膨張・伸縮を生じながらも、EGの蒸発に要する時間が3重量%の場合に比べて長いために、PEDOT:PSS高分子の凝集が進む時間が確保され、不織布の膨張は高分子の凝集の効果に打ち勝てず、大きな空洞形成が抑制されると推測される。
Next, FIG. 9 shows an electron micrograph of a cross section of the PEDOT: PSS coated nonwoven fabric element when the amount of the additive EG is changed while the amount of the PEDOT: PSS solution used is kept constant at 10.5 ml.
9 (c) and (d) in the case of 3% by weight of EG are the same as FIGS. 8 (c) and (d), respectively. Referring to FIG. 9, when EG is 3% by weight (FIGS. 9C and 9D), when EG is not added (0%) (FIGS. 9A and 9B), EG is 30% by weight. %, The thickness of the sample is the largest compared to the case of FIGS. 9 (e) and (f).
In the absence of additive EG, the formation of large cavities inside the nonwoven fabric, which appears to be due to fiber expansion, is not observed, and PEDOT: PSS adhering to the periphery of the fiber partially aggregates as shown in FIG. 9B. You can see a lump.
On the other hand, in the case of 30% by weight of EG, similarly to the case of 3% by weight of EG (FIGS. 9 (c) and (d)), PEDOT: PSS after drying is bound to each other so as to surround the fibers. Although a part of the cavity is secured, it can be seen that a mesh-like cross-sectional structure is formed (Fig. 9 (f)), but a cavity with a diameter of about 200μm as seen at 3% by weight of EG. Formation has not occurred.
The dependency of the cross-sectional structure of such a PEDOT: PSS coated nonwoven fabric element on the EG addition amount is presumed to be due to the following factors. It has already been announced that when about 3% by weight of EG is added, when a PEDOT: PSS solution is dropped onto a substrate, the orientation of the PEDOT occurs on the surface along the substrate and the conductivity is increased. Due to this characteristic, in the case of 3% by weight of EG, PEDOT: PSS is oriented so as to surround the fiber surface and dried while forming a film, thereby forming a network-like cross-sectional structure in which the films are connected to each other. Also, as the drying progresses, cavities are formed between the fibers and between the PEDOT: PSS film and the fibers. On the other hand, when EG is not added, the molecular orientation along the fiber surface as described above does not occur, so PEDOT: PSS surrounds the fiber randomly and causes partial aggregation after drying. The addition of EG also has the effect of accelerating the expansion and contraction of the nonwoven fabric and fiber itself. When the amount of EG is 3% by weight, the EG inside the PEDOT: PSS film evaporates quickly after the nonwoven fabric and fiber expand. Therefore, it seems that regular cavities with a diameter of about 200 μm are formed. Regular formation is due to the fact that the nonwoven fabric used is a fabric in which a bundle of fibers is easily knitted to a certain degree.
On the other hand, if the amount of EG added is large, the nonwoven fabric and the fiber itself will expand and contract during the drying process, but the time required for EG evaporation is longer than 3% by weight, so PEDOT: PSS polymer It is presumed that the time during which the agglomeration proceeds is secured, and the expansion of the nonwoven fabric cannot overcome the effect of the polymer agglomeration, thereby suppressing the formation of large cavities.

続いて、上記と同じ作製法で得たPEDOT:PSS塗布不織布素子を2cm×2cmの面積に切り出し、その素子の任意の6か所の厚さの平均値を測定した結果を図10に示す。図10(a)はEGを3重量%で一定とし、PEDOT:PSS水溶液の使用量を変化させた場合であり、溶液量10.5mlの場合に最も素子が厚くなっている。また、図10(b)はPEDOT:PSS水溶液の使用量を10.5mlと一定にして、添加剤EGの割合を変えた場合であるが、EG 3重量%の場合に最も素子が厚くなっている。これらの結果は、図8及び図9の観察結果を試料の厚さの実測値として確認したことを意味する。   Subsequently, a PEDOT: PSS coated nonwoven fabric element obtained by the same production method as described above was cut out into an area of 2 cm × 2 cm, and the result of measuring the average value of the thickness at any six locations of the element is shown in FIG. FIG. 10A shows a case where EG is constant at 3% by weight, and the amount of PEDOT: PSS aqueous solution used is changed. The device is thickest when the amount of solution is 10.5 ml. FIG. 10 (b) shows the case where the amount of PEDOT: PSS aqueous solution used is kept constant at 10.5 ml and the ratio of the additive EG is changed. The element is thickest when EG is 3% by weight. . These results mean that the observation result of FIG.8 and FIG.9 was confirmed as a measured value of the thickness of a sample.

図10の厚さ測定で用いた2cm×2cmの面積のPEDOT:PSS塗布不織布素子を、試料の表裏にそれぞれ薄膜型K熱電対を取り付けて、5℃の冷却ステージと加熱されたアルミ板で挟み、加熱ヒータ出力4W一定のもとで、試料の上下(厚さ)に付与された温度差ΔTelementを測定した結果を図11に示す。試料の面積、加熱ヒータ出力、及び低温側ステージ冷却温度を固定しているため、ヒータの配線や周囲の空気を通して逃げる熱量の補正が困難であるものの、得られた温度差は素子の有する熱抵抗に対応している。
図を見ると、ΔTelementはPEDOT:PSS溶液使用量が10.5mlの場合(図11(a))、及び添加剤EGが3重量%の場合(図11(b))において最も大きくなっている。これは図8〜図10で示した素子の厚さの関係とほぼ一致している。素子の面積が一定の場合、熱抵抗は素子の厚さに比例し、熱伝導率に反比例する。図11に示した結果は、PEDOT:PSS膜と繊維との複合化による熱伝導率低下の効果に比べ、適切なPEDOT:PSS溶液量及び添加剤の量によって不織布内や繊維間に空洞を形成することにより、素子を厚くして構造的に熱抵抗が高い状態が実現されることを示している。
The PEDOT: PSS coated nonwoven fabric element with the area of 2cm x 2cm used in the thickness measurement of Fig. 10 is sandwiched between a 5 ° C cooling stage and a heated aluminum plate with thin film type K thermocouples attached to the front and back of the sample, respectively. FIG. 11 shows the results of measuring the temperature difference ΔT element applied to the top and bottom (thickness) of the sample under the constant heater output 4W. Although the sample area, heater output, and low-temperature stage cooling temperature are fixed, it is difficult to correct the amount of heat that escapes through the heater wiring and surrounding air, but the obtained temperature difference is the thermal resistance of the element. It corresponds to.
Referring to the figure, ΔT element is the largest when the amount of PEDOT: PSS solution used is 10.5 ml (FIG. 11 (a)) and when the additive EG is 3% by weight (FIG. 11 (b)). . This substantially coincides with the relationship between the thicknesses of the elements shown in FIGS. When the element area is constant, the thermal resistance is proportional to the thickness of the element and inversely proportional to the thermal conductivity. The results shown in FIG. 11 show that a cavity is formed in the nonwoven fabric or between the fibers depending on the appropriate amount of PEDOT: PSS solution and the amount of additive compared to the effect of lowering the thermal conductivity by combining the PEDOT: PSS film and the fiber. By doing this, it is shown that a state in which the element is thick and the thermal resistance is structurally high is realized.

図10及び図11の実験で用いたPEDOT:PSS塗布不織布素子の表裏にR熱電対を取り付け、素子の表面と裏面の間(厚さ方向)の温度差や起電力を測定出来るようにした後、温度制御機構の付いた2つのペルチェ温度制御ステージで挟んで素子の上下に温度差を付与した場合(厚さ方向)のSeebeck係数の測定値を図12に示す。
図に示すように、添加剤EGは3重量%一定とし、PEDOT:PSS溶液使用量を変化させた場合(図12(a))、及び PEDOT:PSS溶液使用量を10.5ml一定にして、添加剤EGの割合を変えた場合(図12(b))のいずれの場合も、Seebeck係数の値に及ぼす影響は小さいことが分かった。
After attaching R thermocouples on the front and back of the PEDOT: PSS coated nonwoven fabric element used in the experiments of FIG. 10 and FIG. 11 and measuring the temperature difference and electromotive force between the front and back surfaces (thickness direction) of the element FIG. 12 shows the measured value of the Seebeck coefficient when a temperature difference is given between the top and bottom of the element (thickness direction) sandwiched between two Peltier temperature control stages with a temperature control mechanism.
As shown in the figure, the additive EG is fixed at 3% by weight, and the PEDOT: PSS solution usage is changed (Fig. 12 (a)), and the PEDOT: PSS solution usage is fixed at 10.5 ml. It was found that the effect on the value of the Seebeck coefficient was small in any case where the ratio of the agent EG was changed (FIG. 12 (b)).

図11で示した素子の厚さ方向に付与された温度差ΔTelement及び図12で示した厚さ方向のSeebeck係数Sを用いて、PEDOT:PSS塗布不織布素子を用いた単一の熱電変換素子からなるモジュールの最大出力電力を[数1]より算出した結果を図13に示す。
素子の面積は実施例2で行った熱電変換モジュールの発電試験を考慮して5mm×3mmとして別途測定した素子内部抵抗測定値r1、電極界面抵抗Rbは前述の表2より0.13Ωで一定と仮定し、5℃の冷却ステージと加熱用ヒータ(4W)を付けたアルミ板で挟んだ場合の出力試算値である。[数1]より、最大出力電力はモジュールに付与された温度差の2乗に比例する。従って添加剤EGを3重量%で一定とし、PEDOT:PSS溶液使用量を変化させた場合(図13(a))、温度差の最も大きなPEDOT:PSS溶液量10.5mLで最も出力が高くなっている。溶液量6ml以下では、Rbに比べてr1が無視できなくなり出力が顕著に低下する。
また、PEDOT:PSS溶液使用量を10.5ml一定にして、添加剤EGの割合を変えた場合(図13(b))、やはり温度差の最も大きなEG3重量%で最も出力が高くなっている。EG添加無しの場合も、Rbに比べてr1が無視できなくなり出力が顕著に低下する。
以上のとおり、PEDOT:PSS塗布不織布素子においては、素子の厚さが最も大きくなる場合に熱電発電出力が最も大きくなることが示された。
A single thermoelectric conversion element using a PEDOT: PSS coated nonwoven fabric element, using the temperature difference ΔT element applied in the thickness direction of the element shown in FIG. 11 and the Seebeck coefficient S in the thickness direction shown in FIG. FIG. 13 shows the result of calculating the maximum output power of the module consisting of [Equation 1].
The area of the element was measured separately as 5 mm x 3 mm in consideration of the power generation test of the thermoelectric conversion module performed in Example 2, and the element internal resistance measurement value r 1 and electrode interface resistance R b were fixed at 0.13Ω from Table 2 above. Assuming that, it is an estimated output value when sandwiched between aluminum plates with a 5 ° C cooling stage and a heater (4W). From [Equation 1], the maximum output power is proportional to the square of the temperature difference applied to the module. Therefore, when the additive EG is constant at 3% by weight and the amount of PEDOT: PSS solution used is changed (FIG. 13 (a)), the output becomes the highest at 10.5mL of PEDOT: PSS solution with the largest temperature difference. Yes. If the amount of solution is 6 ml or less, r 1 cannot be ignored compared to R b , and the output is significantly reduced.
In addition, when the PEDOT: PSS solution usage was kept constant at 10.5 ml and the ratio of the additive EG was changed (FIG. 13B), the output was highest at 3% by weight of EG having the largest temperature difference. Even without EG addition, r 1 cannot be ignored compared to R b , and the output is significantly reduced.
As described above, in the PEDOT: PSS-coated nonwoven fabric element, it was shown that the thermoelectric power output becomes the largest when the thickness of the element becomes the largest.

以上の試験結果をまとめると次のとおりである。本実施例で用いた、7.5cm×3.75cm×厚さ1.5mm(重さ約0.68g)のセルロース不織布(BEMCOT M-1型)からなるPEDOT:PSS塗布不織布素子では、高分子濃度1.3重量%のPEDOT:PSS溶液使用量が10.5ml及びEG添加量3重量%の場合において、添加剤EGによる高分子の配向の効果及び繊維を膨張・伸縮させる効果などが組み合わさり、不織布内や繊維間に空洞を形成することにより、最も素子を厚く出来ることが分かり、素子の厚さ方向の熱抵抗が最大化することが主たる要因となってPEDOT:PSS塗布不織布素子を用いたモジュールの熱電発電出力が最大化することが示された。このように、不織布繊維に浸透させるPEDOT:PSS溶液の量や添加剤添加量には適切な値が存在し、本実施例の場合は不織布1gあたり高分子濃度1.3重量%の水溶液15.4mL、添加剤EGは3重量%であることが見出された。
上記実施例は、導電性高分子に添加する添加剤が、高分子を配向させる効果と、繊維やそれが織られた布を膨張させる効果により、繊維と導電性高分子とを複合組織化した素子の厚さを大きくすることについて検証したものであり、このような効果が生じる繊維や不織布、導電性高分子、及び添加剤の材質は上記実施例のものに限るものではない。そのため、上記実施例と異なる材質を用いた場合は、高分子溶液や添加剤の適切な配合に調整を必要とする。
The above test results are summarized as follows. In the PEDOT: PSS coated nonwoven fabric element made of cellulose nonwoven fabric (BEMCOT M-1 type) of 7.5 cm × 3.75 cm × thickness 1.5 mm (weight approximately 0.68 g) used in this example, the polymer concentration is 1.3% by weight. When the amount of PEDOT: PSS solution used is 10.5 ml and the amount of EG added is 3% by weight, the effect of polymer orientation by the additive EG and the effect of expanding / stretching the fibers are combined to create a combination in the nonwoven fabric and between the fibers. It can be seen that the element can be made thickest by forming the cavity, and the main factor is that the thermal resistance in the thickness direction of the element is maximized, and the thermoelectric power output of the module using the PEDOT: PSS coated nonwoven fabric element is It was shown to maximize. Thus, there is an appropriate value for the amount of PEDOT: PSS solution to be infiltrated into the nonwoven fiber and the additive addition amount, and in this example, 15.4 mL of an aqueous solution having a polymer concentration of 1.3% by weight per 1 g of the nonwoven fabric is added. The agent EG was found to be 3% by weight.
In the above examples, the additive added to the conductive polymer is a composite structure of the fiber and the conductive polymer due to the effect of orienting the polymer and the effect of expanding the fiber and the cloth in which the fiber is woven. It has been verified that the thickness of the element is increased, and the materials of the fiber, the nonwoven fabric, the conductive polymer, and the additive that produce such an effect are not limited to those of the above-described embodiments. For this reason, when a material different from that in the above embodiment is used, it is necessary to adjust the appropriate blending of the polymer solution and the additive.

以上、実施例により、本発明において、ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子等の有機熱電材料を、繊維状断熱材に塗布乾燥する過程で繊維を膨張・伸縮させて厚みや繊維間の空洞を形成させながら複合組織化することにより、得られた熱電変換素子において、柔軟性を維持しつつ、熱電変換を行う導電性高分子の使用量を削減することで低コスト化を実現することができ、かつ、単に塗布・乾燥して得る従来の膜状素子に比べて、同じ原料溶液使用量で素子を格段に厚くすることができること、そして、これにより、当該素子において、両端の温度差を増加することができ、さらに、複合組織化する断熱材の表面形状の粗さにより、熱電変換素子と電極金属との接触面積が大きくなることで電極界面抵抗も低下でき、これらにより、当該熱電変換素子を用いた熱電変換モジュールの発電出力を大幅に増加することができることを説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。
本願発明の構成や詳細には、本願発明の概念の範囲内で当業者が理解し得る様々な変更を行うことができる。
As described above, according to the present invention, in the present invention, an organic thermoelectric material such as a conductive polymer whose conductivity and Seebeck coefficient are adjusted by a dopant molecule and an additive molecule is applied to a fibrous heat insulating material, and the fiber is expanded and dried. Reduce the amount of conductive polymer used for thermoelectric conversion while maintaining flexibility in the resulting thermoelectric conversion element by forming a composite structure while stretching and forming voids between fibers The cost can be reduced, and the device can be made much thicker with the same amount of raw material used than the conventional film-like device obtained by simply applying and drying, and thereby, In the element, the temperature difference between both ends can be increased, and the contact area between the thermoelectric conversion element and the electrode metal is increased due to the roughness of the surface shape of the heat insulating material that forms a composite structure. However, the present invention is limited to the above-described embodiments and examples, although it has been explained that the electrode interface resistance can also be reduced and the power generation output of the thermoelectric conversion module using the thermoelectric conversion element can be greatly increased. It is not a thing.
Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the concept of the present invention.

すなわち、上記実施例においては、断熱性物質としてセルロースからなる不織布を用いたが、断熱材としてはこれに限定するわけではなく、熱電変換を行う高分子材料よりも熱伝導率の低い物質であればよい。例えば、繊維状の断熱性物質として、紙、木材、衣服、靴、清掃用具(ぞうきん、モップなど)、自動車・鉄道・飛行機・船舶などの座席シート及びシートベルト、ガラスウールなどを用い、これと熱電有機材料とを複合組織化させることができる。
熱電有機材料としては、本実施例で選択した導電性高分子以外にも、ポリアニリン、ポリチオフェン、ポリアセチレン、ポリピロール、ポリフェニレンビニレン、及びこれらの誘導体を用いることができる。また、ドーパント分子及び添加材分子によって導電率(内部抵抗)及びゼーベック係数を調整した有機材料であれば、導電性高分子に限定するものではなく、ルブレン、テトラセン、ペンタセン、ペリレンジイミド(PTCDI)、テトラシアノキノジメタン(TCNQ)等の低分子材料を用いてもよい。
これら有機材料からなる熱電変換素子を電気的につなぐ電極として、本実施例ではニッケル箔を用いたが、これに限定するわけではなく、金属としては銅、銀、金、白金、チタン、鉄、ステンレス、アルミ、亜鉛など、さらにはインジウムスズ化合物などの導電性物質を用いることができる。さらに、金属電極を通した熱伝導により素子両端の温度差が低下するのを防ぐために、これらの金属及び導電性物質を細線状に加工したもの、あるいはこれらを繊維状物質にメッキ法などで被覆したものを用いることもできる。
熱電素子と金属電極との間の接合は、本実施例の場合、PEDOT:PSS素子とニッケル箔の間に銀ペーストを薄く塗布して行ったが、これに限定するものではなく、ニッケルペースト、金ペースト、白金ペーストなどを用いてもよい。
熱電変換素子及びそれらと電極の配線を保護しつつ柔軟性を確保するために、本実施例においてはポリエチレンテレフタレートからなるラミネートフィルムによるラミネート加工を行ったが、これらの材料および加工法に限定されるものではない。素子を保護するフィルムは、絶縁性及び柔軟性のある物質であればよく、ポリエチレン、ポリプロピレン、ポリイミド、ポリ塩化ビニル、ポリエステル、ポリカーボネート、エチレン-メタクリル酸共重合体、エチレン-酢酸ビニル共重合体、フッ素樹脂などを用いることができる。さらには、素子両端の温度差を大きくするために、絶縁性の粘着剤を塗布した(銅、アルミなどの)金属シート・テープ等を用いることができる。
That is, in the above examples, a nonwoven fabric made of cellulose was used as the heat insulating material, but the heat insulating material is not limited to this, and may be a material having a lower thermal conductivity than a polymer material that performs thermoelectric conversion. That's fine. For example, paper, wood, clothes, shoes, cleaning tools (such as elephants, mops, etc.), seat sheets and seat belts for automobiles, railways, airplanes, ships, etc., glass wool, etc. A composite structure can be formed with the thermoelectric organic material.
As the thermoelectric organic material, polyaniline, polythiophene, polyacetylene, polypyrrole, polyphenylene vinylene, and derivatives thereof can be used in addition to the conductive polymer selected in this example. In addition, as long as the organic material is adjusted conductivity (internal resistance) and Seebeck coefficient by dopant molecules and additive molecules, it is not limited to conductive polymers, rubrene, tetracene, pentacene, perylene diimide (PTCDI), A low molecular material such as tetracyanoquinodimethane (TCNQ) may be used.
As an electrode for electrically connecting thermoelectric conversion elements made of these organic materials, a nickel foil was used in this example, but the present invention is not limited thereto, and metals such as copper, silver, gold, platinum, titanium, iron, Conductive materials such as stainless steel, aluminum, zinc, and indium tin compounds can be used. Furthermore, in order to prevent the temperature difference between the two ends of the element from decreasing due to heat conduction through the metal electrode, these metals and conductive materials are processed into fine wires, or these are coated on fibrous materials by plating or the like It is also possible to use what has been done.
In the case of this example, the bonding between the thermoelectric element and the metal electrode was performed by thinly applying a silver paste between the PEDOT: PSS element and the nickel foil, but the present invention is not limited thereto. Gold paste, platinum paste, or the like may be used.
In order to secure flexibility while protecting the thermoelectric conversion elements and the wiring between them and the electrodes, laminating with a laminate film made of polyethylene terephthalate was performed in this example, but these materials and processing methods are limited. It is not a thing. The film that protects the element may be an insulating and flexible material, such as polyethylene, polypropylene, polyimide, polyvinyl chloride, polyester, polycarbonate, ethylene-methacrylic acid copolymer, ethylene-vinyl acetate copolymer, A fluororesin or the like can be used. Furthermore, in order to increase the temperature difference between both ends of the element, a metal sheet or tape (such as copper or aluminum) coated with an insulating adhesive can be used.

人体に装着する機器(ペースメーカー、腕時計など)の電源の他、工場・家庭・自動車・鉄道などを含む種々の低温未利用排熱(200℃以下)を電気として回収する省エネルギー分野に利用できる。
断熱性物質として衣服及び紙を選んだ場合、それぞれ染色工場における染色プロセス、及び印刷工場における印刷プロセスを利用することも可能であり、染料やインクとして導電性高分子溶液を用いることで、熱電変換機能を持った衣服や紙を製造することも可能である。これにより、エネルギーコストの高い焼結プロセスが不可欠であった従来の無機材料からなる熱電変換素子を用いる場合に比べて、低コストで生産効率を高めた熱電変換モジュールを製造することが可能となる。


In addition to the power supply of devices (pacemakers, watches, etc.) worn on the human body, it can be used in the energy-saving field to collect various low-temperature unused exhaust heat (200 ° C or less) including electricity in factories, homes, automobiles, railways, etc.
When clothing and paper are selected as thermal insulation materials, it is also possible to use the dyeing process in the dyeing factory and the printing process in the printing factory, respectively. By using a conductive polymer solution as the dye or ink, thermoelectric conversion It is also possible to manufacture functional clothes and paper. As a result, it is possible to manufacture a thermoelectric conversion module at a low cost and with increased production efficiency compared to the case of using a conventional thermoelectric conversion element made of an inorganic material, which requires a high energy cost sintering process. .


Claims (6)

ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子の有機熱電材料を繊維状断熱材に浸透・乾燥することで、当該繊維状断熱材を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化された熱電変換素子。 The organic thermoelectric material of the conductive high content element having an adjusted electrical conductivity and Seebeck coefficient by the dopant molecules and the additive material molecules that penetrate and drying the fibrous heat insulating material, the thickness Ya is inflated, stretching the fibrous heat insulating material A thermoelectric conversion element that is compounded so as to form a mesh-like cross-sectional structure in which a surface of a fiber is covered with a film of an organic thermoelectric material and a heat insulating material fiber is surrounded while forming a cavity between the fibers. 請求項1に記載の複合組織化された熱電変換素子の上面および下面に電極を接合させることにより構成された熱電変換モジュール。 The thermoelectric conversion module comprised by joining an electrode to the upper surface and lower surface of the thermoelectric conversion element of the composite structure of Claim 1. 電極が、金属はく又は金属細線、あるいは線維状物質に金属を被覆した電極であり、これらの電極は、直接あるいは金属ペーストを介して熱電変換素子の上面および下面に接合されている、請求項2に記載の熱電変換モジュール。 Electrodes, metal foil or metal thin wires, or an electrode which overturned the metal to fibrous material, these electrodes are bonded directly or via a metal paste on the upper surface and the lower surface of the thermoelectric conversion element, wherein Item 3. The thermoelectric conversion module according to Item 2. 請求項2または3に記載の熱電変換素子を、当該電極を介して複数の当該熱電変換素子同士を電気的に結合した、熱電変換モジュール。   A thermoelectric conversion module, wherein the thermoelectric conversion elements according to claim 2 or 3 are electrically coupled to each other via the electrodes. さらに高分子フィルム又は樹脂あるいは金属テープで挟んで封止された、請求項4に記載の熱電変換モジュール。   Furthermore, the thermoelectric conversion module of Claim 4 sealed by pinching | interposing with a polymer film, resin, or a metal tape. ドーパント分子及び添加材分子によって導電率及びゼーベック係数を調整した導電性高分子の有機熱電材料を繊維状断熱材に浸透・乾燥することで、当該繊維状断熱材を膨張・伸縮させて厚みや繊維間の空洞を形成させながら、繊維の表面を有機熱電材料の膜が被覆し、断熱材繊維を取り囲む形で網目状の断面構造を形成する様に複合組織化することを特徴とする、複合組織化された熱電変換素子の製造方法。 The organic thermoelectric material of the conductive high content element having an adjusted electrical conductivity and Seebeck coefficient by the dopant molecules and the additive material molecules that penetrate and drying the fibrous heat insulating material, the thickness Ya is inflated, stretching the fibrous heat insulating material The composite structure is characterized in that while forming a cavity between fibers, the surface of the fiber is covered with a film of organic thermoelectric material, and a composite structure is formed so as to form a mesh-like cross-sectional structure surrounding the heat insulating material fiber A method for manufacturing an organized thermoelectric conversion element.
JP2014213756A 2014-10-20 2014-10-20 Thermoelectric conversion element and thermoelectric conversion module Active JP6448980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213756A JP6448980B2 (en) 2014-10-20 2014-10-20 Thermoelectric conversion element and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213756A JP6448980B2 (en) 2014-10-20 2014-10-20 Thermoelectric conversion element and thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2016082132A JP2016082132A (en) 2016-05-16
JP6448980B2 true JP6448980B2 (en) 2019-01-09

Family

ID=55958993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213756A Active JP6448980B2 (en) 2014-10-20 2014-10-20 Thermoelectric conversion element and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP6448980B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781982B2 (en) * 2016-07-14 2020-11-11 国立研究開発法人産業技術総合研究所 Thermoelectric conversion module and its manufacturing method
JP2018022828A (en) * 2016-08-05 2018-02-08 シャープ株式会社 Thermoelectric conversion element
JP2018067608A (en) * 2016-10-18 2018-04-26 日本精工株式会社 Thermoelectric conversion element
JP7377012B2 (en) 2018-06-14 2023-11-09 慶一 鳥光 Conductive materials and electrical elements and sensors equipped with the same
WO2019240241A1 (en) * 2018-06-14 2019-12-19 鳥光 慶一 Electroconductive material and electrical element provided with same, and sensor
US20200119247A1 (en) * 2018-10-11 2020-04-16 Rolls-Royce Corporation Composite thermoelectric material
JP7232513B2 (en) * 2019-02-15 2023-03-03 国立研究開発法人産業技術総合研究所 Seebeck coefficient measuring device and its measuring method
JP7092217B2 (en) * 2021-01-05 2022-06-28 日本精工株式会社 Thermoelectric conversion element
WO2023127590A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion element and sensor module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513504B2 (en) * 2004-10-29 2010-07-28 株式会社豊田中央研究所 Thermoelectric material
JP5282203B2 (en) * 2008-07-22 2013-09-04 帝人株式会社 Functional fibers and functional fiber products
JP5243181B2 (en) * 2008-10-20 2013-07-24 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric element using conductive polymer composite and conductive polymer material
JP2012084821A (en) * 2010-10-13 2012-04-26 Nihon Sentan Kagaku Kk Thermoelectric conversion material and thermoelectric conversion element
WO2012135428A1 (en) * 2011-03-29 2012-10-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Thermoelectric materials
EP2767632B1 (en) * 2011-11-17 2019-05-29 Nippon Telegraph and Telephone Corporation Conductive polymer fibers, biological electrode and implantable electrode
JP5967676B2 (en) * 2012-08-30 2016-08-10 国立研究開発法人産業技術総合研究所 Thermoelectric material manufacturing method and thermoelectric module manufacturing method

Also Published As

Publication number Publication date
JP2016082132A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6448980B2 (en) Thermoelectric conversion element and thermoelectric conversion module
Fan et al. Recent developments in flexible thermoelectrics: From materials to devices
Li et al. Recent advances in flexible thermoelectric films and devices
Kirihara et al. Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT: PSS
JP5580835B2 (en) Carbon nanotube heating sheet
You et al. Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density
KR101346568B1 (en) Flexible multi-layered thermoelectric device with enhanced thermoelectric ability and preparation thereof
Wan et al. All annealing-free solution-processed highly flexible organic solar cells
JP6205333B2 (en) Thermoelectric conversion module
Kim et al. Elastic thermoelectric sponge for pressure-induced enhancement of power generation
EP3270737A1 (en) Energy harvesting mattress with thermoelectric fabric
JP2016018867A (en) Flexible thermoelectric conversion device
JP6158062B2 (en) Power generation device
Peng et al. Enhancing thermoelectric properties by using a surface polarization effect based on PEDOT: PSS thin films
Zhang et al. Novel wearable pyrothermoelectric hybrid generator for solar energy harvesting
Kim et al. Composite films of poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate incorporated with carbon nanotube sheet for improved power factor in thermoelectric conversion
JP2017204550A (en) Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
KR101843959B1 (en) Thermoelectric generation system for wearable device
Lee et al. Highly surface-conformable thermoelectric patches for efficient thermal contact with arbitrary substrates
JPWO2016203939A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6505585B2 (en) Thermoelectric conversion element
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JP2016192424A (en) Thermoelectric conversion element and thermoelectric conversion module
JP2017162911A (en) Method of manufacturing thermoelectric conversion element and thermoelectric conversion element
US20180358531A1 (en) Thermoelectric conversion material and thermoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R150 Certificate of patent or registration of utility model

Ref document number: 6448980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250